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1 Introduction

In the recent decade there was considerable progress in understanding the structure of

the amplitudes (the S-matrix) in gauge theories in various dimensions (for review see, for

example, [1–5]). The gauge and gravity theories with maximal supersymmetries in D = 4,

N = 4 SYM and N = 8 SUGRA are the most important examples. This progress became

possible due to the development of the new techniques: the spinor helicity and momentum
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twistor formalisms, different sets of recurrence relations for the tree level amplitudes, the

unitarity based methods for the loop amplitudes and various realizations of the on-shell

superspace formalism for theories with supersymmetry [1–5].

The subject of investigation was mainly related to the so-called maximally supersym-

metric theories, which are believed to possess special properties due the highest symmetries.

One of the insights was the discovery of the dual conformal symmetry for the N = 4

SYM. Taking together the algebras of ordinary (super)conformal symmetry and the dual

(super)conformal symmetry can be fused into an infinite dimensional Yangian algebra [6]

which in principle should completely define the S-matrix of the N = 4 SYM theory [7–14].

While the N = 4 SYM theory is completely on shell UV finite and possesses only

the IR divergences, in higher dimensions the situation is the opposite: there are no IR

divergences even on shell but all theories are UV nonrenormalizable by power counting.

It should be noted that the spinor helicity formalism and the unitarity based meth-

ods can be generalised to space-time dimension greater than D = 4 [15–17]. The new

computational methods gave new birth to the investigation of the UV properties of the

S-matrices of formally nonrenormalizable gravity theories with extended supersymmetry

(D = 4 N = 8 SUGRA is a particular example). The results obtained so far are in some

sense controversial [18–28].

Among the gauge theories in higher dimensions with maximal supersymmetry there

are the following four cases:

D = 4 N = 4, D = 6 N = 2, D = 8 N = 1, D = 10 N = 1.

No wonder if all these theories obey some exceptional properties. In this context, it is

interesting to note that the integrands of the four-point amplitudes in any SYM theory

have almost identical form (only the tree level amplitudes which are the common factors

are different) and are heavily constrained by the dual conformal covariance in dimensions

D ≤ 6 [29] (and likely in all dimensions D ≤ 10 [15]).

The aim of this paper, which is a continuation of our previous papers [30–33], is to

investigate the amplitudes and their UV properties in maximally supersymmetric gauge

theories in various dimensions. Namely, we evaluate the leading UV divergences in the

four-point amplitude on shell in a number of loops and investigate their properties in all

loops. The paper is organized as follows: in section 2, we briefly describe the spinor helicity

formalism in D ≥ 6, and in section 3, we consider the on shell superspace formalism in

D = 6, 8. In section 4, we consider the structure of the colour ordered partial amplitudes.

In section 5, we present the evaluation of the leading UV divergences both analytically

and numerically. Section 6 summarizes the results of perturbative computation for various

dimensions. Finally in section 7 we derive the all loop recursive relations for the leading

divergences and make the attempts to summarize the whole PT series. The conclusion

contains some speculations regarding the observed pattern and its implications on possible

scenarios of UV finiteness of gauge and gravity theories.
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2 The spinor helicity formalism in various dimensions

As was stated in the introduction, the spinor helicity and the on shell momentum su-

perspace formalisms play a crucial role in the recent achievements in understanding the

structure of the S-matrix of four dimensional supersymmetric gauge field theories. Here we

discuss the generalization of these formalism to the case of even dimensions D = 6, 8 and 10.

In our discussion we manly follow [34]. In even dimensions one can always choose the

chiral representation of the gamma matrices as Γµ (as usual {Γµ,Γν} = 2ηµν):

Γµ =

(
0 (σµ)AB

′

(σµ)B′A 0

)
, (2.1)

where µ is the SO(D− 1, 1) vector representation index, A and B′ = 1, . . . , 2D/2−1 are the

Spin(SO(D − 1, 1)) indices. We are interested in the cases D = 4, 6, 8, 10. In this notation

one can decompose the Dirac spinor ψ as a pair of Weyl chiral and anti-chiral spinors λA

and λ̃A′ . The Lorentz rotations of λA and λ̃A′ look like

δλA = (σµν)ABλ
B, δλ̃A′ = (σµν)B

′
A′ λ̃B′ , (2.2)

where

(σµν)AB ≡
i

4

[
(σµ)AA

′
(σν)A′B − (σν)AA

′
(σµ)A′B

]
(σµν)B

′
A′ ≡

i

4

[
(σµ)A′A(σν)AB

′ − (σν)A
′A(σµ)AB′

]
. (2.3)

One can combine two Dirac spinors ψ2 and ψ1 into the Lorentz invariant combination

ψT1 Cψ2 using the charge conjugation matrix C defined so that

CΓµC−1 = −(Γµ)T . (2.4)

For the Weil spinors there are two possible decompositions of C depending on dimension:

C =

(
ΩBA 0

0 ΩB′A′

)
for D = 4, 8, (2.5)

and

C =

(
ΩA′
B 0

0 ΩB′
A

)
for D = 6, 10. (2.6)

The Ω matrices obey the following relations

ΩBAΩAC = δCB , ΩB′A′Ω
A′C′ = δB

′
C′ for D = 4, 8, (2.7)

and

ΩA′
B ΩC

A′ = δCB , ΩB′
A ΩA

C′ = δB
′

C′ for D = 6, 10. (2.8)

The matrices Ω can be used to raise and lower the indices of the spinors

λA = λBΩBA λ̃A
′

= ΩB′A′ λ̃B′ for D = 4, 8, (2.9)
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and to relate the chiral and antichiral spinors

λA = ΩA′
A λ̃A′ , λ̃

A′ = λAΩA′
A for D = 6, 10. (2.10)

One can also construct the Lorentz invariants for the pair of spinors which are labeled

by i and j:

λBi ΩBAλ
A
j ≡ 〈ij〉, λ̃B′,iΩB′A′ λ̃A′,j ≡ [ij] for D = 4, 8, (2.11)

and

λ̃A′,iΩ
A′
A λ

A
j ≡ [i|j〉, λAi ΩA′

A λA′,j ≡ 〈i|j] for D = 6, 10. (2.12)

The matrices C can be always chosen in such a way that

CT = −C for D = 4, 10,

CT = C for D = 6, 8. (2.13)

In some dimensions one can also construct additional Lorentz invariants. For example, in

D = 6 one has Spin(SO(5, 1)) ∼= SU(4)∗, so one can construct the invariants as contractions

of spinorial indices A with the absolutely antisymmetric tensor εABCE assosiated with

SU(4)∗: εABCDλ
A
1 λ

B
2 λ

C
3 λ

D
4 ≡ 〈1234〉, εABCDλ̃A,1λ̃B,2λ̃C,3λ̃D,4 ≡ [1234].

To relate the light like (massless) momentum pµ with the pair of Weyl spinors we

consider the Dirac equations for the spinors λA and λ̃A′ :

(pµσ
µ)BA

′
λ̃A′ = 0 and (pµσ̃

µ)λA = 0. (2.14)

The solutions to these equations are labeled by additional helicity indices a and a′ which

transform under the little group of the Lorentz group, which is SO(D − 2) in our case.

Note that in D > 4 dimensions helicity of a massless particle is no longer conserved and

transforms according to the little group similarly to helicity of a massive particle in D = 4.

One has

(pµσ
µ)BA

′
λ̃A′a′ = 0, (pµσ̃

µ)λAa = 0, (2.15)

and for their conjugates

(pµσ
µ)BA

′
λa
′
B = 0, (pµσ̃

µ)λ̃A
′

a = 0. (2.16)

It is always possible to take the solutions to these equations λ̃A′a′(p), λ
Aa(p) (and their

conjugates) in such a way that∑
a

λBa(p)λ̃A
′

a (p) = pµ(σµ)BA
′
,
∑
a′

λ̃B′a′(p)λ
a′
A (p) = pµ(σ̃µ)B′A. (2.17)

One can choose the polarization vectors of gluons in the form

εµaa′(p|q) ∼ qν
λ̃a(p)(σ

µσν)λ̃a′(q)

(pq)
, εµ,aa

′
(p|q) ∼ qν

λa(p)(σµσν)λa
′
(q)

(pq)
. (2.18)
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The polarization vectors for massless fermions can also be chosen as spinors while the

polarization vectors for scalars are trivial. The dependence of the polarization vectors on

the auxilary light like momenta q reflects the gauge ambiguity in the choice of polarization

vectors. The dependence on q is always canceled in the final gauge invariant amplitude.

This way one can always write down the scattering amplitude in the gauge theory in

arbitrary even dimension as a function of the Lorentz invariant products of momenta and

polarization vectors in terms of the spinor products.

Concluding this section we would like to comment on the difference between the spinor

representation of the amplitudes in D = 4, 6 and D = 8, 10 dimensions. In D = 4 the little

group is SO(2) ' U(1), so its action on the spinors is just a multiplication by a complex

number. The condition p2 = 0 for pαα̇ = pµ(σµ)αα̇ is equivalent to det(p) = 0, so the

following equality holds:

pαα̇ = λαλ̃α̇, . (2.19)

On the other hand, one can always use the solutions of the Dirac equation λα(p), λ̃α̇(p)

to write

λα(p)λ̃α̇(p) = pαα̇. (2.20)

This means that relation (2.19) works in “both directions”. For given spinors λα and λ̃α̇

there is always (complex) momentum p such that pαα̇ = λαλ̃α̇ and vice versa one can

always decompose the light-like momentum p into a pair of spinors using the solution of

the Dirac equation. This is possible because the product of two D = 4 Weyl spinors λα

and λ̃α̇ contains 2 × 2 − 1 = 3 (−1 is due to the little group U(1) invariance of λαλ̃α̇)

independent components, just as the light-like momentum pµ.

The same situation occurs in D = 6. One has 4× 2 components in the spinor product,

and taking into account the action of the SU(2) little group (SO(6 − 2) ' SU(2)× SU(2))

one gets 4×2−3 = 5 degrees of freedom, exactly as for the D = 6 massless momentum pµ.

