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Introduction

General compactifications of M-theory on eight-manifolds provide a rich class of geometries

which are of physical interest due to their relation to F-theory [1–3]. They can serve to test

ideas such as exceptional generalized geometry [4–10], since eight is the first dimension for

which the problem of “dual gravitons” [11–16] appears. Given these aspects, it is rather

surprising that current understanding of such backgrounds is quite limited. The notable

exception is the class of compactifications down to 3-dimensional Minkowski space, which

were studied intensively following the seminal work of [17] (for the N = 1 case) and [18]

(for the N = 2 case). Such backgrounds are obtained by constraining the internal part of

the supersymmetry generators to be Majorana-Weyl rather than merely Majorana. As

expected from no-go theorems (first used within this setting in [19]), such Minkowski

compactifications cannot support a flux at the classical level. However, they can support

small fluxes at the quantum level, which are suppressed by inverse powers of the size of

the compactification manifold. Since such fluxes are difficult to control beyond leading

order [20, 21], a natural idea is to consider instead compactifications down to AdS3 spaces.

As pointed out in [19], compactifications of M-theory down to AdS3 do support classi-

cal fluxes, which are therefore not suppressed. This happens because the internal parts of

the supersymmetry generators are no longer required to be Majorana-Weyl. This seemingly

innocuous extension leads to a surprisingly intricate geometry, as already apparent in the

case of N = 1 unbroken supersymmetry [19, 22], which can be described using the theory of
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singular foliations [23, 24]. By comparison, little is known1 about N = 2 compactifications

down to AdS3. In this paper, we consider certain aspects of the geometry of N = 2 eight-

dimensional backgrounds by working directly in eight dimensions. Namely, we solve the

question of classifying the stratified reductions of structure group which arise on the internal

eight-manifold M , showing that the full picture is considerably richer than has been previ-

ously presumed. Pointwise positions of internal supersymmetry generators as well as their

stabilizer groups are described by stratifications of the internal space M : the first by the

chirality stratification and the second by the stabilizer stratification. Unlike the case N = 1,

the two stratifications need not agree. We find that these stratifications can be described ex-

plicitly using the preimages through certain maps b : M → R3 and B : M → R4 of the con-

nected refinements of the canonical Whitney stratifications [28, 29] of semi-algebraic [30–32]

subsets R ⊂ R3 and P ⊂ R4, where R is obtained from P by projection on the three-

dimensional space corresponding to the first three coordinates of R4. The maps b and B

are constructed from bilinears in the internal supersymmetry generators, while the semi-

algebraic set P can be described explicitly using algebraic constraints implied by the Fierz

identities. This gives a geometric picture of such backgrounds which shows how they can

be approached using the theory of stratified manifolds. We classify the stabilizer groups for

each stratum, thus giving a complete description of the “stratified G-structure” which arises

in such backgrounds. In particular, we find that a generic eight-manifold M of this type

contains an open stratum on which the structure group reduces to SU(2). In a certain sense,

this stratum is the “largest”, but it was not considered previously. We also classify the

amount of supersymmetry preserved by an M2-brane transverse to M along each stratum.

Since the classification results mentioned above are independent of the precise form of

the supersymmetry equations, they hold more generally than the case of compactifications

down to AdS3. To highlight this, we develop the formalism required to describe the “topo-

logical part” of the conditions for supersymmetry, characterizing those finite-dimensional

spaces of globally-defined Majorana spinors which can be spanned by solutions of con-

strained generalized Killing equations (so-called “virtual CGK spaces”). We show that

such spaces must obey a local non-degeneracy condition which puts them in bijection with

trivial sub-bundles of the bundle of Majorana spinors, endowed with a trivial flat connec-

tion. This formulation clarifies some aspects of the mathematical description of so-called

“off-shell supersymmetric” backgrounds.

The paper is organized as follows. Section 1 gives the general description of virtual

CGK spaces K and of the chirality and stabilizer stratifications which they induce on M and

shows how this framework arises in the case of compactifications down to AdS3. We also

treat the case N = 1 as a warm-up, pointing out its differences with the case N = 2. The

rest of the paper is devoted to the detailed study of the latter case. Section 2 discusses the

scalar and one-form bilinears which can be constructed using a basis of K when dimK = 2

and introduces two cosmooth generalized distributions D and D0 (where D0 ⊂ D) which

1Such N = 2 backgrounds were considered in [25] using a nine-dimensional formalism and were also

discussed in [26] with similar methods, but without carefully studying the corresponding geometry of the

eight-manifold. Certain N = 1 compactifications down to three-dimensional Minkowski space but with

torsion-full SU(4) structure were studied in [27, section 3].
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are naturally associated to the one-form bilinears. The rank stratification of D0 turns out

to coincide with the stabilizer stratification, thus providing a way to identify the latter.

In the case of compactifications to AdS3, the distribution D0 need not be integrable, but

one can show that the larger distribution D integrates to a singular foliation in the sense

of Haefliger (topologically, this is a Haefliger structure [33] which may be non-regular).

Section 3 discusses the chirality stratification, giving its explicit description in terms of a

convex three-dimensional semi-algebraic body R and a smooth map b : M → R3 whose

image is contained in R. Section 4 discusses the algebraic constraints on zero- and one-form

spinor bilinears which are induced by Fierz identities, showing how they can be described

using a four-dimensional semi-algebraic set P. In the same section, we discuss the geometry

of P and of its boundary, its canonical Whitney stratification and the preimage of ∂R inside

∂P through the map which projects on the first three coordinates. Section 5 shows that the

rank stratifications of D and D0 (where the latter coincides with the stabilizer stratification)

are different coarsenings of the B-preimage of the connected refinement of the canonical

Whitney stratification of P, where B is a map from M to R4 with image contained in P.

The two coarsenings are given explicitly, leading to the classification of stabilizer groups.

In the same section, we show how the chirality stratification fits into this picture, while

in section 6 we conclude. The appendices contain various proofs as well as other technical

details. The main results of this paper are Theorems 1, 2, 3 and 4, which can be found in

subsections 3.6, 5.1 and 5.2. For ease of reference, various results are summarized in tables

and figures. The notations and conventions used in the paper are explained in appendix A.

1 Virtual CGK spaces

The eight-manifold M can be used in various ways to construct a supersymmetric back-

ground M of eleven-dimensional supergravity [34], for example by taking M to be foliated

in eight-manifolds with typical leaf M or by taking it to be a (warped) product between M

and some non-compact 3-manifold N endowed with a metric of Minkowski signature. In

such backgrounds, supersymmetry generators can be constructed starting from globally-

defined solutions ξ ∈ Γ(M,S) of equations of the type:

Dξ = 0 , Qξ = 0 , (1.1)

which we shall call constrained generalized Killing (CGK) spinor equations. Here D :

Γ(M,S) → Ω1(M,S) is a connection on the bundle S of Majorana spinors over M and

Q ∈ Γ(M,End(S)) is a globally-defined endomorphism of S. Such equations encode the

condition that a supersymmetry transformation whose generator has ξ as its “internal

part” preserves the background. The explicit forms of D and Q depend on the precise

background under consideration and will generally involve the metric of M as well as

various differential forms defined on M . We let K(D, Q) denote the (finite-dimensional)

space of solutions to (1.1).

Definition. A finite-dimensional subspace K of Γ(M,S) is called a virtual CGK space if

there exists a connection D on S and a globally-defined endomorphism Q ∈ Γ(M,End(S))

such that K = K(D, Q).
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Definition. A virtual CGK space K is called B-compatible if there exists a B-compatible

connection D on S and a global endomorphism Q ∈ Γ(M,End(S)) such that K = K(D, Q).

First remarks. The physics literature of flux compactifications sometimes makes a dis-

tinction between:2

(a) The topological condition for supersymmetry, namely that the given background admits

a number s of independent and globally-defined spinors ξ1, . . . , ξs of the desired type;

(b) The algebro-differential conditions for supersymmetry, namely that the spinors at (a)

satisfy an equation of the form (1.1).

To clarify this, let ξ1, . . . , ξs ∈ Γ(M,S) be s globally defined Majorana spinors on M .

Recall that Γ(M,S) has a canonical structure of module over C∞(M,R). Since the latter

is an R-algebra, this also endows Γ(M,S) with a structure of (infinite-dimensional) vector

space over R.

Definition. The globally-defined spinors ξ1, . . . , ξs are called weakly linearly independent

if they are linearly independent over the field R of real numbers, i.e. linearly independent

as elements of the infinite-dimensional R-vector space Γ(M,S) of smooth globally-defined

sections of S. They are called strongly linearly independent if they are linearly independent

over C∞(M,R), i.e. linearly independent as elements of the C∞(M,R)-module Γ(M,S).

