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1 Introduction

The matrix theory of Banks-Fischler-Susskind-Shenker [1, 2] was formulated by [4–6] along

the lines of the AdS/CFT correspondence [3] as a duality between the 16-supercharge

SU(N) gauged matrix quantum mechanics and the decoupling limit of the 0-brane ge-

ometry in type IIA string theory, which admits an M-theory lift to an asymptotically

null-compactified spacetime. Though the matrix quantum mechanics may appear to be a

(deceivingly) simple theory, it has been difficult to extract bulk physics from it. Perturba-

tive computations in matrix theory beyond one-loop suffers from infrared divergences that

are regularized through non-perturbative effects [8]. It is expected that semi-classical grav-

ity in the bulk can only be recovered through strong coupling dynamics at large N . Rela-

tively little is known regarding the strong coupling/low energy dynamics of matrix quantum

mechanics beyond Monte Carlo simulations. Attempts of analytically understanding the

strong coupling dynamics of matrix theory include the use of truncated Schwinger-Dyson

equations, with limited success.

Various indirect arguments, as well as a careful computation of the supersymmetric

index, indicate that the theory has a unique, normalizable, SO(9) rotationally invariant

– 1 –



J
H
E
P
1
1
(
2
0
1
5
)
0
2
7

supersymmetric ground state [11–16]. There is a continuum of scattering states above the

ground state. It is commonly believed (though not often stated explicitly) that there are

no normalizable energy eigenstates of nonzero energy; in other words, all excited energy

eigenstates are scattering states. This is consistent with the bulk picture that black holes

can decay by radiating D0-branes [29], which are the only particles in the bulk that can

escape to infinity. The bulk picture on the other hand also suggests the existence of

an exponentially large number of metastable states with exponentially long life time.1

These metastable states are the dual description of the microstates of the black hole at

finite temperature.

An outstanding question is to describe these metastable states directly in the frame-

work of matrix quantum mechanics. The first step is to understand the structure of the

ground state wave function. An asymptotic expansion for the ground state wave function

in the SU(2) case has been studied in [17, 18], and subsequent proposals for N ≥ 3 were

made in [19, 20]. In this paper we extend the study of the asymptotic expansion to the

general SU(N) matrix theory. We will demonstrate that, first of all, the leading term in

the asymptotic ground state wave function is governed by a set of 16 supercharges that

describe N or N − 1 free non-relativistic superparticles on R9|16. This is intuitive from the

perspective of effective field theory on the Coulomb branch, though in the EFT approach

it was unclear how to carry out a systematic expansion in 1/r, particularly due to trouble

with infrared divergences.

We then propose an explicit form of the leading asymptotic ground state wave function,

based on a structure that involves a summation over trees that successively group the N

particles. Our proposed form solves the supercharge constraint exactly, and obeys the

expected factorization property in various limits on the Coulomb branch of the theory.

There is a small ambiguity in our wave function, encoded in a simple set of constant “two-

body coefficients”, which are not determined by any simple argument we know of. Our

proposal differs from previous suggestions in the SU(3) case [19]; in particular, the overall

scaling power with r is different (the proposal of [19] tails off faster at large distances by

a factor of r−14). We also compute the next-to-leading order correction to the asymptotic

wave function, and show how we can go to higher orders.

Let us begin by recalling the Hamiltonian of matrix theory,

H =
1

2
Tr

(
P 2
i −

1

2
[Xi, Xj ]2 − Θ̂TΓi[Xi, Θ̂]

)
, (1.1)

where the bosonic and fermionic matrices can be written as Xi = Xi
ATA, Θ̂α = Θ̂αATA,

with TA the SU(N) generators, normalized by Tr(TATB) = δAB. Here i = 1, 2, · · · , 9
and α = 1, · · · , 16 are vector and spinor indices of SO(9). Pi are the canonical momenta

conjugate to Xi, while Θ̂αA obey canonical anti-commutation relations

{Θ̂αA, Θ̂βB} = δαβδAB. (1.2)

1This is a peculiar feature of the bulk geometry, in that only the D0-branes can approach asymptotic

infinity at a finite cost of energy. It is in contrast to Schwarzschild black holes in flat spacetime whose

lifetime scales like a power of its mass.

– 2 –



J
H
E
P
1
1
(
2
0
1
5
)
0
2
7

Gauging the SU(N) means that we restrict the Hilbert space to consist of SU(N) invariant

states. The 16 supercharges are written as

Qα = Tr

(
Pi(Γ

iΘ̂)α −
i

2
[Xi, Xj ](ΓijΘ̂)α

)
, (1.3)

which obey the supersymmetry algebra up to a gauge rotation

{Qα, Qβ} = 2δαβH + 2ΓiαβX
i
ACA. (1.4)

Here CA are the operator realization of SU(N) generators,

C = CATA = −i[Xi, Pi]−
1

2
{Θ̂α, Θ̂α}. (1.5)

Our objective is to find the SO(9) invariant ground state wave function annihilated by

all Qα. The idea is to begin with a Born-Oppenheimer-type approximation, by starting

at a generic point on the Coulomb branch where the Xi’s are close to being commuting

with one another, and treat the off-diagonal components as internal degrees of freedom.

In the next section we will formulate an expansion of the wave function in powers of r−
3
2

where r is essentially the distance between eigenvalues on the Coulomb branch. A (so far)

consistent proposal for the leading term in the asymptotic expansion of the ground state

is given in section 3. The next-to-leading order correction is computed in section 4, and

a systematic way of going to higher orders is presented. We conclude with discussions on

the physical implications of our result and some speculations.