For D > 6 this is no longer the case. While it is still possible for a given pµ to find

solutions of the Dirac equation such that (2.19) holds, for a given set of spinors in D > 6

there is no unique pµ satisfying this equation [15, 16]. In other words, one may say that for

D > 6 the spinors obey the nonlinear relations (constraints) [15] and one way to solve these

constraints is to require that they satisfy the Dirac equation for some light like momenta

pµ [15]. This means that the spinor helicity formalism in D = 8, 10 may not be optimal

(in terms of simplicity) representation of amplitudes.

3 The on-shell momentum superspace in various dimensions

In the next sections, we discuss the essential details regarding the on shell momentum

superspace constructions in D = 6, 8, 10 dimensions.

3.1 D = 6 N = (1, 1) SYM

The usage of the on shell momentum superspace allows one to obtain a compact represen-

tation for the amplitudes in supersymmetric gauge theories, which is very convenient in

the unitarity based computations [1–5].
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Consider now the essential part of the D = 6N = (1, 1) on-shell momentum superspace

formalism. The on-shell N = (1, 1) superspace for D = 6 SYM was first formulated

in [29, 35, 36]. It can be parameterized by the following set of coordinates:

N = (1, 1) D=6 on-shell superspace = {λAa , λ̃ȧA, ηIa, ηI′ȧ}, (3.1)

where ηIa and ηI
′
ȧ are the Grassmannian coordinates, I = 1, 2 and I ′ = 1′, 2′ are the

SU(2)R × SU(2)R R-symmetry indices. Note that this superspace is not chiral. One has

two types of the supercharges qAI and qAI′ with the commutation relations

{qAI , qBJ} = pABεIJ ,

{qAI′ , qBJ ′} = pABεI′J ′ ,

{qAI , qBJ ′} = 0. (3.2)

The creation/annihilation operators of the on shell states from the N = (1, 1) super-

multiplet are

{Aaȧ, Ψa
I , Ψ

I′ȧ
, φI

′
I },

which corresponds to the physical polarizations of the gluon |Aaȧ〉, two fermions |Ψa
I 〉,|Ψ

I′ȧ〉
and two complex scalars |φI′I 〉 (antisymmetric with respect to I, I ′). This multiplet is CPT

self-conjugated. However, to combine all the on-shell states in one superstate |Ω〉 by analogy

with the N = 4 D = 4 SYM [42], one has to perform a truncation of the full N = (1, 1)

on-shell superspace [36] in contrast to the former case. Indeed, if one expands any function

X (or |Ω〉 superstate) defined on the full on-shell superspace in Grassmannian variables,

one encounters terms like ∼ ηIaηI′ȧA
I′aȧ
I . Since there are no such bosonic states AI

′aȧ
I

in the N = (1, 1) SYM supermultiplet, one needs to eliminate these terms by imposing

constraints on X, i.e., to truncate the full on-shell superspace. If one wishes to use the little

group indices to label the on-shell states, the truncation has to be done with respect to

the R symmetry indices. This can be done by consistently using the harmonic superspace

techniques [36].

Defining the harmonic variables u∓I and u±I
′
which parameterize the double coset space

SU(2)R
U(1)

× SU(2)R
U(1)

(3.3)

we express the projected supercharges, the Grassmannian coordinates

q∓A = u∓I q
AI , q±A = u±I

′
qAI′ ,

η∓a = u∓I η
I
a, η±ȧ = u±I

′
ηI′ȧ, (3.4)

and the creation/annihilation operators of the on-shell states

φ−−, φ−+, φ+−, φ++,

Ψ−a, Ψ+a, Ψ
−ȧ

Ψ
+ȧ
,

Aaȧ. (3.5)

in terms of the new harmonic variables.
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In what follows we consider only the objects that depend on the set of variables which

parameterize the subspace (”analytic superspace”) of the full N = (1, 1) on-shell superspace

N = (1, 1) D=6 on-shell harmonic superspace = {λAa , λ̃ȧA, η−a , η+ȧ }. (3.6)

The projected supercharges and momentum generators acting on the analytic superspace

for the n-particle case can be explicitly written as:

pAB =

n∑
i

λAa(i)λBa (i), q−A =

n∑
i

λAa (i)η−ai , q+A =

n∑
i

λ̃ȧA(i)η+ȧ,i. (3.7)

Now one can combine all the on-shell state creation/annihilation operators (3.5) into one

superstate |Ωi〉 = Ωi|0〉 (here i labels the momenta carried by the state):

|Ωi〉 = {φ−+i + φ++
i (η−η−)i + φ−−i (η+η+)i + φ+−i (η−η−)i(η

+η+)i

+(Ψ+η−)i + (Ψ
−
η+)i + (Ψ−η−)i(η

+η+)i + (Ψ
+
η+)i(η

−η−)i

+(Aη−η+)i}|0〉, (3.8)

where (XY )i
.
= X

a/ȧ
i Yi a/ȧ. Hereafter we will drop the ± labels for simplicity. As in D = 4

case, we can formally write the colour ordered amplitude as

An({λAa , λ̃ȧA, ηa, ηȧ}) = 〈0|
n∏
i=1

ΩiS|0〉, (3.9)

Here S is the S-matix operator of the theory, the average 〈0| . . . |0〉 is understood with

respect to some particular (for example, component) formulation of the theory. The in-

variance with respect to translations and supersymmetry transformations requires that

pABAn = qAAn = qAAn = 0. (3.10)

Thus, the superamplitude should have the form:

An({λAa , λ̃ȧA, ηa, ηȧ}) = δ6(pAB)δ4(qA)δ4(qA)Pn({λAa , λ̃ȧA, ηa, ηȧ}), (3.11)

where Pn is a polynomial with respect to η and η of degree 2n−8. Note that since there is

no helicity as a conserved quantum number, there are no closed subsets of MHV, NMHV,

etc. amplitudes in contrast to the D = 4 case.

The Grassmannian delta functions δ4(qA) and δ4(qA) are defined in this case as

δ4(qA) =
1

4!
εABCD δ̂(q

A)δ̂(qB)δ̂(qC)δ̂(qD),

δ4(qA) =
1

4!
εABCD δ̂(qA)δ̂(qB)δ̂(qC)δ̂(qD). (3.12)

Here the delta function δ̂(XI) is the usual Grassmannian delta function defined as

δ̂N (XI) ≡
∏N
I=1X

I , where I is the R-symmetry index. In harmonic formulation we simply

have δ̂(X) ≡ X.

– 7 –
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To extract the ordinary component amplitudes from this supersymmetric expression,

one has to apply the projection operators. The projection operators are the derivatives with

respect to an appropriate number of Grassmannian variables. Their explicit form can be

read from (3.19). For instance, the projection operator for the i-th gluon is ∂/∂η−i ∂/∂η̄
+
i .

Consider now the four-point amplitude. The degree of the Grassmannian polynomial

P4 is 2n − 8 = 0, so P4 is a function of bosonic variables {λAa , λ̃ȧA} only, just as in the

D = 4 case

A4({λAa , λ̃ȧA, ηa, ηȧ}) = δ6(pAB)δ4(qA)δ4(qA)P4({λAa , λ̃ȧA}). (3.13)

At the tree level P4 can be found from the explicit expression for the 4 gluon amplitude

in components [17, 36] obtained with the help of the six dimensional version of the BCFW

recurrence relation [17, 35]. Comparing the component expression with (3.13) and expand-

ing (3.13) in powers of η one concludes that: P(0)
4 ∼ 1/st, where s and t are the standard

Mandelstam variables. So at the tree level the 4-point superamplitude can be written as:

A(0)
4 = δ6(pAB)δ4(qA)δ4(qA)

1

st
. (3.14)

Note that already at the tree level the 5-point amplitude is not so simple [17, 36]. Similarly

to the D = 4 case, one can obtain the expression up to three loops using the iterated two

particle cuts. To perform this computation, the following formula for the Grassmannian

integration is useful: (
∫
d2ηal1

∫
d2ηḃl2 ≡

∫
d4ηl1l2)∫

d4ηl1l2d
4ηl2l1 δ

4(λAal1 ηa,l1 + λAal2 ηa,l2 + qA1 )δ4(λAal1 ηa,l1 + λAal2 ηa,l2η − q
A
2 )

×δ4(λ̃Aȧl1 ηȧ,l1 + λ̃Aȧl2 ηȧ,l2 + qB)δ4(λ̃Aȧl1 ηȧ,l1 + λ̃Aȧl2 ηȧ,l2 − qB)

= (2!)44(l1, l2)
2δ4(qA1 + qA2 )δ4(qB,1 + qB,2). (3.15)

3.2 D = 8 N = 1 SYM

Consider now the D = 8 N = 1 case. The details of the on-shell N = 1 superspace

for D = 8 SYM can be found in [34]. It can be parameterized by the following set of

coordinates

N = 1 D=8 on-shell superspace = {λAa, λ̃A′a , ηa}, (3.16)

where ηa are the Grassmannian coordinates, a is the little group SO(6) index, and A and

A′ are the spin(SO(7, 1)) indices. The R-symmetry group here is U(1)R and ηa carries the

+1 charge with respect to U(1)R. Note that this superspace is chiral.

The commutation relations for the supercharges have the usual form

{qA, q̄B′} = pAB, (3.17)

where the supercharges in the on-shell momentum superspace representation for the n-

particle case are

pAB
′

=

n∑
i=1

λAa(i)λ̃B
′

a (i), qA =

n∑
i=1

λAa(i)ηa, q̄
B′ =

n∑
i=1

λ̃B
′

a (i)
∂

∂ηa
. (3.18)
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The creation/annihilation operator states in the N = 1 D = 8 on-shell supermultiplet are

{Aaȧ, Ψa, Ψa, φ, φ},

which corresponds to the physical polarizations of the gluon |Aaȧ〉, two fermions |Ψa〉, |Ψa〉
and two scalars |φ〉, |φ〉. One can combine them into one “superstate” |Ωi〉 similar to the

D = 4 case

|Ωi〉 =

(
φi + ηaΨ

a
i +

1

2!
ηaηbA

aȧ
i +

1

3!
ηaηbηcε

abcdΨd,i +
1

4!
ηaηbηcηdε

abcdφi

)
|0〉. (3.19)

Here εabcd is the absolutely antisymmetric tensor associated with the little group SO(6) ∼=
SU(4). Using the arguments identical to the D = 4, 6 cases we conclude that the colour

ordered superamplitude should have the form:

An({λAa, λ̃A′a , ηa}) = δ8(pAB
′
)δ8(qA)Pn({λAa, λ̃A′a , ηa}), (3.20)

where Pn is a polynomial with respect to η and η of degree 2n − 8. The Grassmannian

delta function δ8(qA) is defined in this case as:

δ8(qA) =
1

8!
εA1...A8

8∏
i=1

δ̂(qAi), (3.21)

Here εA1...A8 is the absolutely antisymmetric tensor associated with the spin(SO(7, 1)).

