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1 Introduction

The formalism of Cachazo, He and Yuan (CHY) [1–4] is an intriguing reformulation of

quantum field theory that represents scattering amplitudes as integrals over an auxiliary

coordinate space completely localized by δ-functions which impose a set of algebraic con-

straints referred to as the scattering equations. At tree-level, the auxiliary integral is

performed over points zi ∈ P1 associated with each particle, and the scattering equations

(which fully localize the zi’s) correspond to

Si ≡
∑
i 6=j

sij
(zi−zj)

= 0 , (1.1)

for the ith particle, with sij ≡ (ki + kj)
2 being the familiar Mandelstam invariants. The

precise measure of integration for scattering amplitudes depends on the theory in question,

but the constraints δ(Si) always localize the integral to a sum over isolated solutions to the

scattering equations (1.1). For n particles, there are (n−3)! solutions to these equations.

Integration measures for many theories are known, and a proof of this remarkable construc-

tion for scalar ϕ3-theory and Yang-Mills theory has been given by Dolan and Goddard in

ref. [5].

In practice, the summation over (n−3)! solutions makes the formalism very cumber-

some already at rather low multiplicity kinematics. Recently, two complementary methods

were developed that circumvent this brute-force procedure and which directly produce the

result of integration — that is, summing over all the solutions [6, 7]. Moreover, a direct

link between individual Feynman diagrams and integrands for the CHY representation has

been provided as well [8]. With this, one has complete control over the CHY construction

at tree-level and is therefore ready to tackle the question of amplitudes at loop-level.

There are two obvious paths towards obtaining a scattering equation formalism valid

at loop-level. With the now known map between CHY-integrands and tree-level Feynman

diagrams, one could make use of generalized unitarity to reconstruct loop amplitudes out
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of on-shell, tree-level diagrams and use the tree-level scattering equations. A more elegant

solution would build on the close connection between the CHY-formalism and string the-

ory [9–12]. Indeed, steps in that direction were taken in ref. [13] and further developed in

ref. [14], identifying field theory loops in terms of the genus expansion, as in string theory.

The main, näıve stumbling block in that approach is the natural appearance of elliptic

functions that, in ordinary perturbation theory, should be represented as integrals over

rational functions. A breakthrough in this direction has recently been made by Geyer, Ma-

son, Monteiro and Tourkine [15]. In the context of supergravity, they show how to reduce

the problem of genus one to a modified problem on the Riemann sphere, where the analysis

is essentially the same as at tree-level. They provide a conjecture for the n-point super-

gravity one-loop amplitude, and suggest how to generalize their result to any loop-order;

they also provide a conjecture for super Yang-Mills amplitudes at one-loop.

In this paper, we generalize the analysis of ref. [15], and show how it naturally leads to

a representation of one-loop amplitudes in ϕ3-theory. The scalar case provides the simplest

setting in which to understand the use of scattering equations at loop-level. As discussed in

refs. [14, 15], the one-loop case essentially amounts to computing an n-point amplitude by

means of an auxiliary (n+ 2)-point scattering amplitude involving two additional particles

with momenta ` and − ` (that is, taken in the forward limit). Intuitively, this is not

unlike representing loops using the Feynman tree theorem [16, 17], for example. However,

the representation of amplitudes using the scattering equations appears quite a bit more

magical as we will see below.

An essential ingredient that makes the scattering equation formalism work at loop-

level is the freedom to shift what becomes loop momentum ` by an arbitrary constant in

any individual term — a property that must be respected by the regularization framework

being used.1 This is because, as we will see, the scattering equation formalism naturally

generates rather unfamiliar representations of loop integrands — involving ‘propagators’

that are almost exclusively linear in the loop momentum.

The loop-level scattering equations are nearly identical to those at tree-level, but with

two additional particles with opposite (off-shell) momenta. As such, there are (n+ 2−3)!=

(n−1)! solutions in general. This counting differs from that of ref. [14] because we use loop-

level scattering equations that differ due to regularization concerns that will be discussed in

section 4. And we will find that the integration rules described in ref. [7] must be modified

slightly to take into account the additional, off-shell momenta in the forward limit. The

principal difference will be that for ϕ3-theory, our representation explicitly removes tadpole

contributions (similar to the dimensionally-regulated Feynman expansion). Although this

paper is mainly concerned with scalar ϕ3-theory, it is clear that the integration rules we

describe can be applied to a much broader class of theories.

Our paper is organized as follows. In the next section we provide a lightning review

of the scattering equation formalism, including the integration rules that permit us to

evaluate terms without the explicit summation over solutions to the scattering equations.

1This is the case for dimensional regularization. Because the scattering equation formalism is indepen-

dent of the number of spacetime dimensions, it is natural for us to use it here. See also the discussion in

section 4.

– 2 –



J
H
E
P
1
1
(
2
0
1
5
)
0
8
0

In section 3 we turn to loop-level, using the recent supergravity solution of ref. [15] as

a guide for inferring the correct integration measure for scalar ϕ3-theory. We test this

proposal in section 4 with concrete examples at one-loop.

