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1 Introduction

Flux compactification of F-theory/Type IIB string theory generates a discretum of vacua

in the complex structure parameter space, making it possible to count vacua and argue

statistics of some of observables in the low-energy effective theories [1, 2]. It is virtually

impossible to work out the vacuum for each one of individual flux configurations in practice,

but this difficulty can be overcome in an approximate treatment of this problem introduced

by Ashok-Denef-Douglas [3, 4]. Their treatment becomes a very powerful tool, when used

for F-theory compactifications [2, 5], since one can estimate the number of flux vacua that

lead to low-energy effective theories with a given set of 7-brane gauge groups and the

number of generations of matter fields. It turns out [6, 7] that the number of flux vacua is

reduced in the order of 10−O(100) generically as we require the rank of 7-brane gauge group

to be higher by one. Focusing on an ensemble of flux vacua with a given 7-brane gauge

group, one further finds that the number of flux vacua follows the Gaussian distribution

on the number of generations Ngen, with the variance
〈
N2

gen

〉
not more than O(1).
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Obviously the analysis method above can be applied also to more refined and practical

problems. It often happens in model building that more than one theoretically and phe-

nomenologically consistent idea (model) has been proposed for a given phenomenon, and

one cannot say which is better within the framework of low-energy effective field theory. By

counting the number of flux vacua that realise various ideas and comparing the numbers,

however, one can introduce a measure of naturalness on those consistent ideas. Such at-

tempts have been made often in Type IIB compactifications so far; we are returning to this

program by using F-theory compactifications so that we can address questions involving

non-Abelian/Abelian gauge groups in the low-energy effective theories.

There are two kinds of naturalness/statistics questions. Note first that a low-energy

effective theory is specified by providing a set of model data; a set of data consists of

algebraic data (e.g. symmetry), topological data (e.g., matter multiplicity) and moduli

data (i.e. coupling constants, symmetry breaking scale, etc.). Since a choice of algebraic

and topological data is discrete in nature, we ask such questions as how much fraction

of flux vacua survives when a certain symmetry is imposed. Section 3 is devoted to this

category of problems. Moduli data, on the other hand, show up as continuous parameters

in effective theories, and the flux vacua statistics need to be presented as a continuous

distribution on the parameter space. This second category of questions is addressed by

using F-theory compactifications in section 4.

Sections 3.1 and 3.2 deal with

• dimension-4 proton decay: spontaneous R-parity violation (v.s. Z2 symmetry),

• SU(5) unification v.s. SU(3)× SU(2)×U(1) without unification,

respectively. We do not get our hands on discrete symmetries in this article; we just esti-

mate statistical cost of introducing an extra U(1) symmetry, which is relevant to both of

the physics questions above. Section 4 begins with a recap of [53, 55]; observations made

in these articles — originally in Type IIB context — hold readily in F-theory compactifi-

cations. We then discuss

• distribution of symmetry breaking scale of an approximate U(1) symmetry,

• two solutions to the hierarchical structure problem of Yukawa matrices,

in sections 4.1 and 4.2, respectively. The first and last of the four subjects above are found in

the list of “possible applications” in [6, 7], and we just carry out the analysis in this article.

Discussions in sections 3.2 and 4.1, on the other hand, are more like thought provoking

ideas than solid analysis. The appendix A is a brief review note on two constructions of

fourfold geometry for F-theory compactifications with a U(1) symmetry; the appendix B

provides a little more details about SU(6) unification models with up-type Yukawa coupling

in F-theory than in the literature. Monodromy of four-cycles in a fourfold is studied in the

appendix C.2, as we need the result in section 4.1.

– 2 –
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2 A quick review of the formulation

Suppose that one is interested in estimating the number of flux vacua which have a given

set of algebraic and topological properties in the effective theory below the Kaluza-Klein

scale. Once we specify topology of the base threefold B3 and of the divisor class S ⊂ B3

supporting unification gauge group (7-brane),1 we can think of a family of non-singular

Calabi-Yau fourfolds Ŷ4 with elliptic fibration over B3 consistent with the set of algebraic

properties one is interested in. LetM∗ be the space of complex structure parameters for this

family.2 Statistics of flux vacua should turn out as a scatter plot on this parameter space

M∗. When the ensemble of topological flux configurations is replaced by its continuous

approximation [3, 4], the scatter plot of vacua turns into a vacuum distribution function

(an (m,m)-form on M∗; m := dimCM∗). Ashok-Douglas [3] introduced vacuum index

density dµI , to which individual flux vacua contribute by ±1 (rather than by +1). It is

also an (m,m)-form on M∗ under the continuous approximation, and is much easier to

compute [3, 4]. For this practical reason, we also use the vacuum index density dµI in this

article, instead of the vacuum density.

The vacuum index density turns out to have the following expression [2–5]:3

dµI ∼





(2πL∗)
K/2

(K/2)!
if K ≪ L∗

KL∗

L∗!
if L∗ ≪ K





× ρI , ρI = detm×m

(
−

R

2πi
+

ω

2π
1m×m

)
. (2.1)

Here, R is the curvature two-form of TM∗ and ω the Kähler form on M∗. K is the

dimension of an Affine subspace

{Gfix +∆G | ∆G ∈ Hscan} ⊂ H4(Ŷ4;R) (2.2)

in which the four-form flux is scanned freely; Hscan is a vector subspace of H4(Ŷ4;R), and

K := dimRHscan. L∗ is the upper bound on the 3-brane charge that the scanning component

of the four-form flux ∆G contributes to. See [6, 7] for more detailed explanations. For

the ensemble of fluxes above to correspond to an inclusive enough ensemble of effective

theories with a given set of algebraic and topological data, Hscan needs to contain the

primary horizontal component

[
H4,0(Ŷ4;C) + h.c.

]
⊕
[
H3,1(Ŷ4;C) + h.c.

]
⊕H2,2

H (Ŷ4;R). (2.3)

1In this article, except in section 3.2, we use the two expressions unification group and non-Abelian

7-brane gauge group interchangeably, because gauge coupling unification is guaranteed when a flux on S

breaks the non-Abelian gauge group symmetry on S to its subgroup G1 ×G2 × · · · .
2We avoid using the term “moduli space” for this meaning for the most part in this article. The spaceM∗

is introduced and used in the present context just as a mathematical construct on which the result (vacuum

index density dµI) is presented, not as the non-linear sigma model target space in some approximation

scheme of low-energy effective theory; once flux is introduced, these two notions are not the same. We hope

to make this distinction clear by avoiding the word “moduli space” for the former, although it is perfectly

correct to refer to the former as a moduli space in math context.
3The prefactor for L∗ ≪ K was discussed in [3], but was corrected in [2, 6, 7].
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This condition on the minimum inclusiveness of flux ensemble is also known to be a neces-

sary and sufficient condition for the formula of ρI in (2.1) to hold in F-theory compactifi-

cations [2, 5]. This means that

K ≥ K0 := 2(1 + h3,1) + h2,2H . (2.4)

Specific physics questions of one’s interest determine how inclusive an ensemble of effec-

tive theories one wants to pay attention to, and how large a subspace of H2,2
V (Ŷ4;R) ⊕

H2,2
RM (Ŷ4;R) should be included in Hscan; the choice of K −K0 is discussed in an applica-

tion to the spontaneous R-parity violation scenario in section 3.1; see also [5–7].

As the integral
∫
ρI over a fundamental domain of M∗ usually turns out to have a

value of order unity, we can just use the prefactor in (2.1) as an estimate of the number

of flux vacua that have a set of algebraic and topological data specified at the beginning;

we just use this prefactor for the study in section 3. The distribution ρI can be used to

study statistical distribution of coupling constants / Lagrangian parameters within a class

of low-energy effective theories with a given set of algebraic and topological properties; this

ρI is used for the study in section 4.

One needs to keep in mind that the distribution as well as the estimate of the number

of flux vacua here does not require that the vacuum expectation value (vev) of superpo-

tential is much smaller than the Planck-scale-cubed; a large fraction of vacua has AdS

supersymmetry. Stabilisation of Kähler moduli is not studied either. For these reasons

and for other reasons stated elsewhere in this article, the formula (2.1) should be regarded

only as partial information of statistical distribution of observables in string landscapes.

3 Fraction of flux vacua with enhanced symmetries

3.1 Statistical cost of spontaneous R-parity violation

Dimension-4 proton decay problem in supersymmetric Standard Models can be avoided,

for example, by either imposing a Z2-symmetry (matter/R-parity) or assuming sponta-

neous breakdown of a U(1) symmetry triggered by a non-zero Fayet-Iliopoulos parameter

(spontaneous R-parity violation).4 When we assume that the Z2 symmetry originates from

a Z2 symmetry of a geometry for compactification, complex structure parameters of the

geometry need to be in a special sub-locus for enhancement of the Z2 symmetry [8, 9], and

the flux vacua that end up in such a sub-locus will constitute small fraction of all the flux

vacua [10, 11] (see also a remark at the end of this section 3.1). The spontaneous R-parity

violation scenario (see [12–14] for its string implementation) also requires tuning, because

we need a U(1) symmetry. This tuning should be translated into restriction on flux con-

figuration. In this section 3.1, we estimate the fraction of flux configurations that have an

extra U(1) symmetry. Comparing the fraction of flux vacua for the spontaneous R-parity

4For right-handed neutrinos to be able to have large Majorana masses, it is better that the U(1) symmetry

is broken at high energy. Despite the spontaneous breaking, the SUSY-zero mechanism [15] remain at

work in getting rid of dangerous proton decay operators at least for some UV constructions (see [13] for

discussion).
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violation and that for matter/R-parity, one could argue which solution to the dimension-4

proton decay problem is more “natural” in terms of flux vacua statistics.

There are two different ways to implement an extra U(1) symmetry in F-theory com-

pactifications. One is to assume a 7-brane locus S × R3,1 with an SU(6) or SO(10) gauge

group, and introduce a U(1) flux on the complex surface S, so that the symmetry is broken5

from SU(6) or SO(10) to SU(3)C × SU(2)L × U(1)Y × U(1) [12, 14].6 The other [20–23]

is to get an extra U(1) symmetry by assuming a Calabi-Yau fourfold with a non-trivial

Mordell-Weil group [24]. In the latter implementation, more variety is available in the

choice of U(1) charge assignment than those that follow from Heterotic string geometric

(supergravity) compactification [25–28].

To get started, let us first take a moment to consider how one should choose Hscan

for this problem. We address this question by working on a few concrete examples. First

of all, the base threefold is set to be B3 = P1 × P2, and we require SU(5) 7-branes along

a divisor S = HP1 = pt × P2 in B3. There is a wide variety in constructing families of

Calabi-Yau fourfolds with a non-trivial Mordell-Weil group7 [27, 28], but we just pick up

only two of them to work on; in both of the two constructions, a Calabi-Yau fourfold Y4 is

obtained as a hypersurface of an ambient space that has a toric surface fibration over the

base manifold B3; the fibre surface is a blow-up of WP 2
[1:2:3] in one of the two, and it is

F1 = dP1 in the other. The appendix A provides a brief summary note on the facts about

the two constructions.

In the first construction (see the appendix A.1), where Bl[1:0:0]WP 2
[1:2:3] is the fibre of

the ambient space, the vertical component ofH2,2, namely, H2,2
V (Ŷ4;Q), is of 11 dimensions.

Four among them are generated by

σ0 ·HP1 , σ0 ·HP2 , HP1 ·HP2 , HP2 ·HP2 , (3.1)

where σ0 is a zero section of π : Ŷ4 −→ B3 and HP2 the hyperplane divisor of P2. Four

other generators are the vanishing two-cycles of rank-4 SU(5) symmetry fibred over HP2 |S :

Ea ·HP2 (a = 1, 2, 3, 4), (3.2)

where Ea’s are the Cartan divisors of SU(5). All the three remaining generators are vanish-

ing cycles associated with charged matter fields; two are for the 5̄−2 and 5̄+3 representations

of the SU(5)×U(1) symmetry, and the last one for the 15 representation. The dimension

5The F-theory implementation of spontaneous R-parity violation scenario is always an example of “T-

brane” [16]. The D-term condition
∑

i qi|φi|
2 − ξ = 0 in the 4D effective theory corresponds [17, 18] to a

(D-term) BPS condition [ϕ,ϕ] + ω ∧ F = 0 in the effective field theory on S × R3,1 (Katz-Vafa type field

theory [19]). The off-diagonal components of the Higgs field vev 〈ϕ〉 is therefore essential in the spontaneous

R-parity violation scenario [12, 14].
6We maintain the discussion simple here, by assuming SU(5) unification. Once the “tempting argument”

in page 8 is verified, however, it will be obvious what to conclude about the statistical cost of various

implementations of the spontaneous R-parity violation scenario even in the absence of SU(5) unification.
7We do not work on the Hscan-determination problem for the SU(6) or SO(10) realisation of the spon-

taneous R-parity violation in this article. That will be a doable problem. As we see later, however, precise

determination of Hscan is not much of importance when h3,1 ≫ h1,1.

– 5 –
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of the remaining (i.e., non-horizontal non-vertical) component is determined by using the

formula of [6, 7]; it turns out that h2,2RM = 0.

How should we choose Hscan, then? First of all, the four-form ∆G needs to stay

away from the 8 four-cycles listed in (3.1), (3.2) in order not to break the SO(3,1) and

SU(5) unification symmetry.8 Secondly, the net chirality “Ngen” of 5̄−2 and 5̄+3 need to

be fixed, which means that the integral of a four-form over these two cycles need to have

values designated by a phenomenology (low-energy) model of interest. Therefore, there

should not be scanning of ∆G in the 8+2 dimensions of H2,2
RM (Ŷ ;R) ⊕ H2,2

V (Ŷ4;R). The

net chirality of the 15 field, however, may be chosen arbitrarily, as they do not appear

in the low-energy spectrum in the spontaneous R-parity violation scenario.9 Thus, this

means that the four-form flux quanta can be scanned also in a one dimensional subspace

of H2,2
RM (Ŷ ;R)⊕H2,2

V (Ŷ4;R) for the question we are facing. This brings us to

K = K0 + 1. (3.3)

Let us also work on one more construction of a Calabi-Yau fourfold with a non-trivial

Mordell-Weil group, where the ambient space of Ŷ4 has F1 fibre (see a review in the ap-

pendix A.2). The construction comes with a topological choice of two divisors κ1 and κ2

on B3; we stick to the same choice of (B3, [S]) as before for now. The choice of the divisor

classes κ1, κ2 changes the topological class of various matter curves, but the U(1) charge

assignment is not affected. When the two divisors are parameterised by

κ1 = a1HP1 + a2HP2 , κ2 = b1HP1 + b2HP2 , (3.4)

we focus our attention to the choices satisfying the conditions

b1 = 0, a1 = 1, 2, 0 ≤ a2, b2, 0 ≤ 6 + a2 − 2b2, 0 ≤ 6− 2a2 + b2, (3.5)

since some of the coefficients A0,1, A1,0, B−1,1, B0,0, b1,−1|2, C−2,1, c−1,0|1, c0,1|3 and c1,−2|5

in the defining equation of Ŷ4 (A.7), (A.8), (A.15) would vanish identically otherwise.10

We further focus on cases with a2 = 0, when the non-singular fourfold Ŷ4 remains a flat

fibration over B3, and the low-energy spectrum is guaranteed to be free from tensionless

string (cf [29–31]). This means that 0 ≤ b2 ≤ 3.

