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1 Introduction

Relativistic heavy ion collisions at the LHC and RHIC colliders produce a novel state of

matter, the quark gluon plasma (QGP) [1, 2]. At accessible energies, the produced plasma

is strongly coupled — so strongly coupled that it cannot be described in terms of long-

lived quasiparticles. Evidence for this comes from the effectiveness of hydrodynamics in

modeling experimental results (for a recent review, see ref. [3]) with viscosity close to the

holographic value [4], as well as from the very short values of screening lengths in hot QCD

which are computable using lattice gauge theory [5].

Hydrodynamics provides an effective description of the dynamics of the plasma at suf-

ficiently late times after the collision, but is not applicable to early time dynamics when

the produced plasma is very far from local equilibrium. Moreover, hydrodynamics is not

adequate for understanding the important physics of hard probes of the medium. Unfortu-

nately, alternative theoretical approaches for calculating, reliably, properties of a strongly

coupled plasma are very limited.

In recent years, gauge/gravity duality (or “holography”) has provided a new tool for un-

derstanding strongly coupled systems. In its simplest and most studied form, gauge/gravity

duality relates properties of maximally supersymmetric SU(Nc) Yang-Mills theory (N = 4

SYM), in the Nc → ∞ limit, to gravitational dynamics of higher dimensional asymp-

totically anti-de Sitter spacetimes. Under this duality, the process of equilibration and

thermalization in the quantum field theory is precisely related to gravitational dynamics

involving the formation and subsequent equilibration of black hole horizons.

Much work has been done using gauge/gravity duality to study aspects of strongly

coupled dynamics relevant to heavy ion collisions; see, for example, refs. [6–8] and ref-

erences therein. This includes calculations of the drag on a heavy quark [9–13] or light

quark [14, 15] propagating through a strongly coupled medium, jet quenching [16, 17],

particle production [18–22], isotropization dynamics [23–26], boost-invariant flow [27, 28],

collapsing bulk scalar fields, planar shells, and balls of dust [29–33], collisions of planar
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shock waves [34–37], and collisions of fully localized shock waves resembling Lorentz con-

tracted nuclei [38, 39]. Because of the precise mapping between gauge and gravitational

dynamics provided by gauge/gravity duality, in all this work one is honestly computing

properties of a strongly coupled non-Abelian gauge theory. There is just one problem —

the theory in which these calculations are done, namely N = 4 SYM, is not real QCD.

The strong coupling, large Nc limit of N = 4 SYM, to which gauge/gravity duality

applies, may be viewed as a three-step deformation of QCD: (i) the fundamental represen-

tation quarks of QCD are replaced by a collection of adjoint representation matter fields,

both fermions and scalars, thereby turning QCD into N = 4 SYM, (ii) the ’t Hooft coupling

λ ≡ g2YMNc, which no longer runs with energy scale in N = 4 SYM, is tuned to very large

values, and (iii) the gauge group rank, Nc, is sent to infinity. Qualitative properties of the

deconfined plasma phase are stable under these deformations: the high temperature phase

of the theory remains a non-Abelian plasma with Debye screening and a finite correlation

length; spacelike Wilson loops continue to show area law behavior; and long distance, low

frequency dynamics continues to be described by neutral fluid hydrodynamics.

Lattice gauge theory simulations have shown that thermodynamic properties of SU(Nc)

Yang-Mills plasma scale very smoothly with Nc [40, 41], suggesting that the large Nc limit

should be well-behaved for most observables of interest, and moreover that the SU(3) theory

is already fairly close to the Nc = ∞ asymptotic limit. Where results from hot QCD

lattice simulations (in the experimentally relevant temperature range, 1.5 . T/Tc . 4)

are available to be compared to holographic computations in N = 4 SYM, a variety of

important physical quantities such as the equation of state, ratios of screening masses to

temperature in various symmetry channels, and estimates of the shear viscosity to entropy

density ratio, η/s, show agreement to within at least a factor of two, and often much better.

Consequently, in the above deformations which connect holographic models to QCD,

the step which likely produces the largest changes in thermal properties, and about which

the least is known, is step (ii): sending the ’t Hooft coupling to values large compared to

unity. At the relevant energy scales in hot QCD, the appropriate value of the ’t Hooft

coupling (in physically sensible schemes) is presumably somewhere in the range 10–40 —

corresponding to αs ≡ g2YM/(4π) between 0.3 and 1, not some truly enormous number.

Therefore, improved understanding of the dependence of physical quantities in N = 4 SYM

on the value of λ is highly desirable. It is known that finite λ corrections appear in the form

of inverse fractional powers, beginning with λ−3/2. In this paper, we collect, extend, and

examine available results for finite-λ corrections to thermal observables in an effort to gain

some insight into the stability of the expansion in inverse powers of λ and the applicability

of holographic predictions to physics at realistic values of the ’t Hooft coupling.