Weak linear independence of ξ1, . . . , ξs means that the relation:

c1ξ1(p) + . . .+ csξs(p) = 0 ∀p ∈M ,

where c1, . . . , cs are real constants, implies c1 = . . . = cs = 0. Strong linear independence

means that the relation:

c1(p)ξ1(p) + . . .+ cs(p)ξs(p) = 0 ∀p ∈M ,

where c1, . . . , cs ∈ C∞(M,R) are smooth real-valued functions defined on M , implies

c1(p) = . . . = cs(p) = 0 for all p ∈M . Since constant real-valued functions are smooth, it is

clear that strong linear independence implies weak linear independence. It is also clear that

strong linear independence amounts to the condition that ξ1(p), . . . , ξs(p) are linearly inde-

pendent inside the vector space Sp for all p ∈M . As we show below, condition (b) implies

that the independence condition at (a) should be understood as strong linear independence.

The supersymmetry equations (1.1) do not specify precise choices of globally-defined

spinors but only a subspace K of Γ(M,S), namely the space K(D, Q) of all globally-defined

solutions of (1.1). Hence we need a formulation of the strong linear independence condition

which does not rely on choosing a basis for K. Since this is a pointwise condition, it

2The topological conditions are sometimes called “algebraic conditions” [35, 36] while the supersymmetry

conditions are called “differential conditions”, but this terminology is inaccurate for our purpose. In this

paper, we are interested in supersymmetry conditions for the “internal part” of spinors, hence the equations

on the internal manifold M will generally have both a differential and an algebraic part as in (1.1). On the

other hand, existence of a certain number of globally-defined independent spinors is clearly a topological,

rather than algebraic, condition.
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can be formulated in a frame-free manner using the evaluation map. This leads to the

notion of locally non-degenerate subspaces of Γ(M,S). As we show below, a subspace K of

Γ(M,S) is a virtual CGK space iff it obeys this non-degeneracy condition. When K is B-

compatible, the freedom to change an orthonormal basis of K is related to the R-symmetry

of supersymmetric effective actions built using such backgrounds.

Remark. The fact that some subspace K ⊂ Γ(M,S) is a virtual CGK space does not

mean that K consists of internal parts of supersymmetry generators for any specific back-

ground of eleven-dimensional supergravity built on M . To know whether this is the case,

one has to study which pairs (D, Q) can arise in a given class of backgrounds. The notion of

virtual CGK space encodes the “topological part” of the supersymmetry conditions, which

is much weaker than the full supersymmetry conditions in a given background or class of

backgrounds.

1.1 Locally non-degenerate subspaces of Γ(M,S)

For any p ∈M , let evp : Γ(M,S)→ Sp be the evaluation map at p:

evp(ξ)
def.
= ξ(p) , ∀ξ ∈ Γ(M,S) .

Notice that evp is R-linear and surjective. Any subspace K ⊂ Γ(M,S) induces a generalized

linear sub-bundle ev∗(K)
def.
= tp∈Mevp(K) of S, which is smooth in the sense of [37].

Definition. A subspace K ⊂ Γ(M,S) is locally non-degenerate if the restriction evp|K :

K → Sp is injective for all p ∈M .

The local non-degeneracy condition means that any element ξ ∈ K is either the zero

section of S or a section of S which does not vanish anywhere on M . A locally non-

degenerate subspace K of Γ(M,S) has finite dimension s
def.
= dimK ≤ rkS = 16. In this

case, it is easy to see that ev∗(K) is an ordinary sub-bundle of S which is topologically

trivial, because any basis ξ1, . . . , ξs of K obviously forms a frame of K. Let Grns(M,S)

denote the set of locally non-degenerate s-dimensional subspaces of Γ(M,S); notice that

Grns(M,S) can be viewed as an infinite-dimensional manifold. Let Trivfs(M,S) denote

the set of pairs (K,D), where K is a trivial (in the sense of globally trivializable) smooth

rank s sub-bundle of S and D is a trivial flat connection on K.

Remark. Given a trivial rank s sub-bundle K of S and a point p ∈ M , trivial flat

connections on K can be identified (using parallel transport) with bundle isomorphisms

ϕp : K
∼→ M × Sp, so Trivfs(M,S) can be identified with the set of all pairs (K,ϕp).

Notice that this identification depends on the choice of p ∈M and hence it is natural only

if we work with pointed manifolds (M,p). A natural description which does not require

the choice of a base point is given below.

Proposition. There exists a natural bijection Φs : Grns(M,S)
∼−→ Trivfs(M,S), whose

inverse is given by Φ−1
s (K,D) = Γflat(K,D), where:

Γflat(K,D)
def.
= {ξ ∈ Γ(M,K)|Dξ = 0}

is the space of all D-flat sections of K.
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Proof. Let Π1(M) be the first homotopy groupoid of M and A(K) be the isomorphism

groupoid of K (the groupoid whose objects are the points of M and whose Hom-set from

p to q is the set of linear isomorphisms from Kp to Kq). The map which assigns the pair

(p, q) to curves starting at p and ending at q induces a functor E : Π1(M)→M×M , where

M ×M is the trivial groupoid whose objects are the points of M . Given K ∈ Grns(M,S),

the rank s bundle K
def.
= ev∗(K) is trivial, as pointed out above. The corestriction:

ep
def.
= evp|

Kp

K : K → Kp (1.2)

of evp|K to its image is bijective for all p ∈M . Given p, q ∈M , consider the bijection:

Upq
def.
= eq ◦ e−1

p : Kp
∼→ Kq . (1.3)

This satisfies:

Uqr ◦Upq = Upr and Upp = idKp , ∀p, q, r ∈M

and hence defines a functor U : M ×M → A(K) whose image is a trivial sub-groupoid

of A(K) (the Hom-sets of the image being singleton sets). There exists a unique flat

connection D on K whose holonomy functor HolD (the functor which associates to every

morphism of the groupoid Π1(M) the parallel transport of D along curves belonging to

that homotopy class) coincides with the composition U ◦ E : Π1(M) → A(K). This flat

connection is trivial since the image of HolD = U ◦ E (which coincides with the image

of U) is a trivial groupoid. This construction gives a natural map Φs : Grns(M,S) →
Trivfs(M,S) given by Φs(K) = (K,D). Relation (1.3) implies that any ξ ∈ K satisfies:

ξ(q) = Upq(ξ(p)) , ∀p, q ∈M , (1.4)

which implies Dξ = 0. Hence K is contained in the space Γflat(K,D). Since

dim Γflat(K,D) = rkK = s = dimK, we must have K = Γflat(K,D). This shows that

K is uniquely determined by (K,D) and hence that Φs is injective. Consider now a pair

(K,D) ∈ Trivfs(M,S) and set K def.
= Γflat(K,D). We have dimK = rkK = s. The

map evp|K is injective with image equal to Kp. Thus K is locally non-degenerate and

K = ev∗(K). Since D is a trivial flat connection, its parallel transport along curves from

p to q depends only on p and q, being given by (1.3). Thus (K,D) = Φs(K), which shows

that Φs is surjective.

1.2 B-compatible locally non-degenerate subspaces of Γ(M,S)

Definition. A locally nondegenerate subspace K ⊂ Γ(M,S) is B-compatible if the fol-

lowing condition is satisfied:

B(ξ, ξ′) = constant on M , ∀ξ, ξ′ ∈ K . (1.5)

Any B-compatible locally nondegenerate subspace K is endowed with a Euclidean met-

ric B0 : K×K → R which is defined through B(ξ, ξ′) = B0(ξ, ξ′)1M , where 1M ∈ C∞(M,R)

is the constant function equal to one on M . For simplicity, we will not distinguish notation-

ally between B0 and the C∞(M,R)-valued bilinear form B|K⊗K = B01M . Condition (1.5)
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is an invariant way of saying that K admits a basis ξ1, . . . , ξs having the property that the

scalar products Bp(ξi(p), ξj(p)) are independent of the point p ∈M for all i, j = 1 . . . s. Us-

ing the Gram-Schmidt algorithm for B0, it is easy to see that this amounts to the condition

that K admits a basis which is everywhere orthonormal in the sense Bp(ξi(p), ξj(p)) = δij
for all i, j = 1 . . . s and all p ∈M .

Let Grns(M,S,B) be the subset of Grns(M,S) consisting of B-compatible locally

nondegenerate subspaces of dimension s and Trivfs(M,S,B) be the subset of Trivfs(M,S)

consisting of those pairs (K,D) ∈ Trivfs(M,S) for which D is a B-compatible connection.