Consider the four-point amplitude. The degree of Grassmannian polynomial P4 is

2n − 8 = 0, so as in the previous cases P4 is a function of bosonic variables and one can

again write the four-point amplitude in the form

A4({λAa, λ̃A
′

a , ηa}) = δ8(pAB
′
)δ4(qA)P4({λAa, λ̃A

′
a }). (3.22)

At the tree level P4 can be found from a comparison with the explicit expression in the

components obtained as the field theory limit of the string scattering amplitude. As in the

D = 6 case, one has P(0)
4 ∼ 1/st. So at the tree level the 4-point superamplitude can again

be written as:

A(0)
4 = δ8(pAB)δ8(qA)

1

st
. (3.23)

Similarly to the D = 4, 6 cases, one can obtain the expression up to three loops using

the iterated two particle cuts. To perform this computation, the following formula for the

Grassmannian integration is useful, which is similar to the D = 4 case:∫
d4ηl1d

4ηl2δ
8(λAal1 ηa,l1 + λAal2 ηa,l2 + qA1 )δ8(λAal1 ηa,l1 + λAal2 ηa,l2 − q

A
2 )

= (4!)24(l1l2)
2δ8(qA1 + qA2 ). (3.24)
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3.3 D = 10 N = 1 SYM

The D = 10 N = 1 SYM supermultiplet of on-shell states consists of the physical polar-

izations of the gluon AAB
′

and the fermion ΨA fields. In this case the on-shell momentum

superspace formalism is not known. The problem is that there are too many η variables [15]

(we need 4 η variables to accommodate all 24 states in the theory, but the smallest repre-

sentation of the little group SO(8) gives 8).

However, one can use the indirect symmetry arguments (see the next section) to show

that the ratio of A(L)
4 /A(0)

4 in D = 10 N = 1 SYM has the form similar to that in the

D = 4, 6, 8 SYM theories. One can also use an alternative formulation of the amplitudes

in the D = 10 N = 1 SYM theory based on the pure spinor formalism [37–39] to show

that at one and two loops the integrand of the ratio of A(L)
4 /A(0)

4 in D = 10 N = 1 SYM

indeed has the form identical to that in the D = 4 case (also component unitarity based

computations are available up to five loops [40, 41]). This strongly supports the above

mentioned claim.

4 The A4 amplitude in SYM theories in various dimensions

4.1 From physical to colour ordered partial amplitudes

The aim is to calculate the multiparticle amplitudes on mass shell. For this purpose, we

first perform the color decomposition extracting the color ordered partial amplitude [1–5].

The relations between physical and colour ordered amplitudes look like:

Aa1...an,phys.n (pλ11 . . . pλnn ) =
∑

σ∈Sn/Zn

Tr[σ(T a1 . . . T an)]An(σ(pλ11 . . . pλnn )) +O(1/Nc) . (4.1)

The colour ordered amplitude An is evaluated in the planar limit which corresponds to

Nc →∞, g2YM → 0 and g2YMNc - fixed.

For the four-point amplitudes the colour decomposition reduces to

Aa1...a4,(L),phys.4 (1, 2, 3, 4) = T 1A(L)
4 (1, 2, 3, 4) + T 2A(L)

4 (1, 2, 4, 3) + T 3A(L)
4 (1, 4, 2, 3)(4.2)

where T i denote the trace combinations of SU(Nc) generators in the fundamental repre-

sentation

T 1 = Tr(T a1T a2T a3T a4) + Tr(T a1T a4T a3T a2),

T 2 = Tr(T a1T a2T a4T a3) + Tr(T a1T a3T a4T a2), (4.3)

T 3 = Tr(T a1T a4T a2T a3) + Tr(T a1T a3T a2T a4).

What is essential and becomes obvious using the superspace formalism, the four point

tree-level amplitude always factorizes so that the colour decomposed L-loop amplitude can

be written in the form

A(L)
4 (1, 2, 3, 4) = A(0)

4 (1, 2, 3, 4)M
(L)
4 (1, 2, 3, 4) = A(0)

4 (1, 2, 3, 4)M
(L)
4 ([1 + 2]2, [2 + 3]2)

or using the standard Mandelstam variables

A(L)
4 (1, 2, 3, 4) = A(0)

4 (1, 2, 3, 4)M
(L)
4 (s, t) (4.4)

It is this M
(L)
4 (s, t) factorized amplitude that we calculate in this paper.
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In general M
(L)
4 has the form

M
(L)
4 (s, t) = (−g2)L

∑
i

coefi ×MasterIntegrali, (4.5)

where g2 ≡ g2YMNc
(4π)D/2

, the coefi are some monomials of s and t, the MasterIntegrali is one of

the master integrals in the D-dimensional Minkowski space to be evaluated.

4.2 Dual conformal invariance and the universal expansion

The D = 4 N = 4 SYM planar S-matrix in addition to the PSU(2, 2|4) (super)conformal

symmetry has a new type of symmetry, namely the dual (super)conformal symmetry. One

can think of this symmetry as of (super)conformal transformations acting on the new dual

variables xAB
′

i and their fermionic counterparts. The dual variables xAB
′

i are defined in

D = 4, 6, 8, 10 dimensions as

pAB
′

i = xAB
′

i − xAB′i+1 . (4.6)

The explicit form of the generators of the dual (super) conformal transformations in D = 4

as well as details specific for D = 4 N = 4 SYM can be found in [42].

The dual (super)conformal symmetry is exact at the tree level for a general kinematical

configuration. For the amplitudes at the loop level the dual conformal symmetry is, in

general, broken due to the presence of the IR divergences (see the details, for example,

in [7–9]). However, this symmetry is still exact if one considers not the loop amplitudes

themselves but rather their integrands. For the four-point amplitude this statement mani-

fests itself in the fact that the ratio A(L)
4 /A(0)

4 is given by the linear combination of the so-

called dual (pseudo)conformal integrals with the coefficients given by the rational functions

of the Mandelstam variables.

Remarkable that one can define, at least, the bosonic part of the dual conformal

transformations for the D = 10 N = 1 SYM [15]. Moreover, it is claimed that the

tree level S-matrix of the D = 10 N = 1 SYM is covariant with respect to the dual

conformal transformations similar to the D = 4 case. This would immediately imply the

dual conformal covariance of the tree level S-matrix for the D = 4, 6, 8 SYM theories since

they can be obtained by dimensional reduction [15, 35, 43] from the D = 10 N = 1 SYM.

This would also imply that the structure of unitarity cuts in all SYM theories is identical.

Combining all these statements together one can conclude that the integrands of the ratio

A(L)
4 /A(0)

4 in the D = 6, 8, 10 SYM theories have the form identical to those of the D = 4

SYM theory.

Separate investigation of the dual conformal invariance in the D = 6 N = (1, 1)

SYM [29] as well as explicit computations of the four-point amplitudes up to 3 loops and

the spinor formalism based results up to 2 loops in D = 10 [37–39] (see also discussion of

the N = 1 D = 10 unitarity cuts for the 5 loop integrals in [40, 41]) strongly support that

the integrands in the D = 4, 6, 8, 10 dimensional SYM theories are indeed identical.

Consider as an example the four point amplitude in D = 4, 6, 8, 10 SYM theory. At

the one loop the contribution to A(1)
4 /A(0)

4 is given by the box diagram with the integrand

BoxIntegrand =
st

k2(k − p1)2(k + p2)2(k + p2 + p3)2
. (4.7)
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Introducing the dual coordinates xi as (here we omit the spinor indices for simplicity)

p1 = x12, p2 = x23, p3 = x34, p4 = x41, k = x15,

we can rewrite the integrand of this box diagram as follows:

BoxIntegrand =
x213x

2
24

x215x
2
25x

2
35x

2
45

. (4.8)

This expression is invariant under the dual conformal transformations, except inversions

and transforms covariantly under the dual conformal inversions I with the weight (x25)
4

which is absorbed into the integration measure in D = 4. In higher dimensions this factor

is left behind, however, it does not depend on external coordinates. The requirement of the

dual conformal invariance is enough to uniquely fix the combination x213x
2
24/x

2
15x

2
25x

2
35x

2
45,

i.e. the integrand written in terms of the Box integral 1/x215x
2
25x

2
35x

2
45 with the fixed coef-

ficient x213x
2
24. Similar logic is also true in higher orders of PT.

In combination with the unitarity based method the dual conformal invariance allows

one to explicitly express the amplitude A(L)
4 /A(0)

4 in terms of some dual (pseudo)conformal

integrals with the known coefficients up to 6 loops. The all loop expression known as the

BDS ansatz for A4/A(0)
4 was also obtained [44].

We base our calculation of the four-point amplitude in various dimensions on a univer-

sal expansion which, as it was mentioned above, is valid for any D. The difference is only

the dimension of the integration while the integrands stay universal.

The expansion for the ratio A4/A(0)
4 up to 3 loops is schematically presented below

A4

A(0)
4

= 1 +
∑
L

M
(L)
4 (s, t) =

!"

!#"

!$" #!#"

%#

%& !"#

%' !"$#!"#

! (

(4.9)

where the connected strokes on the lines mean the square of the flowing momentum. In

what follows, we consider the D=6, 8 and 10 cases.
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5 Calculation of integrals

5.1 Analytical evaluation

Due to eq. (4.9) the problem of calculation of divergences is reduced to the scalar master

integrals, which are universal for any dimension. To evaluate them, we use the dimensional

regularization. Throughout the paper we accept the following definition of the L-loop

master integrals:

MasterIntegrali =

(
1

iπD/2

)L ∫
dDk1 . . . d

DkL
Numi.

Deni.
. (5.1)

Since we are interested only in the leading divergences (the leading poles in dimen-

sional regularization), the task is essentially simplified. One has to admit that to calculate

the leading pole, there is no need to calculate the multiloop diagram itself. The leading

pole follows from the lowest order singularity due to the nature of the R-operation. It is

valid in any local field theory and guarantees the locality of divergences if the lower order

counterterms are taken into account.