We studied geometry associated with H2,2(Ŷ4) carefully for a1 = 1 and 0 < b2 < 3.

The non-vertical and non-horizontal component H2,2
RM (Ŷ4) turns out to be trivial, which

follows from the formula in [6, 7]. The vertical component H2,2
V (Ŷ4;R) has 13 independent

generators. The five independent generators other than those in (3.1), (3.2) all correspond

to the vanishing cycles associated with charged matter fields. Three correspond to 5̄0, 5̄1

8We ignore SU(5) symmetry breaking to the Standard Model gauge group in this article, in order not

to be distracted by unessential details.
9This argument is a little simplified too much for phenomenology, but we keep the story simple in this

article (see [13] for more). After all, small changes in the argument in these paragraphs do not severely

affect the qualitative conclusion we draw later in this section.
10This constraint is not from physical reasons; when one of those conditions is not satisfied, it often

happens that analysis of geometry is done better by using an ambient space that has a fibre other than

F1 = dP1.
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and 5̄−1, and two others to 11 and 12. Repeating the same argument as in the case of the

first construction, we find that Hscan has a dimension

K = K0 + 2. (3.6)

Spontaneous R-parity violation, or the SUSY-zero mechanism more generally, is a little

special in that the U(1) symmetry exerts some controlling power on types of interactions

in the low-energy effective theory even after it is broken spontaneously at high-energy (pri-

marily for dimension-4 operators, not necessarily on non-renormalisable operators; see [13]

for discussion). Chirality is not well-defined any more, however, for SU(5)-neutral U(1)-

charged matter fields after the spontaneous breaking of the U(1). Without the chirality

protection, they do not survive in the low-energy spectrum.11 For this reason, when we

count the number of flux vacua that realise the spontaneous R-parity violation scenario,

it is appropriate that the flux quanta changing the net chirality of SU(5)-neutral U(1)-

charged fields should be scanned, as we have discussed above in detail. Some part of the

vertical component of H2,2(Ŷ4) therefore contributes to the dimension K of the scanning

space of flux Hscan, and K > K0.

Let us now study the statistical cost of an extra U(1) symmetry. An easiest way to

do that is to compute L∗ and K for some concrete choices of (B3, [S]), and work out the

prefactor of (2.1). Comparing the prefactor for the case with an SU(5)×U(1) symmetry

with the one for the case with just SU(5) unification, we can estimate the tuning cost of

the spontaneous R-parity violation scenario. We will take this experimental approach first,

by using B3 = P1 × P2 and S = HP1 as before, and then discuss later how the tuning cost

depends on the choice of (B3, [S]).

It takes extra efforts to compute the dimension of the horizontal component h2,2H (by

using the formula in [6, 7]) and χ(Ŷ4) (which are used for L∗ in (2.1)), but there is a

short-cut for such choices as B3 = P1 × P2. So long as h3,1(Ŷ4) ≫ h1,1(Ŷ4), which is the

case for the topology of (B3, [S]) we chose above, H2,2(Ŷ4) is dominated by the horizontal

component, i.e.,

h2,2(Ŷ4) ∼ h2,2H (Ŷ4) ≫ h2,2V (Ŷ4), h2,2RM (Ŷ4), (3.7)

as experience in [6, 7] shows. This is enough to see that [2, 6, 7]

L∗ ∼
χ(Ŷ4)

24
∼

b4
24

∼
K

24
,

KL∗

(L∗)!
∼ exp

[
b4(Ŷ4)

24
ln(24)

]
. (3.8)

Furthermore, if one is interested only in the ratio of two prefactors KL∗/(L∗)! (relative

tuning cost) in geometries with h3,1 ≫ h1,1, a relation [32–34]

h2,2 = 4(h3,1 + h1,1) + 44− 2h2,1 (3.9)

11By “low-energy” and “high-energy”, we mean O(1–1000)TeV and O(1013–16)GeV in this paragraph,

whereas we also use the term low-energy (effective theory) in the sense that an intended energy scale is

below the Kaluza-Klein scale. It will not be difficult to figure out from the context in which meaning

“low-energy” is used at each place in this article.

– 7 –



J
H
E
P
1
1
(
2
0
1
5
)
0
6
5

implies that ∆h2,2 ∼ 4∆h3,1, and ∆b4 ∼ 6∆h3,1. All these combined allows us to estimate

the relative tuning cost by [6, 7]

exp

[
ln(24)

4
× (∆h3,1)

]
. (3.10)

Numerically,12 [ln(24)]/4 ≃ 0.8. The fraction of flux vacua with an enhanced symmetry is

determined in this expression by the number of complex structure parameters to be tuned.

Now we only need to compute h3,1’s and compare.

WP[1:2:3]-fibred, no gauge group h3,1 = 3277, (3.11)

WP[1:2:3]-fibred, SU(5) gauge group h3,1 = 2148, (3.12)

which are the reference values of h3,1 for (B3, [S]) we have chosen. In the spontaneous

R-parity violation scenario realised in a rank-5 unification,

WP[1:2:3]-fibred, SO(10) gauge group h3,1 = 2138, (3.13)

WP[1:2:3] fibred, SU(6) gauge group h3,1 ∼ 1900. (3.14)

The values of h3,1 are taken from [6, 7] for SU(5) and SO(10), and the value for SU(6) is

computed in the appendix B. Among the Mordell-Weil implementations of the extra U(1),

we have also computed h3,1 for the two constructions referred to earlier (and reviewed in the

appendix A); Batyrev’s formula for toric hypersurface Calabi-Yau’s is used for these results:

Bl[1:0:0]WP 2
[1:2:3]-fibred h3,1 = 932, (3.15)

F1-fibred, no.2 h3,1 = 7(b2)
2 − 12b2 + 372, (a1 = 1, 0<b2<3). (3.16)

It turns out, for (B3, [S]) we chose, that the cost of the Mordell-Weil implementations

of the spontaneous R-parity violation comes at the order of e−1000, relatively to generic

SU(5) unification; the number of flux vacua is reduced that much by requiring an extra

U(1) symmetry through the existence of a non-trivial section. In the other group of im-

plementations, namely rank-5 unifications with U(1) flux, the cost comes out as something

like e−10 for SO(10) and e−200 for SU(6). All these cost estimates have been read out by

comparing h3,1 in (3.13)–(3.16) with that in (3.12).

It is tempting to argue, based on the numerical experiment for a single choice of

(B3, [S]) though, that the Mordell-Weil implementations of an extra U(1) tend to be much

more costly than those through unification with one rank higher.13 Plausible explanation

12 This numerical value should not be taken at face value. The underlying cohomology lattice of the

flux scanning space Hscan is not necessarily unimodular, whereas the derivation of the prefactor KL∗/L∗!

is stated in [2, 6, 7] in its simplest form, where the underlying lattice is unimodular. The relative tuning

cost in (3.10) should be read only as exp[O(1)× (∆h3,1)].
13It is naive just to compare the tuning cost of those different implementations. The SO(10) and SU(6)

implementations predict SO(10)-like and SU(6)-like flavour structure automatically, and the tuning cost for

appropriate flavour structure in SU(5) unification is not the same as those in SU(6) or SO(10) unification.

This tuning cost for flavour is significant in SO(10) unification, because both quark doublets and lepton

doublets live on the same matter curve. The tuning cost for flavour in SU(6) unification will vary for its

particle identifications; see discussion in the appendix B.
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will be that the Mordell-Weil implementations require more parameters to be tuned, be-

cause existence of an extra section restrains geometry over the entire base manifold B3;

the implementations through rank-5 unification, on the other hand, require higher order of

vanishing of some sections along a divisor in B3, which is a condition only on semi-local ge-

ometry. It is desirable, however, that this argument is either confirmed (or refuted instead)

by h3,1 computation for other constructions of Calabi-Yau’s with a non-trivial Mordell-Weil

group, and for other choices of (B3, [S]).

Studies show [35–37] that Calabi-Yau fourfolds eligible for supersymmetric compacti-

fication of F-theory are distributed almost evenly in the h3,1 ≫ h1,1 corner and h3,1 ≪ h1,1

corner of the h3,1–h1,1 plane; this fits very well with an observation that a morphism of

elliptic fibration to some threefold is allowed for large fraction of Calabi-Yau fourfolds with

various topology [38, 39]. Such a choice as B3 = P1 × P2, which we used for the numerical

experiment above, ends up in the corner of h3,1 ≫ h1,1, and hence the estimates of the

fraction of flux vacua with an extra U(1) symmetry is hardly typical values for all the

possible topological choices of (B3, [S]).

It is not hard to find out how things go in the h3,1–h1,1 plane for various choices of

(B3, [S]), if we maintain K close to K0. Along an h3,1 + h1,1 = const line in the h3,1–

h1,1 plane, the Euler number χ ∼ 2(h3,1 + h1,1) + h2,2 ∼ 6(h3,1 + h1,1) and the value of

L∗ ∼ χ/24 do not change much, but the value of K0 ∼ 2[1 + h3,1] + h2,2H increases toward

the h3,1 ≫ h1,1 corner. The prefactor in (2.1) is an increasing function of K for a given

L∗, regardless of whether L∗ ≪ K or L∗ ≫ K. The more Fano-like B3 is, the ampler

sections are available to (−KB)
⊗positive, the larger h3,1 is, and the larger the number of

flux vacua is, after all. When a stack of SU(5) 7-branes is required along S ⊂ B3, more

sections (and hence h3,1, and the flux vacua) are lost when B3 is more Fano like; the loss is

severer, if c1(NS|B3
) is “positive”. The relative tuning cost is higher for Fano-like B3, with

positive c1(NS|B3
). Experience in [6, 7] also shows, however, that the number of remaining

flux vacua (i.e., those with an SU(5) symmetry) tends to be larger in Fano-like B3 and

positive c1(NS|B3
), despite the severer tuning cost for the SU(5) 7-branes. The same story

will hold, even when SU(5)×U(1) symmetry is required instead.

Let us note that the qualitative argument above is naive in various respects. First, we

set K = K0 above for simplicity, but there is a large room for K−K0, when B3 is far from

being Fano, and c1(NS|B3
) far from being “positive”. Such a set-up is possible in F-theory

compactifications [35–37, 40, 41], and it is known in such cases that there can be many

other 7-branes with non-Abelian gauge groups, and h1,1 ≫ h3,1 for the fourfolds. It is

then expected from experience in [6, 7] that h2,2V ≫ h2,2H . One then needs to ask how much

four-form flux can be introduced in the vertical component H2,2
V (Ŷ4;Q) without breaking

SO(3,1) symmetry and supersymmetry (if one wishes); based on an answer to this technical

question, one can then wonder how inclusive an ensemble of low-energy effective theory

one is interested in, and how large (K − K0) is. Secondly, particle physics with SU(5)

unification is not all we need in this universe. Some source of supersymmetry breaking

needs to be present. While anti-D3 branes may be able to play some role, dynamical

supersymmetry breaking in a non-Abelian gauge theory (e.g. the 3-2 model in [42]) might

also be at work. The tuning-cost-free non-Abelian gauge group in the non-Higgsable cluster
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may have something to do with dynamical supersymmetry breaking. Thirdly, the Kähler

moduli need to be stabilised without a tachyon. U(1) fluxes change the effective number

of Kähler moduli to be stabilised non-perturbatively, through the Fayet-Iliopoulos D-term

potential (primitiveness condition of the flux). Finally, inflation or cosmological evolution

in general may introduce some preference in the choice of (B3, [S]). All these issues are

beyond the scope of this article.

This article does not try to estimate the fraction of flux vacua with an unbroken

matter/R-parity symmetry. If one is to argue which one of R-parity and spontaneous

R-parity violation is more natural solution to the dimension-4 proton decay problem in

terms of flux vacua statistics, we also need an estimate for the R-parity scenario. Although

there are earlier works on this issue in the context of Type IIB orientifold compactifications

(e.g. [10, 11]), further study in F-theory is desirable. It is worth reminding ourselves that

the fact that L∗ ≪ K in cases of h3,1 ≫ h1,1 may have an important implication to this

issue. Continuous approximation to the space of fluxes in [3, 4] is fairly good whenK ≪ L∗;

intuitively, as in [43], that is when the radius-square (L∗) of a K-dimensional “sphere”14

is much larger than the number of dimensions K. In the case with L∗ ≪ K (which is the

case at least when h1,1 ≪ h3,1), however, much larger fraction of flux configurations may

end up with special points in the complex structure parameter space (sometimes with an

accidental discrete symmetry) than expected in the continuous approximation [4, 44].

3.2 GUT’s and SU(3) × SU(2) × U(1)

Pursuit of supersymmetric SU(5) unification is a primary motivation to study F-theory

compactification. The doublet-triplet splitting problem motivates compactification in the

geometric phase (supergravity regime), rather than stringy regime, because it is solved

in a simple way by topology (hypercharge line bundle or Wilson line) on an internal

space [45, 46]; the up-type Yukawa coupling of the form 10ij10kl5mǫijklm hints at al-

gebra of the exceptional Lie groups E6,7,8 [12]. There is no direct experimental evidence

(such as proton decay) so far for unification, however; certainly renormalisation group of

the minimal supersymmetric Standard Model (MSSM) is consistent with gauge coupling

unification, but we do not know for sure what the particle spectrum is like at energy scale

higher than TeV. If one does not take SU(5) unification seriously, then string vacua based

on CFT’s with a non-geometric target space are perfectly qualified for the description of the

real world; we do not have to require that E6,7,8 algebra be relevant for “compactification”

either.