Corollary. Φs restricts to a bijection between Grns(M,S,B) and Trivfs(M,S,B).

Proof. Let K ∈ Grns(M,S) and (K,D)
def.
= Φs(K). Condition (1.5) is equivalent with:

Bq ◦ (eq ⊗ eq) = Bp ◦ (ep ⊗ ep) , ∀ p, q ∈M , (1.6)

where the map ep was defined in (1.2). Since ep : K → Kp is bijective for all p, the relation

eq = Upq ◦ ep (which follows from (1.3)) shows that (1.6) is equivalent with the condition:

Bq|Kq ◦ (Upq ⊗Upq) = Bp|Kp , (1.7)

which amounts to the requirement that Upq be an isometry from (Kp,Bp|Kp) to

(Kq,Bq|Kq) for all p, q ∈ M . In turn, this is equivalent with the requirement that the

trivial flat connection D be B-compatible.

Let K ∈ Grns(M,S) and (K,D)
def.
= Φs(K). The following statement is obvious in view

of the above:

Proposition. Let ξ1, . . . , ξs ∈ K and Ξ
def.
= (ξ1, . . . , ξs). Then:

1. Ξ is a basis of K iff it is a D-flat global frame of K.

2. When K is B-compatible, Ξ is an orthonormal basis of K iff it is an everywhere-

orthonormal D-flat global frame of K.

1.3 Relation to virtual CGK spaces

Let K(D, Q) denote the space of solutions to (1.1) and s
def.
= dimK(D, Q).

Proposition. K(D, Q) is a locally non-degenerate subspace of Γ(M,S).

Proof. For ease of notation, let K def.
= K(D, Q). Let Ppq(M) denote the set of curves in M

starting at p and ending at q. For any γ ∈ Ppq(M), let:

Upq(γ) : Sp
∼→ Sq

denote the parallel transport of D along γ. Since the connection D need not be flat, the

isomorphisms Upq(γ) may depend on γ and not only on its homotopy class. For any ξ ∈ K,

the first equation in (1.1) implies:

ξ(q) = Upq(γ)ξ(p) , ∀p, q ∈M , ∀γ ∈ Ppq(M) . (1.8)

– 7 –



J
H
E
P
1
1
(
2
0
1
5
)
0
0
7

When ξ ∈ ker(evp) (i.e. ξ(p) = 0), relation (1.8) gives ξ(q) = 0 for all q ∈ M and hence

ξ = 0. This shows that the restriction evp|K : K → Sp is injective for all p ∈ M and thus

that K is a locally non-degenerate subspace of Γ(M,S).

Let (K,D)
def.
= Φs(K(D, Q)).

Proposition. The bundle K is D-invariant, thus:

D(Γ(M,K)) ⊂ Ω1(M,K) . (1.9)

Furthermore, the restriction of D to K is a trivial flat connection on K which coincides

with D:

Dξ = Dξ , ∀ξ ∈ Γ(M,K) . (1.10)

Proof. Defining ep as in (1.2), relation (1.8) implies:

Upq(γ)|Kp = evq ◦ e−1
p , (1.11)

showing that Upq(γ)(Kp) = Kq for all p, q ∈ M and γ ∈ Ppq(M). This means that D
preserves the bundle K, i.e. relation (1.9) holds. Corestricting Upq to its codomain, (1.11)

gives the parallel transport of the connection D0 induced by D on the sub-bundle K:

Upq(γ)|Kq

Kp
= eq ◦ e−1

p = Upq ,

where in the last line we used formula (1.3) for the parallel transport Upq of the trivial flat

connection D of K. This shows that D coincides with the restriction of D to K.

Remark. Let us fix p ∈M . Using relations (1.8), it is easy to see that Kp can be written

as:

Kp = ∩γ∈Ppp(M) ker(Upp(γ)− idKp) ∩ ∩q∈M,γ∈Ppq(M) ker(Upq(γ)−1 ◦Qq ◦ Upq(γ)) . (1.12)

Given ξ(p) ∈ Kp, the element Upq(γ)ξ(p) ∈ Sq is independent of the choice of γ ∈ Ppq(M)

and ξ can be recovered using (1.8). Thus (1.1) is equivalent with the condition ξ(p) ∈ Kp,

where Kp is given by (1.12).

Proposition. Assume that D is B-compatible. Then K(D, Q) is a B-compatible locally

non-degenerate subspace of Γ(M,S).

Proof. When D is B-compatible, its parallel transport satisfies:

Bq(Upq(γ)⊗ Upq(γ)) = Bp , ∀p, q ∈M , ∀γ ∈ Ppq(M) .

Restricting this to Kp shows that Upq
def.
= Upq(γ)|Kp is an isometry from (Kp,Bp) to

(Kq,Bq) for all p, q ∈ M , i.e. relation (1.7) is satisfied. This implies the conclusion

since (1.7) is equivalent with (1.5).
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Proposition. Let K be an s-dimensional subspace of Γ(M,S). Then the following state-

ments are equivalent:

(a) K is a virtual CGK space.

(b) K is locally non-degenerate.

Proof. The implication (a)⇒ (b) was proved before. To prove the inverse implication, let

K ∈ Grns(M,S) and (K,D)
def.
= Φs(K). Choosing a complement K ′ of K inside S gives a

direct sum decomposition:

S = K ⊕K ′ .

We have K = Γflat(K,D) ⊂ Γ(M,K) and hence Dξ = 0 for all ξ ∈ K. Let Q ∈
Γ(M,End(S)) denote the projector of S onto K ′ parallel to K. Then K = kerQ and

hence Qξ = 0 for any ξ ∈ K. Let D′ be any connection on K ′. Then the direct sum

D def.
= D ⊕ D′ is a connection on S which satisfies Dξ = 0 for all ξ ∈ K. It follows that

we have K ⊂ K(D, Q). To show the inverse inclusion, let ξ ∈ K(D, Q). Then Qξ = 0 and

hence ξ ∈ Γ(M,K). The equation Dξ = 0 is thus equivalent with Dξ = 0. It follows that

we have ξ ∈ Γflat(K,D) = K and hence K(D, Q) ⊂ K.

Proposition. Let K be an s-dimensional subspace of Γ(M,S). Then the following state-

ments are equivalent:

(a) K is a B-compatible virtual CGK space.

(b) K is a B-compatible locally non-degenerate subspace of Γ(M,S).

Proof. The implication (a) ⇒ (b) was proved before. For the inverse implication, let

K ∈ Grns(M,S,B) and (K,D)
def.
= Φs(K). Let K⊥ be the B-orthocomplement of K inside

S and Q the B-orthoprojector on K⊥. Let D′ be any B-compatible connection on K⊥

and let D = D⊕D′. The same argument as in the proof of the previous proposition shows

that we have K = K(D, Q). Since K is B-compatible, the connection D is B-compatible

and hence D is B-compatible as well.

1.4 The chirality stratification

Let:

P±
def.
=

1

2
(1± γ(ν)) ∈ Γ(M,Hom(S, S±))

be the B-orthogonal projectors of S onto S± and let (K,D) = Φs(K) for some locally

non-degenerate subspace K ⊂ Γ(M,S).

Definition. The chiral projections of K are the smooth generalized sub-bundles of S±

defined through:

K±
def.
= P±K ⊂ S± .

The chiral rank functions r± of K are the rank functions of K±:

r±
def.
= rkK± : M → N .
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Notice that r± are lower semicontinuous and that they satisfy:

r± ≤ s , r+ + r− ≥ s , (1.13)

where the last inequality follows from the fact that K is a sub-bundle of the generalized

bundle K+ ⊕K−.

Definition. The chiral slices of K are the following cosmooth generalized sub-bundles of

K:

K±
def.
= S± ∩K .

The identity S± = kerP∓ implies K± = ker(P∓|K), hence we have exact sequences of

generalized sub-bundles of S:

0→ K∓ ↪→ K
P±|K−→ K± → 0 ,

which give the relations:

σ±
def.
= rkK± = s− r∓ . (1.14)

Definition. We say that p ∈ M is a K-special point if (r−(p), r+(p)) 6= (s, s). The

K-special locus is the following subset of M :

S def.
= {p ∈M |p is a K−special point} . (1.15)

The open complement:

G def.
= M \ S = {p ∈M |r−(p) = r+(p) = s}

will be called the non-special locus of K; its elements are the non-special points. The

special locus admits a stratification induced by the chiral rank functions:

S = t 0 ≤ k, l ≤ s

k + l ≥ s

(k, l) 6= (s, s)

Skl ,

where:

Skl
def.
= {p ∈ S|r−(p) = k & r+(p) = l} .