The paper is organized as follows: in section 2, we summarize and discuss first order

finite-λ corrections to a variety of thermal observables. A basic observation is that the rela-

tive size of the first finite-λ correction is substantially larger for quasinormal mode (QNM)

frequencies than for other observables. Section 3 then recaps the holographic calculation of

two point correlation functions, from which transport coefficients and quasinormal mode

frequencies are extracted, in a manner which allows one to extract the first order finite-λ

correction or perform a partial resummation of higher order finite-λ corrections. Results

– 2 –



J
H
E
P
1
1
(
2
0
1
5
)
0
8
7

Quantity O(γ0) O(γ1) Reference

s (12π
2N2

c T
3)−1 1 15 γ [42]

η (18πN
2
c T

3)−1 1 135 γ [44]

4π η/s 1 120 γ [44]

σ (14αEMN
2 T )−1 1 14993/9 γ [45]

Γ0 (αEMN
2T 4)−1 0.053678 23.5379 γ This work

Γ1 (αEMN
2T 6)−1 0.472771 −224.4698 γ This work

ωshear
2 (2πT )−1 2.585− 2.382 i (1.029 + 0.957 i) 104 γ [50]

ωEM
2 (2πT )−1 2− 2 i (1.34 + 0.43 i) 105 γ [51]

Table 1. Zeroth and first order terms in the expansion of various thermal observables in powers of

γ = 1
8 ζ(3)λ−3/2. Results are shown for the entropy density s, shear viscosity η, viscosity to entropy

density ratio η/s, electrical conductivity σ, the first two moments, Γ0 and Γ1, of the photoemission

spectrum, and the second quasinormal mode frequencies, ωEM
2 and ωshear

2 , at zero wavevector, for

the electromagnetic current and shear channel of the stress-energy correlator, respectively.

of the two procedures are shown, and compared, for the first few quasinormal modes of

the current-current correlator and the shear channel of the stress-energy correlator, as well

as for the plasma conductivity and shear viscosity. The final section 4 contains a few

concluding remarks.

2 First order corrections: collected results

Considerable prior work exists examining finite-λ corrections to holographic results. This

includes analyses of the equation of state [42], shear viscosity η [43, 44], plasma conduc-

tivity σ [45], photon production and transport [46, 47], and various higher-order transport

coefficients [48]. More recent work has considered finite-λ corrections to quasinormal mode

frequencies and off-equilibrium spectral densities obtained from the current-current and

stress-energy correlators [49–51].

The finite coupling corrections appear as a power series in λ−1/2, with the first correc-

tions being proportional to λ−3/2. It proves convenient to define the constant

γ ≡ 1

8
ζ(3)λ−3/2 =

1

8
ζ(3) (g2YMNc)

−3/2 , (2.1)

where 1
8 ζ(3) ≈ 0.15. The benchmark range of 10–40 for the ’t Hooft coupling λ corresponds

to values of γ between about 0.005 and 0.0006.
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In table 1, we collect the values of the first two terms in the strong coupling expansions

of various thermal observables: the entropy density s, the shear viscosity η and viscosity to

entropy density ratio η/s, the electrical conductivity σ,1 and the second quasinormal mode

frequencies ωEM
2 and ωshear

2 for the electromagnetic current and the shear channel of the

stress-energy correlator, respectively. Also included are results for the first two moments

of the photoemission spectrum, defined as

Γn ≡
∫ ∞
0

dk k2n
dΓγ
dk

. (2.2)

For the entropy density (or equivalently, the pressure p = s T/4), the first finite-

coupling correction is modest; the O(γ1) term does not exceed the leading O(γ0) term as

long as λ > 1.72. For the shear viscosity or viscosity ratio η/s, the corresponding crossover

points where the first corrections equal the leading term occur at λ ≈ 7.4 or 6.9, respec-

tively. For the electric conductivity, this crossover lies at λ ≈ 39.7, while the crossovers for

the photoemission moments Γ0 and Γ1 are at 16.3 and 17.2, respectively. All these values

are below, or at least within, our 10–40 range of benchmark values for λ. The situation,

however, is rather different for the quasinormal mode frequencies shown in table 1. The

first order corrections exceed the leading order term when λ < 71.2 (for ωshear
2 ) or λ < 382.2

(for ωEM
2 ), suggesting that their λ = ∞ limits are likely to give poor predictions for the

values of these quantities in the phenomenologically interesting range of ’t Hooft couplings.

A priori, it is not clear whether the above behavior of the QNM frequencies is due

to an abnormally large first term in an otherwise well-behaved expansion, or whether

the quantities in question are particularly sensitive to finite coupling corrections, so that

their expansions in γ have an abnormally small range of utility. Deciding between these

alternatives would, in principle, require an all orders determination of the strong coupling

expansion, which is far beyond the reach of present day technology. In this paper, we

adopt a far more modest goal. We will investigate a simple resummation applicable to

quasinormal mode frequencies and related observables which takes into account a subset of

higher order terms in the expansion in powers of γ, and see if this improves the behavior

of the resulting series. At the very least, this investigation should be helpful in inferring

the range of utility of the above first order results.