2 Scattering equations and integration rules at tree-level

Recall that in the CHY formalism, ordered tree-level scattering amplitudes in massless

ϕ3-theory can be represented [2, 5] as follows:

A(ϕ3),tree
n =

∫
dΩCHY

(
1

(z1−z2)2(z2−z3)2· · · (zn−z1)2

)
. (2.1)

Here, dΩCHY represents a universal integration measure together with the δ-function con-

straints which impose scattering equations (1.1) (and fully localize the integral):

dΩCHY ≡
dnz

vol(SL(2,C))

∏
i

′δ(Si) =(zr−zs)2(zs−zt)2(zt−zr)2
∏

i∈Zn\{r, s, t}

dzi δ(Si) . (2.2)

This measure is independent of the SL(2,C) gauge-choice of points labelled {r, s, t}. Be-

cause the δ-functions fully localize the integral (2.1), it becomes simply a sum over the

(n−3)! isolated solutions to the scattering equations.

Scattering amplitudes in different theories can all be represented as integrals over

dΩCHY, but with different integrands than that of (2.1). More generally then, we will be

interested in integrals of the form:∫
dΩCHY I(z1, . . . , zn) . (2.3)

For the sake of concreteness, let us restrict our attention to Möbius-invariant integrals

involving products of factors of the form (zi−zj) (with i<j) in the denominator. We can

represent integrands of this form graphically by drawing vertices for each zi, and connecting

vertices {zi, zj} for each factor of (zi−zj) appearing in the denominator. Möbius-invariance

requires that each factor zi occurs four times, resulting in integrands represented by four-

regular graphs. For example, consider the integrand represented graphically by,

⇔ 1

(z1−z2)2(z2−z3)(z3−z4)(z4−z5)(z1−z5)(z3−z5)2(z1−z4)(z2−z4)
.

Integration of this function I(z1, . . . , z5) against the measure dΩCHY results in an inverse

product of Mandelstam invariants — in this case, 1/(s12s35).

A combinatorial rule for the result of integration for integrals of the form (2.3) was

described in ref. [7], which we briefly summarize here. Integrals of this form generally

result in a sum of inverse-products of multi-index Mandelstam invariants denoted sij ···k≡

– 3 –



J
H
E
P
1
1
(
2
0
1
5
)
0
8
0

s{i,j,...,k}≡ (ki+kj + · · · +kk)
2 (for arbitrary subsets P ⊂{1, . . . , n}). In general, each term

in the sum will be a product of precisely (n−3) factors,

n−3∏
a=1

1/sPa , (2.4)

where each Pa ⊂ {1, . . . , n} denotes a subset of legs that we can always take to have at

most n/2 elements (because sP=sP { , with P {≡Zn\P , by momentum conservation). The

collections of subsets {Pa} appearing in (2.4) must satisfy the following criteria:

• for each pair of indices {i, j} ⊂ Pa in each subset Pa, there are exactly (2|Pa|−2)

factors of (zi−zj) appearing in the denominator of I(z1, . . . , zn);

• each pair of subsets {Pa, Pb} in the collection is either nested or complementary —

that is, Pa⊂Pb or Pb⊂Pa or Pa⊂P {
b or P {

b ⊂Pa;

if there are no collections of (n−3) subsets {Pa} satisfying the criteria above, the result of

integration will be zero.

These integration rules produce the result of the integration in eq. (2.1) for an arbitrary

number of external legs in tree-level ϕ3-theory. In the next section, we will need integration

rules for loop integrands of one-loop with (n+ 2) external legs, two of which are neighboring

with off-shell momenta ` and − `. The rules will be quite similar to those described above,

but with a few small changes. One prominent change will be the appearance of Mandelstam-

like objects generalized to include off-shell momenta:

[i, j, . . . , k] ≡ (ki + kj + · · ·+ kk)
2 − (k2i + k2j + · · ·+ k2k) . (2.5)

Notice that [i, j, . . . , k] becomes identical to sij ···k when all the momenta are on-shell and

massless.

3 Scattering equations for one-loop amplitudes

The scattering equations at one-loop-level given in ref. [15] provide a great simplification

over the ones considered in refs. [13, 18, 19]. We refer to those references for details.

At tree-level, the scattering equations are defined on the Riemann surface as discussed

above. The locations of the external legs are parametrized by the coordinates, zi, where i

runs from 1 to n for the n-point amplitude. At one-loop level one has to consider scattering

equations on the torus — the genus-one surface. Here, τ and z parametrize the torus, and

the points zi has the same meaning as in the tree-level case, i.e., they are the positions of

the external legs. At one-loop the scattering equations are

Res
zi
P (z, zi|q)2 = 2ki · P (z = zi, zi|q) = 0 , P (z = z0, zi|q)2(z0) = 0 , (3.1)

where z0 is an arbitrary point on the torus and the one-form P (z, zi|q) is the solution to

the following differential equation

∂P (z, zi|q) = 2πi

n∑
i

kiδ(z − zi)dz . (3.2)
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The solution can be parametrized by

P (z, zi|q) = 2πi`dz +
n∑
i

ki

θ′1(z − zi)
θ1(z − zi)

+
∑
j 6=i

θ′1(zij)

nθ1(zij)

 dz , (3.3)

on the torus where q is related to the modular variable τ in the following way: q = e2πiτ .

` will turn out to play the role of the loop momentum. θ1(z) is the standard modular

function that also appears in string theory.