Definition. The chirality stratification of M induced by K is the decomposition:

M = G t t 0 ≤ k, l ≤ s

k + l ≥ s

(k, l) 6= (s, s)

Skl .

1.5 The stabilizer stratification

For any p ∈ M , consider the natural representation of the group Spin(TpM, gp) ' Spin(8)

on Sp.

Definition. The stabilizer group of K at p is the closed subgroup of Spin(TpM, gp) con-

sisting of those elements which act trivially on the subspace Kp ⊂ Sp:

Hp
def.
= {h ∈ Spin(TpM, gp)| hu = u ∀u ∈ Kp} . (1.16)
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Definition. Let K be an s-dimensional locally-nondegenerate subspace of Γ(M,S). The

stabilizer stratification of M induced by K is the stratification of M given by the isomor-

phism type of Hp. Two points p, q ∈ M belong to the same stratum of this stratification

iff Hp and Hq are isomorphic.

Remark. Given a frame (ξ1, . . . , ξs) of K, the group Hp coincides with the common

stabilizer of ξi(p):

Hp = StabSpin(TpM,gp)(ξ1(p), . . . , ξs(p)) = {h ∈ Spin(TpM, gp)| hξi(p) = ξi(p) ∀i = 1 . . . s} .

When K is B-compatible, we can formulate this as follows. Let V
(s)
p (Sp,Bp) be the Stiefel

manifold of orthonormal s-frames of the Euclidean space (Sp,Bp) and V (s)(S,B) be the

fiber bundle over M having V
(s)
p (Sp,Bp) as its fiber at p. Since the action of Spin(TpM,Sp)

on Sp preserves Bp, it induces an action on V (s)(Sp,Bp):

(u1, . . . us)→ (hu1, . . . , hus) , ∀h ∈ Spin(TpM, gp) , ∀(u1, . . . , us) ∈ V (s)(Sp,Bp) .

(1.17)

An orthonormal basis Ξ
def.
= (ξ1, . . . , ξs) of K can be viewed as a smooth section of the

fiber bundle V (s)(S,B). Then Hp coincides with the stabilizer of the value Ξ(p) of this

section under the action (1.17). The Stiefel manifold V (s)(Sp,Bp) has a stratification by

the isomorphism type of stabilizers inside Spin(TpM, gp). Similarly, there is a stratification

Σ(s) of the total space of V (s)(S,B) by the isomorphism type of stabilizers. Since Hp is

independent of the choice of Ξ, the Ξ-preimage of the stratification Σ(s) is independent of

Ξ and coincides with the stabilizer stratification of M induced by K. A similar formulation

exists when K is not B-compatible, if one replaces V (s)(S,B) by the bundle V (s)(S) whose

fiber at p ∈M is the Stiefel manifold V (s)(Sp) of all s-frames of the fiber Sp.

Assuming rkK ≥ 1, let qp : Spin(TpM, gp)→ SO(TpM, gp) denote the double covering

morphism. The image Gp
def.
= qp(Hp) is a subgroup of SO(TpM, gp). The qp-preimage of the

unit element idTpM of SO(TpM, gp) is a two-point set which consists of the unit element of

Spin(TpM, gp) and another element which we denote by εp. The latter acts on Sp as minus

the identity and hence it cannot be contained in Hp. It follows that the restriction of qp
to Hp is injective and hence it gives an isomorphism from Hp to Gp. Thus the stabilizer

stratification coincides with the stratification of M by the isomorphism type of Gp ' Hp.

Let T be a stratum of the connected refinement of this stratification and let GT denote the

isomorphism type of Gp ' Hp for p ∈ T . Endow T with the topology induced from M .

The restriction Fr+(M)|T of the oriented frame bundle Fr+(M) of M is a principal SO(8)

bundle (in the sense of general topology) defined over the connected topological space T .

Picking specific Gp-orbits inside the fibers Frp(M) for p ∈ T specifies a GT -reduction of

structure group of Fr(M)|T and such reductions for all connected strata T fit together into

a “stratified G-structure” defined on M .

Remark. In the Physics literature, what we call a stratified G-structure is sometimes

called a “local G-structure”. In Mathematics, the word “local” refers to a structure or

property which is defined/which holds for all points of some open subset of a topological
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space. Since most strata of the stabilizer stratification are not open subsets of M , it is clear

that a stratified G-structure cannot be a local G-structure in the sense used in Mathematics.

1.6 The case of compactifications to AdS3

As an example, consider compactifications down to an AdS3 space of cosmological constant

Λ = −8κ2, where κ is a positive parameter. In this case, the eleven-dimensional background

M is diffeomorphic with N ×M , where N is an oriented 3-manifold diffeomorphic with R3

and carrying the AdS3 metric g3. The metric on M is taken to be a warped product:

ds2 = e2∆ds2 where ds2 = ds2
3 + gmndxmdxn . (1.18)

The warp factor ∆ is a smooth real-valued function defined on M while ds2
3 is the squared

length element of the AdS3 metric g3. The Ansatz for the field strength G of eleven-

dimensional supergravity is:

G = ν3 ∧ f + F , with F
def.
= e3∆F , f

def.
= e3∆f (1.19)

where f ∈ Ω1(M), F ∈ Ω4(M) and ν3 is the volume form of (N, g3). The Ansatz for the

supersymmetry generator is:

η = e
∆
2

s∑
i=1

ζi ⊗ ξi , (1.20)

where ξi ∈ Γ(M,S) are Majorana spinors of spin 1/2 on the internal space (M, g) and ζi are

Majorana spinors on (N, g3) which satisfy the Killing equation with positive Killing con-

stant.3 Assuming that ζi are Killing spinor on the AdS3 space (N, g3), the supersymmetry

condition is satisfied if ξi satisfies (1.1), where:

DX = ∇SX +
1

4
γ(XyF ) +

1

4
γ((X] ∧ f)ν) + κγ(Xyν) , X ∈ Γ(M,TM)

and:

Q =
1

2
γ(d∆)− 1

6
γ(ιfν)− 1

12
γ(F )− κγ(ν) .

Here ∇S is the connection induced on S by the Levi-Civita connection of (M, g), while

ν is the volume form of (M, g). Neither Q nor the connection D preserve the chirality

decomposition S = S+ ⊕ S− of S when κ 6= 0:

D(S±) 6⊆ T ∗M ⊗ S± , Q(S±) 6⊆ S± .

It is not hard to check [38] that D is B-compatible:

dB(ξ′, ξ′′) = B(Dξ′, ξ′′) + B(ξ′,Dξ′′) , ∀ξ′, ξ′′ ∈ Γ(M,S) . (1.21)

This implies that any ξ, ξ′ ∈ K(D, Q) satisfy B(ξ, ξ′) = constant, i.e. K is a B-compatible

flat subspace of Γ(M,S). The restriction D = D|K is a B-compatible trivial flat connection

on K(D, Q).

3With our conventions (see appendix A), gamma matrices in signature (−1, 2) can be taken to be real, for

example γ0 = iσ2, γ1 = σ1, γ2 = σ3 where σk are the Pauli matrices. In the Mathematics convention for Clif-

ford algebras, γk are replaced by γ̂k = iγk. A Killing Majorana spinor on AdS3 satisfies ∇kζ = λγkζ, with a

real Killing constant λ = ±κ. In the Mathematics convention, this corresponds to ∇kζ = λ̂γ̂kζ, with imag-

inary λ̂ = −iλ = ∓iκ; these are known as “imaginary Killing spinors”. In the Ansatz, we choose λ = +κ.
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Remarks.

1. An equivalent formulation of the Ansatz (1.20) is that the supersymmetry generators

of the background span the space K3 ⊗K, where K3 is the two-dimensional space of

real Killing spinors on AdS3 with positive Killing constant. Then ξi in the Ansatz

can be taken to form an orthonormal basis of K, while ζi are arbitrary elements of

K3, so that the Ansatz describes the general element of K3⊗K. Notice that one does

not gain anything by decomposing ξi into their positive and negative chirality parts

in the Ansatz since D and Q do not preserve the sub-bundles S± and hence K need

not equal the direct sum of the intersections K ∩ Γ(M,S+) and K ∩ Γ(M,S−).