With this perspective in mind, it makes sense to ask a question which is more popular

in the ensemble of supersymmetric vacua of F-theory compactification in the geometric

phase, SU(5) unification or MSSM without unification. If there are more MSSM vacua

without unification than vacua with SU(5) unification within the landscape of F-theory, the

MSSM vacua will surely outnumber vacua with unification in the entire string landscape,

which includes string vacua based on non-geometric CFT’s, and those without a dual

14In reality, the lattice H4(Ŷ ;Z) is not positive definite. It still seems, however, that this “intuition”

holds at least to some extent, because the Bousso-Polchinski like prefactor of (2.1) was obtained in [3, 4]

without assuming that the lattice is positive definite.
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description in F-theory. Democracy, or simple majority rule, may not be the ultimate

vacuum selection principle of string theory, but this question will still be of interest for

those who are concerned about particle physics.

It is necessary, before answering the question above, to think what unification means.

The motivation of unified theories at the very beginning [47] was to explain quantisation

of hypercharges. This charge quantisation is achieved in any realisation of the Standard

Model in F-theory/Type IIB string theory, however. Even when the U(1) hypercharge is

not embedded into a larger non-Abelian group, charges of (p, q) strings (or M2-branes)

are determined by algebraic topology, and the charges turn out to be quantised. Charge

quantisation is therefore not a distinction criterion of, or motivation for, unification from

the perspective of string theory.

Let us list up a couple of criteria for unified theories:

• SU(3)C × SU(2)L ×U(1)Y originates from a single stack of branes,

• all of SU(3)C , SU(2)L and U(1)Y are understood in a semi-simple brane configuration

• gauge coupling unification is explained automatically,

• matter fields in some of the five irreducible representations of the Standard Model,

(3,2)1/6, (3̄,1)−2/3, (3̄,1)+1/3, (1,2)−1/2 and (1,1)+1, are localised in the same locus

in the internal space.

SU(5) GUT models discussed in section 3.1 satisfy all of those criteria. On the other

hand, none of those criteria is satisfied, if SU(3)C and SU(2)L come from 7-branes on

topologically different divisors S3 and S2, respectively, and U(1)Y from a non-trivial section

in the Mordell-Weil group. There will be constructions that satisfy some of the criteria,

but not all, but we will foucus on the two extreme cases in this article, to keep the story

simple.

Let us use B3 = P1 × P2, as before, and quantify the number of flux vacua of those

different implementations of the Standard Model, so that we can compare. Here, we do

not pay attention to the dimension-4 proton decay problem or any other phenomenological

requirements. For SU(5) unification, we already have a result,

h3,1 = 3277 −→ h3,1 = 2148, ∆h3,1 = −1129 for SU(5) on S = HP1 . (3.17)

If we deform this Calabi-Yau fourfold further so that only SU(3)×SU(2) remains unbroken,

the two gauge group factors are localised on divisors S3 and S2 both of which belong to

the same divisor class as S = HP2 .

h3,1 = 3277 −→ h3,1 = 2149, ∆h3,1 = −1128 S3 ∼ S2 ∼ HP1 . (3.18)

We can go back to the family of fourfolds for SU(5) unification by suppressing one de-

formation parameter corresponding to H0(S;NS|B3
) = H0(P2;O) in this case. Therefore,

the tuning cost for the unbroken U(1) hypercharge symmetry is obtained by −∆h3,1 = 1

in (3.10) in the case of SU(5) unification.
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1 2 3 4 5 6 1 2 3 4 5 6 7

(a) c1(NS|B) > 0 (An, Dn) (b) c1(NS|B) < 0 (An, Dn)

Figure 1. Extra tuning cost −(∆L∗)/(∆rank) decreases or increases for higher rank, depending

on whether c1(NS|B3
) is positive or negative, as one goes down the An or Dn chain. c1(NS|B) is

replaced by KS in the case of En series.

In case we require SU(3) and SU(2) 7-branes on two divisors, S3 and S2, respectively,

in different divisor classes in B3, back of the envelope calculation15 reveals that

h3,1 = 3277 −→ h3,1 = 2130, ∆h3,1 = −1147, S3 = HP1 , S2 = HP2 ; (3.21)

h3,1 = 3277 −→ h3,1 = 2087, ∆h3,1 = −1190, S3 = HP2 , S2 = HP1 . (3.22)

Comparing these ∆h3,1’s with that in (3.18), we see that the topological configuration of

SU(3)×SU(2) 7-branes does not make much difference in the fraction of flux vacua. If the

hypercharge symmetry is obtained as a Mordell-Weil U(1) in addition to such SU(3)×SU(2)

7-brane configurations (cf [48]), h3,1 will be reduced further by 1000 or so, as we have

experienced in section 3.1. The number of flux vacua does not depend very much on

topological configuration of 7-branes for SU(3)C × SU(2)L, but it does very much on how

we obtain U(1)Y .

The original motivation for unification — explaining quantisation of hypercharge —

is no longer persuasive in string construction of particle physics, because it is explained

without relying on unification. Unification may still have advantage in F-theory com-

pactification in the geometric phase, in that the tuning cost for having an unbroken U(1)

hypercharge in addition to SU(3)C × SU(2)L is small, in terms of flux vacua counting.

We should leave a cautionary remark on the B3-dependence of this argument, however.

Extra tuning cost for one extra rank of 7-brane gauge group has a behaviour shown in

figure 1, where the behaviour is qualitatively different for cases with “positive” c1(NS|B3
)

and “negative” c1(NS|B3
), when one goes down the chain of An = SU(n + 1) series and

Dn = SO(2n) series [6, 7]. When a divisor c1(NS|B3
) on S is negative, in particular, it

may happen sometimes that ∆L∗/∆rank = 0 for a choice of 7-brane gauge group with a

15Reasoning behind the values of h3,1’s are

[2 + 3N3,2 + 4N5,2 + 6N8,2 + 7N11,2 + 10N16,2]− [1 + 4 + 2N2,2 + 4N5,2 + 5N8,2]− 6 = 2130, (3.19)

[2 + 3N3,2 + 4N5,2 + 6N8,2 + 8N10,2 + 11N15,2]− [1 + 4 + 2N2,2 + 4N5,2 + 6N7,2]− 6 = 2087, (3.20)

where Nh,2 = (h+1)(h+2)/2 is the number of lattice points on a 2-dimensional pyramid of height h. We do

not think that these values of h3,1 are necessarily correct, but will not be off so much as to lose credibility

in the estimate ∆h3,1 ≈ −1000. Because discusion in the main text is not affected by 10% change in the

estimate of ∆h3,1, we do not need to compute ∆h3,1 at a precision better than that.
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small rank; the rank of 7-brane gauge group can be large to some extent without losing the

number of flux vacua. This is the phenomenon called non-Higgsable cluster [24, 40, 41].

When either SU(3)C or SU(2)L or both are identified with 7-brane gauge groups in a non-

Higgsable cluster [49], the tuning cost argument above is affected inevitably. In a family of

fourfolds where the Mordell-Weil group is non-trivial everywhere on its complex structure

parameter space [50–52], we cannot talk of relative statistical cost of requiring an extra

U(1) symmetry; in such a case, we need to discuss relative tuning cost of U(1) through

some transitions connecting such a family to another where the fourfolds have different

topology, or to use the prefactor in (2.1) directly to estimate the number of flux vacua.

4 Distribution of Lagrangian parameters

While the prefactor in the formula (2.1) can be used to estimate the number of flux vacua

with a given set of algebraic and topological properties (i.e., symmetry, matter multiplicity

etc.), the (m,m)-form ρI in (2.1) can be used to “derive” distribution of Lagrangian pa-

rameters in such an ensemble of vacua. This is a source of rich information, as is evident

already in its applications to Type IIB compactifications [53, 54]. In this section, we will

discuss its F-theory applications in the context of particle physics.

It should be remembered, though, that the expression for ρI was derived by assuming

that the continuous approximation of the K-dimensional flux space is good, while the

approximation is not good in the case of K ≫ L∗. It may be that the distribution ρI
remains to have reasonable level of predictability, while the problem of bad approximation

is mitigated, when the complex structure parameter space M∗ is binned very coarsely, and

ρI is used only by being integrated over such a large bin. Justification is not given even to

this hope, however. When one is interested in the choice of (B3, [S]) where K ≫ L∗, one

should keep this remark in mind.

4.1 Symmetry breaking scale of an approximate U(1) symmetry

We discuss applications of the distribution ρI in both sections 4.1 and 4.2. The set-up for

the application in section 4.1 is chosen so that it suits best for exploring creative ways to

use the distribution ρI ; the physics problems discussed in section 4.1 should be interesting

on their own, but we are focused more in finding out creative ways to use ρI , rather than

in carrying out solid analysis of the physics problems being discussed. Section 4.2, on the

other hand, is devoted to a more problem-oriented application.

While it is not theoretically impossible to compute period integrals and evaluate ρI ,

it is not practical to do so, when there are O(1000) complex structure parameters. For-

tunately, it is possible to learn essential features of the distribution ρI without carrying

out such computations, as experience in Type IIB applications indicates [53, 55]. First,

the parameter space of complex structure M∗ has a natural set of coordinates; in a case

a Calabi-Yau n-fold is given by a toric hypersurface, for example, we can use, for the

coordinates of M∗, various products of monomial coefficients that are invariant under

rescaling [56]. The distribution ρI will show more or less uninteresting behaviour on these

coordinates in M∗, except at special loci in M∗. ρI exhibits singular behaviour in these
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coordinates, when the period integrals involve logarithm of those coordinates; only deriva-

tives of logarithm introduce poles. Logarithm of such coordinates indicates that there is a

non-trivial monodromy of cycles [55]. All the arguments above hold true for applications

to Calabi-Yau fourfolds.16

Consider a family of Calabi-Yau fourfolds Yn=4 obtained as a hypersurface of an am-

bient space given by WP[1:2:3]-fibration over some B3;

X3 + Y 2 +XY ZA1 +X2Z2A2 + Y Z3A3 +XZ4A4 + Z6A6 = 0, (4.1)

with Ak ∈ Γ(Bn−1=3;OB(−kKB)). Let M∗ be its parameter space of complex structure.

Sitting within this family is a family of Calabi-Yau fourfolds with the ambient space re-

placed by Bl[1:0:0]WP[1:2:3]-fibration over B3; the last term Z6A6 is simply dropped (followed

by small resolution) to get to the sub-family given by (A.2), where there is a non-trivial sec-

tion in Y4, and hence a U(1) symmetry in the low-energy effective theory. Let MU(1)
∗ ⊂ M∗

be the locus of this sub-family. We study the behaviour of ρI on M∗ near the locus of this

sub-family.

In the A6 −→ 0 limit, Y4 has a curve of codimension-three conifold singularity, X =

Y = A3 = A4 = 0 [23]; this curve in B3 is denoted by Σ. The conifold transition in such a

limit was studied extensively in [57]. The genus of this curve is determined by

2g(Σ)− 2 = (−3KB) · (−4KB) · (−6KB) = 72(c1(TB3))
3. (4.2)

Incidentally, the parameter space MU(1)
∗ for this A6 −→ 0 limit is of complex codimension-

(−∆h3,1) in M∗, where

(−∆h3,1) = h0(B3;OB(−6KB))− h0(B3;OB(−3KB))− h0(B3;OB(−2KB)); (4.3)

the first term is obviously the degree of freedom in A6. The last two terms are there because

only the ǫ1-term in the automorphism of the form

δY = XZǫ1 + Z3ǫ3, δX = Z2ǫ2, ǫk ∈ Γ(B3;OB(−kKB)) (4.4)

survives for Y4 in the sub-family over MU(1)
∗ . One can see that (−∆h3,1) = g, at least when

B3 is a Fano variety. Indeed, because the divisor (−KB) is ample, Kodaira’s vanishing

theorem implies that

hq(B3;OB(−nKB)) = 0 for q > 0, n ≥ 0. (4.5)

Combining this theorem and the expression for (−∆h3,1), we find that

(−∆h3,1) = 36(c1(TB3))
3 + 1 = g. (4.6)

16Certainly there is small difference between threefolds and fourfolds; the number of cycles b3 ∼ 2h2,1 for

period integrals is not much different from 2h2,1 period integrals forming special coordinates for Calabi-Yau

threefolds, there are much larger number of four-cycles b4 ∼ 2h3,1 + h2,2 ∼ 6h3,1 + const than the number

of independent period integrals for fourfolds. We do not see this difference as a serious obstacle in recycling

the Type IIB lesson in the main text for the application to F-theory.
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This agreement always holds at local level, but (−∆h3,1) = g− h̃2,1 ≤ g at global level [57];

the argument above shows that h̃2,1 = 0 at least when B3 is a Fano variety.

6g − 3 topological four-cycles are identified in the local geometry of Y4 [57], and all

of them are lifted to topological cycles in the global geometry of Y4 at least when B3 is a

Fano variety. Period integrals on these 6g − 3 four-cycles vanish when all the g transverse

coordinates of MU(1)
∗ →֒ M∗ are set to zero; see [57] and the appendix C. We found, in the

appendix C.2, that there are at least g independent generators of unipotent monodromy17

acting on these topological four-cycles, and the period integrals are of the form,

Π
Ãk

∼ zk, Π
C̃k ∼ cklzl ln(z

′s); (4.7)

the A6 −→ 0 limit corresponds to z1 = z2 = · · · zg = 0. It is then quite likely, as in [53, 55],

that the (m,m)-form distribution ρI on M∗ has an asymptotic behaviour

ρI ≈ ρU
(1)

I ∧ ρ⊥I , ρ⊥I :=

g∏

k=1

dzk ∧ dz̄k
|zk|2(ln(|z|2))2

∼

g∏

k=1

d[arg(zk)] ∧
d ln(1/|zk|

2)

[ln(1/|zk|2)]2
(4.8)

near MU(1)
∗ . While derivation of the asymptotic form above is not as rigorous as it is

desired to be, let us explore what this behaviour implies, assuming that it is correct.

The most important consequence is that the fraction of flux vacua with hierarchically

small value of U(1) symmetry breaking parameter |zk| is not hierarchically small, but is

only suppressed by some power of the logarithm of the hierarchy, ln(1/|zk|
2). That makes it

much more natural to think of approximate U(1) symmetry in bottom-up model building.