3 Finite coupling corrections to correlators and QNMs

Finite coupling corrections to thermal observables are generated by higher derivative (or α′)

corrections to the 10-dimensional type IIB supergravity action, which takes the schematic

form

SIIB = S
(0)
IIB + γ S

(1)
IIB + γ4/3 S

(4/3)
IIB + · · · . (3.1)

The first order correction S
(1)
IIB includes fourth powers of the Riemann tensor plus terms,

related by supersymmetry, that involve the self-dual five form (see, for example, ref. [52]).

1To define the SYM electromagnetic current and associated electrical conductivity, one weakly gauges a

U(1) subgroup of the global SU(4)R flavor symmetry of N = 4 SYM [18]; see the next section for details.
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For the free energy (or pressure), it is sufficient to evaluate the first order correction terms

in the action on the unmodified AdS-Schwarzschild solution [42]. For other observables,

one must insert into the 10D action (3.1) an appropriate ansatz for the 10D metric, five

form field strength, and any other fields relevant for the observable of interest. A Kaluza-

Klein reduction eliminating the compact internal space (for physics which only depends

on the lowest KK modes) leads to a 5D α′-corrected action for the relevant bulk fields in

asymptotically AdS spacetime. Using the corrected 5D action, observables of interest are

computed using the standard holographic correspondence. This typically involves deriving

α′ corrected equations of motion for the relevant bulk fields and then solving these equations

order by order in γ. For more details of such calculations see, for example, refs. [42, 44,

45, 51, 53].

Below, we illustrate explicitly the above procedure as applied to the calculation of the

electromagnetic current and stress-energy correlators and the extraction of their associated

QNM spectra and transport coefficients. In each case, we first perform the computation in a

way that consistently truncates the result after the linear term in γ. Thereafter, we present

an alternative calculational scheme which resums a subset of higher order corrections, all

originating from the S
(1)
IIB correction term to the supergravity action. We emphasize that, as

the explicit forms (and physical effects) of higher order terms in the supergravity action are

presently unknown, our resummation only captures a limited subset of corrections involving

higher powers of γ. Nevertheless, the results of this partial resummation will be seen to

have interesting and suggestive implications for the stability of holographic predictions at

phenomenologically relevant values of the ‘t Hooft coupling.

3.1 Current-current correlator

We begin by considering correlators of the electromagnetic current operator jµEM of N = 4

SYM, defined by gauging a U(1) subgroup of the SU(4)R flavor symmetry.2 This current

is dual to a U(1) vector field AM in the gravitational description. To compute the two-

point correlator 〈jµEM jνEM〉, one must solve for the behavior of linearized fluctuations of

this bulk gauge field in the background geometry corresponding to the equilibrium state of

interest. In the near boundary expansion of the bulk gauge field AM , the coefficient of the

leading term represents a source coupled to the conserved current jµEM, and the coefficient

of the first subleading term encodes the expectation value of the current in the presence

of this source. Hence, the two-point correlator is given by the variation of the subleading

coefficient with respect to the leading coefficient.

In the λ → ∞ limit, the action for the bulk gauge field is just the standard Maxwell

action, which leads to the usual (curved space) Maxwell equation,

1√−g ∂µ(
√−g gµαgνβ Fαβ) = 0 . (3.2)

2Specifically, we choose the U(1) subgroup for which the N = 4 SYM fermions have charges { 1
2
,− 1

2
, 0, 0};

the explicit form of the current in terms of the N = 4 SYM fields is shown in eq. (2.1) of ref. [18].
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The N = 4 thermal equilibrium state (in the absence of chemical potentials) is dual to the

AdS-Schwarzschild geometry, whose metric may be written in the form

ds2 =
r2h
L2 u

[
−f(u) dt2 + dx2 + dy2 + dz2

]
+

L2

4u2f(u)
du2. (3.3)

Here, L is the AdS curvature scale, which we choose to set to unity, while the non-

extremality parameter is related to the field theory temperature T by rh ≡ πTL2. The

coordinate u is an inverted radial coordinate, with the spacetime boundary lying at u = 0;

in terms of a conventional non-inverted radial coordinate r, u = r2h/r
2. The blackening func-

tion finally reads f(u) ≡ 1−u2, and vanishes at the black brane horizon located at u = 1.