2 The asymptotic expansion

In this section we explain the method for solving the supersymmetry constraint equations

on the wave function based on an asymptotic expansion, closely following the approach

of [18] (see also [20]).

2.1 Removing the gauge redundancy

We are after the SU(N)-invariant ground state wave function which is annihilated by the

supercharges Qα, namely

Tr

{
∂

∂X i
ΓiαβΘ̂β +

1

2
[Xi, Xj ]ΓijαβΘ̂β

}
Ψ = 0. (2.1)

In analyzing the asymptotic form of the wave function, we will expand near a generic point

at large distances on the Coulomb branch, and put the bosonic matrices Xi in the form

UX iU−1 =


ri1 0

0 ri2
. . .

riN

+


0 qi12

(qi12)∗ 0
. . .

0

 (2.2)
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for some SU(N) matrix U . We write ~ra = (r1
a, · · · , r9

a), ~qab = (q1
ab, · · · , q9

ab), and work in

the regime of large |~ra − ~rb| such that qiab are very massive. To ensure that this is the

case, namely that the qiab’s are transverse to the valley of the scalar potential, we must

choose U in such a way that ~qab · (~ra− ~rb) = 0 for all a, b. This condition fixes U up to the

diagonal U(1)N−1 that rotates the phases of ~qab. We will leave these degrees of freedom

in U unfixed. This is acceptable because it still allows us to work in the regime of small

qiab in the large ria limit. Since in this limit qiab are described as harmonic oscillators in a

potential |~ra − ~rb|2(qiab)
2, it is convenient to define

yiab = |~ra − ~rb|
1
2 qiab (2.3)

so that yiab ∼ O(1).

Similarly, we separate Θ̂α, after the appropriate SU(N) rotation, into diagonal and

off-diagonal modes, according to

UΘ̂αU
−1 =


θα1 0

0 θα2

. . .

θαN

+


0 (Θα)12

(Θα)∗12 0
. . .

0

 . (2.4)

From now the unhatted notation (Θα)ab will always refer to these off-diagonal components

of UΘ̂αU
−1. Note that the overall SU(N) gauge rotation, which acts on both Xi and Θ̂α,

only acts by rotating U and does not act on (ri, qi, θα,Θα).

The next step is to write ∂/∂X i in terms of derivatives on ria and yiab. The details are

given in appendix A, with the result[
U

∂

∂X i
U−1

]
ba

= δab
∂

∂ria
+ Πij

ab

∂

∂qjab
−

r̂iab
|rab|

∑
c 6=a,b

(
ykca

|rca|
1
2

Πkj
cb

∂

∂qjcb
−

ykbc

|rbc|
1
2

Πkj
ac

∂

∂qjac

)

+
r̂iab
|~rab|

[
U
∂

∂U

]
ba

+O(r−
5
2 ), (2.5)

where riab ≡ ria − rib, and Πij
ab ≡ δij − r̂iabr̂

j
ab. Next, we need to change coordinate on the

fermions Θ̂α into (θα,Θα) as well. In doing so, we must make the replacement[
U
∂

∂U

]
ab

→ Rab +Mab, (2.6)

where Rab is the overall SU(N) gauge rotation generator that only acts on U but not on

(ri, qi, θα,Θα), and Mab is the SU(N) generator acting on the fermions.2

Now we can write[
U

∂

∂X i
U−1

]
ba

= δab
∂

∂ria
+ Πij

ab

∂

∂qjab
−

r̂iab
|rab|

∑
c 6=a,b

(
ykca

|rca|
1
2

Πkj
cb

∂

∂qjcb
−

ykbc

|rbc|
1
2

Πkj
ac

∂

∂qjac

)

+
r̂iab
|rab|

(Rba +Mba) +O(r−
5
2 ). (2.8)

2Explicitly,

Mab =
1

2
[(Θα)ae, (Θα)ec] + (θαa − θαb)(Θβ)ab. (2.7)
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In the application below, we will take this expression for ∂/∂X i to act on an SU(N) in-

variant wave function, that is, a wave function that is invariant under the SU(N) action

simultaneously on the original bosons and fermions Xi and Θα. In the new coordinate

system (U, ri, qi, θα,Θα), it only acts on U . The upshot is that Rab annihilates the SU(N)

invariant wave function and can be dropped from now, and U will no longer appear explic-

itly in our computations below.

2.2 The asymptotic expansion of the supercharge

After dropping the Rab term and changing variables from qiab to yiab, we can now write the

supercharge as an expansion in r−
3
2 , in the form

iQα =
∑
a 6=b
|~rab|

1
2

[
Πij
ab

∂

∂yjba
Γiαβ(Θβ)ba +

1

2
r̂iaby

j
abΓ

ij
αβ(Θβ)ba

]

+
∑
a

∂

∂ria
Γiαβθβa +

∑
a 6=b

[
r̂iab

2|rab|
yjab

∂

∂yjab
Γiαβ(θβa − θβb)

+
∑
c 6=a,b

yiacy
j
cb

|rac|
1
2 |rbc|

1
2

Γijαβ(Θβ)ba +
yiaby

j
ba

2|rab|
Γijαβ(θβa − θβb)−

r̂iab
|rab|

Γiαβ(Θβ)baMab

−
∑
c 6=a,b

(
|rbc|

1
2

|rac|
1
2

ykcaΠ
kj
cb

∂

∂yjcb
− |rac|

1
2

|rbc|
1
2

ykbcΠ
kj
ac

∂

∂yjac

)
r̂iab
|rab|

Γiαβ(Θβ)ab

+O(r−
5
2 ). (2.9)