2. The amount N of supersymmetry preserved by the background may be larger than s

in the limit Λ = 0, when AdS3 reduces to the three-dimensional Minkowski space. In

that limit, the results of [19, 24] imply that all fluxes must vanish, thus F = f = κ = 0

and that d∆ = 0, which imply D = ∇S and Q = 0, hence both D and Q preserve the

sub-bundles S+ and S− of S. A discussion of this phenomenon for the case s = 1

(which gives N = 1 for Λ < 0 and N = 2 for Λ = 0) can be found in [24, appendix

B.1].

1.7 A toy example: the case s = 1

Let us illustrate the discussion above with the case s = 1. Then K is a one-dimensional

locally non-degenerate subspace of Γ(M,S) while (K,D) is a trivial flat line sub-bundle of

S. Assume that K is B-compatible. Then a B-compatible frame of K is given by a single

Majorana spinor ξ ∈ Γ(M,S) which is everywhere of norm one; the same spinor gives a

global normalized frame of K. The chiral projections K± are the generalized sub-bundles

of S generated by the positive and negative chirality parts ξ±
def.
= P±ξ of ξ. The chiral

rank functions are given by:

r±(p) = dim〈ξ±(p)〉 =

{
0 if ξ(p) ∈ S∓p
1 if ξ(p) 6∈ S∓p

.

The chiral slices are:

K±(p) =

{
0 if ξ(p) 6∈ S±p
〈ξ(p)〉 ' R if ξ(p) ∈ S±p

.

Since ξ(p) is everywhere non-vanishing, we have r+ + r− ≥ 1, thus the allowed values are

(r−(p), r+(p)) ∈ {(0, 1), (1, 0), (1, 1)}. Hence the chirality stratification takes the form:

M = U tW− tW+

where:

U ≡ G def.
= {p ∈M |r−(p) = r+(p) = 1} = {p ∈M |ξ(p) 6∈ S+

p t S−p }

W− ≡ S10
def.
= {p ∈M |r−(p) = 1 , r+(p) = 0} = {p ∈M |ξ(p) ∈ S−p }

W+ ≡ S01
def.
= {p ∈M |r−(p) = 0 , r+(p) = 1} = {p ∈M |ξ(p) ∈ S+

p } .
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Figure 1. Hasse diagram of the incidence poset (see appendix C) of the connected refinement of

the Whitney stratification of the interval [−1, 1]. The b-preimages of the strata represented by red

and yellow dots correspond to the Spin(7) and G2 loci of M .

Thus U is the non-chiral locus while S10 and S01 are the negative and positive chirality loci

of [24]. The union of the latter is the chiral locus W =W−tW+ = S10tS01 of loc. cit. In

this case, the stabilizer stratification is a coarsening of the chirality stratification, namely

we have Hp ' Spin(7) for p ∈ W and Hp ' G2 for p ∈ U . The stabilizer stratification

coincides with the rank stratification of the cosmooth generalized distribution D def.
= kerV ,

where V
def.
= U B(ξ, γaξ)e

a is the one-form bilinear constructed from ξ, where the expres-

sions are given on an open subset U ⊂ M which supports a local coframe (ea). Namely,

we have dimD(p) = 7 for p ∈ U and dimD(p) = 8 for p ∈ W . The group Gp = qp(Hp) is

a subgroup of SO(D(p), gp) for any p ∈M .

Let b
def.
= U B(ξ, γ(ν)ξ) ∈ C∞(R) denote the scalar bilinear constructed from ξ. It was

shown in [19, 38] that the Fierz identities for ξ imply 1 − b2 = ||V ||2 and hence b2 ≤ 1.

Thus the image of the map b is contained within the interval [−1, 1]. This interval is a

semi-algebraic set given by the single polynomial inequality b2 ≤ 1 for a variable b ∈ R. Its

canonical Whitney stratification has a 0-dimensional stratum given by the two-point set

{−1, 1} and a one-dimensional stratum given by the open interval (−1, 1). The connected

refinement of the Whitney stratification has two connected 0-dimensional strata given by

the one-point sets {+1} and {−1} and a connected 1-dimensional stratum given by the

open interval (−1, 1). The Hasse diagram of the incidence poset of this stratification is

depicted in figure 1. It was shown in [24] that the rank/stabilizer stratification coincides

with the b-preimage of the canonical Whitney stratification of [−1, 1]:

W = b−1({−1, 1}) , U = b−1((−1, 1)) .

On the other hand, the chirality stratification coincides with the b-preimage of the con-

nected refinement of the Whitney stratification:

W± = b−1({±1}) , U = b−1((−1, 1)) .

It was also shown in [24] that, for compactifications down to AdS3, the supersymmetry

conditions (1.1) imply that the singular distribution D integrates to a singular foliation in

the sense of Haefliger [33].

Remark. The compactifications studied in [17] correspond to the case M =W+.
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As we shall see in the next sections, the situation is much more complicated when

s = 2. In that case (assuming that K is B-compatible):

1. The chirality and stabilizer stratifications do not agree, in the sense that neither of

them is a refinement of the other.

2. There exists a cosmooth singular distribution D (determined by the intersection of

the kernels of three one-form valued spinor bilinears V1, V2 and V3) which integrates

to a Haefliger foliation in the AdS3 case. The rank stratification of D does not agree

with the chirality stratification or with the stabilizer stratification.

3. The stabilizer stratification coincides with the rank stratification of a cosmooth sin-

gular sub-distribution D0 ⊂ D (given by the intersection of D with the kernel of a

fourth one-form spinor bilinear W ), but D0 need not be integrable in the case of com-

pactifications down to AdS3. The group Gp = qp(Hp) is a subgroup of SO(D0(p), gp)

(and hence also a subgroup of SO(D(p), gp)) for any p ∈M .

4. The chirality stratification coincides with the b-preimage of the connected refine-

ment of the Whitney stratification of a three-dimensional semi-algebraic set R, where

b ∈ C∞(M,R) is a map constructed using scalar spinor bilinears defined by an or-

thonormal basis of K. We have imb ⊂ R.

5. The stabilizer stratification and the rank stratification of D are different coarsenings of

the B-preimage of the connected refinement of the canonical Whitney stratification

of a four-dimensional semi-algebraic set P, where B : M → R4 is another map

constructed using an orthonormal basis of K. We have imB ⊂ P.

2 The generalized distributions D and D0 in the case s = 2

Throughout this section, K denotes a B-compatible locally non-degenerate subspace of

Γ(M,S).

2.1 Functions and one-forms defined by a basis of K

An orthonormal basis (ξ1, ξ2) of K induces three smooth functions bi ∈ C∞(M,R) (i =

1, 2, 3), namely:

b1 =U B(ξ1, γ(ν)ξ1) , b2 =U B(ξ2, γ(ν)ξ2) , b3 =U B(ξ1, γ(ν)ξ2) . (2.1)

It will be convenient to work with the combinations:

b±
def.
=

1

2
(b1 ± b2) . (2.2)

Also consider the one-forms Vi, V3,W ∈ Ω1(M) (with i = 1, 2) given by:

Vi =U B(ξi, γaξi)e
a , V3

def.
= U B(ξ1, γaξ2)ea , W

def.
= U B(ξ1, γaγ(ν)ξ2)ea , (2.3)

where the relations hold in any local coframe (ea) defined above an open subset U ⊂ M .

It will be convenient to work with the linear combinations:

V±
def.
=

1

2
(V1 ± V2) , V ±3 =

1

2
(V3 ±W ) . (2.4)
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We have:

V1 = V+ + V− , V2 = V+ − V− , V3 = V +
3 + V −3 , W = V +

3 − V
−

3 .

Decomposing ξi into their positive and negative chirality parts gives:

V1 =U 2B(ξ−1 , γaξ
+
1 )ea , V2 =U 2B(ξ−2 , γaξ

+
2 )ea , V ±3 =U B(ξ∓1 , γaξ

±
2 )ea . (2.5)

2.2 The distributions D and D0

The 1-forms V1, V2, V3 generate a smooth generalized sub-bundle V (in the sense of [37]) of

the cotangent bundle of M , which is also generated by V+, V−, V3. Let:

D def.
= kerV1 ∩ kerV2 ∩ kerV3 = kerV+ ∩ kerV− ∩ kerV3

denote the polar of V, which is a cosmooth generalized distribution on M , i.e. a cosmooth

generalized sub-bundle of TM in the sense of [37]. Its orthogonal complement D⊥ inside

TM is a smooth generalized sub-bundle of TM which is spanned by the three vector fields

obtained from V+, V−, V3 by applying the musical isomorphism. Notice that D contains

the cosmooth generalized distribution:

D0
def.
= kerV+ ∩ kerV− ∩ kerV +

3 ∩ kerV −3 = D ∩ kerW ⊂ D .