Secondly, though, it is likely that the U(1) symmetry is preserved approximately only if

all the |zk|’s are hierarchically small; that is, what really matters will be a fraction of flux

vacua satisfying, say, |zk|
2 < δ for ∀k = 1, · · · , g for some small δ. This then implies that

only the fraction

∫

Mlocal
∗ ;≤δ

ρ⊥I =
∏

k

[∫ +∞

ln(1/δ)

d ln(1/|zk|
2)

[ln(1/|zk|2)

]
=

1

[ln(1/δ)]g
(4.9)

of flux vacua in M∗ has such an approximate U(1) symmetry in the effective theory La-

grangian, with the symmetry breaking not more than δ. The value of g(Σ) is often quite

large; when B3 = P3, for example, g = 36 × 43 + 1. Thus, the fraction of flux vacua

decreases very quickly, when we require the approximate U(1) symmetry to be preserved

for very hierarchically small δ.

Let us take one more step and ask the following question. Although ρI or (2.1) is

presented in the form of a continuous distribution, it is originally a scatter plot on M∗ of

isolated flux vacua. What is the smallest value δmin of the approximately preserved U(1)

symmetry in M∗ \ MU(1)
∗ ? This is a prototype of such questions as what the minimum

symmetry breaking scale is for supersymmetry and flavour symmetry in string landscape.

A wild speculation will be to think as follows. When we set δ small enough, the fraction

of flux vacua (4.9) becomes so small that it reaches the fraction of flux vacua on MU(1)
∗

17Unipotent monodromy means, here, that a monodromy matrix is a sum of a nilpotent matrix and the

identity matrix.
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among those on M∗. The integral of ρ⊥I over the normal coordinates of MU(1)
∗ →֒ M∗ in

such a small region as |zk|
2 < δ may correspond to flux vacua that sit right on top of the

MU(1)
∗ locus. This thought leads to a relation

[
1

ln(1/δmin)

]g
= exp

[
ln(24)

4
(∆h3,1)

]
, (4.10)

where (3.10) — valid for cases with h3,1 ≫ h1,1 — was used in the right hand side.

Geometry dependence through g = −∆h3,1 drops out from this relation then, and we

find that

δmin ∼ exp
[
−e

ln(24)
4

]
. (4.11)

This “prediction”, however, is not as powerful as it looks. We have to keep in mind the

limited reliability in the value of “ln(24)/4”, as remarked in footnote 12. It will not be still

too bad to conclude that δmin will not be much smaller than

exp[−e(a few)] ≈ exp[−10] ≈ 10−(3-4), (4.12)

provided all the speculative arguments leading to this conclusion are not wrong.18

4.2 Statistical cost of Yukawa hierarchical structure problem

In section 4.2, we discuss the fraction of flux vacua that realise solutions to the hierarchical

structure problem of Yukawa matrices. Each one of codimension-three singularity (matter-

curve intersection) points in F-theory compactifications for SU(5) unification gives rise

to an approximately rank-1 Yukawa matrix, provided complex structure is generic [58–

61], but the up-type [resp. down-type and charged lepton] Yukawa matrix in the low-

energy effective theory below the Kaluza-Klein scale receives contributions from all the

“E6”-type points [resp. D6 type] on S ⊂ B3. The number of “E6”-type and D6-type

points are determined by topological intersection numbers, and are generically not equal

to one [61, 62]. The approximately rank-1 nature of the Yukawa matrices at short distance

in F-theory is therefore lost at energy scale below the Kaluza-Klein scale, at least in a

18Here is a recap of the major caveats. First, as remaked already just before section 4.1, very little is

known about the validity of the continuous approximation in the flux scanning space for cases with K ≫ L∗;

there is a related discussion in [4, 44], but we need to go beyond. The relevant question here is whether

ρI can still be used after coarse binning. Secondly, monodromy analysis leading to (4.7) neither study all

the generators of the monodromy group nor period integrals of all the (6g − 3) topological four-cycles; the

asymptotic behaviour of ρ in (4.8) is derived by looking at partial contributions, while ignoring other terms;

thus it is worth doing reanalysis of (4.7), (4.8) for those who prefer solid and rigorous analysis. Thirdly,

we assumed that the U(1) symmetry breaking parameter δ in the low-energy effective theory will be tied

with max(|zk|
2’s), rather than with min(|zk|

2’s) or anything else. This assumption, however, relies only

on intuition of the author, without any justification. Finally, the “wild guess” leading to (4.10) is nothing

more than a guess at this moment. As remarked at the beginning, the primary purpose of the discussion of

this section 4.1 is in illustrating possible scope of particle physics applications of ρI , rather than in having

a final word on the physics problems in question. A lot more work needs to be done, as we have discussed

in this footnote, in order to establish the various claims and guesses made in this section 4.1, and those

tasks are beyond the scope of this article.
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generic flux vacuum. There have been proposed a few ideas,19 however, how to exploit the

approximate rank-1 nature at short distance. We pick up two among them20 for the study

in this section 4.2.

One of the two ideas is to tune parameters so that only a single “E6”-type point con-

tributes to the up-type Yukawa matrix in the effective theory below the Kaluza-Klein scale

(and just one D6-type point to the down-type Yukawa matrix); this idea was proposed

originally in [59, 65] and the Yukawa matrices in this scenario have been studied carefully

in [60, 66–71]. In order to make sure that the low-energy Yukawa matrix receives contri-

bution only from just one “E6”-type point, it is safe to consider that splitting of matter

curves is controlled by a U(1) symmetry [14, 22, 23].

It is true that, for the CKM mixing angles to be small, the single “E6”-type point and

the single D6-type point should be at the same point in S, or at least be close enough [72];

this property does not follow from a U(1) symmetry (and the matter curve factorisation).

If one is happy to ignore this aspect in the mixing angle and to focus on the hierarchical

structure of the Yukawa eigenvalues for now,21 then the study in section 3.1 as well as

section 4.1 can be used to study statistical aspects of this idea of tuning. We will be brief

in section 4.2.1 for this reason.

The other idea whose tuning we discuss in section 4.2.2 is a string-theory implemen-

tation of the idea of [76, 77]. Sections of a line bundle on a torus T 2 (a term “mag-

netised torus” is sometimes used for this) are given by Theta functions, which become

approximately Gaussian for large complex structure of T 2; the exponentially small tail of

the Gaussian wavefunctions is used to create hierarchical structure among three copies of

(Q, Ū , Ē) = 10, which leads to realistic mixing angles and hierarchy in Yukawa eigenval-

ues [73–75, 78–80]. See [61, 81] for more detailed account of the string implementation of

this idea. In this idea, therefore, one assumes that the matter curve for SU(5)-10 represen-

tation has a large complex structure parameter.22 We estimate how much fraction of flux

vacua we lose by requiring this tuning in the complex structure parameter of the matter

curve, by exploiting the “distribution” ρI .

19In Heterotic string compactification with SU(5) unification, at least some neighbourhoods of orbifold

limits of the parameter space must be included as a part of the semi-realistic corners of string landscape [63].

Also, when a Calabi-Yau threefold for Heterotic string compactification has an elliptic fibration, one can

translate the solutions in F-theory to Heterotic language. The whole picture of the landscape of Heterotic

string parameter space remains to be far from clear, however. When it comes to G2-holonomy compact-

ification of M-theory, the author is unaware of any idea in the literature to get around the difficulty in

the up-type Yukawa matrix when SU(5) unification is assumed [12] (Reference [64] arrived at the same

observation independently).
20In this article, we do not study the statistics of the idea of alignment among Yukawa matrices due to

a discrete symmetry [61].
21It is understood in phenomenology community, by now, that mixing angles will carry more fundamental

information than the hierarchical Yukawa eigenvalues (see, e.g., [73–75]). This is because the CKM mixing

angles reflect properties only of three quark doublets (3,2)+1/6 ⊂ 10, and the lepton mixing angles those

of just the three lepton doublets (1,2)−1/2 ⊂ 5̄, whereas the down-type/charged lepton Yukawa eigenvalues

reflect the properties of both (D̄, L) = 5̄ and (Q, Ē) ⊂ 10.
22Before making this assumption on the complex structure parameter, we make another assumption (a

discrete choice in topology) that this matter curve has g = 1. Generalisation of this idea to higher genus

cases has not been studied very much, apart from partial attempt in [61].
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4.2.1 Split matter curve under a U(1) symmetry

Suppose that the matter curves Σ(10) and Σ(5̄) for the 10 and 5̄ representations of Georgi-

Glashow SU(5) unification are split into irreducible pieces, due to an extra unbroken U(1)

symmetry originating from a non-trivial section. Let Σ(10) = ∪aΣ(10);a and Σ(5̄) = ∪bΣ(5̄);b

be the irreducible decomposition protected by the U(1) symmetry. The idea of [59, 65]

assumes, among other things, that there is a pair Σ(10);a0 and Σ(5̄);b0 such that they in-

tersect transversely (i.e., “E6”-type) just once in the SU(5) 7-brane locus S; the matter

10 = (Q, Ū , Ē) are localised in Σ(10);a0 and Hu in Σ(5̄);b0, respectively, so that the sin-

gle transverse intersection point gives rise to the approximately rank-1 up-type Yukawa

matrix at low-energy. It is an interesting question whether there are such Calabi-Yau four-

fold geometries. The two constructions of fourfolds with a non-trivial Mordell-Weil group

which we reviewed in the appendix A do not have enough freedom to accommodate such

configuration of matter curves, but this is far from being a no-go. Given the variety of

constructions for fourfolds with a non-trivial Mordell-Weil group [27, 28], it may not be

too bad to assume that there are constructions satisfying the assumption above. The rest

of this section 4.2.1 is based on that assumption.

We have already estimated in section 3.1 the fraction of flux vacua that have an

unbroken U(1) symmetry from a non-trivial Mordell-Weil group; factorisation of matter

curves just follows as a consequence of the U(1) symmetry. Given the fact that the faction of

such vacua depends on the choice of a construction of fourfolds with a non-trivial Mordell-

Weil group, as well as on the choice of topology of (B3, [S]), we do not find it meaningful

to estimate the cost at precision higher than in section 3.1. By using the results there, we

conclude right away that the cost of an extra U(1) symmetry to split the matter curves is

something like

e−1000 ∼ 10−O(100) for (B3, [S]) = (P1 × P2, HP1). (4.13)

The tuning cost estimated above should be compared against the naive estimate of the

non-triviality of flavour structure of the Standard Model, first of all. Suppose that individ-

ual Yukawa eigenvalues are tuned to be small enough, one by one, by tuning the complex

structure parameters by hand, and that these tunings for individual eigenvalues can be

carried out independently from each other. Then the total tuning cost of the hierarchical

eigenvalues of the Standard Model by this naive individual tuning is estimated by23

(
λc

λt

λu

λt

)(
λe

λτ

λµ

λτ

)
≈

(
10−2 · 10−4.5

)
×
(
10−1 · 10−3.5

)
= 10−11. (4.14)

23As we assume SU(5) unification, the hierarchical eigenvalues either in the down-type quark sector or

charged lepton sector should be taken into account in this naive estimate of the tuning, not both. Also,

only the ratio of the eigenvalues is used in this estimate, because the value of (tanβ) is not known yet. On

top of the naive estimate in the main text, one should multiply the tuning for the small mixing angles in

the quark sector, θus · θub · θcb ∼ 10−4.5, in principle. We did not include this, however, because the idea

of matter-curve splitting under a U(1) symmetry does not attempt to reproduce the small CKM mixing

angles.
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It is much easier,24 therefore, to obtain the semi-realistic hierarchical structure of Yukawa

eigenvalues by just an accidental tuning, by chance of 10−11, than by matter-curve splitting

under a Mordell-Weil U(1) symmetry, at least for choices of (B3, [S]) with h3,1 ≫ h1,1.

In fact, we may not have to require that the U(1) symmetry for matter-curve splitting is

exact. Higher precision is required for a U(1) symmetry in the application to the dimension-

4 proton decay problem, but that is not the case in the application to the flavour structure;

the level of precision required for flavour physics is not more than me/(174 GeV) ∼ 10−5.6.

This motivates us to pay attention also to flux vacua with an approximate U(1) symmetry,

where the matter curves Σ(10) and Σ(5̄) are near the factorisation limit. Qualitative aspects

of flux vacua distribution with an approximate U(1) symmetry in section 4.1 will remain

the same, even after requiring an extra SU(5) symmetry on S ⊂ B3, because the geometry

of U(1) symmetry breaking (i.e., conifold transition) in SU(5) models remains qualitatively

the same as in the case without SU(5) unification, at least away from the GUT divisor

S ⊂ B3; the A4 = A3 = 0 curve in B3 — Σ — in the SU(5) models has a component

given by a2 = a3 = 0, where A4 = s3a2 and A3 = s2a3. An approximate U(1) symmetry is

realised in much larger number of flux vacua than an exact U(1) symmetry is, and therefore

the tuning problem for the hierarchical structure may be alleviated in this way.

It remains to be seen, however, to what extent the idea of [59, 65] works successfully

even in the presence of a small symmetry breaking in the approximate U(1) symmetry.

The question we asked at the end of section 4.1 — the minimum symmetry breaking scale

δmin — may also become relevant in this context.

4.2.2 Gaussian wavefunction due to large complex structure

The second solution to the hierarchical structure problem of low-energy Yukawa matrices

also requires tuning in one of the complex structure parameters. We use the distribution

ρI in (2.1) in order to estimate the fraction of flux vacua for this solution.

As we have reminded ourselves at the beginning of section 4.1, the two important

things in using ρI are i) to identify the natural coordinates of the parameter space M∗,

and ii) to find out the locus of M∗ where there is a unipotent monodromy on the four-cycles

of Ŷ4. Although we also need dictionary between the coordinates on M∗ and parameters

of the low-energy Lagrangian (Yukawa couplings in particular), this part has already been

worked out in the literature at the level we need in the present context [17, 18, 58, 61].25

The dictionary we use is the following. Let us use the base B3 = P1×P2, and the SU(5)

7-brane locus S = pt×P2 ⊂ B3 for concreteness. With a generic choice of complex structure

of a fourfold Ŷ4 for SU(5) unification, the matter curve Σ(10) is an irreducible curve26 of

genus 1, so that we can use the second solution. Let τ be the complex structure parameter

of the genus one curve Σ(10). The j-invariant of an elliptic curve has an expansion

j ≃ e−2πiτ + 744 +O(e2πiτ ) (4.15)

24There is no proof, however, that such an accidental tuning for individual Yukawa eigenvalues are

possible, or impossible, in string theory moduli space.
25Except one caveat: see footnote 27.
26When the base manifold is B3 = P[OP2 ⊕OP2(nHP2)], the genus of this matter curve is determined by

2g(Σ(10))− 2 = (3− n)(−n). We chose n = 0 in this article so that 2g − 2 = 0.
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which is convenient for large Im(τ). Hierarchical Yukawa eigenvalues as well as small

mixing angles in the CKM matrix follow, if Im(τ) is parametrically large, or equivalently,

the value of |j(Σ(10))| is exponentially large. This j-invariant of the genus one curve should

be some modular function over the m = h3,1 = 2148-dimensional space M∗ of complex

structure of this compactification for SU(5) unification.