We will write the first line after the equal sign as Q0
α and3 the next two lines as Q1

α. Q0
α

scales like r
1
2 while Q1

α scales like r−1. The wave function will take the following form

Ψ = Ψ0 + Ψ1 + Ψ2 + · · · , (2.10)

where Ψn scales like r−κ−
3
2
n. Our goal is to determine κ. Separating the equations accord-

ing to the scaling degree in r, we have a series of equations

Q0
αΨ0 = 0,

Q0
αΨ1 +Q1

αΨ0 = 0, etc.
(2.11)

The first equation is a differential equation in yiab only. The solution Ψ0 takes the form

Ψ0 = f(~ra)|ψ0(r̂)〉y,Θ, (2.12)

where |ψ0(r̂)〉y,Θ is the ground state wave function of an r̂ab-dependent (denoted here col-

lectively by r̂) supersymmetric harmonic oscillator in the off-diagonal (y,Θ) sector, obeying

Q0
α|ψ0(r̂)〉y,Θ ≡

∑
a 6=b
|rab|

1
2

[
Πij
ab

∂

∂yjba
Γiαβ(Θβ)ba +

1

2
r̂iaby

j
abΓ

ij
αβ(Θβ)ba

]
|ψ0(r̂)〉y,Θ = 0. (2.13)

f(~ra) is a so far undetermined wave function that has some overall scaling r−κ, and includes

the fermionic wave function in the diagonal θ sector.

3Our convention for Qnα’s differs from that of the usual supercharge by a factor of i.
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The next key step is to consider a projection P0 onto the zero-eigenspace of Q0
α. Since

iQ0
α is Hermitian, any state of the form Q0

αΨ1 must be orthogonal to the zero-eigenspace

of Q0
α, and is thus annihilated by P0. Consequently, the next-to-leading order equation in

the asymptotic expansion implies

P0Q
1
αΨ0 = 0. (2.14)

Since Q1
α involves an r-derivative, this equation will provide nontrivial constraints on f(~ra).

2.3 Reducing to the Cartan wave function

Q0
α has an anti-commutator of the form

{Q0
α, Q

0
β} = δαβ

∑
a 6=b
|rab|

[
Πij
ab

∂

∂yiab

∂

∂yjba
− 1

4
yab · yba −

1

2
r̂kabΓ

k
γδ(Θγ)ab(Θδ)ba

]
+ ΓkαβMk.

(2.15)

For each pair a, b, consider the matrix r̂kabΓ
k
αβ that acts on SO(9) spinors. This matrix has

eight +1 eigenvalues and eight −1 eigenvalues. Let Π±ab be the projection operators onto

the positive and negative spinor eigenspaces of r̂iabΓ
i. By definition, Π±ab = Π∓ba.

Given a fixed pair a, b, let |Fab(r̂ab)〉 be a unit norm state in the Θab sector, that is

annihilated by (Θ−ab)α ≡ (Π−ab)αβ(Θβ)ab and (Θ−ba)α ≡ (Π−ba)αβ(Θβ)ba = (Π+
ab)αβ(Θβ)∗ab for

all α, and is invariant under simultaneous SO(9) rotations on r̂ab, Θab and Θba. Such a

state is unique up an overall (r̂-independent) phase. We will write |F (r̂)〉 =
⊗

a<b |Fab(r̂ab)〉
for such a zeroth-order fermion ground state in the entire off-diagonal Θ sector (again, the

notation here is such that r̂ stands collectively for the set of all r̂ab’s). We can then construct

|ψ0(r̂)〉 by combining |F (r̂)〉 with the harmonic oscillator ground state wave function for

the yiab’s,

|ψ0(r̂)〉 = e−
1
4

∑
a 6=b |yab|2 |F (r̂)〉. (2.16)

There are 8N(N − 1) independent yiab’s, and the ground state energy of the harmonic

oscillator precisely cancels with the fermionic contribution in the coefficient of δαβ . One

can verify that |ψ0(r̂)〉 is annihilated by Mk as well.

Now we can write

Ψ0 = e−
1
4

∑
a 6=b |yab|2

∑
s

fs(~ra)|s〉 ⊗ |F (r̂)〉, (2.17)

for a set of functions fs(~ra), where s labels states in the Clifford module of the 16(N − 1)

diagonal θαa’s (s = 1, · · · , 28(N−1)). Let us inspect the action of

Q1
α =

∑
a

∂

∂ria
Γiαβθβa +

∑
a 6=b

 r̂iab
2|rab|

yjab
∂

∂yjab
Γiαβ(θβa − θβb) +

∑
c 6=a,b

yiacy
j
cb

|rac|
1
2 |rbc|

1
2

Γijαβ(Θβ)ba

+
yiaby

j
ba

2|rab|
Γijαβ(θβa − θβb)−

r̂iab
|rab|

Γiαβ(Θβ)baMab

−
∑
c 6=a,b

(
|rbc|

1
2

|rac|
1
2

ykcaΠ
kj
cb

∂

∂yjcb
− |rac|

1
2

|rbc|
1
2

ykbcΠ
kj
ac

∂

∂yjac

)
r̂iab
|rab|

Γiαβ(Θβ)ab

 (2.18)
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on Ψ0. Keep in mind that ∂/∂ria which appears in Q1
α acts not only on the functions fs(~ra)

but on |F (r̂)〉 as well.

Under the projection P0, we can replace yab ·∂yab and yiacy
j
cb in Q1

α by their expectation

values in the harmonic oscillator ground state wave function e−
1
4

∑
a,b |yab|2 = e−

1
2

∑
a<b |yab|2 .