When evaluated in the above geometry and Fourier transformed with respect to the

boundary (Minkowski) coordinates, the Maxwell equation (3.2) reduces to a pair of decou-

pled linear ordinary differential equations for the longitudinal and transverse components

of the electric field [18],

0 = E′′⊥(u) +
f ′(u)

f(u)
E′⊥(u) +

ω̂2 − q̂2f(u)

uf(u)2
E⊥ , (3.4)

0 = E′′‖ (u) +
ω̂2f ′(u)

f(u)(ω̂2 − q̂2) E
′
‖(u) +

ω̂2 − q̂2f(u)

uf(u)2
E‖ , (3.5)

with ω̂ ≡ ω/(2πT ) and q̂ ≡ q/(2πT ) denoting the rescaled frequency and spatial wavevec-

tor, respectively. Focusing on the transverse electric field (which determines the transverse

part of the current-current correlator and thus the photoemission spectrum), the simple

field redefinition Ψ(u) ≡
√
f(u)E⊥(u) converts eq. (3.4) into a Schrodinger-like equation

at zero energy,

−Ψ′′(u) + V (u) Ψ(u) = 0 , (3.6)

with

V (u) ≡ −u+ ω̂2 − q̂2f(u)

uf(u)2
. (3.7)

At non-zero temperature, the retarded current-current correlator may be decomposed

into transverse and longitudinal pieces via

Gret
µν (ω,q) = P⊥µν(ω,q) Π⊥(ω̂, q̂) + P ‖µν(ω,q) Π‖(ω̂, q̂) , (3.8)

with the symmetric projectors defined by P⊥0ν(ω,q) ≡ 0, P⊥ij (ω,q) ≡ δij − qiqj/q
2, and

P
‖
µν(ω,q) ≡ ηµν − QµQν/Q

2 − P⊥µν(ω,q), where Q ≡ (ω,q) and Q2 = −ω2 + q2. The

transverse correlation function is then given by [54]

Π⊥(ω̂, q̂) = −1

8
N2

c T
2 lim
u→0

E′⊥(u)

E⊥(u)
= −1

8
N2

c T
2 lim
u→0

Ψ′(u)

Ψ(u)
, (3.9)

where E⊥ (or Ψ) is the solution to eq. (3.4) [or (3.6)] satisfying infalling boundary conditions

at the horizon.

Numerous physical observables of interest can be extracted from the current-current

correlator. Quasinormal modes are poles of the retarded correlator, regarded as functions

– 6 –
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of the complex frequency ω for fixed wavevector q, while pole positions at imaginary values

of q and ω = 0 give thermal screening masses [55]. The zero-frequency slope, at vanishing

wavevector, determines the electric conductivity,

σ ≡ − lim
ω→0

Im
e2

ω
Π⊥(ω̂, q̂=0) =

N2
c e

2T

16π
lim
ω̂→0

lim
u→0

1

ω̂
Im

Ψ′(u)

Ψ(u)
, (3.10)

where e is the (arbitrarily weak) coupling constant of the electromagnetic U(1) gauge field

coupled to the conserved current.3 Finally, the (equilibrium) photoemission spectrum is de-

termined by the imaginary part of the transverse correlator evaluated on the lightcone [18],

dΓγ
dk

=
αEM

π
k nb(k) (−4 Im Π⊥)

∣∣
ω̂=q̂=k/(2πT )

, (3.11)

where nb(ω) ≡ (eω/T − 1)−1 is the usual Bose distribution function.

Expression (3.9) shows that the correlator will have poles at values of q and ω for which

the denominator, equal to the boundary value of the electric field (or Ψ), vanishes. In other

words, QNMs represent homogeneous solutions of the bulk Maxwell equations satisfying

infalling boundary conditions at the horizon and a Dirichlet condition at the spacetime

boundary. At q = 0, one may solve the transverse equation (3.4) and find the resulting

roots of E⊥ analytically [56]. The result is the famous linear spectrum,

ω̂n = n (±1− i) , (3.12)

while numerical results for non-zero wavevector may be found in ref. [57].

To incorporate finite coupling corrections in the above calculation, one begins with

the expansion (3.1) of the 10D supergravity action and retains both the leading and first

subleading terms. Schematically,

S
(0)
IIB =

1

2κ10

∫
d10x

√
−G

[
R10 −

1

2
(∂φ)2 − 1

4 · 5!
(F5)

2

]
, (3.13)

S
(1)
IIB =

L6

2κ10

∫
d10x

√
−Ge− 3

2
φ (C + T )4 , (3.14)

where κ10 is the 10D Newton constant, R10 the 10D Ricci-scalar, φ the dilaton field, and

F5 the five-form field strength, while C stands for the Weyl tensor, and T for a tensor built

from the gradient of F5 plus terms quadratic in F5 [42, 52, 53]. After a reduction to 5D

and the extraction of terms at most quadratic in the emergent 5D bulk gauge field dual

to the EM conserved current, one eventually finds a γ-corrected Maxwell equation which,

once again, may be put into the Schrodinger-like form (3.6) [46, 51]. The needed field

redefinition becomes Ψ(u) = Σ(u)E⊥(u) , with

Σ(u) ≡
√
f(u)

1 + γ p(u)
, p(u) =

u2

288

[
11700− 343897u2 − 37760u3 q̂2 + 87539u4

]
, (3.15)

3If one regards the U(1) current as a global symmetry current, not coupled to a dynamical electromag-

netic gauge field, then the associated charge diffusion constant is related to the conductivity by the Einstein

relation, D = σ/(e2Ξ), where Ξ = 1
8
N2

c T
2 is the N = 4 SYM charge susceptibility.
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q̂ = 0

1 2 3 4 5
−4
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Re(ω̂)

I
m
(ω̂

)

q̂ = 1

2 2.5 3 3.5

−2.5

−2

−1.5

−1

Re(ω̂)

I
m
(ω̂

)

Figure 1. The first few QNM frequencies, divided by 2πT , of the electromagnetic current operator

for q̂ = 0 (left) and q̂ = 1 (right), evaluated at λ = ∞ (red squares) and λ = 1000 (blue circles).