The first task in this section 4.2.2 is to identify the natural coordinates on M∗ and

to find out how j(Σ(10)) depends on these coordinates. The Calabi-Yau fourfold Ŷ4 in

question — for the choice of (B3, [S]) — is given as a hypersurface of a toric variety:

y2 + x3+(a5|0 + sa5|1 + s2a5|2)xy + (sa4|1 + s2a4|2 + · · · )x2

+(s2a3|2 + s3a3|3 + · · · )y + (s3a2|3 + · · · )x+ (s5a0|5 + · · · ) = 0, (4.16)

where s is the inhomogeneous coordinate of P1, and is regarded as the normal coordinate

of S ⊂ B3. We understand here that all the terms corresponding to interior lattice points

of facets of the dual polytope are set to zero in this defining equation; the automorphism

group action on the monomial coefficients is now gauge-fixed for the most part, and only

the coordinate rescaling (C×)4 acts on the coefficients. As a part of standard story in the

toric hypersurface construction of Calabi-Yau manifolds, the complex structure parameter

space M∗ is given a natural set of coordinates; each one of them is in the form of

za :=
∏

ν̃α

(aα)
ℓ̃aα , (4.17)

where α runs over the monomials in the defining equation, and a labels linear relations∑
α ℓ̃

a
αν̃α = 0 in the dual lattice M of the toric data (e.g. [56]). In the case of Ŷ4 we

consider, there are 2148 such independent coordinates.

The matter curve Σ(10) is given by a5|0 = 0, and a5|0 is a cubic homogeneous function

on S ∼= P2:

a5|0 = a
5|0
300T

3 + a
5|0
210T

2U + a
5|0
201T

2V + · · ·+ a
5|0
003V

3, (4.18)

where [T : U : V ] are the homogeneous coordinates of P2 ∼= S. None of the ten terms

in this cubic form corresponds to an interior point of a facet of the dual polytope, and

hence we should retain all of them. Using the ten coefficients a
5|0
300, · · · , a

5|0
003, seven inde-

pendent rescaling invariants (i.e., the coordinates of the form (4.17)) can be constructed.

The j-invariant of Σ(10) should depend on the seven coordinates out of27 the 2148 coordi-

nates of M∗.

Before talking of how the j-invariant of a generic cubic curve of P2 depends on its

monomial coefficients, let us have a look at the result for easier ones. When an elliptic

27An idea that large Im(τ) of the matter curve Σ(10) results in Gaussian profile of wavefunctions along

Σ(10) and consequently to hierarchical Yukawa eigenvalues is spelled out [61] in the language of Katz-Vafa

type field theory (field theory local model) on S × R3,1. Very little discussion is found in the literature,

however, over to what extent we can rely on this field theory picture for generic choice of complex structure

parameters. Put differently, is it really true that only the coefficients a
5|0
∗∗∗’s are relevant to the hierarchical

structure?
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curve is given in the Weierstrass form or Hesse form, the j-invariant is given in this way:

y2 = x3 + fx+ g : j = 44 × 27
f3

4f3 + 27g2
, (4.19)

a1X
3 + a2Y

3 + a3Z
3 + a0XY Z = 0 : j = −

z(z − 216)3

27(z + 27)
, z :=

(
a30

a1a2a3

)
. (4.20)

The condition Im(τ) ≫ 1 corresponds to the vanishing locus of the denominator, 4f3 +

27g2 ≃ 0 or z + 27 ≃ 0, or the discriminant locus, to put differently. When the defining

equation is in the Jacobi form,

w2 = c0u
4 − c1u

3 + c2u
2 − c3u+ c4, (4.21)

the discriminant locus is given by

6912c30c
3
4 − 3456c20c

2
2c

2
4 + 432c0c

4
2c4 − 5184c20c1c3c

2
4

− 2160c0c1c
2
2c3c4 − 162c0c

2
1c

2
3c4 + 27c21c

2
2c

2
3 − 108c31c

3
3

− 729c41c
2
4 + 3888c0c

2
1c2c

2
4 − 108c21c

3
2c4 + 486c31c2c3c4

− 729c20c
4
3 + 3888c20c2c

2
3c4 − 108c0c

3
2c

2
3 + 486c0c1c2c

3
3 = 0. (4.22)

For the j-invariant of those curves to be exponentially large, which is what we want for

phenomenology, then the discriminant needs to be exponentially small; that seems to be a

general lesson from elliptic curves given by those different forms of defining equations.

The matter curve Σ(10) is given by a generic cubic (4.18) in P2, but this is not much

different from all the elliptic curves above. Any generic cubic can be cast into the Jacobi

form (4.21) (e.g., [82]; recent appearance in physics literature includes [83]). Using the

discriminant locus of the Jacobi form (4.22), one can then detect the discriminant locus in

the coefficients of the general cubic form, and hence in the complex structure parameter

space M∗ of F-theory compactification. This procedure is easier when such a point as

[T : U : V ] = [0 : 0 : 1] ∈ P2 is in the curve a5|0 = 0 (i.e., a
5|0
003 = 0); the left-hand side

of (4.22) — a homogeneous function of c0,1,2,3,4 of degree 6 — becomes a homogeneous

function of a
5|0
∗∗∗’s (a

5|0
003 = 0) of degree 12. The most general case, where a

5|0
003 does not

necessarily vanish, can be reduced to the a
5|0
003 = 0 case above, by redefinition of the

coordinates, T → T + solV , a
5|0
300sol

3+ a
5|0
201sol

2+ a
5|0
102sol+ a

5|0
003 = 0. It appears, then, that

the expression (4.22) would involve a cubic root of a function of the coefficients a
5|0
∗∗∗’s, but

those terms cancel, and the expression of the discriminant turns into a form

∝ polynomial1
√
polynomial3 + polynomial2. (4.23)

The discriminant locus of the general cubic form should be the zero locus of an expression

proportional to (polynomial1)
2polynomial3 − (polynomial2)

2. This polynomial in the ten

coefficients a
5|0
∗∗∗ can be rewritten as a rational function of the seven coordinates za’s of

M∗ modulo an overall factor that is not relevant in the present context. Once again, this

rational function of za’s needs to be exponentially small, in order for the solution to the

hierarchical structure problem to work.
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The complex structure parameter space M∗ has a codimension-1 locus of Im(τ) = ∞,

or equivalently j(Σ(10)) = ∞. Unless there is unipotent monodromy around this locus (an

issue we come back to shortly), the distribution of ρI will remain featureless around this

locus, and the fraction of vacua for the phenomenological solution is estimated by how

finely the normal coordinate has to be tuned for phenomenology.28 Hierarchically small

Yukawa eigenvalues require that the value of the normal coordinate (the rational function

in za’s) be hierarchically small. Because a single tuning of 1/j(Σ(10)) already does the job

(including the CKM mixing angles), however, the total tuning cost in this solution will not

be as severe as 10−11 (or 10−11×10−4.5) estimate for the naive individual tunings in (4.14).

It is worth noting that the idea of [76, 77] was to translate the hierarchically small values

of Yukawa eigenvalues into a moderately large (but not hierarchically large) parameter in

the exponent (like Im(τ)). In the F-theory implementation [61, 78–80] of this idea, however,

the value of Im(τ) is likely not to be the right measure of required fine-tuning, but the

value of 1/j(Σ(10)) ∼ e2πiτ is, in the statistics of F-theory flux vacua, according to the

argument above.

Let us briefly have a look at whether the distribution ρI on M∗ has singularity at the

j(Σ(10)) = ∞ locus; if it does, then the right measure of fine-tuning will not be e2πiτ but

1/Im(τ). Certainly the Im(τ) = i∞ point is the locus of unipotent monodromy of one-

cycles on Σ(10). There may also be some unipotent monodromy among three-cycles in the

matter surface for SU(5)-10 representation, because of the monodromy of one-cycles. The

matter surface — a four-cycle — remains invariant in this limit, however. The author does

not have a positive or negative evidence for non-trivial monodromy of horizontal four-cycles

at the j(Σ(10)) = ∞ locus of the complex structure moduli space M∗; positive evidence is

necessary in order to avoid the conclusion in the previous paragraph.
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A Fourfolds for SU(5) × U(1) symmetry

This appendix is a brief summary note on Calabi-Yau fourfold geometry to be used for

F-theory compactification when one wants to have SU(5)×U(1) symmetry in the effective

theory below the Kaluza-Klein scale. There may be a few statements in the following that

have not been written down in the literature, but those results can be derived by using

procedure that has become almost standard these days. For this reason, only the results

are stated, without detailed explanation.

28The distribution ρI for F-theory compactification has been used in this way for phenomenology already

in [84].
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divisor toric vectors in NF

D′
X ν ′X = (−1, 0)

D′
Y ν ′Y = (0,−1)

D′
Z ν ′Z = (2, 3)

D′
W ν ′W = (−1,−1)

divisor toric vectors in NF

D′
0 ν ′0 = (0, 1)

D′
∞ ν ′∞ = (0,−1)

D′
1 ν ′1 = (1, 0)

D′
2 ν ′2 = (−1, 1)

(a) Bl[1:0:0]WP[1:2:3] (b) F1

Table 1. Toric vectors in NF = Z ⊕ Z for Bl[1:0:0]WP[1:2:3] (weighted projective space WP 2
[1:2:3]

blown up at one point) and a Hirzebruch surface F1 = dP1. The two neighbouring lattice points of

the polytope for ν′Z in (a) [resp. ν′0 in (b)] are (1, 2) and (1, 1) [resp. ν′1 and ν′2], which sum up to

be ν′Z [resp. ν′0]; this means that D′
Z [resp. D′

0] can be used as a section. Those two neighbouring

points are both vertices of the polytope in (b), while they are not in (a); this makes it impossible

to introduce the twisting by OBn−1
(κ1,2) in the case (a) without introducing an unintended non-

Abelian symmetry SU(3)× SU(2).

In this article, we only consider elliptic fibration with a section for F-theory compact-

ification; let Ŷn be a non-singular Calabi-Yau n-fold, π : Ŷn −→ Bn−1 an elliptic fibration

morphism, and we assume that there is a divisor σ0 of Ŷn which is one-to-one with the

base Bn−1 under π, except in complex codimension-two loci in Bn−1. Low-energy effective

theory has a U(1) symmetry, if the elliptic fibration π : Ŷn −→ Bn−1 has more sections

than just a single section σ0 [24].

We restrict our attention to cases where toric surfaces are used to construct the elliptic

curve E in the fibre. It is best to use a toric surface such as WP[1:2:3] and F1 = dP1

(Hirzebruch surface), where the polytope ∆̃F ⊂ (Z⊕ Z)⊗ R =: NF ⊗ R contains a vertex

ν ′v whose two neighbouring lattice points on ∆̃F , denoted by ν ′a and ν ′b, satisfy ν ′a + ν ′b =

ν ′v [85]; the divisor corresponding to ν ′v then defines one point in E. In such toric surfaces

as Bl[1:0:0]WP[1:2:3] and F1 (whose toric data are shown in table 1), there is one more

independent divisor which can be chosen to be degree-1 on E; this divisor defines another

point in E. When such a toric surface is fibred over some base Bn−1 to be an ambient

space for Ŷn, those two points in E become sections of the elliptic fibration. The rest of

this note deals only with the two toric surfaces above. See [26] for other choices of toric

surfaces to be fibred.

A.1 Bl[1:0:0]WP[1:2:3]-fibred ambient space

A Calabi-Yau n-fold Yn is constructed as a hypersurface of an ambient space

P


(−1 0 1 1)

(0 1 2 3)





[OB ⊕KB ⊕OB ⊕OB] . (A.1)

Here, the rank-4 fibre of the bundle over the base Bn−1 is made projective29 under the

C× × C× action; one can choose two independent relations among the toric vectors in

29In order not to leave any ambiguity in the notation, we remark that the ordinary WP[1:2:3]-fibred

ambient space for a Calabi-Yau with elliptic fibration and a holomorphic section is denoted by P(1 2 3)[O ⊕

OB(−2KB)⊕OB(−3KB)] = P(1 2 3)[KB ⊕OB ⊕OB ].
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the form of
∑

i ℓiν
′
i = 0 ∈ NF = Z ⊕ Z, such as −ν ′W + ν ′X + ν ′Y = 0 and ν ′Z + 2ν ′X +

3ν ′Y = 0, and define the corresponding C× actions as (λ ∈ C×) : Xi −→ Xi × λℓi for

homogeneous coordinates Xi corresponding to the toric divisors D′
i. This ambient space is

a Bl[1:0:0]WP 2
[1:2:3]-fibration over Bn−1.

A hypersurface Yn of this ambient space is given by an equation

X3W 2 + Y 2W +XY ZWA1 +X2Z2WA2 + Y Z3A3 +XZ4A4 = 0, (A.2)

where An ∈ Γ(Bn−1;OB(−nKB)) determines the complex structure of an elliptic fibred

manifold Yn. X, Y , Z and W are the homogeneous coordinates associated with divisors

DX , DY , DZ and DW , respectively, which are the D′
X , D′

Y D′
Z and D′

W divisors on the

fibre, all over the base Bn−1. A section DZ |Yn is chosen as the zero section σ0. Another

section σ1 = DW |Yn = {W = 0}|Yn does not intersect with the zero section σ0. When

the ambient space is blown down to the WP[1:2:3]-fibred one, DW is mapped to (x, y) :=

(XW/Z2, Y W/Z3) = (0, 0).

The n-fold Yn develops a complex codimension-two locus of A4 singularity (when the

fibre of the ambient space is blown down to WP[1:2:3]), when we require

An = sn−1a6−n, an−1 ∈ Γ(Bn−1;OB(−nKB − (n− 1)S)) (A.3)

for n = 1, · · · , 4. S is a divisor of Bn−1, and s is a section of OB(S) such that S = {s = 0}.

A non-singular Ŷn is constructed by a standard process of A4 singularity resolution, followed

by small resolutions associated with loci of charged matter fields; figure 2 (a) describes this

process diagrammatically.30 Let this blow-up morphism be ν : Ŷn −→ Yn; we also use the

same ν for the morphism between the corresponding ambient spaces.

The zero section of (π · ν) : Ŷn −→ Bn−1 is given by σ0 := ν∗(DZ)|Ŷn
; we will drop

“ν∗” or “|Ŷn
” in the following for simpler notations, however, unless subtleties are involved.

