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During the past few decades, there have been significant developments in the analysis of

heavy quarkonium systems using perturbative QCD. Developments in computational tech-

nology greatly advanced our understanding on the nature of quark masses and interquark

forces. We anticipate that eventually these developments will deepen our understanding

on the structure of perturbative QCD in more general contexts.

Recently an important step toward this direction has been achieved. A computation

was completed of the four-loop relation between the quark pole mass and the mass in the

modified-minimal-subtraction scheme (MS mass) [1]. This result, when combined with

other known results such as the three-loop correction (a3) to the static QCD potential

VQCD(r) [2, 3], sets our analysis at a new stage, namely, at full next-to-next-to-next-to-

leading order (NNNLO) in terms of short-distance quark masses. It realizes a cancellation

of infra-red (IR) dynamics at this order.

In this first analysis we report what can be learned by combining existing results. In

particular we compare the results of [1, 4, 5] to make clearer the nature of the perturbative

series of the heavy quarkonium energies, concerning (1) corrections from the ultra-soft (US)

energy scale and (2) the renormalon dominance hypothesis. In addition, we examine con-

tributions of an ultra-violet (UV) renormalon at u = −1 and discuss possible contributions

of an IR renormalon at u = +1.

Motivations for performing such an analysis can be stated as follows. A few years

ago, a convincing evidence has been presented for the existence of IR renormalons in

the perturbative series of the energy of a static color source, which has an IR structure

common to the quark pole mass [6]. Hence, it is among general interests how accurately the

renormalon dominance picture holds for the quark pole mass. Furthermore, contributions

of US corrections to the quarkonium energy have collected attention since long time [7–11].

Despite an original expectation of being dominating at IR, there have been evidences

that US corrections are moderate in size from comparisons of the perturbative predictions

with experimental data for the bottomonium spectrum [12–14], phenomenological potential

models of heavy quarkonia [15, 16], and lattice computations of VQCD(r) [17–19]. However,

extraction of an accurate size of the US corrections still remains a challenge [20].

Important applications of this type of analysis include precise determination of the

masses of the heavy quarks c, b and t from the energy levels of the lowest-lying heavy

quarkonium states [21–25]. (For earlier works, see [26, 27] and references therein.) In this

paper we apply our new understanding to a study of the possible achievable accuracy of top

quark mass measurement expected at a future linear collider. Today, a precise determina-

tion of the top quark mass is highly demanded, for a precision test of the standard model of

particle physics (SM) [28–30], and also since the top quark mass plays a crucial role in the

vacuum stability of the SM at a very high energy scale [31, 32]. Hence, progress in our un-

derstanding of the heavy quarkonium states may lead to an access to deep aspects of the SM.

The pole-MS mass relation can be expressed in a series expansion in the strong coupling

constant as

mpole = m

[
1 + d0

αs(m)

π
+ d1

(
αs(m)

π

)2

+ d2

(
αs(m)

π

)3

+ d3

(
αs(m)

π

)4

+O(α5
s)

]
. (1)
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nl 0 1 2 3 4 5 6

dnh=1
3 3556.5 2853.4 2232.9 1691.2 1224.0 827.4 497.2

Table 1. Exact result of d3 for 0 ≤ nl ≤ 6 in the full theory, with nh = 1 heavy quark and nl
massless quarks. We use eq. (2) obtained by a fit of the results in [1, 33, 34]. An error of ±21.5 is

assigned to each value.

Here, m ≡ mMS(mMS) denotes the MS mass renormalized at the MS mass scale; αs(µ) =

α
(nl)
s (µ) represents the strong coupling constant in the MS scheme, where nl is the num-

ber of massless quark flavors (nl = 3, 4 and 5 for the charm, bottom and top quarks,

respectively); the renormalization scale µ is set to m. In most part of this paper, we use

the coupling constant of the theory with nl flavors only as the expansion parameter. The

coefficients di can be obtained from the corresponding mass relations in the full theory

(with nh heavy quarks and nl light quarks), respectively, by rewriting them in terms of the

coupling constant of the theory with nl light quarks only.

Let us first summarize the results of the previous analyses, on which our analysis is

based. Refs. [4, 5] estimated d3 on the basis of different assumptions, prior to ref. [1], which

accomplished the exact computation of d3:

• ref. [4] required stability of the perturbative prediction for 2mpole + VQCD(r) at rela-

tively large r. Essentially the only assumption made is that US corrections in VQCD(r)

do not deteriorate perturbative stability (which holds up to NNLO) at NNNLO.

• ref. [5] assumed renormalon dominance in mpole and VQCD(r) and estimated their con-

tributions from the latter. Contribution of US corrections in VQCD(r) was subtracted

in this estimate.1

• The exact values of d3 are obtained combining the results of direct perturbative

computations in [1, 33, 34].

Only the values for nl = 3, 4, 5 are presented explicitly in the final form in [1] (for the

full theory with nh = 1). Since we need the values for other nl’s in our analysis, we derive

the exact result of d3 given as a cubic polynomial of nl as

dexact
3, full theory = −0.67814n3

l + 43.396n2
l − 745.85nl + 3556.5 , (2)

where an error of ±21.5 is assigned to its value for each nl. We determined the last two

coefficients of eq. (2) by a fit using the results of [33, 34] in addition to the result of [1]. For

the reader’s convenience, we list the exact result of d3 in the full theory in table 1 using

this formula for 0 ≤ nl ≤ 6.

As already mentioned, we convert the above formula using the coupling of the theory

with nl massless quarks only as the expansion parameter. This gives

dexact
3, converted = −0.67814n3

l + 43.396n2
l − 745.42nl + 3551.1 , (3)

with the same error ±21.5. In the rest of the analysis, we use this d3 for various nl’s.

1Since US corrections in VQCD(r) do not contribute to the renormalon at u = 1/2, this manipulation is

justified within the renormalon dominance hypothesis.
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nl 0 1 2 3 4 5 6

dest3 [4] 3351(152) — — 1668(167) 1258+26
−66 897 +31

−175 —

dest3 [5] 3562(173) 2887(133) 2291(98) 1772(82) 1324(81) 945(92) 629(191)

dexact3 [1] 3551.1(21.5) 2848.4(21.5) 2228.4(21.5) 1687.1(21.5) 1220.3(21.5) 824.1(21.5) 494.3(21.5)

Table 2. Summary table of relevant estimates and exact results of d3. The first line shows the

estimates based on stability of the perturbative prediction for 2mpole + VQCD(r); the second line

shows the estimates based on renormalon dominance hypothesis; the third line shows the exact

results (converted to the values in the nl flavor theory).