Let us briefly recall the main notions of the R-operation [45, 46]. Being applied to

any Green function Γ (or any particular graph G, as in our case) it subtracts all the UV

divergences including those of divergent subgraphs and leaves the finite expression. The use

of the R-operation is equivalent to addition of the counter terms to the initial Lagrangian.

The R operation can be written in terms of the subtraction operators in the factorized form

RG =
∏
γ

(1−Kγ)G, (5.2)

where the subtraction operator Kγ subtracts the UV divergence of a given subgraph γ

(for the minimal subtraction scheme the operator K singles out the 1/εn terms) and the

product goes over all divergent subgraphs including the graph itself.

It is useful to define also the incomplete R operation denoted by R′ which subtracts

only the subdivergences of the graph G. The full R operation is then defined as

RG = (1−K)R′G, (5.3)

where K without subscript is KG. The KR′G is the counter term corresponding to the

graph G. Each counter term contains only the superficial divergence and is local in coor-

dinate space (in our case it must be a polynomial of external momenta).

The R′ operation for any graph G can be defined by the forest formula, but for our

calculations it is more convenient to use the recursive definition via the R′ operation for

divergent subgraphs (for details and examples see chapter 3 in [47]):

R′G =

(
1−

∑
γ

(KR′)γ +
∑
γ,γ′

(KR′)γ (KR′γ′)− . . .
)
G, (5.4)

The sum goes over all 1PI, UV-divergent subgraphs of the given diagram and the multiple

sums include only the non-intersecting subgraphs. And

(KR′)γ G = KR′(γ) ∗G/γ, (5.5)
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Figure 1. The choice of the inner momenta.

where G/γ denotes the graph G with the subgraph γ shrinked to point, the ∗ operation

inserts the subgraph’s counter term (in our case it is a polynomial of momenta external to

a given subgraph) into the remaining graph G/γ.

When applying this formula to the diagrams at hand one finds out that for the n-loop

diagram the R′-operation results in the series of terms (we consider only the leading pole)

An(µ2)nε

εn
+
An−1(µ

2)(n−1)ε

εn
+ . . .+

A1(µ
2)ε

εn
, (5.6)

where the term like Ak(µ
2)kε

εn comes from the k-loop graph which survives after subtraction

of the (n − k)-loop counterterm. The full expression (5.6) has to be local, i.e. should not

contain terms like (log µ)k/εm for all k,m > 0 while being expanded over ε. (For simplicity

hereafter we put µ2 ≡ µ.) This requirement gives us n − 1 equations for the coefficients

Ai. Solving them one gets

An = (−1)n+1A1

n
. (5.7)

In the case when the first divergence appears at k loops (as in the D=6 case where k=3)

this formula is slightly modified and looks like

An = (−1)n+k
(k − 1)!(n− k − 1)!

n(n− 2)!
A1. (5.8)

This means that performing the R′-operation one can take care only of the one loop

diagrams surviving after contraction and get the desired pole term via eq. (5.8). This

observation drastically simplifies the calculation of the leading pole.

To demonstrate how this technique works, we calculate the leading pole of the 5-loop

diagram I
(5)
4 in D=6 (see appendix A). For pedagogical purposes we describe first the

calculation using the full R′-operation and then show how the truncated version using

eq. (5.8) works. At the beginning, we define the inner momenta, as shown in figure 1. The

slashes on the lines correspond to the numerator

Num = (p2 − l + p3)
2(p1 + q)2 (5.9)

It is useful to rewrite the first bracket as (p2− l+ p3)
2 = (p2− l)2 + 2p3(p2− l) + p23. Then,

having in mind that p23 = 0 we have two terms.

In the first term the numerator (p2 − l)2 cancels one of the propagators. The R′-
operation for this diagram is shown in figure 2. There are two 1PI divergent subgraphs,
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Figure 2. The R′-operation for the first term.

the three-loop and the four-loop ones. Since one subgraph is inside the other the R′-
operation contains only the first sum in eq. (5.4). For the graphs framed in dashed boxes

one has to take the KR′ expression.

We start from the 3-loop subgraph. Since the singular part of the tennis-court 3-

loop graph equals −1/6ε and does not depend on momenta, one actually has to calculate

the remaining 2-loop graph. To do this, we notice that the one-loop bubble in D=6 is

proportional to the ingoing momentum squared, so when substituting it into the 2-loop

graph one propagator will be canceled and the resulting graph will take the form of a

bubble with ingoing momentum equal to p2. Since this bubble is also proportional to the

square of the ingoing momentum and p22 = 0, this leads the contribution equal to zero.

We now repeat the same procedure for the 4-loop subgraph. To calculate the KR′-
operation for it, we have again to substitute the 3-loop tennis-court graph, shrink it to a

point to get the bubble, which again is proportional to the incoming momentum squared.

This momentum is not on shell but being substituted into the remaining triangle in figure 2

cancels one propagator. This converts the triangle into the bubble which for the same

reason as above is equal to zero.

Thus, our conclusion is that the first term gives zero contribution.

Consider now the second term. The R′-operation in this case is shown in figure 3.

Again we have two divergent subgraphs, one inside the other, which give two contributions.

The first one contains the 2-loop graph. Its singular part can be calculated via the R′-
operation shown in figure 4. The divergent subgraph here is a triangle

∫
2p3(p2 − l) d6−2εl

(p2 − l)2(l − k)2(p1 + l)2
= − 1

6ε
2p3(2p2 − k + p1) + finite terms (5.10)

Substituting it into the remaining triangle obtained by shrinking the first one to a point

we get the integral

∫
2p3(2p2 − k + p1) d

6−2εk

(p2 − k)2(k)2(p1 + k)2
= − 1

6ε
2p3(5p2 + 4p1) + finite terms (5.11)
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Figure 3. The R′-operation for the second term. The dot corresponds to the numerator 2p3(p2−l).

!"#

Figure 4. The R′-operation for the 2-loop subgraph.

!"#

Figure 5. The R′-operation for the 4-loop subgraph.

Now we have for the 2-loop graph

R′ : A2µ
2ε

ε2
− 2p3(5p2 + 4p1)µ

ε

36ε2
. (5.12)

From this equation requiring the cancellation of the log µ/ε term we get

A2 =
5t+ 4u

72ε2
=
t− 4s

72ε2
. (5.13)

Thus, the first contribution to the R′-operation is(
− 1

6ε

)
(t− 4s)µ2ε

72ε2
= −(t− 4s)µ2ε

216 · 2ε3
. (5.14)

For the second contribution the problem is reduced to the 4-loop counterterm. To

compute it we again use the the R′-operation. The corresponding graphs are shown in

figure 5. The calculation repeats the one performed above (5.10) and one gets the R′-
operation for the 4-loop subgraph

R′ : A4
µ4ε

ε2
−
(
− 1

6ε

)(
−µ

ε

6ε
2p3(2p2 − k + p1)

)
. (5.15)
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This gives for A4

A4 =
2p3(2p2 − k + p1)

4 · 36
. (5.16)

Thus, the KR′ for the 4-loop subgraph is

KR′ = 2p3(2p2 − k + p1)

4 · 36ε2
µ4ε − 2p3(2p2 − k + p1)

36ε2
µε = −3

2p3(2p2 − k + p1)

4 · 36ε2
(5.17)

Next, we substitute the obtained coefficient into the second part of the R′-operation for

the 5-loop subgraph figure 4. The resulting triangle integral including the numerator has

the form (5.11) which gives(
− 3µε

4 · 36ε2

)(
− 1

6ε
2p3(5p2 + 4p1)

)
=
µε3(t− 4s)

4 · 216ε3
. (5.18)

Summing up eqs. (5.14), (5.18) for the full R′-operation for the 5-loop graph one has

R′ : A5µ
5ε

ε3
+
µ2ε(t− 4s)

2 · 216ε3
− µε3(t− 4s)

4 · 216ε3
(5.19)

expanding over ε and collecting the terms of log µ/ε2 and log2 µ/ε we get two equations to

determine A5:

log µ : 5A5 + 2/2/216(t− 4s)− 3(t− 4s)/4/216 = 0 (5.20)

log2 µ : 25A5 + 4/2/216(t− 4s)− 3(t− 4s)/4/216 = 0 (5.21)

Solution to these eqs is

A5 = −(t− 4s)

20 · 216
=
s− t/4
30 · 36

(5.22)

Consistency of the two equations serves as a check of correctness of the calculations.

One can arrive at the same result in a shorter way using the truncated R′-operation and

evaluating only the term with the one-loop subgraph (5.18). Indeed, using relation (5.8)

for n = 5, k = 3 one gets

A5 =
1

15
A1 = − 1

15

3(t− 4s)

4 · 216
=
s− t/4
30 · 36

. (5.23)

This gives us the result listed in table 1.

As the second example we consider the evaluation of the the diagram I
(3)
2 in D=8 by

means of the truncated R′-operation. Again, we define the inner momenta, as shown in

figure 6. Keeping in mind that p2i = 0 we rewrite the numerator in the following way:

Num = (p1 + n)2 = 2(p1n) + n2. (5.24)

The term proportional to n2 cancels the corresponding propagator. Thereby, after shrink-

ing the 2-loop subgraphs we get the bubble diagram which is proportional to the on-

shell momentum squared and is equal to zero. Thus, the numerator finally gets the form

Num = 2(p1n).
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Figure 7. The R′-operation for the 3-loop graph. The dot corresponds to the numerator 2(p1n).

!"#

Figure 8. The R′-operation for the double box.