The λ = 1000 results include the O(γ) corrections, but no higher order contributions. Lines have

been inserted merely to guide the eye.

while the resulting γ-corrected effective potential reads

V (u) = −u+ ω̂2 − q̂2f(u)

uf(u)2

+
γ

144f(u)

[
−11700 + 2098482u2 − 4752055u4 + 1838319u6

+ q̂2
(
4770u−1 + 11700u− 953781u3 + 1011173u5

)
− ω̂2

(
4770u−1 + 28170u− 1199223u3

)]
. (3.16)

Given the above potential, solutions to the equation Ψ′′ = V Ψ may be expanded in

a power series in γ. The black brane horizon at u = 1 is a regular singular point of the

equation, where infalling solutions behave locally as Ψ(u) ∼ (1−u)r with characteristic

exponent r = 1
2(1− iω̂). Hence, one may expand the solutions of interest as

Ψ(u) = (1−u)r
[
Φ(0)(u) + γ Φ(1)(u) + · · ·

]
, (3.17)

where Φ(0) and Φ(1) have the near-horizon Frobenius expansions,

Φ(0)(u) ∼
∞∑
n=0

an (1−u)n, Φ(1)(u) ∼
∞∑
n=0

bn (1−u)n . (3.18)

One may further determine the coefficients {an} and {bn} recursively by inserting these

expansions into eq. (3.6) and collecting like powers of γ and (1−u). Without loss of

generality, one may set a0 = 1 and b0 = 0.

The values of frequency, for which the solution also satisfies the Dirichlet condition at

the boundary (for a fixed q), may also be expanded in powers of γ,

ω̂ = ω̂(0) + γ ω̂(1) + · · · . (3.19)

– 8 –
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If the expansion (3.18) is truncated at some upper limit N and used throughout the com-

putational domain 0 ≤ u ≤ 1, then the Dirichlet condition that Ψ(0) vanish (for all γ)

reduces to a set of algebraic equations

N∑
n=0

an(ω̂(0)) = 0 ,
N∑
n=0

bn(ω̂(0), ω̂(1)) = 0 , (3.20)

whose roots yield (approximations to) ω̂(0) and ω̂(1). Carrying out this procedure for values

of N sufficiently large that the results are stable turns out to be a viable computational

strategy [51]. Our results for the first few QNMs are displayed in figure 1 and reported in

table 2 below, and fully agree with the findings of ref. [51].

We have also computed the photoemission spectrum (3.11) by solving the γ-corrected

equation for the transverse electric field, as in ref. [46], and then evaluated the first few

moments (2.2) of the spectrum, obtaining the results shown in table 1.

As an alternative to the above approach, in which the QNM frequencies and mode

functions are explicitly expanded in powers of γ, one may directly solve the Schrodinger

equation (3.6) with the potential (3.16) evaluated at some chosen value of γ. Spectral

methods provide an efficient numerical approach [58]. We write

Ψ(u) = (1−u)r Φ(u) , (3.21)

so that the function Φ(u) is regular at both the horizon and boundary. In terms of Φ, the

explicit γ-corrected QNM equation takes the form

−u(1+u)(1−u2) Φ′′(u) + u(1+u)2(1− iω̂) Φ′(u) +K(u) Φ(u) = 0 , (3.22)

with

K(u) ≡ (1− ω̂2) +
1

4
u(1− 3ω̂2)− 1

4
u2(1 + ω̂2)

+
γ

144
(1+u)

[
11700u+ 2098482u3 − 4752055u5 + 1838319u7

+ q̂2
(
4770 + 11700u2 − 953781u4 + 1011173u6

)
+ ω̂2

(
−4770− 28170u2 + 1199223u4

)]
. (3.23)

Next, we expand Φ in a truncated series of Chebyshev polynomials,

Φ(u) =

N∑
n=0

cn Tn(2u−1) , (3.24)

with Tn(z) ≡ cos(n cos−1 z).4 Requiring equation (3.22) to be satisfied at the points uj ≡
1
2 [1−cos(jπ/N)], j = 0, 1, · · ·N , which comprise a Chebyshev-Gauss-Lobatto grid, converts

the differential equation (3.22) into a finite matrix equation of the form A·v = 0. Here, v is a

vector consisting of the N+1 coefficients {cn} of the Chebyshev expansion, while A denotes

4The Chebyshev polynomials {Tn(z)} form an orthogonal basis in the Hilbert space with inner product

(f, g) =
∫ 1

−1
dz f(z) g(z)/

√
1− z2.
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Figure 2. The first few QNM frequencies, divided by 2πT , of the electromagnetic current operator

for q̂ = 0 (left figure) or q̂ = 1 (right figure) at λ = 1000. Results obtained by directly solving the

QNM equation at this value of λ using spectral methods are shown as brown diamonds, while the

red squares and blue circles show the same zeroth and first order results, respectively, previously

displayed in figure 1. Again, lines merely serve to guide the eye.