Figure 1. Comparison of (d3 − 〈dexact3 〉)/〈dexact3 〉 for the (converted) exact value of d3 and the two

estimates, where 〈dexact3 〉 denotes the central value of dexact3 .

In table 2 we summarize the two estimates and the exact result for 0 ≤ nl ≤ 6.2

The relative accuracies are compared visually in figure 1. Overall, we find a reasonable

agreement of the previous estimates and the exact results, with respect to the assigned

errors. The relative accuracies of the estimates are also fairly good, at order 10% level.

These features provide certain justification to the used assumptions in these estimates.

Furthermore, we can make a closer examination. In particular, the central (optimal)

values of dest
3 in the table and figure carry important information on the respective assump-

tions. We should note that the errors of dest
3 are only systematic and have no statistical

nature. Hence, by carefully contemplating on the origins of these systematic errors, we can

extract the sizes and signs of the systematic effects. The agreement with respect to the

2Since we use the converted dexact3 , its values for nl = 3, 4, 5 listed in this table are different from table III

of [1]. In this sense, the comparison in table III of [1] is not consistent, since d3’s in the different definitions

are compared. Numerically the differences due to different definitions are small, nonetheless.
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systematic errors is a necessary condition for the validity of our analysis given below.

In the cases nl = 3, 4, 5, corresponding to cc̄, bb̄, tt̄ quarkonium states, respectively, we

see a good agreement of the estimates by [4] with the exact values, whereas the estimates

by [5] are slightly larger. On the other hand, for smaller nl = 0, 1, which correspond to

hypothetical heavy quarkonium systems, the agreement between the estimates by [5] and

the exact results is fairly good, whereas the estimate by [4] for nl = 0 is slightly smaller

than the exact value. From these observations we derive the following interpretation:

• For nl = 3, 4, 5, (i) US corrections in VQCD(r) are small, and (ii) there is a stronger

cancellation of IR contributions than what has been predicted by renormalon domi-

nance hypothesis.

• For nl = 0, (iii) renormalon dominance holds more accurately, and (iv) non-negligible

contributions from US corrections exist.

We explain the details in the following.

The renormalon dominance hypothesis assumes that the expansion coefficient of the

perturbative series is dominated by a factorial (∼ n!) growth [35],

dn ∼ const.× (2β0)n
Γ(n+ ν + 1)

Γ(ν + 1)
for n� 1, (4)

which stems from the singularity at u = 1/2 in the Borel transform of the perturbative

series. [ ν = β1/(2β
2
0), and βi denotes the (i+1)-loop coefficient of the beta function of αs. ]

Contributions from the analytic part at u = 1/2 are neglected. The comparison between

dexact
3 and the central values of dest

3 [5] shows that the renormalon dominance hypothesis

works better for smaller nl. This suggests that the above factorial growth overwhelms

contributions from the analytic part as β0(> 0) becomes larger for smaller nl.

Another source of nl dependence of the renormalon dominance resides in the se-

ries [35, 37]

Fn = 1 +
ν

n+ ν
c̃1 +

ν(ν − 1)

(n+ ν)(n+ ν − 1)
c̃2 +

ν(ν − 1)(ν − 2)

(n+ ν)(n+ ν − 1)(n+ ν − 2)
c̃3

+O
(

1

n4

)
(5)

in eq. (33) of [5]. The factor Fn multiplies the right-hand side of eq. (4), giving 1/n sup-

pressed corrections, so that it shows how the expansion coefficient approaches the asymp-

totic form at large orders (n � 1).3 Figure 2 plots the series (5) in our case n = 3 for

different nl’s. They exhibit the tendency that 1/n suppressed contributions become more

important for larger nl, although the first term (=1) is by far dominating. Both of these

nl dependences in analytic and 1/n suppressed contributions have been taken into account

in the error estimates of [5]. The former error enters as scale dependences in the analysis

of [5] and is the main source of errors.

3Contributions from the analytic part at u = 1/2 are not included in the series Fn, as they are suppressed

exponentially.
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Figure 2. Each term of eq. (5) for n = 3 and different nl’s: f1 = ν
n+ν c̃1, f2 = ν(ν−1)

(n+ν)(n+ν−1) c̃2,

f3 = ν(ν−1)(ν−2)
(n+ν)(n+ν−1)(n+ν−2) c̃3. The first term (f0 = 1) is omitted, since it is by far greater.

One may wonder if the UV renormalon at u = −1 contained in the pole mass gives a

significant contribution to the perturbative series of the pole mass. Based on an analysis in

the large-β0 approximation, we estimate that the contribution of the u = −1 renormalon

to d3 is fairly small compared to the errors of dest
3 [5] listed in table 2. This is consistent,

since the analytic part at u = 1/2 contributes dominantly to these errors, and the u =

−1 renormalon belongs to the analytic part. The analysis also suggests that the u =

−1 renormalon contribution is not a dominant component of the analytic part. Another

important feature is that, since the UV renormalon is Borel summable and gives a well-

defined contribution, as long as we obtain a converging series of a physical observable

(such as the heavy quarkonium energy level), the contribution of the u = −1 renormalon

to the error estimate becomes small (arbitrarily small unlike IR renormalons). Indeed

contribution to the error is minor at our present perturbative order. We give details of the

analysis of the u = −1 UV renormalon in the appendix.

Similarly there may be effects by the u = 1 IR renormalon contained in the pole mass,

whose properties are less known. Known properties are as follows [36]. (a) It is induced

by the non-relativistic kinetic energy operator ~D2/(2m); (b) It is not forbidden by any

symmetry, and parametrically it possibly induces an order Λ2
QCD/m uncertainty; (c) It

does not appear in the large-β0 approximation. With this limited knowledge, it is not easy

to estimate contribution of the u = 1 renormalon in the estimate of d3 in [5]. In principle,

this contribution is exponentially suppressed in the estimate of the u = 1/2 renormalon in

the pole mass and is encoded in the scale dependence in the error estimate of dest
3 [5].