Consider now the R′ - operation for this diagram having in mind that we are interested

only in the one loop remaining graphs shrinking the rest of the diagram to a point. Since

the upper right and left boxes transform into bubbles after shrinking the rest part of the

diagram and these bubbles are again proportional to the on-shell momentum squared, the

answer for both of them is zero. Therefore, the only one loop graph that survives is the

lower box. The R′ - operation is shown in figure 7

The calculation of the double box subgraph is performed again using the R′-operation

shown in figure 8 The integral for the left box has the following form:∫
d8−2εk

k2(n− k)2(l − k)2(p1 + k)2
=

1

6ε
+ finite terms. (5.25)

Since its singular part does not depend on momenta, the right box is the same. For the

first and second triangles in figure 8 the integrals are∫
d8−2εk

k2(n− k)2(p1 + k)2
= −2n2 + 2(p1n)

24ε
+ finite terms,∫

d8−2εl

(p1 + l)2(n− l)2(p2 + p3 − l)2
= −n

2 + 2 · 2(p1n) + 2(p4n) + t

24ε
+ finite terms. (5.26)

Substituting expressions (5.25), (5.26) into the R′-operation we have for the 2-loops

subgraph

R′ : A2
µ2ε

ε2
− µε

(
−2n2 + 2 · 2(p1n) + 2(p4n) + t

24ε

)
1

6ε
− µε

(
−2n2 + 2(p1n)

24ε

)
1

6ε
(5.27)
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Evaluating the coefficient A2 from the requirement of cancelation of the log µ/ε term

one gets

A2 = −4n2 + 3 · 2(p1n) + 2(p4n) + t

2 · 6 · 24
. (5.28)

This gives the KR′ for the double box

KR′Double Box = A2
µ2ε

ε2
−
(
−4n2 + 3 · 2(p1n) + 2(p4n) + t

2 · 6 · 24

)
µε

ε2

=
4n2 + 3 · 2(p1n) + 2(p4n) + t

2 · 6 · 24 ε2
(5.29)

We now turn back to the R′-operation (figure 7). Substituting (5.29) and having in mind

the numerator 2(p1n) we finally get the triangle with 3 powers of internal momentum in

the numerator. Performing this integration one has

A1

ε3
=
t
(
3t2 − 2st+ s2

)
3!4!5!3ε3

(5.30)

According to eq. (5.7), this gives

A3 =
1

3
A1 =

t
(
3t2 − 2st+ s2

)
3!4!5!9

(5.31)

This way we get the expression for the leading pole of the diagram I
(3)
2 .

Applying the described truncated R′-operation we calculated all the leading poles for

the diagrams in D = 6 up to 5-loops and in D = 8, 10 up to 4-loops. The results are

presented in tables 1 and 2.

5.2 Numerical evaluation

Since in higher loops the evaluation even of the leading pole happens to be a complicated

task, we performed a numerical check of our calculations. To evaluate the graph contributi-

ons to the leading pole numerically, we first go to the Euclidean space and then use the

alpha-representation and the method of sector decomposition [48].

For the diagrams under consideration the leading poles (L.P.) are polynomials of s

and t. For the diagram G with the degree of divergence equal to 2N the leading pole is

L.P.(G(s, t)) =

N∑
i=0

Ci,N−i s
i tN−i (5.32)

The coefficients Ci,j can be calculated performing the differentiation of the integrand over

s and t

L.P.(G(s, t)) =
N∑
i=0

si tN−iL.P.( G i,N−i ), Gi,k =
∂is
i!

∂kt
k!

G(s, t) (5.33)

For i + k = N the integral for Gi,k becomes logarithmically divergent and L.P.(Gi,k) is a

constant which we calculate using the sector decomposition technique. It turns out that
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MI Comb D = 6 D = 8 D = 10

I
(1)
1 st conv 1

3!ε
s+t
5!ε

I
(2)
1 s2t conv − s

3!4!ε2
−s2(8s+2t)

5!7!ε2

I
(3)
1 s3t conv s2

4!5!ε3
−2s4(135s+11t)

5!7!7!3ε3

I
(3)
2 2s2t − 1

6ε
s(3s2−2st+t2)

3!4!5!9ε3
−s2(14s4−10s3t+ 33

5
s2t2− 19

5
st3+ 8

5
t4)

5!7!7!9ε3

I
(4)
1 s4t conv − 210s3

3!4!5!6!ε4
−32s6(99s+2t)

5!7!7!7!3ε4

I
(4)
2 2s3t 1

48ε2
s2(− 430

21
s2+ 4

9
st− 1

18
t2)

3!4!5!6!ε4

−2s4
(

1502144
33

s4− 1085791
33

s3t

+ 2044
5
s2t2− 1001

15
st3+ 112

15
t4

)
5!7!7!7!7!ε4

I
(4)
3 s3t 1

24ε2
s2(− 20

3
s2+ 8

9
st− 1

9
t2)

3!4!5!6!ε4

−28s4
(

8512s4−1043s3t+ 876
5
s2t2−

− 143
5
st3+ 16

5
t4

)
5!7!7!7!7!3ε4

I
(4)
4 2s2t ∼ 1

ε

s

(
− 45

14
s4+ 18

7
s3t− 27

14
s2t2

+ 9
7
st3− 9

14
t4

)
3!4!5!6!ε4

−s2
(
− 7504

1287
s7+ 7819

1716
s6t− 1475

429
s5t2+ 12745

5148
s4t3

− 716
429

s3t4+ 1747
1716

s2t5− 673
1287

st6+ 105
572

t7

)
5!7!7!7!ε4

I
(4)
5 4s2t t−s

3·48ε2

s

(
− 15

28
s4+ 25

63
s3t− 65

252
s2t2

+ 5
42
st3− 1

28
t4

)
3!4!5!6!ε4

−4s2
(
− 95200

143
s7+ 67634

143
s6t− 225008

715
s5t2+ 136514

715
s4t3

− 6608
65

s3t4+ 6706
143

s2t5− 7420
429

st6+ 1715
429

t7

)
5!7!7!7!7!ε4

Table 1. The leading poles of the diagrams up to 4-loops for D = 6, 8 and 10.

MI I
(5)
1 I

(5)
2 I

(5)
3 I

(5)
4

Comb 2s4t 2s4t 4s3t 2s3t

Int − 1
ε3

3
36·40 − 1

ε3
9

36·40
1
ε3
s−t/4
36·15

1
ε3
s−t/4
36·30

MI I
(5)
5 I

(5)
6 I

(5)
7 I

(5)
8

comb 4s2t 2s2t 4s2t 4s2t

Int − 1
ε3
s2−st+t2

36·80 − 1
ε3
s2−st+t2

36·40
1
ε3
s2−st+t2/3

36·80
1
ε3
s2−st+t2/3

36·80

Table 2. The leading poles of the diagrams in 5-loops for D = 6.

it is more convenient to calculate the graph G̃i,k with massive lines and to put s = t = 0.

The leading pole of such a graph is exactly the same as for the massless graph

L.P.
(
G̃i,k|s,t=0

)
≡ L.P.(Gi,k); (5.34)

however, choosing all momenta to be zero one gets additional simplifications in the sector

decomposition technique.
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The standard form of the alpha-representation in the Euclidean space for a graph

without the numerators is

I(s, t,mi) =
(π)DL/2

n∏
i=1

Γ(λi)

∫ ∞
0

dα1 . . . dαn

n∏
i=1

αλi−1i

Ud/2
e
−V/U−

n∑
j=1

mjαj
(5.35)

where λi are the powers of the propagators, the functions U and V are the polynomials

of the alpha-parameters (αi) of the order L and L + 1, respectively. The polynomial V

linearly depends on the squared combinations of the external momenta of the graph. In

our case

V = s · Ps(αi) + t · Pt(αi) . (5.36)

In the general case (for the graphs with the numerators), the alpha-representation can

be obtained from the generating function (for details see [46]), which allows one to construct

the alpha-representation for any particular numerators. This procedure though straight-

forward is rather lengthy. Instead, since we have very specific numerators, we construct

the generating function in terms of the so-called dual graphs. (Some examples are given in

figures 9 and 10). Note that this is always possible for the planar diagrams. In the dual

representation the numerators can be expressed as additional lines with negative powers

of the propagators (see the dotted line in figure 10)).

The propagators with negative powers can be treated as the ordinary propagators but

instead of integration over the alpha-parameter one should differentiate with respect to it

and after that set it to zero

I(s, t,mi) =
(π)DL/2

n∏
i=1

Γ(λi)

( n+k∏
i=n+1

(−∂αi)κi
)∫ ∞

0

dα1 . . . dαn

Ud/2
e
−V/U−

n∑
j=1

mjαj

∣∣∣∣
αn+1=...=αn+k=0

(5.37)

Here the parameters αn+1, . . . , αn+k correspond to the numerators, and κn+1, . . . , κn+k are

the powers of the corresponding numerators. The advantage of this approach with respect

to the standard one is that we have only two polynomials U and V and no additional terms

appear.

For the graphs without the numerators the monomials in U are generated by the 1-

trees and have a degree of L. The momenta corresponding to the alpha-parameters in each

monomial should be linearly independent (assuming that all external momenta and their

combinations are zero). In terms of the dual graphs they should not form loops. Each

monomial in V is generated by the 2-trees and contain the factor equal to the squared

momenta flowing from the one part of the 2-tree to the other.

Note that for the polynomial U in the dual representation one has to treat all external

vertices as identical (equivalent to setting all combinations of external momenta to zero)

and avoid the combinations with chains that contain two external vertices. The polynomial

V is constructed in the same way, but monomials must contain exactly one chain between

external vertices, and is multiplied by the combination of external momenta squared flowing
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Figure 9. The double box diagram and its dual graph.

through the lines that belong to this chain. Actually, this chain works like a cut in the

standard (not dual) representation and the momentum factor is the momentum flowing

through this cut (this is exactly what 2-trees do). Since in our case we have only momenta

s and t in V , this means that for Ps we need the chains that connect the t-vertices and for

Pt the chains that connect the s-vertices (see example below).

To illustrate the equivalence of the dual graphs approach with the usual 1- and 2-

trees, we consider first a simple example without the numerators (see figure 9).

To construct the polynomial U for this graph, we need to find all possible pairs of

alpha parameters which do not form the loops in the dual graph while all external vertices

(marked by s and t) are considered as identical. One has the following combinations of two

and three alpha-parameters which form the loops in the dual graph:

{α1α2, α1α6, α3α4, α3α5, α3α6, α4α5}. (5.38)

{α1α3α7, α1α4α7, α1α5α7, α2α3α7, α2α4α7, α4α6α7, α5α6α7, α2α5α7, α3α6α7}. (5.39)

Since the polynomial U has degree of 2 we take all possible pairs of alpha-parameters except

for those listed in (5.38) and get:

U = α1α3 + α1α4 + α1α5 + α1α7 + α2α3 + α2α4 + α2α5 + α2α7 + α3α6 + α3α7+

+ α4α6 + α4α7 + α5α6 + α5α7 + α6α7

(5.40)

It is easy to check that this polynomial is exactly the one constructed using the 1-trees.