Furthermore, any term that involves the product of an odd number of Θ’s when acting

on Ψ0 cannot preserve the fermion ground state in the Θ sector, and the result will be

annihilated by P0. Note that the projector P0 does not touch the θαa degrees of freedom.

Let us define (Θ±α )ab ≡ Π+
ab(Θα)ab. All states that survive the P0 projection are annihilated

by Θ−α , while any state obtained by acting with Θ+
α is killed by P0. Using the relation

P0(Θβ)baMabΨ0 = P0[(Θβ)−ba,Mab]Ψ0 = −(Π+
ab(θa − θb))βΨ0, (2.19)

we can replace Q1
α by a simplified operator

Q̃1
α =

∑
a

∂

∂ria
Γiαβθβa −

∑
a 6=b

2

|rab|
r̂iabΓ

i
αβ(θβa − θβb) +

∑
a 6=b

1

|rab|
(Π+

ab)αβ(θβa − θβb)

=
∑
a

∂

∂ria
Γiαβθβa −

∑
a 6=b

3

|rab|
r̂iabΓ

i
αβθβa,

(2.20)

in the sense that

P0Q
1
αΨ0 = P0Q̃

1
αΨ0. (2.21)

Furthemore, the ria dependence of Ψ0 may be expressed as dependence on |rab| and r̂ab.

Under a variation δria, we have

δ|rab| = r̂ab · (δ~ra − δ~rb),

δr̂ab =
δ~rab − r̂ab(r̂ab · δ~rab)

|rab|
.

(2.22)

Thus we can write

∂

∂ria
=
∑
b 6=a

(
r̂iab

∂

∂|rab|
+

r̂jab
|rab|

Rjiab

)
, (2.23)

where Rijab is the generator of SO(9) rotation on r̂ab for each pair a, b. Note that it does

not act on the fermions, by definition. In the Θ sector, the zeroth order ground state wave

function |F (r̂)〉 by construction is invariant under the SO(9) rotation on r̂ab, Θab, and Θba.

Let us denote by F ijab the SO(9) rotation generator on Θab and Θba, namely

F ijab =
1

4
(ΘabΓ

ijΘba). (2.24)

Thus when acting on |F (r̂)〉 with Rijab, we can replace Rijab by −F ijab. Note that F ijab|F (r̂)〉 =
1
4(Θ+

abΓ
ijΘ+

ba)|F (r̂)〉, and is thus annihilated by the projector P0. In other words, we can

ignore the r̂ab-dependence of |F (r̂)〉 in computing P0Q̃
1
αΨ0. For this purpose, we might as

– 7 –
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well replace Q̃1
α by an operator4 of the same form as (2.20), but now acting entirely on the

“Cartan wave function”
ΨC

0 =
∑
s

fs(~ra)|s〉 (2.25)

that is just in the (r, θ) sector. Now the projector P0 is no longer needed; the equation

P0Q
1
αΨ0 = 0 simply reduces to

Q̃1
αΨC

0 = 0. (2.26)

2.4 Treating the Cartan fermions

In the simplest SU(2) case, the indices a, b take values 1 and 2 (and ~r2 = −~r1). There are

16 θα’s, giving rise to 28 = 256 states in the θ sector. With respect to the SO(9) rotation

on the θα’s, these 256 states branch into

44⊕ 84⊕ 128. (2.27)

Here the 44 is the traceless symmetric tensor representation of SO(9). The other two

irreducible representations of SO(9) cannot form a singlet by tensoring with a power of the

vector representation (coming from r̂). The fermion part of the SO(9) invariant ground

state wave function, |s〉, must thus be constructed from the 44. Such a state is unique up

to the overall factor, namely, it is |r̂r̂〉 ≡ r̂ir̂j |sij〉, where |sij〉 is a basis for the 44. The

SO(9) invariance of the wave function allows us to replace Rij by −1
4(θΓijθ) that rotates

θ instead of ~r. One can show that

r̂j(Γiθ)α(θΓijθ)|r̂r̂〉 = 36r̂i(Γiθ)α|r̂r̂〉. (2.28)

One then finds that Q̃1
αΨC

0 = 0 is solved by ΨC
0 = r−6|r̂r̂〉.

The case of general SU(N) gauge group will be treated in the next section. Note that

the integration measure for our wave function Ψ at large r takes the form5

∫ N−1∏
a=1

d9~ra

(∏
a<b

r2
ab

)
r−4N(N−1)

∫ ∏
a 6=b

d9~yab δ(~yab · r̂ab). (2.29)

If the leading asymptotic wave function Ψ0 has an overall scaling r−κ, normalizability then

demands κ > −3
2(N − 3)(N − 1).

3 The leading ground state wave function

3.1 Reducing to free superparticles

We are seeking an SN × SO(9) invariant Cartan wave function ΨC
0 that is annihilated by

Q̃1
α =

∑
a

 ∂

∂ria
−
∑
b 6=a

3

r2
ab

riab

Γiαβθβa. (3.1)

4By a slight abuse of notation we will still denote this operator by Q̃1
α.

5Here r2ab come from the gauge-fixing, and r−4N(N−1) comes from the change of variables from q to y.
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It is convenient to define
Ψnew ≡

∏
a<b

|rab|−3ΨC
0 . (3.2)

Then the equation for Ψnew becomes simply Qnew
α Ψnew = 0, where Qnew

α take the form of

the supercharges for a set of free superparticles,

Qnew
α =

∑
a

∂

∂ria
Γiαβθβa. (3.3)

We immediately learn that Ψnew takes the form

Ψnew =
∑
s

Fs(r
i
a)|s〉, (3.4)

where Fs(r
i
a) for each internal fermion state |s〉 is a harmonic function on R9(N−1). Indeed,

in the SU(2) case, Ψnew = r−9r̂ir̂j |sij〉 ∝ ∂i∂jr−7|sij〉 is of such form.