We turn to the estimates of d3 by [4], which incorporate the fact that cancellation of

IR dynamics occurs beyond the renormalon dominance hypothesis. It can be understood

using the potential-NRQCD effective field theory [10, 11], in which interactions of a heavy

quarkonium and IR degrees of freedom are systematically organized in multipole expansion

– 5 –
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in r. The leading order interaction is given by the interaction of an IR gluon with the total

color charge of the heavy quarkonium, which vanishes for a color-singlet system. The

corresponding contribution to the binding energy is given by an r-independent IR part of

2mpole + VQCD(r) [38–40]. The cancellation between 2mpole and VQCD(r) is not restricted

to the renormalon part, and the analytic part at u = 1/2 contains such contributions.

In this general framework, the lowest order non-canceled IR contribution to the energy

is given by a double insertion of the dipole interaction between the color-electric field

and heavy quarkonium, expressed in terms of a non-local gluon condensate of the form

∼ 〈~r · ~Ea ~r · ~Ea〉. It is dominated by contributions from the US energy scale, and the

perturbative evaluation of this condensate at O(α4
s logαs) and O(α4

s) has been incorporated

in VQCD(r) in the estimate of d3. In principle, the u = 1 renormalon in the pole mass (if

it exists) can affect 2mpole + VQCD(r). However, the large mass limit m → ∞ is taken in

the analysis of [4], so that the u = 1 renormalon (order Λ2
QCD/m) is suppressed compared

to the u = 3/2 renormalon (order r2Λ3
QCD). Hence, the estimate of dest

3 [4] should not be

affected by the u = 1 renormalon. Furthermore, in estimating d3 the effects of taking the

large mass limit are small for nl = 3, 4, 5, compared to the real c, b, t-quark mass cases,

hence, our discussion is expected to be valid for these real heavy quarkonium systems. In

the cases nl ≤ 2 and nl ≥ 6, perturbative analysis makes sense only in a hypothetical static

limit m→∞, and our discussion is confined to this limit.

In perturbative QCD, instability against scale variation in IR region is manifest for

all the physical observables, reflecting the blow-up of the running coupling constant at IR.

For a “good” observable, generally scale dependence decreases as the order of perturbative

expansion is raised. Empirically this happens not only in the ultra-violet (UV) direction

but also stability extends to IR region as the perturbation order is increased. In the case

of the heavy quarkonium energy, the leading source of IR instability is the non-local gluon

condensate dominated by US corrections. The (optimal) values of the estimates of d3 in

the first line of table 2 are chosen to optimize the stability of the perturbative prediction

for the energy in the IR region at NNNLO. A very good coincidence of these values with

the exact results for nl = 3, 4 suggests that the US corrections are small for these systems.

Here, we may set the criterion for “large” or “small” by whether the corrections deteriorate

stability of the perturbative prediction or not.

As shown in [4], perturbative stability of 2mpole + VQCD(r) is sensitive to the precise

value of d3, and this sensitivity turns out to be asymmetric with respect to the sign of a

variation of d3.4 If d3 is larger than a certain critical value, stability of the prediction is

lost very quickly. This leads to a fairly sharp upper bound on the estimate of d3 for each

nl. By contrast, stability of the prediction is degraded only gradually if d3 is lowered from

its optimal value. In this regard, a marked result is that in the case nl = 0 the exact value

of d3 is on the verge of or slightly above the upper bound of d3 required by stability of the

energy. Since US corrections are expected to be the source of IR instability of the energy,

we infer that the US corrections are sizable in this case. Oppositely, in the case nl = 5, the

exact value of d3 lies slightly below that required by optimal stability of the energy. Hence,

4Qualitatively the same feature is observed for the heavy quarkonium energy levels [41].
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Figure 3. Scale dependences of 2mpole+VQCD(r) at different orders of perturbative expansion in the

case nl = 0. Input parameters are αs(3 GeV) = 0.2 [αs(µ) blows up at µ ≈ 0.62 GeV], m = 16 GeV

(a large value is chosen to suppress sub-leading renormalons in mpole), and r = 0.5 GeV−1. The

exact value of d3 is used. A horizontal line is shown as a guide.

in this case US corrections do not deteriorate perturbative stability in any essential way,

and US corrections may well be regarded as “small.” Such a dependence of IR stability

on nl may result from the fact that the running coupling constant blows up most rapidly

for nl = 0, while the running becomes milder as nl increases. (Note that we consider nl
massless quarks.) If an IR catastrophe of perturbative stability should ever occur, it would

be expected to appear first in the most rapidly running case. To demonstrate explicitly

the level of instability in the case nl = 0, we show a plot according to the analysis of [4].

Figure 3 shows the scale dependences of 2mpole + VQCD(r) at a relatively large r, where

perturbative stability up to NNLO is close to marginal. The NNNLO line is flatter than

the NNLO line in the large µ region, however, it grows in the small µ region and starts to

show a sign of instability. See [4] for more details of the analysis method.

There is a difficulty in quantifying the size of US corrections more directly. By defini-

tion, the US corrections are dependent on the factorization scale µf , which should satisfy

the condition [10, 11]

ΛQCD,
CAαs

2 r
� µf �

1

r
, (6)

where CA = NC = 3 is the Casimir operator for the adjoint representation. Given the

different nl dependences of dest
3 [4] and dexact

3 [1], we confirm that a simple logarithmic de-

pendence of the US corrections on µf , proportional to α5
s log(µfr), cannot explain the

difference, even if we assume a reasonable nl dependence of µf . This is expected, since

except in dimensional regularization, which conceals power-like dependences on the scales,

we expect a much stronger dependence ∼ µ3
fr

2 of the US corrections. This dependence

should eventually turn into a dependence on the physical US scales, namely µf should

be replaced by CAαs/(2r) and ΛQCD, where presumably the latter is more dominant at

– 7 –
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larger r.5 This requires (at least) an analysis analogous to that of [5] incorporating the

u = 3/2 singularity in addition. Furthermore, we would need to separate UV and IR con-

tributions in perturbative expansion systematically, to be able to accurately extract the

US contributions [42, 43]. Such a detailed analysis is beyond the scope of this paper.

Thus, for the case nl = 0, we are (for the time being) content with the observation that

everything is consistent. The renormalon dominance hypothesis can accurately estimate d3

by the method of [5]. As mentioned, it is plausible that the renormalon dominance works

most accurately in this case.6 On the other hand, stability of 2mpole + VQCD(r) at IR can

in principle be jeopardized by US corrections and, if at all, this is expected to happen for

smaller nl.