Another section σ1 ∼ DW for π : Yn −→ Bn−1 defines a section in Ŷn except subtleties in

the fibre of S ⊂ Bn−1. When we set

σ′′
1 ∼ D̄W −DZ +KB + (2E1 + 4E2 + 6E3 + 3E4)/5, (A.4)

where D̄W is the proper transform of DW under ν : Ŷn −→ Yn, and E1,2,3,4 the four

exceptional divisors of ν : Ŷn −→ Yn, all of σ
′′
1 · σ0 and σ′′

1 · E1,2,3,4 are mapped to the

trivial divisor class in Bn−1 under (π · ν)∗. References for the statements up to this point

include [23, 87, 88].

There are three distinct groups of SU(5)-charged matter fields in this case [22], as

summarised in table 2. The U(1)-charge of these SU(5)-charged matter fields can be

determined by using the topological class of σ′′
1 in (A.4); the results — shown in table 2

— indicates that the U(1) symmetry generated by σ′′
1 shows up as the U(1) part of the

U(3) ⊂ E7 structure group of the Higgs bundle in the field theory local model (Katz-

Vafa type field theory) on S × R3,1 (cf [22, 23]). The 6D anomaly cancellation condition

30ν′
E1 = ν′

S + ν′
X + ν′

Y , ν′
E2 = ν′

E1 + ν′
X + ν′

Y , ν′
E4 = ν′

E1 + ν′
Y , ν′

E3 = ν′
E2 + ν′

Y . Then add ν′
W . A

1-simplex (2-dim cone) < ν′
W ν′

E3 > bisecting the cone < ν′
E3ν

′
Xν′

Y > provides a small resolution of the

conifold singularity over the a2 = a3 = 0 locus in Bn−1.
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D̄S

D̄Y
D̄W

D̄X

E1

E2

E3

E4

D̄S

D̄1

D̄∞

E1

E2

E3

E4

(a) (b)

Figure 2. Blow-up procedure shown diagrammatically. Subdivision of a triangle using its centre

of mass corresponds to a blow-up of the ambient space centred at a codimension-three locus, and

a subdivision of an edge using its centre of mass to a blow-up of the ambient space centred at

a codimension-two locus. These graphs can be seen as triangulation of cones, if the base Bn−1

is also toric, and the divisor S a toric divisor, although we do not assume that Bn−1 is toric in

this summary note. The diagram (a) is for the Bl[1:0:0]WP 2
[1:2:3]-fibred ambient space and (b) for

the F1-fibred ambient space. Note in (a) that the triangulation of D̄X -E3-D̄Y -D̄W resolves the

conifold singularity associated with the U(1)-charge ±5 matter field; the graph (b) is the same as

the blow-up procedure in [86].

bdle repr. curve def. eq. curve div. class vanishing cycle

3 10−1 a5|S = 0 (−KB)|S (−E2 · E4)|Ŷn

∧23 5̄−2 (a4a3 − a2a5)|S = 0 (−3S − 5KB)|S
(
−(D̄Y −KB − E4) · E3

)
|Ŷn

∧33̄ 5̄+3 a3|S = 0 (−2S − 3KB)|S (D̄X · E3)|Ŷn

Table 2. Summary of geometry associated with the SU(5)-charged matter fields in the case of

Bl[1:0:0]WP 2
[1:2:3]-fibred ambient space. The matter locus — codimension-1 in S — is given by the

defining equation in the third column; this matter locus belongs to the divisor class on S shown

in the fourth column. The last column shows the corresponding class of vanishing cycle (complex

codimension-two in Ŷn). The first column shows the representation of the U(3) structure group of

the Higgs bundle on S.

indicates that an SU(5)-neutral hypermultiplet with U(1)-charge ±5 is localised in the fibre

of a codimension-two a2 = a3 = 0 locus in Bn−1, and that they are all the matter fields

charged under the SU(5)×U(1) symmetry (see [23, 89]).

This construction can be used for spontaneous R-parity violation. The hierarchical

structure problem of Yukawa eigenvalues, however, cannot be solved by using this con-

struction (without further symmetry or tuning of parameters), because all the “E6”-type

points on S contribute to the up-type Yukawa matrix in the low-energy effective theory.

See figure 3 (a) for the configuration of matter curves.
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(a) (b)

Figure 3. (colour online) Configuration of matter curves and interaction points on the SU(5)

7-brane S shown schematically. The picture (a) is for the case of Bl[1:0:0]WP 2
[1:2:3]-fibred ambient

space, and (b) for the case of F1-fibred ambient space with the no.2 choice of the order of vanishing.

Solid curve (green) is the matter curve for SU(5)-10 representation in both (a) and (b). In the

picture (a), the long dashed and dashed curves (both blue) are the matter curves for 5̄3 and 5̄−2,

respectively. The dotted curve (red) is where SU(5)-neutral U(1)-charged fields are localised in B3,

“projected” on to S. In the picture (b), the long dashed, dashed, dotted and dash-dotted curves (all

in blue) are the matter curves for 5̄0, 5̄−1, 5̄1 and 5̄2 representations, respectively. The “E6”-type

point for up-type Yukawa is indicated by a square (orange), while the point with F1-fibre by a large

circle (red).

A.2 F1-fibred ambient space

F1 = dP1 can be used as fibre of the ambient space, instead of Bl[1:0:0]WP 2
[1:2:3], in con-

structing a Calabi-Yau n-fold with a non-trivial Mordell-Weil group. We then use an

ambient space

P


(1 1 0 0)

(0 1 1 1)





[
KB ⊕OB ⊕OB(κ

1)⊕OB(κ
2)
]
, (A.5)

where the fibre can be twisted by introducing two divisors κ1 and κ2 of the base Bn−1 [90].

The fibre is F1; the four line bundles above correspond to the toric vectors ν ′0, ν
′
∞, ν ′1 and

ν ′2 in table 1 (b), respectively. The zero locus of the line bundles are the divisors denoted by

D0,∞,1,2, and the corresponding homogeneous coordinates are denoted by X0,∞,1,2. There

are linear equivalence relations

D1 − κ1 ∼ D2 − κ2, D∞ ∼ D0 −KB +D2 − κ2. (A.6)

An elliptic fibred Calabi-Yau n-fold Yn is given as a hypersurface of this ambient

space by31

X2
∞(A0,1X1 +A1,0X2) +X∞X0(B−1,1X

2
1 +B0,0X1X2 +B1,−1X

2
2 )

+X2
0 (C−2,1X

3
1 + C−1,0X

2
1X2 + C0,−1X1X

2
2 + C1,−2X

3
2 ) = 0. (A.7)

31This equation can also be written down by using Affine charts for the fibre. In the chart corresponding

to a cone 〈ν′
0, ν

′
1〉 [resp. 〈ν′

0, ν
′
2〉], Affine coordinates are (u, ω) = (X1/X2, X2X0/X∞) [resp. (v, ω′) =

(X2/X1, X1X0/X∞)]. In the chart for the cone 〈ν′
∞, ν′

1〉 [resp. 〈ν
′
∞, ν′

2〉], the Affine coordinates are (u,w) =

(X1/X2, X∞/(X0X2)) [resp. (v, w
′) = (X2/X1, X∞/(X0X1))].
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Complex structure of Yn is encoded in the choice of

An1,n2 ∈ Γ(Bn−1;O(n1κ
1 + n2κ

2)),

Bn1,n2 ∈ Γ(Bn−1;O(n1κ
1 + n2κ

2 −KB)), (A.8)

Cn1,n2 ∈ Γ(Bn−1;O(n1κ
1 + n2κ

2 − 2KB)).

We take D0 (X0 = 0 locus) as the zero section32 σ0 of the elliptic fibration πY : Yn −→

Bn−1. There is also a section corresponding to the degree-1 divisor (D′
1 − D′

0)|E of the

fibre, which is denote by σ1. It is geometrically given by

[X∞(B−1,1X
2
1 + · · ·+B1,−1X

2
2 ) +X0(C−2,1X

3
1 + · · ·+ C1,−2X

3
2 ) = 0]− 2[X∞ = 0],

(A.9)

and belongs to the divisor class (D1 −D0 + κ2). Since

πY ∗(σ1 · σ0) = [Bsym = 0], (A.10)

Bsym := B1,−1A
2
0,1 −B0,0A0,1A1,0 +B−1,1A

2
1,0 ∈ Γ

(
Bn−1;O(κ1 + κ2 −KB)

)
,

(A.11)

we take

σ′′
1 := σ1 − [Bsym = 0]− σ0 +KB ∼ (D1 − κ1 − 2D0 + 2KB) (A.12)

as the generator of a U(1) symmetry in the low-energy effective theory.

The charge-±2 matter fields under this U(1) symmetry are localised in the codimension-

two locus of Bn−1 given by33

Bsym = Csym = 0, (A.13)

Csym := C1,−2A
3
0,1 − C0,−1A

2
0,1A1,0 + C−1,0A0,1A

2
1,0 − C−2,1A

3
1,0

∈ Γ
(
Bn−1;O(κ1 + κ2 − 2KB)

)
.

Matter fields with charge ±1 are localised in a class 4(κ1 + κ2 − 2KB) · (−κ1 − κ2 − 2KB).

All that has been stated so far is the same as (or obvious generalisation of) [25, 88].

Let us consider a case where an n-fold Yn develops A4 singularity at the X∞ = X1 = 0

point in the F1 fibre over a divisor S ⊂ Bn−1, so that there is a stack of 7-branes for an

SU(5) gauge theory along S ⊂ Bn−1. The sections An1,n2 , Bn1,n2 and Cn1,n2 ’s defining the

complex structure of the n-fold Yn need to have certain order of vanishing along the divisor

S ⊂ Bn−1 then. There are a couple of different choices, as shown in table 3, at least in a

study of local geometry. The no.3 choice of the order of vanishing, however, may have a

problem, when a global geometry is studied; at least in a few examples using compact toric

ambient spaces, we found that the singular fibre over S in a resolved n-fold Ŷn becomes I6

32It is a rational section, but not a holomorphic one, when κ1 · κ2 is non-empty.
33Consider the case Xn is a threefold. In the I2 fibre of a such a codimension-2 point in the base B2,

σ0 is a point in one of the two P1’s, and σ1 wraps that P1. In the I2 fibre over a A1,0 = A0,1 = 0 point,

however, σ0 wraps one of the two P1’s (being a rational section when κ1 · κ2 is non-empty), while σ1 wraps

the other P1.
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choice A0,1 A1,0 B−1,1 B0,0 B1,−1 C−2,1 C−1,0 C0,−1 C1,−2

no.1 0 0 0 0 1 2 3 4 5

no.2 0 0 0 0 2 0 1 3 5

no.3 0 1 0 0 3 0 0 2 5

no.4 0 3 0 0 4 0 0 1 5

Table 3. The order of vanishing required for A4 singularity.

matter curve def. eq. (|S = 0) curve divisor class (|S) vanishing cycle (|Ŷn
)

100 B0,0 −KB −E2 · E4

5̄0 (c1,−2|5B
2
0,0 − c0,−1|3B0,0b1,−1|2 + c−1,0|1b

2
1,−1|2) κ1 − 2κ2 − 4KB − 5S E3 · (D̄1 − E2 −KB)

5̄−1 A0,1B
2
0,0 −A1,0B−1,1B0,0 + C−2,1A

2
1,0 κ2 − 2KB −D̄S · (D0 − E1 −KB)

5̄1 C−2,1 −2κ1 + κ2 − 2KB D̄S · D̄∞

5̄2 A1,0 κ1 D̄S · (κ1 − D̄1)

Table 4. Summary of geometry associated with SU(5)-charged matter fields in the case of F1-fibred

ambient space, and the no.2 choice of the order of vanishing. See caption of table 2.

type of Kodaira classification unintentionally. The rest of this summary note focuses on

the no.2 choice of the order of vanishing. It is not clear whether the choice of toric vectors

in section 3 of [25] corresponds to any one of the order of vanishing in table 3.

Under the no.2 choice of the order of vanishing, singular Yn can be made non-singular

(denoted by Ŷn) by successive blow-ups of the ambient space; the same blow-up procedure

as in [91], shown in figure 3 (b), does the job in this case. The proper transforms of the

divisor D1, D∞ and DS = π∗
Y (S) are denoted by D̄1, D̄∞ and D̄S , respectively.

DS = D̄S + E1 + E2 + E3 + E4,

D1 = D̄1 + E1 + 2E2 + 2E3 + E4,

D∞ = D̄∞ + E1 + 2E2 + 3E3 + 2E4.

When we choose

σ′′
1 ∼ (D2 − κ2 − 2D0 + 2KB) (A.14)

as a U(1) generator, the conditions (πY ·ν)∗(σ0 ·σ
′′
1) = (πY ·ν)∗(E1,2,3,4 ·σ

′′
1) = 0 ∈ Pic(Bn−1)

are satisfied.

SU(5)-charged matter fields are localised in five distinct codimension-1 loci in S, as

summarised in table 4. There, we used the following notations, as in [65, 92]:

B1,−1 =: sb1,−1|1, C−1,0 =: sc−1,0|1, C0,−1 =: s3c0,−1|3, C1,−2 =: s5c1,−2|5. (A.15)

The divisor classes of 5̄-representation matter fields sum up to be (−8KB −5S)|S , which is

vital to the 6D box anomaly cancellation. There are also SU(5)-neutral, but U(1)-charged
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matter fields. Their location — codimension-two in Bn−1 — is inferred by using the 6D

anomaly cancellation conditions; we are led to the following solution:

charge ± 2 (κ1 + κ2 −KB) · (κ
1 + κ2 − 2KB)− 5S · κ1 ⊂ Bn−1, (A.16)

charge ± 1 16K2
B − 4(κ1 + κ2)2 − 10S · (−κ1 + κ2 − 2KB) ⊂ Bn−1. (A.17)

A part of the Bsym = Csym = 0 locus for the charge-±2 fields — 5S · κ1 — has been

subtracted, which is reasonable because the Bsym = Csym = 0 conditions are satisfied

automatically at A1,0 = s = 0.

When F-theory is compactified to 3+1-dimensions in this way, by using a Calabi-

Yau fourfold Ŷn=4, geometric configuration of the matter curves on S is schematically

like figure 3 (b). Most of the intersection points of the matter curves in S are one of

the “E6”-type, D6 type and A6-type, but none of those local descriptions apply to the

intersection points where matter curves for 100, 5̄2 and 5̄−1-representations meet. The fibre

of (πY · ν) : Ŷ4 −→ B3 is a surface F1 at such points in B3. Tensionless strings may show

up in the effective theory on 3+1-dimensions in this case [29–31]. For phenomenological

purposes, it is thus safe to restrict our attention to cases where the divisor class κ1|S is

trivial (so that A1,0|S remains non-zero on S).