The excluded combinations of alpha-parameters (5.38) are the ones for which the rest of

the graph does not form the 1-tree.

To get the polynomial V (5.36), one needs to find Ps and Pt. Ps consists of the

combinations of three alpha-parameters which contain the chain of lines connecting the

t-vertices and does not form any other loops in the dual graph (the same for Pt but the

chain should connect the s-vertices). There are only 4 chains that connect the t-vertices:

{α2α6, α3α5, α2α5α7, α3α6α7}. (5.41)
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Figure 10. The tennis-court diagram and its dual graph.

Each monomial in Ps is the combination of three alpha-parameters which contain the chains

from (5.41) and do not form any additional loops (5.38), (5.39). Thus, for Ps we have:

Ps = α2α6(α3 +α4 +α5 +α7) +α3α5(α1 +α2 +α6 +α7) +α2α5α7 +α3α6α7. (5.42)

For Pt there is only one chain ({α1α4α7}) that connects the s-vertices, so Pt has form:

Pt = α1α4α7 (5.43)

This concludes the construction of all ingredients needed for the alpha-representation of

the double box graph.

Consider now the “tennis-court” diagram (figure 10). The dashed line (α11) in the

figure corresponds to the numerator and in terms of the dual graph is treated as a normal

line with the propagator in the negative power. The polynomial U contains the monomials

with all possible combinations of 3 alpha-parameters except for the ones which form the

loops in the dual graph. For this graph, the loops are formed by the following combinations

of alpha-parameters: α1α2, α3α4, α5α6, α1α7, α2α7, α1α11, α2α11, α7α11 and α2α3α8,

α4α8α11, α4α5α11, etc. (totally there are 21 combinations which contain 3 parameters and

22 combinations with 4 parameters). This results in 80 terms for U . The polynomial Ps
contains the chains that connect the t-vertices and contain no other loops, i.e., α2α3α9α7,

etc., (totally 32 terms). For Pt there are 25 terms.

Thus, this diagram in the alpha-representation looks like

It.c.(s, t,mi) = (π)3D/2

(−∂α11)

∫ ∞
0

dα1 . . . dα10

Ud/2
e
−(sPs+tPt)/U−

10∑
j=1

mjαj

∣∣∣∣
α11=0

(5.44)

In the case of D = 6, this diagram diverges logarithmically, and we can set both s and t

to zero and calculate the integral

G̃
(D=6)
0,0 (s = 0, t = 0,mi) = (π)3D/2

(−∂α11)

∫ ∞
0

dα1 . . . dα10

Ud/2
e
−

10∑
j=1

mjαj

∣∣∣
α11=0

(5.45)
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graph term numerical exact

I
(4)
1 s0 t0 0 0

I
(4)
2 s0 t0 0.0416652(17) 1/24

I
(4)
3 s0 t0 0.0208328(7) 1/48

graph term numerical exact

I
(4)
1 s3 −209.997(5) −210

I
(4)
2

s4 -6.6661(10) -20/3

s3t 0.888900(24) 8/9

s2t2 -0.1111105(7) -1/9

I
(4)
3

s4 -20.4765(8) -430/21

s3t 0.444420(25) 4/9

s2t2 -0.0555541(10) -1/18

Table 3. The numerical values for some sample 4-loop graphs in D = 6 (left) and D = 8 (right).

The values shown in the right table are multiplied by 6!5!4!3!.

In the D = 8 case, the graph has degree of divergence equal to 6. Hence, one has

four contributions proportional to s3, s2t, st2 and t3. Taking the corresponding derivatives

one has

G̃
(D=8)
i,3−i (s=0, t=0,mi)=(π)3D/2

(−∂α11)

∫ ∞
0

dα1 . . . dα10(−Ps)i(−Pt)3−i

Ud/2+3
e
−

10∑
j=1

mjαj

∣∣∣∣
α11=0

(5.46)

Here the extra multiplier (−Ps)i(−Pt)3−i/U3 originates from differentiation of (5.44) with

respect to s and t.

For the integrals like (5.45), (5.46) the leading pole can be extracted using the sector

decomposition method. To do this, we adopt the Speer-like strategy [49] for the dual

graphs. For the tennis court diagram this strategy produces 390 sectors, for D = 6 all the

sectors contribute to the leading pole, but for D = 8 the leading pole is present only in 144

sectors out of 390.

We performed the numerical evaluation of the leading pole for the diagrams up to

4 loops in D = 6 and D = 8, and up to 3 loops in D = 10. The obtained results are

in good agreement with the analytical values, as can be seen from table 3. The overall

computational time is about 300 hours at the 140 core cluster.

6 Summary of the leading pole evaluation in various dimensions

We summarize here the results of calculation of the leading poles in various dimensions.

6.1 D = 6 N = (1, 1) SYM

Summarizing one has for the leading poles (L.P.) [30]

L.P. = 2stg4

[
g2
s+ t

6ε
+ g4

s2 + st+ t2

36ε2
+ g6

s3 + 2
5s

2t+ 2
5st

2 + t3

216ε3

]
(6.1)

The leading powers of s ant t remind the geometrical progression while for the mixed ones

there are too few terms to make any guess. If taking the geometrical progression seriously,
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Figure 11. R′-operation for the ladder-court graph. Shown are the one loop surviving graphs

only. The dotted line denotes the contracted graph for which the KR′ has to be taken.

one gets
∞∑
n=1

(
g2s

6ε

)n
=

g2s
6ε

1− g2s
6ε

, (6.2)

which looks precisely like the D=4 Yang-Mills theory with the replacement g2 → gss and

in the limit when ε → +0 tends to −1 when s < 0 and to ∞ when s > 0. A natural

question arises whether one can prove eq. (6.2) to be correct. For this purpose consider

the sequence of diagrams appearing in the loop expansion (4.9).

We start with the infinite sequence of diagrams originating from the graph I
(3)
2 by

adding the boxes to the left and to the right. This gives us the diagrams I
(4)
2 , I

(4)
3 , I

(5)
1 , I

(5)
2 ,

etc. Performing the R′-operation and looking for the surviving one loop diagrams one can

notice that they can stand either on the left or right edge of the diagram or in the middle.

But the tennis court subgraph, I
(3)
2 , can be present only once since it is a three-loop block

and if it stands twice the order of the pole drops by two. And the diagrams containing

only boxes do not diverge. Hence one is left with one option: the one loop graph stands at

the edge. This is shown in figure 11.

Consider first the case when the tennis court is situated at the edge and the boxes are

added to one side. Then, since the triangle graph itself is equal to 1/2ε, the KR′Gn−1 =

(−1)nAn−1 and taking into account eq. (5.7) one gets

nAn = −1

2
An−1, (6.3)

where n is the total number of loops. It has a solution

An =
(−1)n

2n
c

n!
, (6.4)

where the constant c can be found from the n = 3 case and is equal to 8.

For the general case, when the boxes are added from both sides one has to take the

sum of all diagrams with k boxes to the left and n-2-k boxes to the right and sum over k

from 0 to n-2. The sum obeys the equation

nΣn = −Σn−1 (6.5)

with the solution

Σn = (−1)n
c

n!
, c = 2. (6.6)

One can check that the corresponding diagrams I
(4)
2 , I

(4)
3 , I

(5)
1 , I

(5)
2 are reproduced by

eqs. (6.4), (6.6).
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Note that factorial comes inevitably due to the linear nature of eqs. (6.3), (6.5). It

reflects the fact that the boxes themselves are finite. Therefore, this type of behavior will

take place for all series of diagrams in this theory, in particular the ones that start with

the diagram I
(4)
5 and the following ones. In any new order of PT the new series starts.

Knowing the n-th order coefficient one may sum all of them and get

∞∑
n=3

(
g2s

ε

)n−2
2

n!
=

2ε2

g4s2

(
e
g2s
ε − 1− g2s

ε
− 1

2

(
g2s

ε

)2)
→

{
−1 s < 0

∞ s > 0
when ε→ +0

(6.7)

One can see that we get the same result in asymptotic as in eq. (6.2), but we have taken into

account only one sequence of diagrams which give the main contribution to the coefficients.

One can continue this procedure and sum the diagrams of the next series which starts

with the 4-loop diagram I
(4)
5 . The difference here is that I

(4)
5 is not a constant but is

proportional to t − s. As for s, it stands outside the integration and is not changed but

t is replaced by t′ corresponding to the contracted diagram in analogy with figure 11 and

has to be integrated over triangle giving both s and t. Thus, we have two relations, one

proportional to s, and the other to t. Considering the sequence of diagrams where the

boxes are added from one side, one gets the relations

nAtn = −1

6
Atn−1, nAsn = −1

2
Asn−1 +

1

6
Atn−1. (6.8)

Solution to these relations is

Atn =
(−1)n

6n−3
1

n!
, Asn =

1

2

(−1)n

6n−3
1

n!
− 1

2

(−1)n

2n−3
1

n!
(6.9)

One can check that eq. (6.9) is valid for the diagrams I
(4)
5 and I

(5)
4 . Summing up the

diagrams where the boxes are added from both sides, similarly to the previous case, one has

nΣt
n = −1

3
Σt
n−1, nΣs

n = −Σs
n−1 +

1

3
Σt
n−1 (6.10)

with the solution

Σt
n =

(−1)n

3n−3
1

n!
, Σs

n =
1

2

(−1)n

3n−3
1

n!
− 1

2
(−1)n

1

n!
(6.11)

These relations reproduce the diagrams I
(4)
5 , I

(5)
3 and I

(5)
4 .

Having these coefficients one can again calculate the whole series

3
t

s

∞∑
n=4

(
g2s

3ε

)n−2
1

n!
=
t

s

27ε2

g4s2

(
e
g2s
3ε − 1− g2s

3ε
− 1

2

(
g2s

3ε

)2

− 1

6

(
g2s

3ε

)3
)

→

{
− t
s
3
2

[
1 + 1

3

(
g2s
3ε

)]
s < 0

∞ s > 0
when ε→ +0, (6.12)
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2

∞∑
n=4

(
g2s

ε

)n−2
1

n!