The one-form P (z, zi|q) can be greatly simplified in the limit q = e2πiτ → 0, where τ →
+i∞, and by changing variables from zi to σi and z to σ using the following redefinitions:

σi = e2πi(zi−τ/2), σ = e2πi(z−τ/2). In the new variables translational invariance of z becomes

scaling invariance of σ, (i.e. dz = dσ
2πiσ ), and in the limit one observes that

θ′1(z − zi)
θ1(z − zi)

dz → −dσ
2σ

+
dσ

σ − σi
. (3.4)

Using momentum conservation (
∑n

i ki)
−dσ
2σ = 0 in the limit yields

P (z, zi|q)→ P (σ, σi) = `
dσ

σ
+

n∑
i

kidσ

σ − σi
, (3.5)

after redefining `→ `−
∑n

i<j(ki − kj) cot(πzij)
1

2in . We now find that

P (σ, σi)
2 − `2 dσ2

σ2
=

n∑
i

2` · ki dσ2

σ(σ − σi)
+

n∑
i<j

2ki · kj dσ2

(σ − σi)(σ − σj)
. (3.6)

The combination P (σ, σi)
2− `2dσ2

σ2 has only single poles. It is easy to calculate the residues

of these single poles and they are

Si ≡
[`, ki]

σi
+

n∑
j 6=i

[i, j]

(σi − σj)
, (3.7)

for the single pole at σi and

S0 ≡
n∑
i

[`, i]

−σi
, (3.8)

for the single pole at σ = 0. The residue of σ = ∞ is zero. It is easy to check that∑n
i=1 Si = −S0. Furthermore,

∑n
i=1 σiSi = 0. The equations defined by S0 = 0 and Si = 0

are the one-loop scattering proposed in [15] on the Riemann sphere, with ` playing the role

of the loop momentum. As shown above only (n−1) of these equations are independent. If

we compare them with the tree scattering equations, it is clear that the one-loop scattering

equations for n-point amplitudes are very similar to the tree-level scattering equations for

(n+ 2) external legs, where two legs of off-shell momenta `,− ` have been inserted and fixed

to the values σ` = 0 and σ−` =∞. To avoid confusion we will distinguish the tree-level case

from the one-loop case by using zi for the insertions at tree-level and σi for the insertions
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at one-loop level. One crucial difference between the tree-level case and the one-loop case

is that we take ` and − ` to be off-shell.

Since two points 0,∞ have been fixed (σ` = 0 and σ−` = ∞), the general SL(2,C)-

transformation on the Riemann sphere aσ+b
cσ+d is reduced to just aσ

d . This means that we are in

the one-loop case just left with a scaling invariance, which, using ad−bc = 1 reads σ → a2σ.

The scaling invariance can be immediately observed in the scattering equations (3.7) and

can also be understood from the definition σ = e2πi(z−τ/2). The scaling symmetry in the σi
coordinates corresponds to translational invariance in the original one-loop torus variables.

Our goal now is to find the correct CHY measure at loop-level for color ordered ϕ3

theory, insisting on the scaling invariance discuss above. We will start the discussion by

recalling the tree-level measure

dΩCHY ≡
dnz

vol(SL(2,C))

∏
i

′δ(Si) =(zr−zs)2(zs−zt)2(zt−zr)2
∏

i∈Zn\{r, s, t}

dzi δ(Si) . (3.9)

Introducing zij≡(zi−zj), we can write tree-level amplitudes in the following general form∫ ( n∏
i=1

dzi

)zrszstztr ∏
a 6=r,s,t

δ (Sa)

( 1

F(z)

)(
1

dω

)
. (3.10)

Now let us analyze the four factors in (3.10). Since we have only (n−3) independent scat-

tering equations, we correspondingly insert only (n−3) δ-function constraints. However,

the result must be independent of the choice of which equations we choose. This indepen-

dence is precisely achieved by the factor zrszstztr that is inserted in the measure and which

renders the combined expression permutation invariant. This factor provides also the same

transformation under the SL(2,C) group as that of the three scattering equations that have

been removed. Because of these first two factors in eq. (3.10), F must transform as

F(z)→

(
n∏
i=1

(ad− bc)2

(czi + d)4

)
F(z) , (3.11)

under the SL(2,C) transformation

zi →
azi + b

czi + d
. (3.12)

Different choices of this factor F with proper transformation properties will define different

theories. The last factor dω≡ dzrdzsdzt
zrszstztr

provides the Koba-Nielsen gauge fixing.

Having understood how the integrand is composed for a tree-level amplitude in the

CHY formalism, we now proceed to deduce the corresponding integrand at one-loop level.