3.2 The SU(N) proposal

So far we have been writing the supercharges and the Hamiltonian as if we were dealing

with the U(N) theory. In dealing with the SU(N) matrix theory, we need to factor out

the center of mass degrees of freedom. This is straightforward in the bosonic sector: the

wave function when viewed as a function of ~x1, · · · , ~xN is taken to be invariant under the

overall translation ~P =
∑N

a=1 ~pa. Care must be taken in the fermion sector, however, since

we have quantized the θαa independently, with

{θαa, θβb} = δabδαβ . (3.5)

We should factor out θ = (θ1 + θ2 + · · ·+ θN )/N , and only work with the combinations of

θ’s (for instance, θa − θ) that anti-commute with θ. In the expression for the supercharge

Qα in terms of ria, q
i
ab, θαa, (Θα)ab, the only term that involves the center of mass position

and fermionic coordinate θ is
∑N

a=1 p
i
aΓ

iθa, where pia = −i∂/∂ria. In passing to the SU(N)

system, we can separate

N∑
a=1

piaΓ
iθa = P iΓiθ +

N∑
a=1

(
pia −

1

N
P i
)

Γi(θa − θ), (3.6)

and simply drop the first term P iΓiθ, since P i and θ commute with the remaining terms

of the supercharge. The ground state wave function will depend on the relative bosonic

coordinates ~xa− ~xb, and its fermionic component may be constructed as an element of the

Clifford module coming from θa− θ. Be aware that θa− θ do not anti-commute with θb− θ
for a 6= b. Rather, we have {

θa − θ, θb − θ
}

= δab −
1

N
. (3.7)

One can in principle go to a basis in which the anti-commutators become diagonal, and

quantize the theory using that basis. However, such a basis is rather inconvenient to work

with. Below we will employ a different approach.
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Though the problem of finding Ψ0 is reduced to the free problem of finding ΨC or

Ψnew, this problem doesn’t have a unique solution in the general SU(N) case, even after

imposing SN × SO(9) invariance. It is possible that there are more constraints coming

from the smoothness of the wave function at small riab when all order corrections are

included. For now, we will constrain Ψ0 further by some physical intuition. Namely, we

expect that in a limit on the Coulomb branch where (ria, θα) are separated into two clusters

centered at (xi, θα) and (yi, ηα), and the SU(N) broken into SU(M)×SU(N), Ψnew should

be approximately proportional to the SU(2) wave function in the relative bosonic and

fermionic coordinates (xi − yi, θα − ηα). Motivated by this, we now make a proposal for

Ψ0 (or equivalently for Ψnew) which will be an exact solution of P0Q
1
αΨ0 = 0, and satisfies

this factorization criterion.

We will in fact define recursively a weighted n-body asymptotic wave function,

Ψ
(n)
k1,k2,··· ,kn(~r1, θ̂1α;~r2, θ̂2α; · · · ;~rn, θ̂nα). (3.8)

Here ka are a set of positive integers. By writing θ̂αa in the argument, we simply mean that

the fermionic component of the wave function is built by quantization of θ̂αa according to

their appropriate anti-commutators. We will see in the construction below that θ̂αa obey

the anti-commutation relations

{θ̂αa, θ̂bβ} =
1

ka
δabδαβ . (3.9)

In fact, by construction Ψk1,··· ,kn will be a function of the relative positions ~ra − ~rb only,

and its fermion component will be built out of θ̂αa − θ̂αb only.

First of all, we define a two-body wave function,

Ψ
(2)
k1,k2

(~r1, θ̂α1;~r2, θ̂α2) = Ck1,k2Ψnew
SU(2)

 ~r1 − ~r2√
k−1

1 + k−1
2

,
θ̂α1 − θ̂α2√
k−1

1 + k−1
2

 . (3.10)

Here Ψnew
SU(2)(~r, θ) is as in the SU(2) case,

Ψnew
SU(2)(~r, θ) =

9∑
i,j=1

∂i∂j |~r|−7|sij〉θ. (3.11)

Ck1,k2 = Ck2,k1 is a normalization constant that may depend on k1, k2, which is so far

undetermined. Note that the two-body wave function factor is invariant under exchanging

the two bodies (~r → −~r, θ → −θ).
Now we define the recursive relation between the n-body wave function and the (n−1)-

body wave function

Ψ
(n)
k1,k2,··· ,kn(~r1, θ̂1α;~r2, θ̂2α; · · · ;~rn, θ̂nα) =

∑
1≤i<j≤n

Cki,kjΨ
new
SU(2)

 ~ri − ~rj√
k−1
i + k−1

j

,
θ̂i − θ̂j√
k−1
i + k−1

j


×Ψ

(n−1)

ki+kj ,k1,··· ,�ki,··· ,��kj ,··· ,kn

(
kiri + kjrj
ki + kj

,
kiθ̂i + kj θ̂j
ki + kj

; r1, θ̂1; · · · ;��ZZri, ��AÂθi; · · · ;��@@rj , �
�A
Âθj ; · · · ; rn, θ̂n

)
.

(3.12)
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Note that by our construction,
θ̂i−θ̂j√
k−1
i +k−1

j

anti-commutes with
kiθ̂i+kj θ̂j
ki+kj

and with all

other θ̂k, k 6= i, j.