In contrast, for nl = 3, 4, 5, the analytic part at u = 1/2 has a larger relative signifi-

cance, and the central values of the estimates by [5] depart from the exact values; see table 2

and figure 1. We can circumvent this problem in the method of [4], since cancellation of IR

dynamics takes place in the analytic part as well, and the contribution of US corrections

is expected to be milder than the nl = 0 case. Thus, we are led to the interpretation as

presented in the beginning of this discussion.

On the basis of our understanding up to this point, we reexamine the prediction of the

energy level of the (would-be) toponium 1S state, using the NNNLO formula for the 1S

energy level [44–46]. We compare with the analysis [47], which examined the 1S energy

level calculated in terms of mt ≡ mMS
t (mMS

t ) and in the ε expansion [48]. The large-β0

approximation (a crude approximation based on renormalon dominance) was used for esti-

mates of a3 and d3.7 We replace them by the exact values. The essence of the analysis [47]

is to use the renormalon dominance hypothesis for estimating a perturbative error in the

top quark mass determination from the energy level of the toponium 1S state. As a re-

sult, about 40 MeV for an expected accuracy was predicted for determination of the top

quark MS mass.

All the qualitative argument of [47] based on renormalon dominance hypothesis should

be valid, since, as we have verified, the renormalon dominance is qualitatively a good

approximation. Nevertheless, according to our above understanding, the accuracy of the

prediction is expected to improve, since the cancellation of IR dynamics occurs at a deeper

level than that of the large-β0 approximation. In the tt̄ system, the leading non-canceled

IR contribution from US corrections is expected to be “small” if our understanding is

consistent.

Figure 4 compares the scale dependence of the toponium 1S energy by the previous

analysis [47] and that using the exact values of a3 and d3. A marked difference is that the

5µf dependence is canceled in physical observables. Hence, we are ultimately interested in the depen-

dence of physical observables on the physical US scale. At lower orders of perturbative series, only the scale

CAαs/(2r) is visible. As the order is raised, perturbative expansion becomes more sensitive to the ΛQCD

scale. The leading dependence of 2mpole + VQCD(r) on ΛQCD should appear as Λ3
QCDr

2.
6This feature appears to be slightly reinforced for nl = 0 by a cancellation of the contribution from the

u = −1 UV renormalon and other contributions from the analytic part at u = 1/2; compare tables 2 and 3.
7More accurately, a Padé estimate of a3 was used and the prediction of the 1S energy level was shown

to be quite close to that of the large-β0 approximation. Since the difference is minor and irrelevant in our

context, we refer only to the large-β0 approximation.
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Figure 4. Comparison of scale dependence of the toponium 1S energy at NNNLO from the

previous analysis (the large-β0 approximation [47]) and that using the exact values of a3 and d3.

The input values are mt = 165 GeV, αs(MZ) = 0.1185, and nl = 5. Horizontal dashed lines are

shown as a guide.

former prediction is much more unstable in the IR region than the latter. This is consistent

with our expectation. There also appears a flat region (minimal-sensitivity scale [49]) in

the new prediction, which is absent in the former prediction.

We estimate the error of the new prediction. It is natural to use the scale dependence

around the minimal-sensitivity scale (≈ 160 GeV).8 Following the standard prescription we

vary the scale by factors 1/2 and 2. When the scale µ is varied between 80 and 320 GeV,

the 1S energy varies by about 20 MeV below and above the minimal-sensitivity scale,

respectively. Therefore, the sum of the absolute variations of the 1S energy level is about

40 MeV.9 The corresponding variation of the top quark MS mass is almost one half of it,

leading to about 20 MeV, which we take as an error estimate. Another error estimate may

be obtained from the difference between the NNLO prediction at the minimal sensitivity

scale (at NNLO) and that at NNNLO, namely the difference between the values of Mtt̄(1S)

at the local maxima at NNLO and NNNLO in figure 5. This gives 30 MeV as an uncertainty

for the top quark mass. For reference, we show the series expansion in ε at the minimal

sensitivity scale at NNNLO:

Mtt̄(1S) = 2× (165 + 7.20 + 1.22 + 0.216 + 0.0077) GeV for µ = 162 GeV, (7)

which shows a healthy convergence behavior [mt = 165 GeV and αs(MZ) = 0.1185].

Thus, we estimate an error in the top quark MS mass determination from Mtt̄(1S) to

be 20–30 MeV.

8From the general argument based on the renormalon dominance hypothesis, the minimal-sensitivity

scale is expected to increase as the perturbation order is raised [42]; see figure 5.
9This is a factor 2 more conservative estimate than taking the maximal variation of the 1S energy level

in this range.
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We note that the naive error estimate of order Λ3
QCD/(αsm)2 by the uncanceled renor-

malon at u = 3/2 in [47] is order 3–10 MeV, which is still somewhat smaller than the current

error estimate. This means that the current perturbative order would not be high enough

to be limited by this renormalon uncertainty. Contribution of the renormalon at u = −1

in the pole mass is estimated to be a few MeV or less (see the appendix), while contribu-

tion of the u = +1 renormalon is estimated naively to be order Λ2
QCD/m ∼ 0.5–1.5 MeV

(corresponding to ΛQCD ∼ 300–500 MeV).

In ref. [47] the range of the scale variation was taken differently from the above range,

since no minimal-sensitivity scale for the 1S energy exists for that prediction and a different

criterion was used. We may check consistency. If we vary the scale in the above range for

the previous prediction, we obtain the same error estimate for the top quark MS mass as

in [47] (about 40 MeV).

Thus, we obtained a better possible accuracy of the top quark mass determination at

a future linear collider over the previous estimate, which relied only on the renormalon

dominance hypothesis before the full computations of a3 and d3. We consider that it

is not a sheer numerical accident but with a reasoning that we obtain a smaller error

estimate. Namely, from the general property of QCD a stronger IR cancellation than

what is predicted by the renormalon dominance hypothesis follows. This interpretation

is supported by a detailed comparison between the estimates of d3 for nl = 3, 4, 5 from

stability of 2mpole +VQCD(r) and the estimates by the renormalon dominance, and also by

an overall consistent picture drawn in the first part of this paper.