(
27

3n
− 1

)
=

ε2

2g4s2

[
27

(
e
−g2s
3ε − 1− g2s

3ε
− 1

2

(
g2s

3ε

)2
− 1

6

(
g2s

3ε

)3)

−

(
e
−g2s
ε − 1− g2s

ε
− 1

2

(
g2s

ε

)2

− 1

6

(
g2s

ε

)3
)]

→

{
−3

4

[
1 + 1

3

(
g2s
3ε

)]
+ 1

4

[
1 + 1

3

(
g2s
ε

)]
= −1

2 , s < 0

∞ s > 0
when ε→ +0. (6.13)

Thus, we see that in the limit ε → +0 when s < 0 the first series (6.7) tends to a

constant and the second to a constant plus the first pole (6.12), (6.13). Obviously, the

third series, which starts from 5 loops, will tend to a constant, the first pole, the second

pole and so on. This new series has to be summed again. It has a feature common to

all the sequences, namely it falls as 1/n!. At the same time the number of diagrams in

each order is expected to be of the order of n!nban. For s > 0 all the series diverge when

ε→ +0.

The same is true to the diagrams in the t-channel with the obvious replacement s↔ t.

In the next section, we will show how these results can be promoted for the general case.

6.2 D = 8 N = 1 SYM

Summarizing one has for the leading poles

L.P. = −st
[
g2

1

3!ε
+ g4

s2 + t2

3!4!ε2
+ g6

4

3

15s4 − s3t+ s2t2 − st3 + 15t4

3!4!5!ε3
(6.14)

+ g8
1

63

16770s6 − 536s5t+ 412s4t2 − 384s3t3 + 412s2t4 − 536st5 + 16770t6

3!4!5!6!ε4

]
.

This expression does not look simple even for the leading powers of s or t though numerically

one almost has a geometrical progression with slightly rising coefficients.

Consider now the infinite sequence of horizontal boxes and apply the R′-operation. The

difference from the previous case is that now the box diagram is divergent, and performing

the R′-operation and looking for the surviving one loop diagrams one has to consider the

diagram in the middle as well. Therefore, the graphical form in figure 11 changes. It is

shown in figure 12.

Since the triangle diagram in D=8 is equal to −1/4!/ε and the bubble one to 2/5!/ε,

this gives us the recurrence relation for the leading pole terms

nAn = − 2

4!
An−1 +

2

5!

n−2∑
k=1

AkAn−1−k, n ≥ 3 (6.15)

with A1 = 1/3!. Starting from this value one can calculate any An though the explicit

solution is not straightforward. However, since we actually need the sum of the coefficients

we apply the summation multiplying both sides of eq. (6.15) by (−z)n−1, z being g2s2/ε

∞∑
n=3

nAn(−z)n−1 = − 2

4!

∞∑
n=3

An−1(−z)n−1 +
2

5!

∞∑
n=3

n−2∑
k=1

Ak(−z)kAn−1−k(−z)n−1−k. (6.16)
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Figure 12. R′-operation for the ladder type graph. Shown are the 1-loop surviving graphs only.

Denoting now the sum
∑∞

n=mAn(−z)n by Σm and performing the interchange of the order

of summation in the nonlinear term we get

− d

dz
Σ3 = − 2

4!
Σ2 +

2

5!
Σ1Σ1. (6.17)

Having in mind that

Σ3 = Σ1 +A1z −A2z
2, Σ2 = Σ1 +A1z, A1 =

1

3!
, A2 = − 1

3!4!
,

one finally gets the equation for Σ ≡ Σ1

Σ′ = − 1

3!
+

2

4!
Σ− 2

5!
Σ2. (6.18)

Solution to this equation is

Σ(z) = −
√

5/3
4 tan[z/(8

√
15)]

1− tan[z/(8
√

15)]
√

5/3
, (6.19)

The expansion of tan z contains the Bernuli numbers

tan z =
∞∑
n=1

(−1)n−1
22n(22n − 1)B2n

(2n)!
z2n−1.

Being substituted into eq. (6.19) it gives

Σ(z) = −(z/6 + z2/144 + z3/2880 + 7z4/414720 + . . . ) (6.20)

Remind that here z = g2s2

ε . This series reproduces the diagrams I
(1)
1 , I

(2)
1 , I

(3)
1 and I

(4)
1

which give the main contribution to the amplitude PT series.

The function Σ given by eq. (6.19) has an infinite sequence of simple poles and thus has

no limit when ε → 0. This is similar to the geometrical progression with non-alternating

series.

The next sequence of diagrams comes from the tennis-court one supplemented by boxes

from both ends. Here one again has the nonlinear terms like in eq. (6.15) and the set of
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three sums proportional to s2, st and t2 like in eq. (6.10). This looks more complicated

but is simplified by the fact that the tennis court diagram appears only ones, so equations

are in fact linear and generally look like

Σ′court = c− Σcourt + ΣcourtΣbox (6.21)

with Σbox given by eq. (6.19) above.

Since Σbox has a singular behavior when ε→ 0, so does Σcourt. Moreover, for any finite

number of sequences of this kind one will always have a singular behavior. Only when one

has an infinite number of them, which is actually our case, one may avoid this singularity.

6.3 D = 10 N = 1 SYM

Summarizing one has for the leading poles

L.P. = −st
[
g2
s+ t

5!ε
+ g4

8s4 + 2s3t+ 2st3 + 8t4

5!7!ε2
(6.22)

+ g6
2(2095s7 + 115s6t+ 33s5t2 − 11s4t3 − 11s3t4 + 33s2t5 + 115st6 + 2095t7)

5!7!7!45ε3

+ g8
32(211218880s10 + 753490s9t− 1395096s8t2 + 1125763s7t3 − 916916s6t4

13!7!7!5!5ε4

+843630s5t5 − 916916s4t6 + 1125763s3t7 − 1395096s2t8 + 753490st9 + 211218880t10)

13!7!7!5!5ε4

]
.

One can construct the recurrence relations here as well. For the box type diagrams one

has a relation similar to the D=8 case but since the one loop box has the numerator (s+ t)

one has two separate expressions like in eq. (6.8). At the same time they are nonlinear like

eq. (6.15). One has

nAtn = −2
2

7!
Atn−1 +

1

3 · 7!

n−2∑
k=1

AtkA
t
n−1−k, (6.23)

nAsn = −2

[
1

3 · 5!
Asn−1 −

6

7!
Atn−1

]
(6.24)

+
3

7!

n−2∑
k=1

(
2AskA

s
n−1−k −AskAtn−1−k −AtkAsn−1−k +

5

9
AtkA

t
n−1−k

)
with As1 = At1 = 1/5!. These equations also reproduce all the ladder type diagrams

calculated above.

7 All loop recursive equations

It is possible to construct the recursive relations for all the diagrams. They actually follow

from the analysis of the series and the way how the diagrams are constructed and enter

the R′-operation.

Indeed, one particular way to obtain the dual conformal invariant diagram of the n-th

order from the (n-1)-order is to follow the so-called “rung rule” [44, 50], which states that
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Figure 13. The “rung rule” (left) and its application for the box diagram (right).

one has to take the diagram of the (n-1)-th order and insert a line connecting each pair of

the neighboring lines multiplying by a factor equal to the square of the total momentum (see

figure 13 left). This is true for all the dual conformal invariant diagrams with triple vertices,

which are proportional to the common factor st, and does not include the diagrams with

numerators without this factor and the diagrams with quartic vertices [40, 41]. However,

the latter ones do not contain the leading poles.

To demonstrate how it works, let us take the simplest box diagram. The application

of the rung rule reproduces the horizontal and vertical double boxes with appropriate

coefficients (see figure 13 right). This way, starting from a single box and applying the

rung rule one adds boxes to the left and right and to the top and bottom, thus creating

new s-channel and t-channel diagrams.

What is important, to get the leading pole, the diagram should contain the maximally

divergent subgraphs which being shirked to a point leave the one loop divergent graph.

Integrating over this graph gives the desired leading pole. The topology of all the graphs

constructed via the rung rule leaves just one possibility: the maximally divergent graph

should have a box at the left (right) or top (bottom) edge. All the other graphs either do

not contain the maximally divergent subgraphs or, if they do, their shrinking to a point

leaves the one loop subgraph, which contains a single leg with light like momenta and hence

is equal to zero. This property singles out the set of maximally divergent graphs.

Consider now the R′-operation for this set of graphs. For the the s−channel type

diagram it has the form graphically presented in figures 11 and 12 where now the (n-1)-th

order diagrams in dotted boxes contain both the s-channel and t-channel contributions.

Here we use the above mentioned property that the diagram of interest always contains

the box either on the left or on the right edge. The KR′Gn−1 is a polynomial in s and t;

however, s is a common factor while t for Gn−1 contains the integration momentum over

the last loop. Substituting the explicit form of s and t and integrating over the triangle by

introducing the Feynman parameters one gets the desired recursive relation.

7.1 D = 6 N = (1, 1) SYM

In the case of D = 6 it looks like

nSn(s, t) = −2s

∫ 1

0
dx

∫ x

0
dy (Sn−1(s, t

′) + Tn−1(s, t
′)), n ≥ 4 (7.1)

where t′ = tx+uy, u = −t−s, and S3 = −s/3, T3 = −t/3. Here we denote by Sn(s, t) and

Tn(s, t) the sum of all contributions in the n-th order of PT in s and t channels, respectively.
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The same recursive relation is valid for the t-channel diagrams with the obvious replacement

s ↔ t. Due to the s − t symmetry of the amplitude, one should have Tn(s, t) = Sn(t, s).

The coefficient An(s, t) of the n’th order pole is the sum

An(s, t) = Sn(s, t) + Tn(s, t).

Eqs. (7.1) reproduces all the diagrams calculated above and may serve as a generating

function for the diagrams in all orders. The first few terms are

S4(s, t) = +
2s2 + st

36
,

S5(s, t) = −5s3 + s2t+ st2

540
, (7.2)

S6(s, t) = +
25s4 + 5s3t− s2t2 + 3st3

19440
.

The Mathematica file with a simple code, which generates the Sn and Tn polynomials up

to given order is available.

Since we know now all the leading pole contributions in all orders of PT, it is tempting

to sum them over. However, explicit solution of the recursive relation (7.1) is problematic.