It is then straightforward to verify that

Ψnew = Ψ
(N)
1,1,··· ,1(~r1, θ1α;~r2, θ2α; · · · ;~rN , θNα) (3.13)

is an exact solution for the asymptotic ground state Cartan wave function, namely the

corresponding ΨC
0 is annihilated by Q̃1

α.6

The proposed Ψnew is also manifestly invariant under the permutation (Weyl group

action) by SN , and is SO(9) rotationally invariant. And it satisfies the factorization

property in various limits of the Coulomb branch with the symmetry breaking pattern

SU(N) → SU(k) × SU(N − k). To see the latter, consider the limit where say a cluster

~r1, · · · , ~rk ∼ ~R1 are far separated from ~rk+1, · · · , ~rN ∼ ~R2. In this limit Ψnew is domi-

nated by

Ψnew −→ Ck,N−kΨ
new
SU(2)

(√
k(N − k)

N
(~R1 − ~R2),

√
N − k
kN

(θ̂1 + · · ·+ θ̂k)

−

√
k

(N − k)N
(θ̂k+1 + · · ·+ θ̂N )

)
×Ψ

(k)
1,··· ,1(r1, θ̂1; · · · ; rk, θ̂k) Ψ

(N−k)
1,··· ,1 (rk+1, θ̂k+1; · · · ; rN , θ̂N ),

(3.16)

which scales like |~R1 − ~R2|−9 at large separations between the two clusters. The contribu-

tions from other terms in the recursive sum die off like |~R1 − ~R2|−18 or faster in this limit.

Ψnew may also be expressed as a summation over all trees that join the N particles, the

product of two-body wave functions associated with each bifurcation of the tree, weighed

by the coefficient
∏
bifurcation Cki,kj .

Note that the asymptotic wave function Ψ0 is not normalizable, obviously, since it

is homogeneous under the simultaneous rescaling of all ~ra. We don’t have an a priori

argument to fix the coefficients Ck1,k2 . It is perhaps tempting to suggest that Ck1,k2 = 1

for all k1, k2, but this need not be the case. Even though the full two-body wave function

has a natural normalization, Ψ
(2)
k1,k2

only captures its tail at large distances.

6This is easily seen from the simple identity under the change of variables

r− =
r1 − r2√
k−1
1 + k−1

2

, r+ =
k1r1 + k2r2
k1 + k2

,

θ− =
θ̂1 − θ̂2√
k−1
1 + k−1

2

, θ+ =
k1θ̂1 + k2θ̂2
k1 + k2

,

(3.14)

that

θ̂1
∂

∂r1
+ θ̂2

∂

∂r2
= θ−

∂

∂r−
+ θ+

∂

∂r+
. (3.15)

The normalization factors are needed in order to preserve the desired normalization of the anti-commutators

of θ̂’s.
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This proposal would easily answer the question of the overall scaling exponent in r.

Ψnew scales like r−9(N−1), and therefore

κ = −3

2
N(N − 1) + 9(N − 1). (3.17)

The power of convergence in the integration of the squared wave function at large r is then

r−9(N−1). This is different from the previous proposal of [19] in the SU(3) case, for instance.

The ansatz of [19] is constructed by taking an ~ra-independent SO(9) singlet fermion wave

function, multiplied by the scalar harmonic function r−9(N−1)+2, and then acted on by all

16 free supercharges Qnew
α . The resulting wave function falls off faster than our proposal

by a factor of r−14 at large distances.

4 Going to higher orders

4.1 The general structure

Now that we have found a solution for Ψ0 that obeys

P0Q
1
αΨ0 = 0, (4.1)

we can then determine Ψ1 as

Ψ1 =
1

16H0
Q0
αQ

1
αΨ0 +K1, (4.2)

where −16H0 = Q0
αQ

0
α (this comes from {Q0

α, Q
0
β} = −2H0δαβ + ΓkαβM0

k), and K1 is a yet

to be determined wave function in the kernel of H0 (or of the Q0
α’s). It follows from the

Jacobi identity on the Qα’s expanded to first order that (4.2) indeed solves the equation

Q0
βΨ1 +Q1

βΨ0 = 0.

The next equation in the r−
3
2 expansion is

Q0
αΨ2 +Q1

αΨ1 +Q2
αΨ0 = 0. (4.3)

Not knowing Ψ2, we can again project by P0, and consider

P0Q
1
αΨ1 + P0Q

2
αΨ0 = 0. (4.4)

This may be expressed as an equation for K1,

P0Q
1
αK1 = −P0

(
Q1
α

1

16H0
Q0
βQ

1
β +Q2

α

)
Ψ0. (4.5)

The situation here is similar to the equations for Ψ0. We could demand K1 to be a Cartan

wave function tensored with |ψ0(r̂)〉 (the unique ground state of H0 in the (y,Θ) sector),

and then try to solve a Dirac-like equation for free superparticles, but now with a source

term.

In fact, the r.h.s. of (4.5) vanishes. This can be seen by inspecting the general structure

of the r.h.s. of (4.5). Q0
βQ

1
βΨ0 is a linear combination of states in the (y,Θ) sector that
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has H0 eigenvalues 1
2 |rab|, |rab|, or 3

2 |rab|. It is straightforward to compute (H0)−1Q0
βQ

1
βΨ0

explicitly, which we defer to the next subsection. When we act on it further with P0Q
1
α,

only the (y,Θ)-sector lowering operators in Q1
α contribute. In the end, we can write

P0Q
1
α(H0)−1Q0

βQ
1
βΨ0 in a way such that no ~ra-derivatives are taken on Ψ0. Now Q0

α

changes the total level in the y-sector by an odd amount, while Q1
α contains only terms

that change the total y-level by an even amount. Thus Q1
α(H0)−1Q0

βQ
1
βΨ0 must be excited

in the y-sector and is annihilated by P0.