This κ1|S = 0 condition implies, first of all, that the 5̄2–5−2 matter fields do not

appear in the low-energy spectrum. When this set-up with a U(1) symmetry is used

for spontaneous R-parity violation scenario, matter identification should be the following.

First, the up-type Higgs needs to be identified with the doublet part of 50 so that the up-

type Yukawa couplings are generated. Secondly, for the charged lepton Yukawa couplings

to be generated, L and Hd need to originate from 5̄1 and 5̄−1 or vice versa. D̄’s of the

supersymmetric Standard Models need to be on the same matter curve as L’s in order for

the down-type Yukawa couplings to be generated.

The κ1|S = 0 condition also implies that the splitting of the matter curve of 5̄ repre-

sentation in this set-up cannot be used for the hierarchical structure problem of the up-type

Yukawa matrix. In the absence of the matter curve of 5̄2 matter field and of the interaction

points indicated by a large circle (red) in figure 3 (b), all the “E6” type points arise in

the form of 100–100–5̄0 interaction points at c−1,0|1 = B0,0 = 0. Therefore, the result

of [61, 62] that the number of “E6”-type points is even still holds true.

B SU(6) 7-branes for up-type Yukawa coupling

Reference [12] introduced a class of F-theory compactifications with a stack of SU(6) 7-

branes at the divisor S in the base B3, which accommodates SU(5) unification and generates

its up-type Yukawa couplings. Some details of the construction of this class of compactifi-

cations were missing in [12], however. Thanks to the development in the study of F-theory

since then, we can fill the missing details now.

Let us first note that the class of F-theory compactification with an SU(6) 7-brane

locus above is somewhat different from general F-theory compactification characterised by

the Tate condition for the I6-type singular fibre. To see this, remember that the Tate
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condition for the I6-type singular fibre in a non-singular elliptic fibration π : Ŷn −→ Bn−1

corresponds to the following set of the order of vanishing of the coefficients in the generalised

Weierstrass form [92]:

0 = y2 + x3 +A1xy +A2x
2 +A3y +A4x+A6, (B.1)

A1 ∼ s0, A2 ∼ s1, A3 ∼ s3, A4 ∼ s3, A6 ∼ s6; (B.2)

here, s ∈ Γ(B;OB(S)), and the {s = 0} locus corresponds to the divisor S. It is thus

convenient to write the Weierstrass equation in the following form:

y2 + x3 + a5xy + a4sx
2 + a3s

3y + a2s
3x+ a0s

6 = 0. (B.3)

where a0,2,3,4,5 are holomorphic sections of appropriate line bundles on Bn−1.

When we consider F-theory compactification of this type to 3+1-dimensions, using

a Calabi-Yau fourfold, straightforward analysis reveals that the matter curves in S are

given by

Σ(∧26) : a5|S = 0, Σ(6) : (a22 − a2a5a3 + a0a
2
5)|S = 0; (B.4)

Katz-Vafa type field theory for these matter fields are SO(12) (D6) and SU(7) (A6) gauge

theories, respectively. These two matter curves intersect at points a5|S = a2|S = 0; physics

around these points (including Yukawa couplings) is captured by a field theory with SO(14)

(D7) gauge group. We cannot expect an up-type Yukawa coupling of the form ∆W ∼

10··10··5·ǫ····· in such a class of F-theory compactifications [12, 93].

An idea of ref. [12] is to use Heterotic compactification, and to translate and generalise

it in the language of F-theory compactification. To be more explicit, imagine a Heterotic

string compactification on an elliptic fibred Calabi-Yau threefold (Z, S, π), where π : Z −→

S, with a vector bundle V3 ⊕ V2 whose structure group is SU(3)× SU(2) ⊂ E8. V3 and V2

are given by the Fourier-Mukai transform of spectral data (C3,N3) and (C2,N2), where C3

and C2 are divisors of Z that are 3-fold and 2-fold covering over S, respectively, and N3

and N2 are line bundles on C3 and C2, respectively. For generic complex structure of Z,

the spectral surfaces C3 and C2 are given by

c0 + c2x+ c3y = 0, d0 + d2x = 0, (B.5)

respectively, where

ck ∈ Γ(S;OS(kKS + η3)), dk ∈ Γ(S;OS(kKS + η2)) (B.6)

for some divisors η2,3 of S. The F-theory dual of this compactification should be given by

(Y4, B3), where the base threefold B3 = P [OS(6KS + η3 + η2)⊕OS ] is a P1-fibration over

S, and the elliptic fibre of π : Y4 −→ B3 is given by [17, 58, 94–96]

y2 = x3 + f0xs
4 + g0s

6 + (c0s
3 + c2sx+ c3y)(d0s

2 + d2x), (B.7)

where s is an inhomogeneous coordinate of the P1-fibre in B3 −→ S.
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Now, we generalise it to general B3 and its effective divisor S, and define π : Y4 −→ B3

by the same equation as above; the coefficients f0, g0, ck’s and dk’s, however, are promoted

to holomorphic sections on B3 as follows:

ck ∈ Γ(B3;OB((k − 4)KB + a+ (k − 3)S)), f0 ∈ Γ(B3;OB(−4KB − 4S), (B.8)

dk ∈ Γ(B3;OB(−a+ (k − 2)(KB + S))), g0 ∈ Γ(B3;OB(−6KB − 6S), (B.9)

where a is some divisor on B3; this is a generalisation, in that the translation from Heterotic

string compactification is reproduced by setting (2KS + η2) = −a|S and (6KS + η2+ η3) =

S|S = c1(NS|B3
).

One can read out from the discriminant and singularity of this generalised Weierstrass

form that there are three distinct matter curves,34

Σ(∧36) : d2|S = 0, (B.10)

Σ(∧26) : c3|S = 0, (B.11)

Σ(6) : (c23d
3
0 + c22d

2
0d2 − 2c0c2d0d

2
2 + c20d

3
2 + c23d0d

2
2f0 − c23d

3
2g0)|S = 0. (B.12)

Those three curves intersect at c3|S = d2|S = 0 points in S. We can choose the gauge group

of the Katz-Vafa type field theory (field theory local model) around these matter curves to

be E6, D6, A6; physics around a c3|S = d2|S = 0 point is described by an E7 gauge theory;

a non-trivial Higgs bundle background with the structure group SU(2)×U(1) ⊂ E7 breaks

the E7 symmetry down to SU(6); Yukawa coupling ∆W = 6 · ∧26 · ∧36 is generated at

each one of those c3|S = d2|S = 0 points.

Such an SU(6) 7-brane configuration in F-theory can be used for SU(5) unification

by turning on a line bundle on S, so that the symmetry is reduced to SU(5); further

breaking to the Standard Model gauge group is not impossible, although we stay away

from such details. There are two possible particle identifications. The first possibility is

to identify SU(5)-10 matter fields with the ∧36 representation of SU(6), and H(5) within

adj. of SU(6) [12]; the other possibility is to find the 10 matter field in ∧26 of SU(6), when

the H(5) field also has to come from the same ∧26 representation of SU(6); the latter

possibility was overlooked in [12]. In any one of those two possibilities, Yukawa couplings

are generated along the entire matter curve (Σ(∧36) or Σ(∧26)), not only at isolated points in

the 7-brane S (cf [18]). This makes it impossible to exploit the approximately codimension-

1 nature of Yukawa matrices from isolated Yukawa points [58–60]. The idea of [78–80] (or

something similar to the one in [61]) may still be implemented in the latter identification

with a tuning j(Σ(∧26)) ≫ 1; it is desirable to have a separate study to see if that is the

case, however.

Before closing this section, we compute h3,1 for Calabi-Yau fourfolds with such an

SU(6) unification. We choose (B3, [S]) to be B3 = P1 × P2 and [S] = pt× P2, so the result

can be compared with h3,1 for other classes of compactifications with a rank-5 symmetry

34The linearised analysis [97] is able to determine the defining equation of the spectral cover for associated

bundles such as (V3 ⊗ V2) approximately. All the terms except those involving f0 or g0 in the defining

equation of Σ(6) can be obtained in that way.
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(3KP2 + η2) −2 −1 0 1 2

(3KP2 + η3) 2 1 0 −1 −2

h3,1 1917 1908 1904 1905 1911

Table 5. h3,1 of Calabi-Yau fourfolds for SU(6) unification, provided B3 = P1×P2 and [S] = pt×P2.

(SO(10) and SU(5) × U(1)) in the main text. The choice of (B3, [S]) above introduces a

constraint35 in the Heterotic string language: (3KS + η2)+ (3KS + η3) = 0. See table 5 for

the results.36

C Monodromy around the U(1)-enhancement limit

C.1 6g − 3 topological four-cycles

This appendix C begins with a brief review. We came to be interested in section 4.1 in a

compact Calabi-Yau fourfold Y4 with its complex structure parameter in M∗ close to the

MU(1)
∗ locus; Y4 contains a local geometry of deformed conifold along a curve Σ, and this

local geometry of Y4 is modelled by a geometry Ylocal, which is explained shortly. Four-

cycles in Ylocal as well as their lift to the global geometry Y4 was studied in [57]; results

of [57] that we need in section 4.1 are reviewed here. The review is followed by analysis of

monodromy of those cycles and period integrals.

The local geometry model Ylocal, which is denoted by X̃♭ in [57], is realised as a

hypersurface of the total space of a rank-4 vector bundle over a Riemann surface Σ,

L⊗3 ⊕ L⊗3 ⊕ L⊗2 ⊕ L⊗4 −→ Σ, (C.1)

where the Riemann surface Σ satisfies 6|(2g(Σ)−2), and L⊗6 = KΣ. The defining equation

of Ylocal in this ambient space is

Y A3 = XA4 +A6; (C.2)

Y , A3, X and A4 are the coordinates of the rank-4 fibre of the bundle in (C.1), and

A6 ∈ Γ(Σ;KΣ) ∼= Cg =: Mlocal
∗ (C.3)

35Intuitively, this constraint means that the instanton number is distributed equally into the hidden and

visible sectors; (6KS + η0) = 0 = −(6KS + η∞).
36Computation was done by partially using a reasoning available in the Heterotic dual supergravity

regime. An elliptic fibred Calabi-Yau threefold over base P2 for Heterotic string compactification has 273

moduli (272 for complex structure and 1 for the volume of T 2-fibre), first of all. Automorphism of the

Calabi-Yau three-fold has already been exploited. The hidden sector E8 vector bundle comes with 1502

moduli, which is verified easily in F-theory language. We counted the vector bundle moduli of SU(2)×SU(3)

in the visible sector by counting the degree of freedom in the spectral surfae:

SU(2) :
(n2 + 11)(n2 + 10)

2
+

(n2 + 5)(n2 + 4)

2
− 1, (B.13)

SU(3) :
(n3 + 11)(n3 + 10)

2
+

(n3 + 5)(n3 + 4)

2
+

(n3 + 2)(n3 + 1)

2
− 1, (B.14)

where n2 and n3 parametrise the distribution of instanton numbers in the SU(2), SU(3) vector bundles

through η2 = n2HP2 , η3 = n3HP2 .
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governs the complex structure of this local geometry; this A6 ∈ Γ(Σ;KΣ) descends

from A6 ∈ Γ(B3;OB(−6KB)) on the compact set-up by simple restriction on Σ ⊂ B3.

L⊗6 := OΣ(−6KB|Σ) is the same as KΣ, because of the adjunction formula for Σ :=

{A3 = A4 = 0} ⊂ B3. The g-dimensional space Mlocal
∗ is regarded as the g directions

normal to MU(1)
∗ in M∗, at least when B3 is a Fano variety.

Reference [57] identified 6g − 3 four-cycles in this local fourfold geometry Ylocal. Let

Z := ∂Ylocal be the boundary, which is a seven dimensional manifold over R. Using a long

exact sequence

0 −→ H4(Z;Z) −→ H4(Ylocal;Z) −→ HBM
4 (Ylocal;Z) −→ H3(Z;Z) −→ 0, (C.4)

it turns out that both H4(Ylocal;Q) and HBM
4 (Ylocal;Q) are of dimension 4g − 3; kernels

and cokernels of the homomorphisms in the exact sequence above introduces a filtration

structure

H4(Ylocal;Q) ⊃ (H4(Ylocal;Q))0 =: SpanQ

{
Ãi=1,··· ,g, Ã

′j=1,··· ,g
}
, (C.5)

H4(Ylocal;Q) / (H4(Ylocal;Q))0 =: SpanQ

{
[B̃ℓ] | ℓ = 1, · · · , 2g − 3

}
, (C.6)

and

HBM
4 (Ylocal;Q) ⊃

(
HBM

4 (Ylocal;Q)
)0

=: SpanQ

{
B̃′

ℓ | ℓ = 1, · · · , 2g − 3
}
, (C.7)

HBM
4 (Ylocal;Q) /

(
HBM

4 (Ylocal;Q)
)0

=: SpanQ

{
[C̃]i=1,··· ,g, [C̃ ′]j=1,··· ,g

}
; (C.8)

Overall, 2g + (2g − 3) + 2g four-cycles, Ã’s, B̃’s and C̃’s are identified in either H4(Ylocal)

or HBM
4 (Ylocal). The intersection pairing H4(Ylocal;Q)×HBM

4 (Ylocal;Q) −→ Q vanishes on

(H4(Ylocal;Q))0 ×
(
HBM

4 (Ylocal;Q)
)0
.

The four-cycles Ãi’s and Ã
′j ’s are the nearly vanishing S3 cycle (often referred to as

the A-cycle) of deformed conifold fibred over the one-cycles αi’s and βj of the genus g

curve Σ. Four-cycles B̃ℓ’s (ℓ = 1, · · · , 2g− 3), on the other hand, are topologically S4, and

arise in the form of S3 fibred over intervals Iℓ on Σ; the interval Iℓ (ℓ = 1, · · · , 2g − 3) is

stretched between a pair of points p0, pℓ ∈ Σ, where {p0, pℓ=1,··· ,2g−3} ⊂ Σ are the zeros

of the section A6 ∈ Γ(Σ;KΣ). Choice of the interval Iℓ (between p0 and pℓ) comes with

freedom of +H1(Σ;Z); this is how the filtration structure arises inH4(Ylocal;Z); by choosing

an interval Iℓ, a representative four-cycle B̃ℓ is chosen for a quotient class [B̃ℓ]. Geometric

description of the four-cycles C̃’s is given later in this appendix.