ω̂EM
k (q̂ = 0) ω̂EM

k (q̂ = 1)

k O(γ0) O(γ1) resummed O(γ0) O(γ1) resummed

1 1−i 1.073− 1.005i 1.068− 0.990i 1.547− 0.85i 1.558− 0.828i 1.557− 0.829i

2 2−2i 2.637− 1.797i 2.237− 1.794i 2.399− 1.874i 2.525− 1.645i 2.477− 1.722i

3 3−3i 5.536− 1.692i 3.403− 2.551i 3.323− 2.859i 3.957− 1.791i 3.544− 2.518i

4 4−4i 11.07 + 0.47i 4.57− 3.34i 4.28− 3.91i 6.37− 0.39i 4.67− 3.31i

Table 2. The first four QNM frequencies, divided by 2πT , of the electromagnetic current operator

{ω̂EM
k }, k = 1, · · · 4, for q̂ = 0 (left) and q̂ = 1 (right), at λ = 1000. Respective columns show the

results from the zeroth order, first order, and resummed approximations discussed in the text.

a matrix whose entries on the j’th row are obtained by evaluating eq. (3.22) at the j’th

grid point.5 Nonvanishing solutions of this homogeneous set of equations only exist when

det(A) = 0 . (3.25)

This determinant is a polynomial in ω̂, whose roots {ω̂(N)
k } rapidly converge (for fixed k)

as the number of grid points N increases. Evaluating these roots numerically is straight-

forward (for relatively modest values of N) given specific values of the wavevector q̂ and

the parameter γ.

Solving the QNM equation in the fashion described above yields values for the quasi-

normal mode frequencies with nonlinear dependence on γ. One has, in effect, resummed

a subset of higher order contributions to the QNM frequencies which arise solely from the

5The row of this matrix corresponding to the u = 0 endpoint automatically enforces the Dirichlet

boundary condition Φ(0) = 0.
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λbreakdown(q̂ = 0) λbreakdown(q̂ = 1)

k O(γ1) resummed O(γ1) resummed

1 139 ≈ 22.5 57.1 < 5

2 382.2 ≈ 21.7 195 ≈ 8

3 767.5 ≈ 21.3 437 ≈ 14

4 1298 ≈ 21.1 793 ≈ 16

Table 3. Values of λ below which the deviation of the QNM frequency ωEM
k from its λ =∞ limit

exceeds the λ =∞ value. Respective columns show the results obtained using either the first order

or resummed approximations for the QNM frequency.

first order, i.e. O(γ), correction to the supergravity action. One may hope — although

there is no guarantee — that this is the dominant source of all higher order contributions.

In figure 2 and table 2, we display the effects of the resummation for the first few QNM

frequencies, again at λ = 1000 and both q̂ = 0 and q̂ = 1, and compare the results to the

previous unresummed values. As can be readily verified, the size of the O(γ) correction

increases rapidly with the QNM mode number k, asymptotically growing like k4. This

reflects the fact that finite coupling corrections arise from higher dimension operators in

the supergravity action (3.14). Although the size of the O(γ) correction to the first QNM

frequency appears modest at λ = 1000, as seen in the top row of table 2, the O(γ) correction

exceeds the leading λ = ∞ value of the first QNM frequency at λ = 139 (for q = 0), or

λ = 57.1 (for q = 1), above our benchmark phenomenological range. For the second mode

(as noted previously) and all higher modes, the “breakdown” values of λ, below which the

O(γ) correction exceeds the leading term, are even larger.

In contrast, our resummed approximation for the QNM frequencies yields results which

deviate from the λ = ∞ values substantially less. As a concrete measure of this, table 3

compares, for the first few modes, the breakdown values of λ below which the deviation of

the QNM frequency from its λ = ∞ value exceeds the λ = ∞ result, in either scheme.6

For the resummed approximation, we find that these nominal breakdown values of λ are

substantially smaller than the breakdown values of the first order results. For the first

four modes, the breakdown values of the resummed approximation lie within or below

our benchmark phenomenological range of 10–40. Moreover, the breakdown values of the

resummed approximation grow far less rapidly with mode number than do the O(γ) results.