First, since there are now only (n−1) independent loop scattering equations, we can have

only (n−1) δ-function constraints δ(Si). Again, to make the result independent of the

choice of which equation we eliminate, we need to insert a factor with the same scaling

property as the δ-function we removed. A natural combination is
(
σl
∏n
j 6=l δ(Sj)

)
.2 Now

2The same choice can also be inferred from the corresponding factor at tree-level: the term zijzjkzki
with zi=` = 0 and zj=−` =∞ reduces to zki = zk.
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(in a similar way to the tree-level case) we can write down the proposed integration at

one-loop level

∫
1

vol(GL(1))

(
n∏
i=1

dσi

)σl n∏
j 6=l

δ(Sj)

( 1

F(σi)

)
. (3.13)

Scaling invariance now requires that F(λσl) = λ2nF(σl). Using the standard Faddeev-

Popov method, we can gauge fix any σk to a fixed value. We will call this the (k, l)

gauge-choice, where l is the scattering equations removed and k is the σk that has been

fixed. With this gauge choice eq. (3.13) reads

∫ ( n∏
i=1

dσi

)σl n∏
j 6=l

δ(Sj)

( 1

F(σi)

)(
1

dω

)
, dω =

dσk
σk

. (3.14)

Next we will consider the possible choices of F(σi) corresponding to different theories, such

as gravity, Yang-Mills theory, and scalar field theory at one-loop level.

For gravity there is no color ordering, the amplitude must be symmetric in the external

legs and we therefore require that F(σi) is totally permutation invariant. The scaling degree

2n leads to the natural choice F(σi) = I−1G2 with G =
∏n
i=1 σi and I−1 being a scale

invariant expression. An example for I in supergravity has been conjectured in ref. [15]

with the gauge fix (k, l) = (1, 1).

For Yang-Mills theory, ref. [15] conjectured the following factor to go into the expres-

sion for F(σi)

PTn(γ) =
σ`(−`)

σ`γ(1)σγ(1),γ(2) . . . σγ(n−1),γ(n)σγ(n)(−`)
, (3.15)

where γ is an element of the n-point permutation group Sn. We will exclusively be con-

sidering equations where σ` = 0 and σ− ` =∞, in which case the PT factor simplifies to

PTn(γ) =
1

σγ(1)σγ(1)γ(2) . . . σγ(n−1)γ(n)
. (3.16)

Since the scaling degree of PT is n, we need another factor in F(σi) with scaling degree

n in order to arrive at the overall scaling of degree 2n. It is natural to assume that the

other factor is G, defined above. Thus, for a given color ordering γ we should expect

Fγ(σi) = I−1PTn(γ)G where I−1 again is a scale invariant expression. After taking the

gauge fixing (k, l) = (1, 1), we arrive at the expression in ref. [15]. A possible I for super

Yang-Mills theory has been conjectured in ref. [15].

Now we will concern ourselves with the scalar case. Having gained experience from

the supergravity and super Yang-Mills theory cases, it is natural to assume that for color

ordered bi-adjoint scalar ϕ3-theory, we should have F(σi) = PTn(γ1)PTn(γ2) with γ1, γ2
being two permutations in Sn. This assumption arises from an analogy with the tree-level

case in ref. [2], where the gluon and then the bi-adjoint scalar amplitude is obtained from

– 7 –
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the graviton amplitude via the following substitutions in the integrand:

(Pf′Ψ)2 → Pf′Ψ
1

σγ1(1)γ1(2) . . . σγ1(n)γ1(1)

→ 1

σγ1(1)γ1(2) . . . σγ1(n)γ1(1)

1

σγ2(1)γ2(2) . . . σγ2(n)γ2(1)
.

In other words, the näıve expectation would be for the one-loop scalar amplitude A to be

given by

A(γ1|γ2) ≡
∫ ∏n

i=1 dσi
dσk

σlσk

n∏
j 6=l

δ(Sj)PTn(γ1)PTn(γ2) . (3.17)

The analogue quantity of A(γ1|γ2) at tree-level is m(γ1|γ2) in ref. [3], which is nothing but

the inverse of the momentum kernel S[γ1|γ2] that was first defined in [20–22]. We thus

have S[γ1|γ2] = m(γ1|γ2)−1, with

S[i1, . . . , ik|j1, . . . , jk] =

k∏
t=1

(
sit1 +

k∑
q>t

Θ(it, iq)sit,iq

)
, (3.18)

where Θ is the Heaviside function. The function A at loop-level can be thought of as the

inverse (one-loop) momentum kernel.

However it turns out that the näıve choice for A above is not yet complete. Firstly, as

in the tree-level case, to get the scalar amplitude with colour ordering γ from the bi-adjoint

amplitude, we must set γ1 = γ2 = γ. With this ordering, the two extra legs kl and k−l will

have been inserted between legs kγ(1) and kγ(n). The two extra legs do not correspond to

physical external states, but can be considered as appearing when a loop is opened up in a

Feynman diagram by cutting a one-loop propagator. Since we can cut any loop propagator,

this physical picture suggests that to get the complete one-loop integrand of a given color

ordering, we should sum over all cyclic orderings. In other words, the pair {`,− `} should

be inserted at all possible places of the given color ordering of n-points. From this we are

now led to the correct compact expression:

Aϕ3(γ) ≡ (−1)n
∫
dd`

`2

∫ ∏n
i=1 dσi
dσk

σlσk

n∏
j 6=l

δ(Sj)
∑
cyclic

(PTn(γ))2 , (3.19)

Having obtained this proposal (3.19) for one-loop scalar amplitudes, we now use the

δ-function constraints to integrate out the σi’s. Using (3.7), it is straightforward to find

the elements of the Jacobian,

∂Si
∂σj

=
[i, j]

(σi − σj)2
, i 6= j ,

∂Si
∂σi

= − [`, i]

σ2i
−
∑
j 6=i

[i, j]

(σi − σj)2
. (3.20)

Putting all these pieces together, we finally arrive at

Aϕ3(γ) = (−1)n
∫
dd`

`2

∑
cyclic

∑
solutions

σlσk

(−)l+kJ (S)kl
(PTn(γ))2 , (3.21)
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Figure 1. The CHY graph for n-points with ordering {1, 2, . . . , n}. The dashed line between n,−`
disappears because σ−` =∞.

where the J (S)kl is the determinant of Jacobian matrix after deleting the l-th row and

k-th column, and the sum runs over the solutions to the loop-level scattering equations.