Instead, we proceed in the following way: we multiply both sides of eq. (7.1) by (−z)n−1

and sum over n from 4 to ∞, z being g/ε. Then on the left hand side one has a derivative

d

dz
Σ4(s, t, z) = 2s

∫ 1

0
dx

∫ x

0
dy (Σ3(s, t

′, z) + Σ3(t
′, s, z))|t′=xt+yu. (7.3)

Using the fact that Σ4(s, t, z) = Σ3(s, t, z) + S3(s, t)z
3 one gets the equation

d

dz
Σ3(s, t, z) = 3S3z

2 + 2s

∫ 1

0
dx

∫ x

0
dy (Σ3(s, t

′, z) + Σ3(t
′, s, z))|t′=xt+yu. (7.4)

Since the first divergence appears only in the third loop order the function of interest is

Σ(s, t, z) =
∑∞

n=3(−z)n−2Sn = z−2Σ3(s, t, z). Substituting it into eq. (7.4) and taking into

account that S3(s, t) = −s/3 one gets the final equation for the sum of PT series

d

dz
Σ(s, t, z) = s− 2

z
Σ(s, t, z) + 2s

∫ 1

0
dx

∫ x

0
dy (Σ(s, t′, z) + Σ(t′, s, z))|t′=xt+yu. (7.5)

One has the same equation in the t-channel

d

dz
Σ(t, s, z) = t− 2

z
Σ(t, s, z) + 2t

∫ 1

0
dx

∫ x

0
dy (Σ(s′, t, z) + Σ(t, s′, z))|s′=xs+yu. (7.6)

Summing them up one gets for the total sum Σ(s, t, z) + Σ(t, s, z)

d

dz
(Σ(s, t, z) + Σ(t, s, z)) = (s+ t)− 2

z
[Σ(s, t, z) + Σ(t, s, z)]

+2s

∫ 1

0
dx

∫ x

0
dy [Σ(s, t′, z) + Σ(t′, s, z)]|t′=xt+yu (7.7)

+2t

∫ 1

0
dx

∫ x

0
dy [Σ(s′, t, z) + Σ(t, s′, z)]|s′=xs+yu.

– 31 –



J
H
E
P
1
1
(
2
0
1
5
)
0
5
9

The behavior of the solution to this equation is defined by the fixed point, i.e. the

zero of the right hand side. As z → ∞ one can neglect the second term and under the

assumption that the fixed point is a constant get the following conjecture:

Σ(s, t, z) + Σ(t, s, z) = −1. (7.8)

Consider now how this fixed point is approached. The sign of the derivative is propor-

tional to s+ t = −u. In the case when u < 0 the derivative is positive above the fixed point

and negative below it. So if the initial value of Σ is above the fixed point, it will increase

and if it is below it, it will decrease. This means that the fixed point is unstable. On the

contrary, if u > 0 the sign is changed and the fixed point is stable, the solution tends to it

as z → +∞ or ε→ +0. Therefore, the stability properties depend on the kinematic region.

For u > 0 the fixed point is stable and the theory is finite in the limit ε→ +0.

The situation will be the same for other partial amplitudes. In the (s,u) channel the

theory is finite if t > 0 and in the (t,u) channel it is finite if s > 0. Unfortunately, all three

conditions are incompatible since s + t + u = 0 and one can not have all of them to be

positive.

7.2 D = 8, 10 N = 1 SYM

Consider now the cases of D=8 and D=10. Here according to figure 12, one has an

additional nonlinear term, therefore eq. (7.1) is modified. Note that for this last term

when integrating over the loop on both sides one has functions of s and t. Replacing t by t′

one should have in mind that on the left t′ = (l− p1) and on the right t′ = (l+ p4), where l

is the integration momentum. This means that while integration one gets the mixed terms

like gµνpµ1p
ν
4 . This can be taken into account and one gets an equation which looks the

same way for D=8 and D=10. For D=8 one has

nSn(s, t) = −2s2
∫ 1

0
dx

∫ x

0
dy y(1− x) (Sn−1(s, t

′) + Tn−1(s, t
′))|t′=tx+yu

+s4
∫ 1

0
dx x2(1− x)2

n−2∑
k=1

2k−2∑
p=0

1

p!(p+ 2)!

dp

dt′p
(Sk(s, t

′) + Tk(s, t
′))×

× dp

dt′p
(Sn−1−k(s, t

′) + Tn−1−k(s, t
′))|t′=−sx (tsx(1− x))p, (7.9)

where S1 = 1
12 , T1 = 1

12 . Equation (7.9) reproduces all the above calculated diagrams.

The terms with the derivatives in the second term do not contribute so far.

In the case of D=10 one gets analogously

nSn(s, t) = −s3
∫ 1

0
dx

∫ x

0
dy y2(1− x)2 (Sn−1(s, t

′) + Tn−1(s, t
′))|t′=tx+yu

+s5
∫ 1

0
dx x3(1− x)3

n−2∑
k=1

3k−2∑
p=0

1

p!(p+ 3)!

dp

dt′p
(Sk(s, t

′) + Tk(s, t
′))×

× dp

dt′p
(Sn−1−k(s, t

′) + Tn−1−k(s, t
′))|t′=−sx (tsx(1− x))p, (7.10)

where S1 = s
5! , T1 = t

5! . Here the terms with the derivatives work starting from 3 loops.
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Equations (7.9), (7.10) can be summed the same way as in the D=6 case (7.3). Mul-

tiplying both sides by (−z)n−1 and summing up over n from 3 to ∞ one gets

d

dz
Σ3(s, t, z) = 2s2

∫ 1

0
dx

∫ x

0
dy y(1− x) (Σ2(s, t

′, z) + Σ2(t
′, s, z)|t′=tx+yu (7.11)

−s4
∫ 1

0
dx x2(1− x)2

∞∑
p=0

1

p!(p+ 2)!
(
dp

dt′p
(Σ1(s, t

′, z) + Σ1(t
′, s, z)|t′=−sx)2 (tsx(1− x))p.

Using now that

Σ3(s, t, z) = Σ1(s, t, z)s − S2(s, t)z2 + S1(s, t)z, Σ2(s, t, z) = Σ1(s, t, z) + S1(s, t)z,

d

dz
Σ3(s, t, z) =

d

dz
Σ1(s, t, z)− 2S2(s, t)z + S1(s, t), 2S2(s, t) = 2s2

∫
(S1(s, t

′) + S1(t
′, s))

one gets

d

dz
Σ(s, t, z) = − 1

12
+ 2s2

∫ 1

0
dx

∫ x

0
dy y(1− x) (Σ(s, t′, z) + Σ(t′, s, z))|t′=tx+yu (7.12)

−s4
∫ 1

0
dx x2(1− x)2

∞∑
p=0

1

p!(p+ 2)!
(
dp

dt′p
(Σ(s, t′, z) + Σ(t′, s, z))|t′=−sx)2 (tsx(1− x))p.

And analogously for D=10

d

dz
Σ(s, t, z) = − s

5!
+ s3

∫ 1

0
dx

∫ x

0
dy y2(1− x)2 (Σ(s, t′, z) + Σ(t′, s, z))|t′=tx+yu (7.13)

−s5
∫ 1

0
dx x3(1− x)3

∞∑
p=0

1

p!(p+ 3)!
(
dp

dt′p
(Σ(s, t′, z) + Σ(t′, s, z))|t′=−sx)2 (tsx(1− x))p.

The same equation with the replacement s↔ t can be derived for Σ(t, s, z).

8 Conclusion

Summarizing the obtained results one should admit that the calculation of the leading poles

of the multiloop diagrams in nonrenormalizable theories is not a simple task contrary to

the renormalizable theories where they are given by the renormalization group equations.

Nevertheless, we succeeded in writing down the recursive equations which allow us to

calculate the desired poles at any loop order. In a sense, these equations replace the RG

ones for the nonrenormalizable case [51]. The difference is that in this case they are not

algebraic but contain the integration over the Feynman parameters.

Summation of perturbation series for the leading poles is also more complicated though

the qualitative behaviour resembles that of renormalizable theories with the obvious re-

placement g2 → g2s or g2t. To get the sum of the infinite series, we derived the differential

equations and the task is reduced to the problem of finding the fixed points and investigat-

ing their stability properties. This is more explicit in D = 6 and looks more complicated

in D = 8, 10 due to the nonlinearity of the equations.
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1

s2t

I(2)
1

s4t
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s3t
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s2t
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3

2s3t

I(4)
2

2st2

I(4)
4

4s2t

I(4)
5

Figure 14. All the diagrams containing the leading pole from one to four loops.

In renormalizable theories the UV divergences either cancel in each order of PT like

in the N = 4 D=4 SYM theory, or are absorbed into the renormalization of the couplings

and fields. In the nonrenormalizable case one may hope to get either the cancellation at

each order (see the attempts in N = 8 SUGRA in D=4) or the finite limit as a result

of summation of the infinite PT series (like in D=4 QED where one has a zero charge

behaviour). We have demonstrated that in higher dimensional maximally supersymmetric

theories one may hope that the second opportunity is realized though the limit depends

on the kinematics and we did not find the one where all the partial amplitudes are finite.

It might be that the D = 8 and D = 10 cases are better from this point of view. This is

still to be found.

The D = 6 SYM theory sometimes serves as a toy model for gravity since it has a

dimensional coupling and the UV behavior similar to D = 4 gravity. The results of our

analysis show that the finiteness of a theory which is our main goal is not reached so far. At

the same time, it looks as if the loop by loop cancellation program does not work. It seems

that the leading poles do not reveal any additional hidden symmetry, the dual conformal

invariance being exploited already. Hopefully, the obtained new recursive relations and the

differential equations for the infinite sum of PT open the promising opportunity for the

analysis of the UV divergences.

A The master integrals up to 5 loops

All the diagrams up to 5-loops, which contain the leading pole, are presented in figure 14

and figure 15. The diagrams which can be obtained by the exchange s↔t are not shown.

The rest of the diagrams can be found in [40, 41]. The combinatorial factor is given on the

left side of the diagram.
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2s4t
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2s4t

I(5)
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4s2t

I(5)
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4s3t

I(5)
4

2s3t
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3

4s2t

I(5)
7

2s2t
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Figure 15. The 5-loop diagrams containing the leading pole in D=6.
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