One may also apply our partial resummation scheme when evaluating the zero-

frequency slope of the correlator which determines the electric conductivity of the N = 4

SYM plasma via eq. (3.10). However, since the conductivity receives a much smaller O(γ)

correction than do the QNM frequencies, the effect of the resummation is much more mod-

est for the conductivity. At, for example, λ = 1000 the relative size of the O(γ) correction

to the conductivity is about 8 × 10−3, and our resummation increases this deviation from

6When computing resummed approximations, the convergence of both the Frobenius (3.18) and spec-

tral (3.24) expansions progressively degrade as the value of γ is increased, making precise determinations

of breakdown values of λ challenging.
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the λ = ∞ value by a further 5 × 10−5. In contrast to the situation with QNM frequen-

cies, the nominal breakdown value of the resummed approximation for the conductivity

is somewhat larger than the breakdown value of the first order approximation (λ ≈ 57.9

instead of 39.7).

3.2 Stress-energy correlator

The dynamics of linearized metric perturbations determine the stress-energy tensor corre-

lator. We will focus on the ` = 2 or shear channel, for which it is sufficient to consider

δgxy as the only non-zero component of the perturbation when the wavevector points in

the z-direction.7 After Fourier transforming with respect to the boundary coordinates, the

rescaled perturbation

Z(u) ≡ u

r2h
δgxy(u) (3.26)

satisfies the O(γ) corrected equation of motion [59],

− Z ′′(u) + P (u)Z ′(u) +Q(u)Z(u) = 0 , (3.27)

with

P (u) ≡ 1 + u2

uf(u)
+

1

4
γ
(
600u− 2306u3 − 3171u5 − 3840 q̂2 u4

)
(3.28)

and

Q(u) ≡ −(1 + 30 γ)
ω̂2 − q̂2f(u)

uf(u)2

− γ

4f(u)2

[
50u2 − 275u6 + 225u8

+ ω̂2
(
600u− 2856u3 + 2136u5

)
+ q̂2

(
−300u+ 3456u3 − 6560u5 + 3404u7

)
+ q̂4

(
768u4 + 768u6

)]
. (3.29)

Boundary conditions for finding quasinormal modes are the same as discussed earlier:

infalling behavior at the horizon and Dirichlet at the boundary. Solutions up to O(γ) of the

above equation were found in ref. [50] using the Frobenius expansion technique discussed

in the previous subsection. One may, however, also solve the equation directly for specific

values of γ, just as we did for the electromagnetic current correlator, using spectral methods.

Figure 3 shows a comparison of the results of the two approaches for λ = 500 and q̂ = 0, with

table 4 listing explicit values. Once again, at this value of λ (which is still well above the

phenomenologically relevant range) we observe a substantial difference between the O(γ)

results and our resummed values, with the resummation decreasing the difference from the

7Note that in ref. [57], the channel with ` = 2 rotational symmetry about the wavevector was referred

to as the “scalar channel” because the corresponding metric perturbation satisfies the same equation as a

minimally coupled massless scalar, and the ` = 1 or vector channel was referred to as the “shear channel”.

Our terminology is motivated by the fact that the shear viscosity can be obtained from the zero-frequency

limit of the correlator in the ` = 2 channel.
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q̂ = 0

2 3 4 5
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Re(ω̂)
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)

Figure 3. The first few QNM frequencies, divided by 2πT , for the shear channel of the stress-

energy correlator, evaluated for q̂ = 0 and λ = 500. Results obtained by directly solving the QNM

equation at this value of λ using spectral methods are shown as brown diamonds, while the red

squares and blue circles show results truncated at zeroth and first order in γ, respectively. As

before, lines merely serve to guide the eye.

ω̂shear
k (q̂ = 0)

k O(γ0) O(γ1) resummed

1 1.560− 1.373i 1.581− 1.356i 1.579− 1.356i

2 2.585− 2.382i 2.723− 2.253i 2.673− 2.277i

3 3.594− 3.385i 4.093− 2.899i 3.789− 3.133i

4 4.60− 4.39i 5.92− 3.07i 4.91− 3.98i

Table 4. The first four QNM frequencies, divided by 2πT , {ω̂shear
k }, k = 1, · · · 4, in the shear

channel of the stress-energy correlator, for q̂ = 0 and λ = 500. Respective columns show the results

from the zeroth order, first order, and resummed approximations discussed in the text.

λbreakdown

k O(γ1) resummed

1 27.6 < 1

2 71.2 < 1

3 135.5 < 1

4 221 < 1

Table 5. Values of λ below which the deviation of the QNM frequency ωshear
k from its λ =∞ limit

exceeds the λ =∞ value. Respective columns show the results obtained using either the first order

or resummed approximations for the QNM frequency.
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λ = ∞ limit. In parallel with the previous subsection, we show in table 5 the breakdown

values of λ, computed with both first order and resummed approximations, below which

the first few shear channel QNM frequencies deviate from their λ = ∞ limits by more

than their λ =∞ values. We find that for the shear channel quasinormal frequencies, our

resummation scheme leads to nominal breakdown values of λ for all modes up to k = 4

lying below our benchmark phenomenological range of 10–40.