Although there is also a sum over cyclic permutations of γ in eq. (3.21), we need to calculate

only one set, obtaining the others trivially by relabelling.

Just as at tree-level, we can associate a CHY graph with the one-loop integrand

(PTn(γ))2 in (3.21). Such a one-loop graph for the integrand is illustrated in figure 1.

The graph is very similar to the CHY graph for the full tree-level scalar (n+ 2)-point am-

plitude, because the CHY integral in equation (3.19) can be interpreted as the (n+2)-point

tree level amplitude with gauge choice σn+1 =∞, σn+2 = 0. A point gauge-fixed to infinity

makes no explicit appearance when carrying out CHY integrals, but in CHY graphs one

should never the less also draw lines for factors that disappear upon gauge-fixing. For this

reason the graph in figure 1 retains the lines between points n and −l. When so drawn,

the integration rules of ref. [7] can immediately be applied to one-loop CHY graphs with

two minor modifications. The final result can still be presented in the form of eq. (2.4),

which will provide the full result of the integration in (3.21) without explicitly solving the

one-loop scattering equations and summing over all of them. The two modifications are

the following. First, instead of having poles 1
sPa

, we must replace them by 1
[P ] where the

notation [P ] has been defined by eq. (2.5). In the massless case, the two expressions are the

same, but for off-shell momenta with `2 6= 0, they are different. Secondly, we should explic-

itly exclude the set P = {`,− `} (or its complement),3 and it is for this reason that no lines

have been drawn between points l and −l in figure 1. Not including the set P = {`,− `}
eliminates diagrams with singular zero-momentum propagators associated with tadpoles.

As a side remark we would like to note that it is also possible to write up the specific indi-

vidual Feynman diagrams at loop-level; such a decomposition will be similar to an n-gon

decomposition into triangle diagrams as was considered in ref. [8].

4 Scalar one-loop amplitude examples

In this section, we will demonstrate that the results obtained by solving the one-loop

scattering equations using the integration measure proposed above match those obtained

from the Feynman diagram expansion at one-loop order, after the proper regularization

of the singular terms associated with zero momentum propagation. Furthermore, these

3Obviously, a set P with only one element (or its complement) should not be included, neither at

tree-level nor at the one-loop level.
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Figure 2. The Feynman diagram at two points.

results can be obtained directly from the associated loop-level CHY graph using our loop-

level integration rules.

We will start with the one-loop integrand for the two-point ‘amplitude’ of ϕ3-theory.

Although this example is quite singular, it is simple enough to demonstrate many features

of our calculation. In particular, the augmented four-point amplitude with two additional

external legs ` and −` is well defined and is in fact the simplest example to start with.

We will first present the calculation in terms of Feynman diagrams, then explicitly use the

scattering equations, and finally present the corresponding CHY graph and the result of

employing the loop integration rule.

Using Feynman diagrams: without considering the tadpole diagram, there is only one

term in the one-loop integrand,

1

`2(`+ k1)2
, (4.1)

corresponding to the diagram

Using the general partial fraction formula

1∏n
i=1Di

=

n∑
i=1

1

Di
∏
j 6=i(Dj −Di)

, (4.2)

that was also exploited in ref. [15], we can split the integrand into

1

`2(2` · k1)
+

1

(`+ k1)2(−2` · k1)
=

1

`2(2` · k1)
+

1˜̀2(2˜̀· k2) , (4.3)

where we have used the on-shell condition k21 = 0 and defined the variable ˜̀= ` + k1 for

the second term. Since, with a proper regularization (such as dimensional regularization),

we can freely shift the loop momentum, we can identify ˜̀= ` in the second term of (4.3)

and write

1

`2[`, 1]
+

1

`2[`, 2]
. (4.4)

In fact, using that k2 = −k1 we now see that the sum in (4.4), the integrand of the on-

shell bubble diagram, adds up to zero. This assumes that the integration really has been

properly regularized so that the shift is allowed. Around d = 4 dimensions the massless

ϕ3 theory we are considering suffers from both ultraviolet and infrared divergences. Also,

a mass term is not protected, and is thus expected to be generated in this theory at loop

level from precisely this kind of two-point function: the infrared divergences already give

a strong hint that such a mass generation will occur. Indeed, in this theory a massless
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on-shell particle can decay into two in the forward direction by the self-interaction, thus

making the very definition of the S-matrix of the exactly massless theory subtle at the

quantum level [23]. It is probably best to consider the massless theory only around d = 6

dimensions, where it is classically scale invariant and perturbatively renormalizable.

Let us also emphasize some points about the result (4.4). First, the two terms are

related to each other by Z2 cyclic permutation. As we will see, this is a general feature.