Period integral is defined for all of these 6g−3 four-cycles in Ylocal; their period integrals

should depend on the g independent moduli of Mlocal
∗ . Let {λi}i=1,··· ,g be the 1-forms of

Σ normalised so that
∫
αi

λj = δ j
i . By parameterising A6 on Σ (and parameterising also

Mlocal
∗ ) as

A6 =
∑

i

ziλ
i, (C.9)

we can write down the period integrals for the four-cycles Ã’s as

Π
Ãi

= zi, Π
Ã′j = τ jkzk, (C.10)
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where τ jk :=
∫
βj λ

k is the period matrix of the curve Σ. The period integrals for the

four-cycles B̃ℓ’s are given by

Π
B̃ℓ

= µ̃(pℓ)
izi, (C.11)

using the lift of Abel-Jacobi map

µ̃ : Σ ∋ q 7−→

(∫ q

p0

λ1,

∫ q

p0

λ2, · · · ,

∫ q

p0

λg

)
∈ Cg; (C.12)

although the Abel-Jacobi map itself depends only on the parameters in MU(1)
∗ , dependence

on the Mlocal
∗ parameters in Π

B̃ℓ
comes in through pℓ’s as well as zi’s. When the interval Iℓ

from p0 to pℓ is changed by H1(Σ;Z), the period integral Π
B̃ℓ

changes by niΠ
Ãi

+mjΠÃ
′j

for some ni,mj ∈ Z. This transformation constitutes a part of the modular group [57].

Some of the four-cycles Ã’s in H4(Ylocal) in the local geometry may not be regarded

as topological cycles H4(Y4) in the global geometry; all the Ã’s can be deformed to be

topological cycles in Z = ∂Ylocal, and such a four-cycle may, in principle, be obtained as a

boundary of a five-cycle in Y4\Ylocal. The relation (−∆h3,1) = g for the global geometry Y4
(which holds at least when B3 is a Fano), and its consequence h̃2,1 = 0, in particular, implies

that all of the 2g four-cycles Ã’s remain to be topological four-cycles of the global geometry

Y4. Similarly, the four-cycles C̃’s inHBM
4 (Ylocal) can be regarded as topological cycles of Y4,

only when their boundaries in H3(∂Ylocal) are obtained also as boundaries of some cycles in

HBM
4 (Y4\Ylocal). The Poincare duality indicates, however, that all of these 2g four-cycles

C̃’s are also lifted to those in the global geometry Y4, at least when B3 is Fano. In the

conifold transition at the A6 −→ 0 limit, those 2g + (2g − 3) + 2g topological four-cycles

shrink, and one four-cycle (P1 for small resolution over the curve Σ) emerges in the global

geometry Y4; −∆h3,1 = −∆h1,3 = g, and −∆h2,2 = (4g − 3) − 1 = 4(−∆h3,1 − ∆h1,1).

See [57] for more information.

C.2 Monodromy

In order to study monodromy of those four-cycles in the local geometry Ylocal, we assume

that Σ is a hyperelliptic curve in this appendix C.2:

t2 = P (s); P (s) = −

2g+2∏

i=1

(s− si); (C.13)

we further assume that all the si’s are real valued, and

0 < s1 < s2 ≪ s3 < s4 ≪ · · · ≪ s2g−1 < s2g ≪ s2g+1 < s2g+2. (C.14)

although a higher genus curve Σ is not always in the form of a hyperelliptic curve, complex

structure of Σ can be continuously deformed from the one chosen above; since we are

interested primarily in questions of topological nature, it is enough to study for Σ given

above.

Before getting into the study of monodromy, we first need to have a concrete con-

struction of the cycles C̃i’s (i = 1, · · · , g), whose monodromy we are interested in. Math
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Figure 4. (colour online) A hyperelliptic curve Σ is obtained by gluing together two sheets of this

s-plane (C ∪ {∞}) along the branch cuts (wavy lines) between s1–s2, s3–s4, · · · , s2g+1–s2g+2; this

picture is drawn for the case with g = 4. Description of line bundles L⊗k requires branch cuts in

the U (s) patch; the cuts for this purpose are drawn in thin (solid or dotted) lines in this figure.

Thick grey (red) loops, from left to right, are the cycles α1, α2 (drawn partially), αg−1 and αg.

Thick dark (blue) loops, from left to right, are β1, β2, βg−1 and βg; one more remaining loop in

the thick dark (blue) line at the right end of this picture is β
′g; βg and β

′g are isomorphic in Σ,

but they are not within the U (s) patch.

preparation is thus in order here. The line bundle KΣ = L⊗6 can be described by three

Zariski open patches of Σ.

U (s) : t 6= 0,∞; U (t) : P ′(s) 6= 0, s 6= ∞; U (∞) : s 6= 0, si. (C.15)

Sections of KΣ are written down in the form of A = a(s)ds, A(t)dt and A(∞)d(1/s) in the

U (s), U (t) and U (∞) patch, respectively; these trivialisation descriptions are identified by

using transition functions:

a(t) =
2t

P ′(s)
a(s), a(∞) = (−s2)a(s). (C.16)

H0(Σ;KΣ) is of g dimensions, and are of the form37

A
(s)
6 ds =

c0 + c1s+ · · ·+ cg−1s
g−1

t
ds =

c0(1/s)
g−1 + · · · cg−1

(t/sg+1)
d(1/s) = A

(∞)
6 d(1/s).

(C.17)

The fibre coordinates Y of L⊗3 and X of L⊗2, for example, become Y (s), Y (t) and

Y (∞), and X(s), X(t) and X(∞), respectively, in the trivialisation patches, and are identified

between the overlapping patches as in

Y (t) =

(
2t

P ′(s)

)3/6

Y (s), X(t) =

(
2t

P ′(s)

)2/6

X(s). (C.18)

Branch cuts are introduced in these U (s), U (t) and U (∞); see figure 4 for the branch cuts in

the U (s) patch; the coordinates Y (s) and X(s) at one point in U (s) ⊂ Σ and the coordinates

37There must be a linear relation between {c0, c1, · · · , cg−1} and zi’s (i = 1, · · · , g) in (C.9), but we do

not need to know it in detail.
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(a) (b)

Figure 5. (colour online) (a) A loop γk (k = 1, · · · , g − 1) in the Mlocal
∗

∼= Cg parameter space

is given by continuously changing the parameter ak in the s-plane, starting from s = s2k, going

around s = s2k+1 and returning to s = s2k, as shown by a dashed (green) arrow line in this picture.

At the end of this deformation procedure, the loop βk has been deformed in the way shown in (b)

by a thick solid (blue) line.

Y (s)′ and X(s)′ at the same point that we reach after circling around a branch point (where

t = 0) by phase +2π are identified through

Y (s)′ = Y (s) × ζ−3
6 , X(s)′ = X(s) × ζ−2

6 ; ζ6 := e
2πi
6 . (C.19)

Fibre coordinates need to be identified through similar relations also across the branch cuts

in U (t) and U (∞). Equations (C.18) are made well-defined in this way. The same holds

true also for the fibre coordinates A3 and A4.

Let us take a point q ∈ U (s) ⊂ Σ. The local fourfold geometry Ylocal has a three-

dimensional fibre

Y (s)A
(s)
3 = X(s)A

(s)
4 +A

(s)
6 ; (C.20)

Y (s), A
(s)
3 , X(s) and A

(s)
4 are coordinates, while A

(s)
6 is a parameter. This is a deformed

conifold, and there is a canonical choice of compact three-cycle and a semi-canonical choice

of non-compact three-cycle intersecting at one point; they are referred to as A-cycle and B-

cycle; the choice of the B-cycle is not canonical, in that the B-cycle is deformed to be B+A

topologically, when the complex phase of the parameter A
(s)
6 changes as A

(s)
6 −→ A

(s)
6 ×eiα,

α ∈ [0, 2π], as well-known in deformed conifold.

Now, we are ready to provide description of the 2g remaining four-cycles, C̃i=1,··· ,g and

C̃
′

j=1,··· ,g in Ylocal. Since this task is topological in nature, we can choose the parameter

A6 ∈ Mlocal
∗ arbitrarily; we choose it to be

A6 = A∗
6 := ǫ

(s− s∗)
g−1

t
ds, s2g+2 ≪ s∗ ∈ R (C.21)

for now. First of all, the cycles Ãi=1,··· ,g and Ã
′j=1,··· ,g are the A-cycle fibred over the

one-cycles αi=1,··· ,g and βj=1,··· ,g in Σ, as in the appendix C.1; see figure 4 for how to

choose the basis of H1(Σ;Z). Secondly, for this choice of A∗
6, the cycles B̃ℓ=1,··· ,2g−3 are all

located in the s ∼ s∗ ≫ s2g+2 region; we see after constructing C̃’s that B̃ℓ’s and Ã–C̃’s

are mutually orthogonal in the intersection form. Finally, we claim that the B-cycle of the

deformed conifold comes back to itself, not to B + mA with m 6= 0, after a point q ∈ Σ

moves along any one of {αi, β
j}. To verify this claim, first note that the loop βk crosses

– 36 –



J
H
E
P
1
1
(
2
0
1
5
)
0
6
5

the branch cut in U (s) for k-times in the counter-clockwise direction; this means that the

fibre coordinate of L⊗a at the end of a loop along βk is ζ−a×k
6 = e−2πi×a·k

6 times the one

at the beginning of the loop. The parameter (A∗
6)

(s), on the other hand, changes its phase

by e−2πik due to the factor 1/t. Those two phases on both sides of (C.20) cancel, and

there is no net change in the phase of the deformation parameter (not even a multiple

of 2π) along the loop βk. Thus, the B-cycle comes back to itself. The B-cycle fibred

over βk (k = 1, · · · , g) forms a four-cycle C̃k. Similarly, we note that the loop αk crosse

the branch cuts in U (s) for (−1) times in the counter-clockwise direction. The parameter

(A∗
6)

(s) changes its phase by e+2πi due to the factor 1/t, on the other hand. Those two

effects cancel, and there is no net change in the phase. Thus, the B-cycle comes back to

itself at the end of the loop αk. This is how a four-cycle C̃
′

k is obtained (k = 1, · · · , g).

By construction, Ãi · C̃
j = δ j

i , Ã
′k · C̃ ′

h = δkh, and the intersection number vanishes for all

other combinations of Ã’s and C̃’s.

Finally, we study monodromy of those four-cycles in Ylocal. Monodromy is studied for

loops departing and returning to a reference point in Mlocal
∗ = Cg, and we choose

A6 = A∗∗
6 := ǫ

(s− s2)(s− s4) · · · (s− s2(g−1))

t
ds (C.22)

as the reference point.38,39 At this reference point, let Ãk and Ã
′k (k = 1, · · · , g) be the

four-cycle given by the A-cycle along αk and βk, respectively. g − 1 more four-cycles C̃k

(k = 1, · · · , g−1) are the B-cycle fibred over βk+kαk in Σ; this loop in Σ crosses +k times

along βk and k × (−1) times along kαk, and there is no net change in the phase of A∗∗
6

along the loop. One more four-cycle, C̃g, is the B-cycle fibred over a one-cycle β
′g ∼ βg

on Σ shown in figure 4. We will focus on monodromy associated with those 3g four-cycles.

It is convenient to adopt the following parameterisation of Mlocal
∗

∼= H0(Σ;KΣ):

A6 = ǫ
(s− a1)(s− a2) · · · (s− ag−1)

t
ds, {(ǫ, a1, · · · , ag−1)} ∈ Cg. (C.23)

The reference point A∗∗
6 corresponds to choosing ak = s2k for k = 1, · · · , g − 1. Loops γk

for k = 1, · · · , g − 1 in Mlocal
∗ are such that ak is changed continuously in the s-plane in

the way designated in figure 5 (a), while the value of ǫ and all other am’s (m = 1, · · · , g−1

but m 6= k) are held fixed. One can keep track of topology of the four-cycles Ã’s and C̃’s

along the loop γk in Mlocal
∗ , by deforming the one-cycles βm + mαm (m = 1, · · · , g − 1)

and β
′g so that the zero of A

(s)
6 is avoided. This is enough to conclude that all the 3g

four-cycles, namely, Ã’s, Ã′’s and C̃’s, remain the same at the end of a loop γk except C̃k.

Furthermore, because the one-cycle βk needs to be deformed as in figure 5 (b) at the end

38The point A∗
6 in Mlocal

∗ is useful in that all the 6g − 3 four-cycles can be constructed systematically.

The point A∗∗
6 is more convenient as the reference point of the monodromy study. This is just a matter of

convenience.
39The degree 2g − 2 divisor corresponding to this choice of A6 = A∗∗

6 is a collection of the g − 1 points

{(s, t) = (s2i, 0) | i = 1, · · · , g − 1} ⊂ Σ with multiplicity 2 for all of them. They are the 2g − 2 points

{p0, · · · , p2g−3} used in construction of the four-cycles B̃ℓ’s [57].
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of the loop γk, there is a non-trivial monodromy

γk :
(
Ãk, C̃

k
)
→

(
Ãk, C̃

k
)(

1 1

1

)
,

(
Ãm 6=k, Ã

′j , C̃m 6=k
)
→

(
Ãm 6=k, Ã

′j , C̃m 6=k
)
.

(C.24)

We study monodromy along one more loop γǫ in Mlocal
∗ , which is to change the phase of

the parameter ǫ by 2π, while all the am’s with m = 1, · · · , g−1 are held fixed. Topological

cycles Ãk’s for k = 1, · · · , g remain the same under the complex structure deformation

along γǫ. Topological cycles C̃
k’s are not, however. These cycles are all in the form of the

B-cycle fibred over some one-cycle in Σ; after complex structure deformation along γǫ, the

original B-cycle comes back as B +A-cycle. This means that

γǫ : C̃
k 6=g 7−→ C̃k + kÃk + Ã

′k, C̃g 7−→ C̃g + Ã
′g. (C.25)

This is enough to conclude that the period integrals depend on ǫ as

Π
Ãk

, Π
Ã

′k ∼ ǫ, Π
C̃k 6=g ∼

(
τkmzm + kzk

)
ln(ǫ), Π

C̃g ∼ (τ gmzm) ln(ǫ). (C.26)

It is a much more involved problem to determine the full monodromy group repreesnted

on the space of 6g − 3 four-cycles, and also the period integrals. We do not do so in this

article, since we do not need such a thorough analysis for the sketchy argument in the main

text.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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