Remark. When considering compactifications to AdS3, one can show that the super-

symmetry conditions imply that D is an integrable distribution (namely, it integrates to a

singular foliation in the sense of Haefliger) while D0 may fail to be integrable. This is one

reason for considering the generalized distribution D.

2.3 Behavior under changes of orthonormal basis of K

An orthonormal basis (ξ′1, ξ
′
2) of K having the same orientation as (ξ1, ξ2) has the form:

ξ′1 = cos
(u

2

)
ξ1 + sin

(u
2

)
ξ2 ,

ξ′2 = − sin
(u

2

)
ξ1 + cos

(u
2

)
ξ2

(2.6)

(where u ∈ R) and defines the following 0-forms and 1-forms, where i = 1, 2:

b′i =U B(ξ′i, γ(ν)ξ′i) , b′3 =U B(ξ′1, γ(ν)ξ′2)

V ′i =U B(ξ′i, γaξ
′
i)e

a , V ′3
def.
= U B(ξ′1, γaξ

′
2)ea , W ′

def.
= U B(ξ′1, γaγ(ν)ξ′2)ea .

(2.7)

Substituting (2.6) into these expressions, we find that b+, V+ and W are invariant while

each of the pairs b−, b3 and V−, V3 transforms in the fundamental representation of SO(2):

b′+ = b+ , V ′+ = V+ , W ′ = W

b′− = cos(u)b− + sin(u)b3 , V ′− = cos(u)V− + sin(u)V3

b′3 = − sin(u)b− + cos(u)b3 , V ′3 = − sin(u)V− + cos(u)V3 .

(2.8)
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The improper rotation: [
ξ′1

ξ′2

]
=

[
0 1

1 0

][
ξ1

ξ2

]
(2.9)

which permutes ξ1 and ξ2 induces permutations b1 ↔ b2 and V1 ↔ V2 while V3, b3 remain

unchanged and W changes sign (to arrive at these conclusions, one uses the relations

γ(ν)t = γ(ν), γta = γa and the fact that γ(ν) anticommutes with γa). Hence (2.9) induces

the transformations:
b+ → b+ , V+ → V+ , W → −W
b− → −b− , V− → −V−
b3 → b3 , V3 → V3 .

(2.10)

It follows that b+ and V+ depend only on K while W depends on K and on a choice of

orientation of K. On the other hand, b− and V− change sign while b3 and V3 are invariant

under a change of orientation of K. It also follows from the above that D and D0 depend

only on the space K and do not depend on the choice of basis (ξ1, ξ2) for K.

2.4 The rank stratification of D

The compact manifold M decomposes into a disjoint union according to the rank of D:

M = U tW , (2.11)

where the open set:

U def.
= {p ∈M |rkD(p) = 5} = {p ∈M |V+(p), V−(p), V3(p) are linearly independent}

will be called the generic locus while its closed complement:

W def.
= {p ∈M |rkD(p) > 5} = {p ∈M |V+(p), V−(p), V3(p) are linearly dependent}

will be called the degeneration locus. The latter admits a stratification according to the

corank of D(p):

W = t2
k=0Wk ,

whose locally closed strata are given by:

Wk
def.
= {p ∈ W| dimVp = k} = {p ∈ W|rkD(p) = 8− k} . (2.12)

Combining everything gives the rank stratification of D:

M = U tW2 tW1 tW0 . (2.13)

Definition. K is called generic if U 6= ∅ and non-generic otherwise.

Notice that K is non-generic iff rkD(p) ≥ 6 for all p ∈M , i.e. iff V1(p), V2(p) and V3(p)

are linearly dependent for all p ∈M .
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Remark. For any p ∈ M , let Ap ∈ Hom(R3, T ∗pM) denote the linear map which takes

the canonical basis εi of R3 into Vi(p):

Ap(εi) = Vi(p) , ∀i = 1 . . . 3 .

This defines a smooth section A ∈ Γ(M,Hom(R3, T ∗M)), where R3 = M × R3 is the

trivial rank 3 vector bundle over M . Each space Hom(R3, T ∗pM) ' Mat(3, 8,R) admits a

Whitney stratification (the so-called canonical stratification [39, 40]) whose strata are the

Stiefel manifolds V (k)(T ∗pM) = {A ∈ Hom(R3, T ∗pM)|rkA = k} ' {Â ∈ Mat(3, 8,R)|rkÂ =

k}, where k = 0, 1, 2, 3. This induces a stratification of the total space of the bundle

Hom(R3, T ∗M), whose preimage through the section A is the stratification (2.13). The

preimage of the stratum defined by rkA = 3 is the set U while the preimages of the strata

defined by rkA = k with k = 0, 1, 2 are the sets Wk.

2.5 The rank stratification of D0

The generalized distribution D0 induces a decomposition:

M = U0 t Z , (2.14)

where:

U0
def.
= {p ∈M |rkD0(p) = 4}={p ∈M |V+(p), V−(p), V3(p),W (p) are linearly independent}

is an open subset of M while:

Z def.
= {p ∈M |rkD0(p) > 4} = {p ∈M |V+(p), V−(p), V3(p),W (p) are linearly dependent}

is closed. The latter stratifies according to the corank of D0:

Z = t3
k=0Zk ,

with locally closed strata given by:

Zk
def.
= {p ∈ Z|rkD0(p) = 8− k} . (2.15)

We shall see later4 that we always have:

U0 = U and Z3 = ∅ ,

so in particular rkD0(p) can never equal five. We thus obtain the rank stratification of D0:

M = U t Z2 t Z1 t Z0 . (2.16)

4This follows from the algebraic constraints satisfied by Vi and W — see Theorem 4 of subsection 5.2.
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Figure 2. Allowed values for the pair (r−(p), r+(p)). The values corresponding to K-special points

are shown in blue, while the remaining value is shown as a red dot.

2.6 Constraints on the stabilizer stratification

Since the action of Spin(TpM, gp) on Sp commutes with γp(νp), relations (2.3) imply:

Hp ⊂ StabSpin(TpM,gp)(V+(p), V−(p), V3(p),W (p)) , (2.17)

where Spin(TpM, gp) acts on T ∗pM by the dual of the vector representation. The action of

Spin(TpM, gp) on T ∗pM is obtained from that of SO(TpM, gp) by pre-composing with the

covering morphism qp : Spin(TpM, gp)→ SO(TpM, gp). Hence (2.17) implies:

Gp ⊂ StabSO(TpM,gp)(V+(p), V−(p), V3(p),W (p)) ' SO(D0(p), gp) . (2.18)

In particular, we have:

Gp ⊂ StabSO(TpM,gp)(V+(p), V−(p), V3(p)) ' SO(D(p), gp) . (2.19)

3 The chirality stratification for s = 2

Let K be a two-dimensional B-compatible locally-nondegenerate subspace of Γ(M,S) and

(K,D) be the associated trivial flat sub-bundle of S. Relations (1.13) imply (see figure 2):

(r−(p), r+(p)) ∈ {(0, 2), (2, 0), (1, 1), (1, 2), (2, 1), (2, 2)} , ∀p ∈M . (3.1)

A point p ∈M is K-special if (r−(p), r+(p)) 6= (2, 2) (the blue dots in figure 2). The special

locus decomposes as:

S = S12 t S21 t S11 t S02 t S20 ,

where Skl = {p ∈M |r−(p) = k, r+(p) = l}, while the chirality stratification is given by:

M = G t S12 t S21 t S11 t S02 t S20 ,

where G is the non-special locus.
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(a) The region ∆ in the (b+, ρ) plane.

(b) The body R is the solid of revolution ob-

tained by rotating ∆ around its hypotenuse,

which lies on the b+ axis; it is the union of two

compact right-angled cones whose bases coincide.

Figure 3. The region ∆ (blue) and the body R.

3.1 The semi-algebraic body R

Consider the compact convex body (see figure 3):

R =
{

(b+, b−, b3) ∈ [−1, 1]3 |
√
b2− + b23 ≤ 1− |b+|

}
, (3.2)

which is contained in the three-dimensional compact unit ball. Setting:

ρ
def.
=
√
b2− + b23 ∈ [0, 1] ,

one finds that R is the solid of revolution obtained by rotating the following isosceles right

triangle around its hypothenuse:

∆
def.
= {(b+, ρ) ∈ [−1, 1]× [0, 1] | ρ ≤ 1− |b+|} . (3.3)

The compact interval:

I
def.
= {(b+, 0, 0)|b+ ∈ [−1, 1]} = {b ∈ R|b− = b3 = 0} (3.4)

will be called the axis of R while the compact disk:

D
def.
= {(0, b−, b3)|b2− + b23 ≤ 1} = {b ∈ R|b+ = 0} (3.5)

will be called the median disk of R. The boundary ∂D of the median disk will be called

the median circle (see figure 4).