Secondly, although they sum up to be zero, each term will appear in different orderings

PTn(γ) when we use the scattering equations. Thus it is necessary to write them in the

form shown in (4.4). A similar phenomenon occurs in all later examples.

Using the one-loop scattering equations: to use the setup presented in the previous

section, we need to make a gauge choice (k, l), i.e. choose which scattering equation Sl is

to be removed and which variable σk is to be fixed. However, when we do this in this two-

point example (a highly singular case), a subtle point appears. The reason is the following.

After using momentum conservation, the two scattering equations become (keeping k21 6= 0

as regulator at the intermediate level of calculations)

S1 =
[`, 1]

σ1
+

[1, 2]

σ1 − σ2
= 0 , S2 =

[`, 2]

σ2
+

[1, 2]

σ2 − σ1
= 0 . (4.5)

This leads to the identity [`,1]
σ1

= [`,1]
σ2

. Thus for general ` · k1 6= 0, we arrive at σ1 = σ2. In

other words, we cannot gauge fix σ1 = 1 and leave σ2 to be a free variable. Thus we have

to introduce another type of regulator µ:

S1 =
[`, 1]

σ1
+

µ

σ1 − σ2
= 0 , S2 = − [`, 1]

σ2
− µ

σ2 − σ1
= 0 . (4.6)

Because of the special (singular) kinematics associated with the pair {`,− `} that intro-

duces on-shell bubbles (we denote bubbles on-shell or off-shell depending on the nature of

their external legs), to arrive at well defined results, we need to sum over cyclic orderings

before we remove the regularization.

Choosing the color ordering γ = {1, 2} and taking the gauge choice (k, l) = (1, 1), we

get for the integrand

−1

µ
+

−1

−µ+ [`, 2]
, (4.7)

Similarly the same gauge choice for the color ordering γ = {2, 1} will lead to

1

µ
+

1

[`, 2]
. (4.8)

We see that adding these two terms together and carefully taking the limit µ→ 0, we get

again a zero result as in eq. (4.4).

Interpretation via a CHY graph: we now present the corresponding CHY graph given

by PT (γ)2. For the ordering γ = {1, 2}, the graph is the following: we have four ordered

nodes {`, 1, 2,− `}, and their connections are {(`, 1)2, (1, 2)2}. Here we have used subscript

– 11 –
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Figure 3. The CHY graphs for two-point (left), three-point (middle) and four-point(right).

Figure 4. The triangle contribution at three points.

to indicate how many lines connect two nodes (see figure 3). Using the tree mapping rule,

näıvely, we get following possible poles: 1
[`,1] ,

1
[1,2] . However, the complement of the pole

1
[1,2] is 1

[− `,`] which has been removed explicitly in the definition of CHY diagram (i.e., there

is no such denominator in the integrand (PT2)
2), so we should not include it. This is the

modification of the integration rule we need when it is applied at one-loop level. Thus we

are left with only the pole 1/[`, 1], which gives the final expression 1
`2[`,1]

. Including the

other cyclic permutation, we end up with the same result as using the scattering equations.

Having done the two point example, we will next move on to the next simplest thing,

the one-loop integrand of the color ordered three-point amplitude.

Using Feynman diagrams: for the color-ordered integrand of amplitude A(1, 2, 3),

there is one triangle and three on-shell bubbles related by Z3 cyclic symmetry.4 The

triangle is given by

T3;(1|2|3) =
1

`2(`+ k1)2(`− k3)2
=

1

(2` · k1)(−2` · k3)`2

+
1

(−2` · k1)(−2` · k1 − 2` · k3)(`+ k1)2
+

1

(2` · k3)(2` · k1 + 2` · k3)(`− k3)2

=
1

`2[`, 1][3,− `]
+

1

`2[`, 2][1,− `]
+

1

`2[`, 3][2,− `]
, (4.9)

where from the second to the third equation, we have used a shift of momentum `, which

of course is valid only under the integration. It is easy to see that these three terms are

related by Z3 cyclic permutations. Similarly we can split the three on-shell bubbles that

are related by cyclic ordering. A typical one is5

T2;(1|23) =
1

`2(`+ k1)2s23
=

1

`2[`, 1][2, 3]
+

1

`2[2, 3][1,− `]
. (4.10)

4Again we will not include the tadpole diagrams.
5For an on-shell amplitude, we will have s23 = 0. Thus to have a well defined meaning, one should

regularize k2
i 6= 0 for the legs i = 1, 2, 3.
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Figure 5. The three bubble contributions at three points.

To compare with the results from scattering equations and CHY graphs, we reorganize

all 1× 3 + 3× 2 = 9 terms into three groups, which are related to each other by Z3 cyclic

permutations. The first group is

G(3p)1 =
1

`2[`, 1][3,− `]
|T3;(1|2|3) +

1

`2[`, 1][2, 3]
|T2;(1|23) +

1

`2[1, 2][3,− `]
|T2;(3|12) , (4.11)

where we have used the subscript to indicate where this term comes from. In fact, as we

will see, G(3p)1 is given by the CHY graph with ordering γ = {1, 2, 3}. Again summing over

three cyclic permutations, the on-shell bubble part cancels and we are left with only the

triangle contribution.