As for the term P0Q
2
αΨ0 on the r.h.s. of (4.5), once again we need only consider the

terms in Q2
α that leave the (y,Θ) sector in its ground state. It is not hard to see that

Q2
α has the schematic form θy∂r + θy2∂y + Θy∂y + yΘ3 + yθΘ2 + y3∂yΘ. The last term

comes from expanding ∂qjab/∂X
i to one order higher than what is computed explicitly in

appendix A. We don’t need its explicit form nonetheless. None of these terms could keep

both y and Θ sectors in their ground states. We conclude that P0Q
2
αΨ0 = 0.

So in the end K1 obeys exactly the same equations as that of Ψ0, and can be set

to zero.7

4.2 Solving for Ψ1

The next-to-leading order asymptotic wave function Ψ1 is thus given by 1
16(H0)−1Q0

αQ
1
αΨ0.

We can put Q1
αΨ0 = (1− P0)Q1

αΨ0 into the form

Q1
αΨ0 =

∑
a 6=b

[
r̂jab

4|rab|
(Θ+

abΓ
ijΘ+

ba)Γ
i
αβθβa

+
r̂iab

2|rab|

(
yjab

∂

∂yjab
+ 4

)
Γiαβ(θβa − θβb) +

∑
c 6=a,b

yiacy
j
cb

|rac|
1
2 |rbc|

1
2

Γijαβ(Θ+
β )ba

+
yiaby

j
ba

2|rab|
Γijαβ(θβa − θβb)−

r̂iab
|rab|

(1− P0)Γiαβ(Θβ)baMab

−
∑
c 6=a,b

(
|rbc|

1
2

|rac|
1
2

ykcaΠ
kj
cb

∂

∂yjcb
− |rac|

1
2

|rbc|
1
2

ykbcΠ
kj
ac

∂

∂yjac

)
r̂iab
|rab|

Γiαβ(Θ+
β )ab

Ψ0.

(4.6)

It is straightforward though tedious to compute Q0
αQ

1
αΨ0. By inspecting the excitation

levels in the (y,Θ)-sector, we can easily act (H0)−1 on it and obtain, after some simplifi-

cation,

Ψ1 = −5

8

∑
a 6=b

1

|rab|
3
2

(Θ+
ba /yab(θa − θb))Ψ0 +

∑
a 6=b

∑
c 6=a,b

1

|rab|+ |rac|+ |rbc|

[
15

8

(Θ+
bc /ycaΘ

+
ab)

|rac|
1
2

+
1

16

(
1

|rbc|
− 1

|rab|

)
(~rab · ~yca)(Θ+

abΘ
+
bc)

|rac|
1
2

− 2
(~rcb · ~yac)(~ycb · ~yba)
|rab|

1
2 |rac|

1
2 |rbc|

1
2

]
Ψ0.

(4.7)

7More precisely, it can be absorbed into Ψ0, which isn’t a priori homogeneous. Though our proposal

for Ψ0 is homogeneous with respect to the simultaneous rescaling of all ~ra, in principle there could be

corrections of subleading power in r, for instance the type of solution considered in [19].
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4.3 Higher orders in the r−
3
2 expansion

While the first order correction Ψ1 is determined algebraically from Ψ0, this is a priori not

the case at higher orders. For instance, in order to solve for Ψ2, we need to consider the

following two equations. The first one is

Q0
αΨ2 +Q1

αΨ1 +Q2
αΨ0 = 0

⇒ Ψ2 =
1

16H0

(
Q0
αQ

1
αΨ1 +Q0

αQ
2
αΨ0

)
+K2,

(4.8)

where K2 obeys Q0
αK2 = 0. Here we are separating Ψ2 into a piece that involves excited

states in the off-diagonal (y,Θ) sector, and a piece K2 that involves only the ground state

in the off-diagonal sector. The second equation we need to consider is

Q0
αΨ3 +Q1

αΨ2 +Q2
αΨ1 +Q3

αΨ0 = 0

⇒ P0Q
1
αΨ2 + P0Q

2
αΨ1 + P0Q

3
αΨ0 = 0.

(4.9)

K2 can now be determined from

P0Q
1
αK2 = −P0Q

1
α

1

16H0

(
Q0
βQ

1
βΨ1 +Q0

βQ
2
βΨ0

)
− P0

(
Q2
αΨ1 +Q3

αΨ0

)
. (4.10)

The r.h.s. of (4.10) appears to be nontrivial, and now we need to solve a Dirac-like equation

for the wave function of N − 1 superparticles with a source. Note that while we demand

K2 to fall off like r−3 faster than Ψ0 at large distances, K2 is of course not normalizable

and such a solution generally exists.