To clarify the current status, we show in figure 5 dependences of the 1S energy level

on the current uncertainty of the exact value of d3 and on the input value of αs(MZ) =

0.1185±0.0006 [50]. The former induces about 10 MeV variation (5 MeV for the top quark

mass) at the minimal-sensitivity scale, while the latter induces about 90 MeV (45 MeV

for the top mass) variation. Hence, a precise determination of αs(MZ), of the order of

±0.0001 accuracy, is prerequisite to achieve 20–30 MeV accuracy of the top quark mass

determination. Prediction of d3 with higher precision is also favorable.

For comparison, we perform a similar analysis using the potential subtracted (PS)

mass [51] as the input parameter. (The definition of the NNNLO PS mass is given in [44].)

Figure 6 shows the scale dependence of the toponium 1S energy level, where we use the PS

mass mPS(µf,PS = 20 GeV) = 173 GeV. To compare with the MS mass, we vary the scale

from 80 GeV to 320 GeV and find the variation of the 1S energy level of about 75 MeV. (For

50 GeV ≤ µ ≤ 350 GeV, the variation is about 100 MeV, which is consistent with [52, 53].)

The uncertainty of αs(MZ) causes ±8 MeV shift of the NNNLO energy level.10 Thus,

use of the PS mass leads to a larger scale variation of the perturbative prediction for the

1S energy level than the MS mass. We observe qualitatively different scale dependences

between the two schemes by comparing figures 5 and 6, where this tendency is apparent not

only at NNNLO but also at lower orders. Furthermore, we confirm a similar tendency in

the scale dependences for other nl’s, where the values of d3 vary considerably. We also note

10The dependence of the PS mass on αS(MZ) starts from the order α2
s, which is the reason for a smaller

dependence compared to the MS mass.
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Figure 5. Scale dependence of the toponium 1S energy level. The input MS mass is taken as

mt = 165 GeV. Each band for the NNNLO prediction corresponds to variation of dexact3 inside its

error (±21.5), where the upper (lower) line in each band corresponds to the upper (lower) value of

dexact3 . The different bands correspond to different input values of αs(MZ). Predictions at lower

orders are for αs(MZ) = 0.1185.
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Figure 6. Scale dependence of the 1S energy level in the PS-mass scheme at different orders.

The input PS mass is taken as mPS(µf,PS = 20GeV) = 173 GeV. Two lines for the NNNLO result

correspond to αs(MZ) = 0.1179 and 0.1191. At lower orders αs(MZ) = 0.1185 is used.

that the conversion formula between the PS and MS masses induces a scale uncertainty of

order 30 MeV for 80 GeV < µ < 320 GeV provided that mPS = 173 GeV is an input value.
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Intuitively the difference between using the MS and PS masses may be understood

as follows. In the MS-mass scheme, the energy of the toponium bound state consists

of (i) the MS masses of t and t̄, (ii) contributions to the self-energies of t and t̄ not

renormalized into the MS mass (typically from gluons whose wavelengths are larger than

the Compton wavelength of t, λg & 1/mt), and (iii) the potential energy between t and t̄.

IR contributions between (ii) and (iii) (typically from λg larger than the bound-state size)

get canceled, where the domain of IR cancellation is determined dynamically by the wave

function of the bound state [12, 43, 54].

The composition of the energy of the bound state in the PS-mass scheme is similar,

except that the renormalized mass (i) is replaced by the PS mass, which renormalizes the

top quark self-energy from λg . 1/µf,PS. In the computation of the self-energy, a sharp

cut-off is introduced in momentum space at the factorization scale µf,PS, which is chosen

to be of the order of the Bohr scale ∼ αsmt. The cut-off induces a power dependence of the

PS mass on µf,PS. Since the 1/µf,PS is close to the bound-state size, the IR cancellation

can become incomplete by artificial cut-off effects if µf,PS is too low. Such effects tend to

be enhanced, due to the increase of the coupling constant at IR and the power dependence

on µf,PS.

We may check consistency of this picture, by computing the energy level in the case

that µf,PS is taken to be larger than the Bohr scale.11 In this case, the behavior of the

predictions in the PS-mass scheme is expected to approach qualitatively that of the MS-

mass scheme, as only shorter-wavelength contributions are renormalized in the PS mass

and IR cancellation becomes more complete (artifact of cut-off diminishes). We show in

figures 7(a)(b) the energy level for µf,PS = 50 and 80 GeV, to be compared with figures 5, 6,

and confirm this tendency. (We confirm qualitatively similar behavior for the bottomonium

energy level as well.)

Let us discuss other sources of errors. Besides what we have analyzed here, there

are many sources of uncertainties, both of theoretical and experimental origins, in the ac-

tual top quark mass determination at ILC. Theoretically, these include effects of mixed

electroweak and QCD corrections (finite width corrections, non-resonant diagrams, non-

factorizable corrections, etc.), uncertainties in the normalization and shape of the threshold

cross section, contributions from higher-spin quarkonium states, method for smooth match-

ing to the high-energy cross section, and so forth. In addition effects of the initial-state

radiation and beam energy spread need to be taken into account in a realistic experimental

situation for the top quark threshold scan. (See [55, 56] for recent simulation studies for the

threshold scan at ILC.) Since feasibility of a high precision top quark mass determination

can be addressed only by realistic simulation studies incorporating all the above effects,

the accuracy we present here is what can be achieved in principle, as a limitation from

perturbative QCD. Nevertheless, such a precision is a unique possibility achievable only at

a future e+e− collider and worth pursuing.

11In principle this is at odds with the standard counting of ε in the PS-mass scheme. Furthermore, the

approximation of subtracting the IR part of the pole mass by an integral of −VQCD(q)/2 becomes worse as

µf,PS approaches mt. Hence, we take the cut-off in the range αsmt < µf,PS < mt.
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(a) (b)

Figure 7. Scale dependence of the 1S energy level in the PS-mass scheme at different orders in

the cases (a) µf,PS = 50 GeV, mPS = 171.2 GeV, and (b) µf,PS = 80 GeV, mPS = 169.5 GeV. The

values of the PS mass are chosen such that the lines fit in the same range as in figure 6.