Using the scattering equations: we now use the scattering equations to find the

integrand. Let us start with ordering γ = {1, 2, 3}. As expected, one will get contributions

from the on-shell bubbles (1|2 + 3) as well as (1 + 2|3). To regulate the solutions we set

k21 6= 0 and k23 6= 0. For the gauge choice (k, l) = (1, 1) we get

− `·k2
4(k1 ·k2)(− `·k1 + k1 ·k3)(`·k3 − k23)

(4.12)

=
1

4(k1 ·k2)

(
1

(− `·k1 + k1 ·k3)
+

−1

(`·k3 − k23)
+

(k1 ·k2)
(− `·k1 + k1 ·k3)(`·k3 − k23)

)
.

Taking the limit of k21, k
2
3 → 0 we get

1

[`, 1][2, 3]
+

1

[1, 2][3,− `]
+

1

[`, 1][3,− `]
, (4.13)

which, when inserting the 1/`2-factor, is the same as G(3p)1 in (4.11).

In the three point case having done the ordering γ = {1, 2, 3}, we should add the other

two orderings γ = {3, 1, 2} and γ = {2, 3, 1} related by cyclic permutations. Summing all

three contributions we match the Feynman expansion independently of the gauge.

Interpretation via a CHY graph: we now present the corresponding CHY graph

derivation given by the integrand with γ = {1, 2, 3}: with the ordering of nodes

{`, 1, 2, 3,− `}, thus the connections are {(`, 1)2, (1, 2)2, (2, 3)2} (see figure 3). Using the

mapping rule, we have the following possible poles (again, since 1
[1,2,3] = 1

[− `,`] we do not

include these poles)

1

[`, 1]
,

1

[1, 2]
,

1

[2, 3]
,

1

[`, 1, 2]
. (4.14)
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Figure 6. The box contribution T4;(1|2|3|4) at four points.

Figure 7. One of triangle contributions T3;(1|23|4) at four points.

Taking the compatible combinations we get the following result for the propagators

1

[`, 1][2, 3]
,

1

[`, 1, 2][`, 1]
,

1

[`, 1, 2][1, 2]
. (4.15)

Thus we have exactly the contribution G(3p)1 . Again adding the cyclic permutations we

arrive at the complete answer.

The four-point amplitude is the first non-trivial example where we can really test the

formalism. Again we will employ three different paths to get the result, and compare them.

Using Feynman diagrams: we first write down the color ordered one-loop integrand

using Feynman diagrams. There is one box diagram

T4;(1|2|3|4) =
1

`2(`+ k1)2(`+ k12)2(`− k4)2

=
1

`2[`, 1][`, 1, 2][4,− `]
+

1

`2[`, 2][4, 1,− `][1,− `]

+
1

`2[`, 3][1, 2,− `][2,− `]
+

1

`2[`, 4][`, 4, 1][3,− `]
.

(4.16)

Here we have used a momentum shift to reach the last line. Using identities such as

[`, 1, 2] = [3, 4,− `] for four-point kinematics, it is easy to see that these four terms in (4.16)

are related by Z4 cyclic permutations. Next there are four triangles related to each other

by a Z4 cyclic permutation. As an example, we can consider the triangle contribution

T3;(1|23|4) =
1

`2(`+ k1)2(`− k4)2s23
,

=
1

`2[`, 1][2, 3][4,− `]
+

1

`2[2, 3][4, 1,− `][1,− `]
+

1

`2[`, 4][`, 4, 1][2, 3]
.

(4.17)

For the bubbles, there are two different kinds in this four-point case: off-shell bubbles and

on-shell bubbles. For the on-shell bubbles, there are four which are related by a Z4 cyclic
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Figure 8. The bubble contribution T2;(1|234) at four points.

Figure 9. The bubble contribution T2;(12|34) at four points.

permutation. The first one is (again we use the intermediate regularization k2i 6= 0 to make

them well-defined)

T2;(1|234) =
1

`2(`+ k1)2s34s234

=
1

`2[`, 1][2, 3, 4][3, 4]
+

1

`2[2, 3, 4][3, 4][1,− `]

+
1

`2[`, 1][2, 3][2, 3, 4]
+

1

`2[2, 3][2, 3, 4][1,− `]
.

(4.18)

There are two off-shell bubbles. They are related by a Z2 permutations (i.e., 1 → 2, 2 →
3, 3→ 4, 4→ 1). The first one is

T2;(12|34) =
1

s12`2(`+ k12)2s34
=

1

`2[`, 1, 2][1, 2][3, 4]
+

1

`2[3, 4][1, 2][1, 2,− `]
. (4.19)

Now we reorganize all 36 terms to four groups, which are all related to each other by Z4

cyclic permutations. The first group is

G(4p)1 =
1

`2[`, 1][`, 1, 2][4,− `]
|T4;(1|2|3|4) +

1

`2[`, 1][2, 3][4,− `]
|T3;(1|23|4)

+
1

`2[`, 1][`, 1, 2][3, 4]
|T3;(2|34|1) +

1

`2[1, 2][3, 4,− `][4,− `]
|T3;(4|12|3)

+

(
1

`2[`, 1][2, 3, 4][3, 4]
+

1

`2[`, 1][2, 3][2, 3, 4]

)
|T2;(1|234)

+

(
1

`2[1, 2, 3][2, 3][4,− `]
+

1

`2[1, 2][1, 2, 3][4,− `]

)
|T2;(4|123)

+
1

`2[`, 1, 2][1, 2][3, 4]
|T2;(12|34) , (4.20)

where we have used the subscript to indicate where each contribution comes from.