5 Discussion

The observation that the leading asymptotic ground state wave function Ψ0 is governed

by supercharges for free superparticles has been pointed out previously in [6, 20]. This is

perhaps obvious already from the perspective of effective field theory, though in the effective

field theory approach it may not have been clear how to construct a systematic asymptotic

expansion. In the well known perturbative computation of scattering at large impact

parameters [7–10], beyond one-loop order one encounters infrared divergences, which have

been mostly ignored.8

The condition P0Q
1
αΨ0 = 0 does not uniquely determine Ψ0, however. If we had

started with the wrong ansatz for Ψ0, in principle there could be obstructions in solving

the recursive equations for the asymptotic expansion at higher orders, or it could also be

that the inconsistency is not visible at the level of the asymptotic expansion, but rather

may be seen only after summing up the entire series in some way. It would also be tricky

to guess a solution that is consistent with all symmetries of the problem. Our proposal is

the simplest one that is consistent with all symmetries of the problem and the expected

factorization property when the eigenvalues/D0-branes are divided into clusters on the

8The point is that an IR divergence due to propagators at near zero frequency would have been cut off

non-perturbatively, essentially due to the normalizability of the ground state wave function itself.
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Coulomb branch. There could be corrections to this proposal already at leading order,

namely in Ψ0 itself, but it does not seem easy to construct another solution with the desired

symmetry properties. [19] suggested a different form of Ψ0, which in principle could enter

as a correction to our proposal, but it has a different scaling in r and dies off faster at large

distances. Even if such corrections are present in Ψ0, it would not be possible to determine

it based on the asymptotic expansion alone, as it would render Ψ0 inhomogeneous under

the overall scaling of r.9

The structure of the proposed Ψ0 may provide some hints on the semi-classical nature of

the bulk spacetime, at distances r � N
1
3 (in M-theory Planck units) from the origin. While

N
1
7 � r � N

1
3 is the weakly curved type IIA string theory regime, and 1 � r � N

1
7 is

the weakly curved 11-dimensional M-theory regime, both lie in the strong ’t Hooft coupling

domain of the matrix quantum mechanics, and within the expected spatial spread of the

ground state wave function. It has been mysterious why a probe eigenvalue that comes

in from the asymptotic region (corresponding to a highly stringy regime in the bulk IIA

picture) and interact with the ground state wave function of the remaining, say, SU(N −1)

part of the matrix quantum mechanics, would behave like a semi-classical particle governed

by the Born-Infeld action in the bulk geometry. In our proposal for Ψ0, which takes the

form of a sum over products of two-body wave functions, one could hope the answer to

be already approximately valid for rab’s that are parameterically large compared to 1 (or

the scale set by gYM in the QM), as opposed to N
1
3 (or N

1
7 for that matter), though this

is not at all obvious. Based on this form of Ψ0 and its subleading corrections, perhaps a

more reliable computation can be performed for the scattering of eigenvalues/D0-branes off

the ground state wave function at impact parameters less than N
1
3 , extending the results

of [8, 10] to the seemingly non-perturbative regime.10

Eventually, we would like to count and understand the structure of long-lived

metastable states of the matrix quantum mechanics at large N , which are supposed to

be dual to microstates of the black hole in the bulk, either in the weakly coupled IIA

regime or in the M-theory regime. Despite some numerical success based on Monte Carlo

study of the thermal free energy [25–30], there is little analytic understanding of the struc-

ture of such nonzero energy states. Some encouraging results are obtained using truncated

Schwinger-Dyson equations and extrapolating to the low temperature regime [21–24]. We

hope a more precise understanding of the ground state wave function will provide insight

on how to construct the general metastable excited states and ultimately a way to study

Lorentzian observables relevant to the physics of black holes.
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A Change of variables in the asymptotic expansion

Due to the constraint

~qab · ~rab = 0, (A.1)

we are only allowed to use

(δij − r̂iabr̂
j
ab)

∂

∂qjab
, (A.2)

where r̂ab ≡ ~rab/|~rab|.
Writing Xi = U−1(riaEa + qiabTab)U , we have

UdX iU−1 = [riaEa + qiabTab, dUU
−1] + driaEa + dqiabTab. (A.3)

Taking the trace of both sides multiplied by (ric− rid)Tdc = ricdTdc (not summing over c, d),

we have

ricd
(
UdX iU−1

)
cd

= ricdTr
(
Tdc[r

i
aEa + qiabTab, dUU

−1]
)

= |rcd|2(dUU−1)cd + ricd
[
qicb(dUU

−1)bd − (dUU−1)cbq
i
bd

] (A.4)

The second term on the r.h.s. is down by a factor of r−
3
2 compared to the first term on the

r.h.s. , once we make the change of variables qiab = |rab|−
1
2 yiab and maintain y ∼ O(1). We

can then express

dUU−1 =
∑
c 6=d

ricd
r2
cd

(UdX iU−1)cdTcd

−
∑
c 6=d

ricd
r2
cd

∑
b 6=c,d

[
qicbr

j
bd

r2
bd

(UdXjU−1)bd −
qibdr

j
cb

r2
cb

(UdXjU−1)cb

]
Tcd +O(r−4)

(A.5)

Note that the diagonal components of dUU−1 are unconstrained and are simply set to zero.

Plugging this back into (A.3), we have

UdX iU−1 =
riabr

j
ab

r2
ab

(UdX iU−1)abTab + driaEa + dqiabTab +
qiabr

j
ba

|rab|2
(UdXjU−1)ba(Ea − Eb)

+
∑
c 6=a,b

Πij
ab

[
qjacrkcb
r2
cb

(UdXkU−1)cb −
qjcbr

k
ac

r2
ac

(UdXkU−1)ac

]
Tab +O(r−3).

(A.6)
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From this, we then solve for dria and dqiab in terms of dX i up to O(r−3) terms.

dria = Tr(EaUdX
iU−1) +

∑
b 6=a

rjab

|rab|
5
2

[
yiab(UdX

jU−1)ba + yiba(UdX
jU−1)ab

]
+O(r−3),

dqiab = Πij
ab(UdX

iU−1)ab

−
∑
c 6=a,b

Πij
ab

[
yjac

|rac|
1
2

r̂kcb
|rcb|

(UdXkU−1)cb −
yjcb

|rcb|
1
2

r̂kac
|rac|

(UdXkU−1)ac

]
+O(r−3).

(A.7)
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