Note added. After we completed our work, an analysis was reported on the top quark

mass determination using the NNNLO tt̄ cross section near threshold and using the PS

mass [52, 53]. Their estimate of about 50 MeV accuracy is larger than the estimate pre-

sented in this paper (20–30 MeV), which is based only on the uncertainty of the 1S energy

level using the MS mass. Currently it remains an open question, in the case that the cross

section is computed thoroughly in terms of the MS mass only, whether the latter estimate

is increased substantially due to an uncertainty in the shape of the threshold cross section.
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A UV renormalon

In this appendix we estimate contributions to the pole–MS mass relation from the UV

renormalon at u = −1 using the large-β0 approximation and estimate an uncertainty

originating from this renormalon. Using the formula in [33], the contribution to dn [defined

in eq. (1)] from the pole at u = −1 is given by

d[u=−1]
n = e−5/3CF (−1)n+1

(
β0

4

)n

n! (large-β0 approx.) , (8)

where CF = 4/3 is the color factor. In particular the contributions to d3 are evaluated

explicitly for various nl in table 3. Comparing these values with the corresponding errors of
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nl 0 1 2 3 4 5 6

d
[u=−1]
3 31.4 26.1 21.3 17.2 13.7 10.6 8.1

Table 3. Estimates by the large-β0 approximation for the contribution of the u = −1 UV renor-

malon to d3.

dest
3 [5] in table 2, we find that they are smaller than the errors by factors 4–6 for 0 ≤ nl ≤ 4

and by factors 10–20 for nl = 5, 6. This is consistent, since each error of dest
3 [5] is dominated

by the contribution from the analytic part at u = 1/2 and d
[u=−1]
3 belongs to the analytic

part. It suggests that the u = −1 UV renormalon is not a dominant component of the

contribution from the analytic part (for n = 3).

In the rest of this appendix we estimate the contribution of the u = −1 UV renormalon

to the quarkonium 1S energy level, taking the toponium case (nl = 5) as an example. (The

case for the bottomonium is qualitatively similar.)

In the 1S energy level (at the leading-logarithms) only the pole mass contains the u =

−1 UV renormalon. In general a UV renormalon induces a factorial growth of perturbative

series, as shown in eq. (8) (similarly to an IR renormalon), which breaks convergence of the

perturbative series. Nevertheless, since the corresponding singularity in the Borel plane (u-

plane) lies along the negative real axis, a definite value can be assigned to the contributions

of a UV renormalon by Borel summation. The perturbative series corresponding to a UV

renormalon converges up to a certain order (n < n∗) and diverges beyond that order

(n > n∗), which is a typical feature of an asymptotic series. In the case of the u = −1 UV

renormalon (the UV renormalon nearest to the origin in the Borel plane), the critical order

n∗ is given by

n∗ ≈
4π

β0αs(mt)
≈ 15 . (9)

Therefore, the perturbative series is still converging in our NNNLO calculation. The first

several terms of the u = −1 contribution (in the large-β0 approximation) read

Mtt̄(1S)[u=−1] ≡ 2mt

[
1 +

∞∑
n=0

d[u=−1]
n

(
αs(mt)

π

)n+1
]

(10)

= 2× [165− 1.44 + 0.096− 0.013 + 0.0025− 0.00068 + · · · ], (11)

for µ = mt = 165 GeV and αs(mt) = 0.109. According to a standard estimate with an

asymptotic series, the error of the prediction is of the order of the last known term. Hence,

at NNNLO, we can estimate the error due to the u = −1 renormalon to be of order 2.5 MeV

for the top quark mass determination.

Alternatively we can estimate the error using the difference between the Borel summed

value and the perturbative contribution up to NNNLO:

δmt = −4CFmt

e
5
3β0

∫ ∞
0
du

[
1

1 + u
− (1− u+ u2 − u3)

]
exp

[
− 4πu

β0αS(mt)

]
≈ −0.51 MeV. (12)
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It is somewhat smaller than the above estimate. [An error estimate by the N4LO term of

eq. (11) gives a better estimate.]

From the above examinations, one expects that the contribution of the u = −1 renor-

malon is fairly modest and minor in the error estimate in the determination of the top

quark mass, which is performed in the main body of this paper. As long as the pertur-

bative series is converging, the error due to the u = −1 renormalon decreases. This is

in contrast to the u = 3/2 renormalon, which induces a limitation in achievable accuracy

of order Λ3
QCD/(αsmt)

2. A crude estimate based on the large-β0 approximation indicates

that at NNNLO the error due to the u = −1 renormalon is smaller than the error due to

the u = 3/2 renormalon.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[24] C. Ayala, G. Cvetič and A. Pineda, The bottom quark mass from the Υ(1S) system at

NNNLO, JHEP 09 (2014) 045 [arXiv:1407.2128] [INSPIRE].

[25] M. Beneke, A. Maier, J. Piclum and T. Rauh, The bottom-quark mass from non-relativistic

sum rules at NNNLO, Nucl. Phys. B 891 (2015) 42 [arXiv:1411.3132] [INSPIRE].

[26] Quarkonium Working Group collaboration, N. Brambilla et al., Heavy quarkonium

physics, hep-ph/0412158 [INSPIRE].

[27] N. Brambilla et al., Heavy quarkonium: progress, puzzles and opportunities, Eur. Phys. J. C

71 (2011) 1534 [arXiv:1010.5827] [INSPIRE].

[28] M. Baak et al., The Electroweak Fit of the Standard Model after the Discovery of a New

Boson at the LHC, Eur. Phys. J. C 72 (2012) 2205 [arXiv:1209.2716] [INSPIRE].

[29] M. Ciuchini, E. Franco, S. Mishima and L. Silvestrini, Electroweak Precision Observables,

New Physics and the Nature of a 126 GeV Higgs Boson, JHEP 08 (2013) 106

[arXiv:1306.4644] [INSPIRE].

[30] Gfitter Group collaboration, M. Baak et al., The global electroweak fit at NNLO and

prospects for the LHC and ILC, Eur. Phys. J. C 74 (2014) 3046 [arXiv:1407.3792]

[INSPIRE].