Interpretation via a CHY graph: we now use the CHY graph procedure to repro-

duce the result from the Feynman diagram expansion. Again, we need to sum up four
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graphs related by Z4 cyclic permutation. The first one will be the graph with ordering

{`, 1, 2, 3, 4,− `} and the connections {(`, 1)2, (1, 2)2, (2, 3)2, (3, 4)2} defined by correspond-

ing PT -factor (see figure 3). We list all possible poles:

double-pole:
1

[`, 1]
,

1

[1, 2]
,

1

[2, 3]
,

1

[3, 4]
,

triple-pole:
1

[`, 1, 2]
=

1

[3, 4,− `]
,

1

[1, 2, 3]
,

1

[2, 3, 4]
,

quadruple-pole:
1

[`, 1, 2, 3]
=

1

[4,− `]
. (4.21)

This yields various combinations of compatible propagators. There are five combinations

containing two 2-leg poles:

1

[`, 1][2, 3][4,− `]
,

1

[`, 1][2, 3][2, 3, 4]
,

1

[`, 1][`, 1, 2][3, 4]
,

1

[`, 1][2, 3, 4][3, 4]
,

1

[`, 1, 2][1, 2][3, 4]
. (4.22)

There are four combinations containing only a single 2-leg-pole:

1

[`, 1][3, 4,− `][4,− `]
,

1

[`, 1, 2][1, 2][4,− `]
,

1

[1, 2][1, 2, 3][4,− `]
,

1

[1, 2, 3][2, 3][4,− `]
. (4.23)

These nine terms correspond exactly to the nine terms in G(4p)1 (4.20).

Using scattering equations: finally, we need to produce G(4p)1 using the scattering

equations under the ordering γ = {1, 2, 3, 4}. Again, to have well-defined results, we

regularize it with k21 6= 0, k24 6= 0. As one can check, there are six solutions (in general

(n−1)! solutions for n-point). A numerical check yields the result G(4p)1 using the gauge fix

(k, l) = (4, 4).

Before we end this section, let us briefly discuss the number of contributions generated

by CHY graphs and by Feynman diagrams. We will show that the counting with the new

one-loop rules is still one-to-one, just as in the tree-level case.

For a given CHY graph, the combinations of compatible propagators that we count

up are exactly those that appear in the color ordered tree-level (n+ 2)-point amplitude

with extra legs l and −l, except that we exclude the subset {l,−l}, which corresponds to

removing all Feynman diagrams associated with `,− ` attached to the same vertex. These

Feynman diagrams correspond to the color ordered tree-level amplitude with (n+ 1)-points.

Thus using the known formula for the number of color ordered diagrams in ϕ3 theory with

n external legs

Cn =
2n−2(2n−5)!!

(n−1)!
, (4.24)
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we know immediately that each CHY graph will give Cn+2 − Cn+1 = 3(n− 1)2n−1(2n− 3)!!
(n+ 1)!

terms. When summing over cyclic orderings, we get a total number of

TCHY (n) =
3n(n−1)2n−1(2n−3)!!

(n+ 1)!
. (4.25)

On the other hand for each n-gon in the Feynman diagram expansion, after partial

fractioning, we have n terms, corresponding to the n choices of opening up a single prop-

agator. After each such opening-up of a propagator, we get a color ordered tree-level

Feynman diagram with (n+ 2)-points. Different openings give different orderings, where

the pair {`,− `} is inserted between different nearby vertexes {i, i+1}. Again, the Feynman

diagrams obtained this way do not contain pairs of `,− ` attached to the same vertex. They

are again tree-level Feynman diagrams with (n+ 1)-points. Combining everything we get

the counting

n(Cn+2 − Cn+1) , (4.26)

which is identical to the one given in eq. (4.25).

5 Conclusion and discussion

We have shown how the diagrammatic integration rules for scattering equations that were

first developed for tree-level amplitudes have an immediate extension to one-loop level. The

integration rules at loop level follow from those at tree-level with the following modification:

the loop CHY integrand has to be compensated so that it scales correctly. This naturally

leads to valid integrands for the different kinds of theories. Here we have spelled out in great

detail how the procedure does appear to produce correct integrands for scalar ϕ3-theory by

systematically working through the low-point cases. When considering scattering equations

at loop-level it is essential to specify a regularization, and for the procedure to work we need

to be able to shift loop momentum by constants in the integrand. A regularization scheme

such as dimensional regularization should ensure this. Because we have only been interested

in demonstrating the mechanism through which the scattering equation formalism at loop

level can generate the correct set of diagrams, we have ignored all issues that arise when

actually performing the loop integration. In particular, the propagators should of course

be given the usual iε-prescription of Feynman propagators.

The procedure that we have presented seems to be generalizable to higher loops. At

each loop order two more legs are added at the intermediate step. This is one obvious

extension to pursue in the future.
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