Notice that R is a semi-algebraic set, since it can be described by polynomial inequal-

ities:

R =

{
(b+, b−, b3) ∈ R3|b2+ + b2− + b23 ≤ 1 & b2− + b23 ≤

1

4
(1 + b2− + b23 − b2+)2

}
.
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Figure 4. The axis I and the median disk D, depicted in orange.

Hence bothR and its frontier ∂R (which is again a semi-algebraic set) admit [28] canonical5

stratifications by semi-algebraic sets. Namely, the frontier:

∂R={b ∈ R|ρ=1−|b+|}=

{
(b+, b−, b3)∈R3|b2++b2−+b23≤1 & b2−+b23 =

1

4
(1+b2−+b23−b2+)2

}
decomposes into borderless manifolds ∂kR of dimensions k = 0, 1, 2:

∂R = ∂0Rt ∂1Rt ∂2R , (3.6)

where:

∂0R
def.
= ∂I , ∂1R

def.
= ∂D , ∂2R

def.
= ∂R \ (∂D ∪ ∂I) . (3.7)

The set ∂1R coincides with the median circle and hence it is connected. The set ∂0R is

disconnected, being a disjoint union of two singleton sets:

∂0R = ∂−0 Rt ∂
+
0 R ,

where:

∂−0 R
def.
= {(−1, 0, 0)} , ∂+

0 R
def.
= {(1, 0, 0)}

will be called the left and right tips of R. We have:

∂0Rt∂1R = R∩S2 =

{
(b+, b−, b3) ∈ R3|b2++b2−+b23 = 1 & b2−+b23 =

1

4
(1+b2−+b23−b2+)2

}
,

where S2 denotes the unit sphere in the space R3.

The set ∂2R is relatively open in ∂R, being a disjoint union of two connected compo-

nents:

∂2R = ∂−2 Rt ∂
+
2 R ,

5Recall that the canonical Whitney stratification of a semi-algebraic set is the coarsest stratification

which satisfies the frontier conditions as well as Whitney’s regularity condition (b). The strata of this

stratification need not be connected. The general algorithm through which such stratifications can be

obtained is due to [28] and is discussed in detail in [41].
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Figure 5. The connected refinement of the canonical Whitney stratification of ∂R. We use green for

the median circle ∂1R = ∂D, purple for ∂−2 R, yellow for ∂+2 R, blue for ∂−0 R and red for ∂+0 R. The-

orem 1 of subsection 3.6 shows that the b-preimage of ∂1R equals S11, while the b-preimages of ∂+2 R
and ∂−2 R equal S12 and S21 respectively. The b-preimages of ∂+0 R and ∂−0 R are the sets S02 and S20.

connected stratum dimension component of topology b+ ρ

∂±0 R 0 ∂0R point ±1 0

∂1R 1 ∂1R circle 0 1

∂±2 R 2 ∂2R open annulus ±(1− ρ) (0, 1)

Table 1. Connected strata of ∂R.

where:

∂−2 R
def.
= {b ∈ ∂2R| b+ ∈ (−1, 0)} , ∂+

2 R
def.
= {b ∈ ∂2R| b+ ∈ (0, 1)}

will be called the left and right components of ∂2R. The canonical Whitney stratification

of ∂R has strata given by ∂0R, ∂1R and ∂2R and corresponds to the decomposition (3.6),

while its connected refinement (see appendix C) has strata given by ∂±0 R, ∂1R and ∂±2 R
and corresponds to the decomposition:

∂R = ∂−0 Rt ∂
+
0 Rt ∂1Rt ∂−2 Rt ∂

+
2 R . (3.8)

The connected strata appearing in (3.8) are depicted in figure 5, while the values of b+
and ρ on those strata are summarized in table 1. Together with IntR, the strata ∂kR
give the canonical Whitney stratification of R, whose connected refinement has strata

IntR, ∂±0 R, ∂1R and ∂±2 R.

For later reference, let:

R− def.
= {b ∈ R|b+ ≤ 0} , R+ def.

= {b ∈ R|b+ ≥ 0} (3.9)

denote the two closed halves of R lying to the left and right of the median disk. Notice that

R± are three-dimensional compact full cones. We have a disjoint union decomposition:

R = ∂RtD t Int(R+) t Int(R−) .
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We also define:

I−
def.
= I ∩R− = [−1, 0]× {(0, 0)} , I+ def.

= I ∩R+ = [0, 1]× {(0, 0)} ,

which give the decomposition:

I = Int(I+) t Int(I−) t {(0, 0, 0)} .

3.2 The map b

Define the function b ∈ C∞(M,R3) through:

b(p)
def.
= (b+(p), b−(p), b3(p)) . (3.10)

Proposition. The image of b is a subset of R.

Proof. Let us separate ξi into positive and negative chirality parts:

ξi = ξ+
i + ξ−i , with ξ±i

def.
= P±ξi and i = 1, 2 .

The condition B(ξi, ξj) = δij and the definitions of b1, b2 and b3 give the equations:

||ξ+
i ||

2 + ||ξ−i ||
2 = 1 , ||ξ+

i ||
2 − ||ξ−i ||

2 = bi ,

B(ξ+
1 , ξ

+
2 ) + B(ξ−1 , ξ

−
2 ) = 0 , B(ξ+

1 , ξ
+
2 )−B(ξ−1 , ξ

−
2 ) = b3 ,

which can be solved to give:

||ξ±i ||
2 =

1

2
(1± bi) , B(ξ±1 , ξ

±
2 ) = ±1

2
b3 . (3.11)

The Gram matrix Γ of the ordered system (ξ+
1 , ξ

+
2 , ξ

−
1 , ξ

−
2 ) takes the block diagonal form:6

Γ =

[
Γ+ 0

0 Γ−

]
(3.12)

where:

Γ±
def.
=

[
||ξ±1 ||2 B(ξ±1 , ξ

±
2 )

B(ξ±2 , ξ
±
1 ) ||ξ±2 ||2

]
=

[
1
2(1± b1) ±1

2b3

±1
2b3

1
2(1± b2)

]

are the Gram matrices of the pairs (ξ±1 , ξ
±
2 ). A simple computation gives:

det Γ± =
1

4
(1 + b1b2 ± b1 ± b2 − b23) =

1

4

[
(1± b+)2 − ρ2

]
. (3.13)

The conclusion now follows from (3.13) upon using the fact that Γ± are semipositive,

which by Sylvester’s theorem amounts to the conditions (Γ±)11 ≥ 0, (Γ±)22 ≥ 0 and

det Γ± ≥ 0.

6The Gram matrices considered here are defined at every point p ∈ M , hence they are matrix-valued

functions defined on M .
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Remarks.

1. We have r± = rkΓ± and rk(K+ ⊕K−) = rkΓ.

2. The determinant det Γ = det Γ+ det Γ− vanishes iff one of det Γ± vanishes. The

equality det Γ± = 0 is attained on the locus where r± ≤ 1.

3. Γ± is symmetric under the exchange ξ1 ↔ ξ2.

3.3 The map b′

Consider the determinant line bundle detK = ∧2K. The scalar product B|K induces a

norm on detK which we denote by || ||. Since (ξ1, ξ2) is an orthonormal frame of (K,B),

we have ||ξ1 ∧ ξ2|| = 1 and hence ξ1 ∧ ξ2 is an orthonormal frame of detK. The generalized

bundles K± ⊂ S± inherit the Euclidean scalar product B from S and hence ∧2K± are

normed generalized vector bundles of rank at most one. The generalized bundle morphisms

PK±
def.
= P±|K±K : K → K± induce generalized bundle morphisms ∧2PK± : detK → ∧2K±.

Proposition. We have:

det Γ± = || ∧2 PK± ||op ,

where || ||op denotes the fiberwise operator norm on the generalized bundle

Hom(∧2K,∧2K±). In particular, det Γ± depend only on the subspace K ⊂ Γ(M,S) and

are independent of the choice of orthonormal basis for K.

Proof. By definition of ∧2PK± , we have (∧2PK± )(ξ1 ∧ ξ2) = P±(ξ1) ∧ P±(ξ2) = ξ±1 ∧ ξ
±
2 .

Using the Gram identity, this gives ||(∧2PK± )(ξ1 ∧ ξ2)||2 = ||ξ±1 ∧ ξ
±
2 ||2 = det Γ±, which

implies the conclusion.