– 16 –

http://dx.doi.org/10.1103/PhysRevD.65.034001
http://arxiv.org/abs/hep-ph/0108084
http://inspirehep.net/search?p=find+J+"Phys.Rev.,D65,034001"
http://dx.doi.org/10.1016/j.physletb.2014.01.030
http://arxiv.org/abs/1309.6571
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B730,76"
http://dx.doi.org/10.1103/PhysRevD.65.054003
http://arxiv.org/abs/hep-ph/0104259
http://inspirehep.net/search?p=find+J+"Phys.Rev.,D65,054003"
http://dx.doi.org/10.1103/PhysRevD.65.054018
http://arxiv.org/abs/hep-ph/0109122
http://inspirehep.net/search?p=find+J+"Phys.Rev.,D65,054018"
http://dx.doi.org/10.1016/S0550-3213(01)00582-X
http://arxiv.org/abs/hep-lat/0108008
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B622,328"
http://dx.doi.org/10.1088/0954-3899/29/2/313
http://arxiv.org/abs/hep-ph/0208031
http://inspirehep.net/search?p=find+J+"J.Phys.,G29,371"
http://dx.doi.org/10.1140/epjc/s2003-01319-9
http://arxiv.org/abs/hep-ph/0212389
http://inspirehep.net/search?p=find+J+"Eur.Phys.J.,C31,187"
http://dx.doi.org/10.1103/PhysRevD.90.074038
http://dx.doi.org/10.1103/PhysRevD.90.074038
http://arxiv.org/abs/1407.8437
http://inspirehep.net/search?p=find+J+"Phys.Rev.,D90,074038"
http://dx.doi.org/10.1007/JHEP10(2012)188
http://arxiv.org/abs/1209.0450
http://inspirehep.net/search?p=find+J+"JHEP,1210,188"
http://dx.doi.org/10.1103/PhysRevD.87.054008
http://arxiv.org/abs/1210.6117
http://inspirehep.net/search?p=find+J+"Phys.Rev.,D87,054008"
http://dx.doi.org/10.1007/JHEP04(2014)120
http://dx.doi.org/10.1007/JHEP04(2014)120
http://arxiv.org/abs/1401.7035
http://inspirehep.net/search?p=find+J+"JHEP,1404,120"
http://dx.doi.org/10.1007/JHEP09(2014)045
http://arxiv.org/abs/1407.2128
http://inspirehep.net/search?p=find+J+"JHEP,1409,045"
http://dx.doi.org/10.1016/j.nuclphysb.2014.12.001
http://arxiv.org/abs/1411.3132
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B891,42"
http://arxiv.org/abs/hep-ph/0412158
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0412158
http://dx.doi.org/10.1140/epjc/s10052-010-1534-9
http://dx.doi.org/10.1140/epjc/s10052-010-1534-9
http://arxiv.org/abs/1010.5827
http://inspirehep.net/search?p=find+J+"Eur.Phys.J.,C71,1534"
http://dx.doi.org/10.1140/epjc/s10052-012-2205-9
http://arxiv.org/abs/1209.2716
http://inspirehep.net/search?p=find+J+"Eur.Phys.J.,C72,2205"
http://dx.doi.org/10.1007/JHEP08(2013)106
http://arxiv.org/abs/1306.4644
http://inspirehep.net/search?p=find+J+"JHEP,1308,106"
http://dx.doi.org/10.1140/epjc/s10052-014-3046-5
http://arxiv.org/abs/1407.3792
http://inspirehep.net/search?p=find+J+"Eur.Phys.J.,C74,3046"


J
H
E
P
1
1
(
2
0
1
5
)
0
8
4

[31] G. Degrassi et al., Higgs mass and vacuum stability in the Standard Model at NNLO, JHEP

08 (2012) 098 [arXiv:1205.6497] [INSPIRE].

[32] D. Buttazzo et al., Investigating the near-criticality of the Higgs boson, JHEP 12 (2013) 089

[arXiv:1307.3536] [INSPIRE].

[33] M. Beneke and V.M. Braun, Naive non-Abelianization and resummation of fermion bubble

chains, Phys. Lett. B 348 (1995) 513 [hep-ph/9411229] [INSPIRE].

[34] R. Lee, P. Marquard, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Four-loop corrections

with two closed fermion loops to fermion self energies and the lepton anomalous magnetic

moment, JHEP 03 (2013) 162 [arXiv:1301.6481] [INSPIRE].

[35] M. Beneke, More on ambiguities in the pole mass, Phys. Lett. B 344 (1995) 341

[hep-ph/9408380] [INSPIRE].

[36] M. Neubert, Exploring the invisible renormalon: Renormalization of the heavy quark kinetic

energy, Phys. Lett. B 393 (1997) 110 [hep-ph/9610471] [INSPIRE].

[37] M. Beneke, Renormalons, Phys. Rept. 317 (1999) 1 [hep-ph/9807443] [INSPIRE].

[38] A. Pineda, Heavy Quarkonium and Nonrelativistic Effective Field Theories, Ph.D. Thesis,

Barcelona University, Barcelona Spain (1998).

[39] A.H. Hoang, M.C. Smith, T. Stelzer and S. Willenbrock, Quarkonia and the pole mass, Phys.

Rev. D 59 (1999) 114014 [hep-ph/9804227] [INSPIRE].

[40] M. Beneke, A Quark mass definition adequate for threshold problems, Phys. Lett. B 434

(1998) 115 [hep-ph/9804241] [INSPIRE].

[41] Y. Kiyo and Y. Sumino, Perturbative heavy quarkonium spectrum at

next-to-next-to-next-to-leading order, Phys. Lett. B 730 (2014) 76 [arXiv:1309.6571]

[INSPIRE].

[42] Y. Sumino, Static QCD potential at r < Λ−1
QCD: Perturbative expansion and operator-product

expansion, Phys. Rev. D 76 (2007) 114009 [hep-ph/0505034] [INSPIRE].

[43] Y. Sumino, Understanding Interquark Force and Quark Masses in Perturbative QCD,

arXiv:1411.7853 [INSPIRE].

[44] M. Beneke, Y. Kiyo and K. Schuller, Third-order Coulomb corrections to the S-wave Green

function, energy levels and wave functions at the origin, Nucl. Phys. B 714 (2005) 67

[hep-ph/0501289] [INSPIRE].

[45] A.A. Penin and M. Steinhauser, Heavy quarkonium spectrum at O(α5
smq) and bottom/top

quark mass determination, Phys. Lett. B 538 (2002) 335 [hep-ph/0204290] [INSPIRE].

[46] Y. Kiyo and Y. Sumino, Full Formula for Heavy Quarkonium Energy Levels at

Next-to-next-to-next-to-leading Order, Nucl. Phys. B 889 (2014) 156 [arXiv:1408.5590]

[INSPIRE].