Similarly to the plasma conductivity considered earlier, the shear viscosity is deter-

mined by the zero-frequency slope of the retarded correlator of Txy evaluated at vanishing

wavenumber,

η = − lim
ω→0

Im
1

ω
Gret
xy,xy(ω, 0) . (3.30)

Including O(γ) corrections, it can be shown that this correlator is given by [43]

Gret
xy,xy(ω, q) = lim

u→0

N2
c (r0h)4

4π2
Z ′(u)

uZ(u)
, (3.31)

where Z(u) is a solution to eqs. (3.27)–(3.29) at q̂ = 0 that satisfies infalling boundary

conditions at the horizon, and r0h = πTL2/(1 + 15 γ) is the horizon position of the γ = 0

geometry.8 Using the Frobenius method to solve for the metric perturbation to linear order

in γ now leads to

Gret
xy,xy(ω, 0) = −iN

2
c (r0h)4 ω

8π3T
(1 + 195 γ) +O(ω2, γ2) , (3.32)

from which one can extract the result found in ref. [44], η = π
8 N

2
c T

3 (1 + 135 γ + · · · ).
One may also apply our partial resummation scheme when evaluating the zero-

frequency slope of the correlator (3.31). As with the conductivity, since the shear viscosity

receives a much smaller O(γ) correction than do the QNM frequencies, the effect of the

resummation is much more modest for the this transport coefficient. At, for example, λ =

1000 the relative size of the O(γ) correction to the viscosity is about 6×10−4, and our resum-

mation increases this deviation from the λ =∞ value by a mere 10−7. As with conductivity,

the resummed approximation for the shear viscosity leads to a somewhat larger nominal

breakdown value of λ as compared to the first order approximation (λ ≈ 14 instead of ≈ 7).

4 Conclusions

Our examination of finite-λ corrections to holographic results for thermal quantities is moti-

vated by an obvious desire to understand more clearly the applicability of gauge/gravity du-

ality to the physics of quark-gluon plasma as produced in real heavy ion collisions. In partic-

ular, how large an error is made when the system is modeled as infinitely strongly coupled,

as is customary in most holographic calculations of non-equilibrium dynamics performed

in the supergravity limit? We approached this problem by comparing the behaviors of the

strong coupling expansions for a variety of thermal quantities, for which the leading order

8This γ = 0 horizon position, used consistently in ref. [43], differs from the horizon position rh =

πTL2/(1 + 265
16
γ) of the γ-corrected metric derived in ref. [60] and used throughout refs. [19, 45, 46].

– 14 –



J
H
E
P
1
1
(
2
0
1
5
)
0
8
7

finite coupling correction, of order λ−3/2 in the ’t Hooft coupling, is known. Our compari-

son has singled out quasinormal mode frequencies as quantities for which the finite coupling

corrections appear particularly problematic at phenomenologically interesting values of the

’t Hooft coupling. We discovered, however, that a partial inclusion of higher order contribu-

tions, generated by the leading corrections to the supergravity action, leads to a dramatic

reduction in the predicted size of finite coupling effects in quasinormal mode frequencies.

One clear, but unsurprising, message of our comparison is that notions of strong (or

weak) coupling domains can depend rather strongly on the physics observable of interest.

For some quantities, ’t Hooft couplings of order 10–40 may be easily accessible via a one or

two term strong coupling expansion, while for other quantities this is clearly not the case.

The full reasons underlying such behavior are unclear, but some insight may perhaps be

drawn from similar issues at weak coupling. There, an extensive amount of work has been

devoted to the calculation of high order perturbative results for a number of equilibrium

thermodynamic quantities. An important lesson from this work is that the convergence of

perturbation theory is intimately related to the relative influence of different momentum

or energy scales contributing to the observable in question. Weak coupling expansions

for physical quantities that are dominantly sensitive to the hard thermal scale of 2πT are

found to behave significantly better than expansions of quantities which are more sensitive

to the soft gT and ultrasoft g2T scales which originate from electro- and magnetostatic

screening, respectively. The degraded perturbative stability arises from the dependence on

the ratio of these scales, which appears in the form of contributions suppressed only by

single powers (and logarithms) of g, instead of αs = g2/(4π). Ultimately, this reflects the

diverging infrared sensitivity of the Bose-Einstein distribution of gluonic fields.

Whether it is possible to interpret differences in stability of strong coupling expan-

sions in an analogous manner remains to be seen. However, considering the fact that the

O(α′3) corrections to λ =∞ results originate from higher derivative operators added to the

supergravity action, and that the leading finite coupling corrections to the QNM frequen-

cies can be seen to grow rapidly with the mode number, perhaps such expectations are not

completely unfounded. In the meantime, trying to generalize many more holographic calcu-

lations to include at least the leading finite ’t Hooft couplings would clearly be worthwhile.
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