[47] Y. Kiyo and Y. Sumino, Top mass determination and O(α5
sm) correction to toponium 1S

energy level, Phys. Rev. D 67 (2003) 071501 [hep-ph/0211299] [INSPIRE].

[48] A.H. Hoang, Z. Ligeti and A.V. Manohar, B decay and the Upsilon mass, Phys. Rev. Lett. 82

(1999) 277 [hep-ph/9809423] [INSPIRE].

[49] P.M. Stevenson, Optimized Perturbation Theory, Phys. Rev. D 23 (1981) 2916 [INSPIRE].

– 17 –

http://dx.doi.org/10.1007/JHEP08(2012)098
http://dx.doi.org/10.1007/JHEP08(2012)098
http://arxiv.org/abs/1205.6497
http://inspirehep.net/search?p=find+J+"JHEP,1208,098"
http://dx.doi.org/10.1007/JHEP12(2013)089
http://arxiv.org/abs/1307.3536
http://inspirehep.net/search?p=find+J+"JHEP,1312,089"
http://dx.doi.org/10.1016/0370-2693(95)00184-M
http://arxiv.org/abs/hep-ph/9411229
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B348,513"
http://dx.doi.org/10.1007/JHEP03(2013)162
http://arxiv.org/abs/1301.6481
http://inspirehep.net/search?p=find+J+"JHEP,1303,162"
http://dx.doi.org/10.1016/0370-2693(94)01505-7
http://arxiv.org/abs/hep-ph/9408380
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9408380
http://dx.doi.org/10.1016/S0370-2693(96)01600-0
http://arxiv.org/abs/hep-ph/9610471
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B393,110"
http://dx.doi.org/10.1016/S0370-1573(98)00130-6
http://arxiv.org/abs/hep-ph/9807443
http://inspirehep.net/search?p=find+J+"Phys.Rept.,317,1"
http://dx.doi.org/10.1103/PhysRevD.59.114014
http://dx.doi.org/10.1103/PhysRevD.59.114014
http://arxiv.org/abs/hep-ph/9804227
http://inspirehep.net/search?p=find+J+"Phys.Rev.,D59,114014"
http://dx.doi.org/10.1016/S0370-2693(98)00741-2
http://dx.doi.org/10.1016/S0370-2693(98)00741-2
http://arxiv.org/abs/hep-ph/9804241
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B434,115"
http://dx.doi.org/10.1016/j.physletb.2014.01.030
http://arxiv.org/abs/1309.6571
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B730,76"
http://dx.doi.org/10.1103/PhysRevD.76.114009
http://arxiv.org/abs/hep-ph/0505034
http://inspirehep.net/search?p=find+J+"Phys.Rev.,D76,114009"
http://arxiv.org/abs/1411.7853
http://inspirehep.net/search?p=find+EPRINT+arXiv:1411.7853
http://dx.doi.org/10.1016/j.nuclphysb.2005.02.028
http://arxiv.org/abs/hep-ph/0501289
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B714,67"
http://dx.doi.org/10.1016/S0370-2693(02)02040-3
http://arxiv.org/abs/hep-ph/0204290
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B538,335"
http://dx.doi.org/10.1016/j.nuclphysb.2014.10.010
http://arxiv.org/abs/1408.5590
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B889,156"
http://dx.doi.org/10.1103/PhysRevD.67.071501
http://arxiv.org/abs/hep-ph/0211299
http://inspirehep.net/search?p=find+J+"Phys.Rev.,D67,071501"
http://dx.doi.org/10.1103/PhysRevLett.82.277
http://dx.doi.org/10.1103/PhysRevLett.82.277
http://arxiv.org/abs/hep-ph/9809423
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9809423
http://dx.doi.org/10.1103/PhysRevD.23.2916
http://inspirehep.net/search?p=find+J+"Phys.Rev.,D23,2916"


J
H
E
P
1
1
(
2
0
1
5
)
0
8
4

[50] Particle Data Group collaboration, K.A. Olive et al., Review of Particle Physics, Chin.

Phys. C 38 (2014) 090001 [INSPIRE].

[51] M. Beneke, A quark mass definition adequate for threshold problems, Phys. Lett. B 434

(1998) 115 [hep-ph/9804241] [INSPIRE].

[52] M. Beneke and M. Steinhauser, Non-relativistic high-energy physics: top production and dark

matter annihilation, Nucl. Part. Phys. Proc. 261-262 (2015) 378 [arXiv:1506.07962].

[53] M. Beneke, Y. Kiyo, P. Marquard, A. Penin, J. Piclum and M. Steinhauser,

Next-to-next-to-next-to-leading order QCD prediction for the top anti-top S-wave pair

production cross section near threshold in e+e− annihilation, arXiv:1506.06864 [INSPIRE].

[54] S. Recksiegel and Y. Sumino, Improved perturbative QCD prediction of the bottomonium

spectrum, Phys. Rev. D 67 (2003) 014004 [hep-ph/0207005] [INSPIRE].

[55] M. Martinez and R. Miquel, Multiparameter fits to the tt̄ threshold observables at a future

e+e− linear collider, Eur. Phys. J. C 27 (2003) 49 [hep-ph/0207315] [INSPIRE].

[56] T. Horiguchi et al., Study of top quark pair production near threshold at the ILC,

arXiv:1310.0563 [INSPIRE].

– 18 –

http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://inspirehep.net/search?p=find+J+"Chin.Phys.,C38,090001"
http://dx.doi.org/10.1016/S0370-2693(98)00741-2
http://dx.doi.org/10.1016/S0370-2693(98)00741-2
http://arxiv.org/abs/hep-ph/9804241
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B434,115"
http://dx.doi.org/10.1016/j.nuclphysbps.2015.03.024
http://arxiv.org/abs/1506.07962
http://arxiv.org/abs/1506.06864
http://inspirehep.net/search?p=find+EPRINT+arXiv:1506.06864
http://dx.doi.org/10.1103/PhysRevD.67.014004
http://arxiv.org/abs/hep-ph/0207005
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0207005
http://dx.doi.org/10.1140/epjc/s2002-01094-1
http://arxiv.org/abs/hep-ph/0207315
http://inspirehep.net/search?p=find+J+"Eur.Phys.J.,C27,49"
http://arxiv.org/abs/1310.0563
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.0563

	UV renormalon