Remark. The proposition allows one to give a different proof of the fact that the functions

b+, ρ
2 ∈ C∞(M,R) depend only on K. This follows by taking the sum and difference of

equations (3.13), which allows one to express ρ and b+ in terms of det Γ+ and det Γ−.

The map b′
def.
= (b, ρ) : M → R2 depends only on K. Since the image of b is contained

inside R, we find:

Proposition. The image of b′ is a subset of ∆.

3.4 Relation to the rank stratifications of D and D0

Lemma. Let p ∈ S be a K-special point. Then:

1. When p ∈ S11tS12, we can rotate the orthonormal basis of K such that either of the

following holds, at our choice:

(a) ξ1(p) ∈ S+
p , in which case V1(p) = V +

3 (p) = 0, V3(p) = V −3 (p) and W (p) = −V3(p)

(b) ξ2(p) ∈ S+
p , in which case V2(p) = V −3 (p) = 0, V3(p) = V +

3 (p) and W (p) = V3(p)

2. When p ∈ S11tS21, we can rotate the orthonormal basis of K such that either of the

following holds, at our choice:
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(a) ξ1(p) ∈ S−p , in which case V1(p) = V −3 (p) = 0, V3(p) = V +
3 (p) and W (p) = V3(p)

(b) ξ2(p) ∈ S−p , in which case V2(p) = V +
3 (p) = 0, V3(p) = V −3 (p) and W (p) = −V3(p)

3. When p ∈ S11, we can rotate the orthonormal basis of K such that either of the

following holds, at our choice:

(a) ξ1(p) ∈ S+
p and ξ2(p) ∈ S−p , in which case V1(p) = V2(p) = V +

3 (p) = 0, V3(p) =

V −3 (p) and W (p) = −V3(p)

(b) ξ1 ∈ S−p and ξ2(p) ∈ S+
p , in which case V1(p) = V2(p) = V −3 (p) = 0, V3(p) =

V +
3 (p) and W (p) = V3(p).

Proof. 1. The condition p ∈ S11 t S12 implies r−(p) = 1 and hence det Γ−(p) = 0.

Then ξ−1 (p) = λ1w and ξ−2 (p) = λ2w for some w ∈ S−p \{0}, where λ1 and λ2 are real

numbers, one of which may be zero. Under a rotation (2.6) of the basis of K, we have:

(ξ′1)−(p) = λ′1w , (ξ′2)−(p) = λ′2w

with:

λ′1 = λ1 cos
(u

2

)
+ λ2 sin

(u
2

)
, λ′2 = −λ1 sin

(u
2

)
+ λ2 cos

(u
2

)
.

It is easy to see that we can choose u such that either of the combinations

λ1 cos
(
u
2

)
+ λ2 sin

(
u
2

)
or −λ1 sin

(
u
2

)
+ λ2 cos

(
u
2

)
vanishes, at our choice. The

statements about the 1-form spinor bilinears follow immediately from the forms of

ξi after such a rotation.

2. The case p ∈ S11 t S21 proceeds similarly.

3. The condition p ∈ S11 implies det Γ+(p) = det Γ−(p) = 0. Using the result at point

2., perform a rotation of the orthonormal basis of K such that ξ+
2 (p) = 0 for the new

basis. Then ξ−2 (p) = ξ2(p) and hence ||ξ−2 (p)|| = ||ξ2(p)|| = 1 and Bp(ξ
−
1 (p), ξ−2 (p)) =

−Bp(ξ
+
1 (p), ξ+

2 (p)) = 0, where the last relation follows from B(ξ1, ξ2) = 0. Thus:

det Γ−(p) = ||ξ−1 (p)||2 . (3.14)

Since det Γ−(p) is invariant under (2.6), we also have det Γ−(p) = 0 after the

rotation, which implies ξ−1 (p) = 0 by (3.14). Thus ξ1(p) ∈ S+
p and ξ2(p) ∈ S−p

after the rotation. Had we rotated such that ξ+
1 (p) = 0, we would have similarly

concluded that ξ1(p) ∈ S−p and ξ2(p) ∈ S+
p . The statements about the 1-form spinor

bilinears follow immediately.

Remark. For p ∈ S02 t S20, we obviously have V1(p) = V2(p) = V3(p) = W (p) = 0. The

compactifications studied in [18] correspond to the case M = S02.
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Proposition. Let p ∈ S be a K-special point. Then D0(p) = D(p) and we can rotate

the basis of K such that either V3(p) = W (p) or V3(p) = −W (p), at our choice. Moreover:

• For p ∈ S20 t S02, we have D(p) = TpM , hence rkD(p) = 8

• For p ∈ S11, we have rkD(p) = 7

• For p ∈ S12 t S21 we have rkD(p) = 6.

Proof. Follows from the Lemma and from the remark above upon using the fact that D
and D0 are invariant under rotations of the basis of K. The proposition also follows from

Theorem 1 below and from the results of subsection 4.3 and of appendix E.

Remark. It is shown in appendix E that, for p ∈ G, we have rkD(p) ∈ {5, 6, 7} and

rkD0(p) ∈ {4, 6}, hence D0(p) and D(p) may differ; in fact, their ranks cannot be deter-

mined only from the value of b(p). Together with the Proposition, this gives:

S02 t S20 =W0 = Z0 , S11 = Z1 , S12 t S21 ⊂ Z2 .

A precise description of the relation between the chirality stratification and the rank strat-

ifications of D and D0 can be found in section 5.

3.5 Relation to the stabilizer group

Proposition. Let p be any point of M . Then the following statements hold:

1. When p ∈ S02 t S20 we have Hp ' SU(4)

2. When p ∈ S11, we have Hp ' G2

3. When p ∈ S12 t S21, we have Hp ' SU(3)

4. When p ∈ G, we have either Hp ' SU(2) or Hp ' SU(3), according to whether

dimD0(p) = 4 or dimD0(p) = 6.

Proof. 1. In this case, ξ1 and ξ2 are chiral and of the same chirality at p, so their

stabilizer inside Spin(8) equals SU(4).

2. After a rotation as in the Lemma given in the previous subsection, we have two non-

vanishing spinors ξ1 and ξ2 of opposite chirality at p, whose stabilizer inside Spin(8)

is isomorphic with G2.

3. Consider the case p ∈ S12. The Lemma shows that (up to a rotation) we can assume

ξ1(p) = ξ+
1 (p), ξ−2 (p) 6= 0 and that ξ+

1 (p), ξ+
2 (p) are linearly independent. Since S+

and S− are B-orthogonal sub-bundles of S, orthogonality of ξ1 and ξ2 implies that

ξ+
1 (p) and ξ+

2 (p) are Bp-orthogonal. The stabilizer H ′p of the pair (ξ+
2 (p), ξ−2 (p))

inside Spin(8) is isomorphic with G2 and S±p have the B-orthogonal decompositions:

S±p = Σ±1 (p)⊕ Σ±7 (p) ,

where Σ±1 (p) are one-dimensional subspaces carrying trivial irreps while Σ±7 (p) are

subspaces carrying the seven-dimensional irreps of H ′p ' G2. We have ξ±2 (p) ∈ Σ±1 (p).

Since ξ+
1 (p) is Bp-orthogonal to ξ+

2 (p), we have ξ+
1 (p) ∈ Σ+

7 (p). Hp is isomorphic with

the stabilizer of the non-zero element ξ+
1 (p) ∈ Σ+

7 (p) inside H ′p, which is known7 to

7The action of G2 on S6 induced by this irrep. is transitive with stabilizer isomorphic with SU(3).
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be isomorphic with SU(3). This shows that Hp ' SU(3). The case p ∈ S21 proceeds

similarly.

4. When p ∈ G, we have Hp ' StabH′′p (ξ−1 (p)), where H ′′p
def.
=

StabSpin(8)(ξ
+
1 (p), ξ+

2 (p), ξ−2 (p)). By point 3. above, we have H ′′p ' SU(3).

The spaces S±p decompose as:

S±p = Σ±1 (p)⊕ Σ′±1 (p)⊕ Ξ±(p) ,

where Σ±1 (p) and Σ′±1 (p) are trivial irreps while Ξ±(p) ' C3 are fundamental irreps

of SU(3) such that Σ±7 (p) = Σ′±1 (p) ⊕ Ξ±(p) while ξ+
1 (p) ∈ Σ′+1 (p) and ξ±2 (p) ∈

Σ±1 (p). Notice that ξ−1 (p) and ξ−2 (p) need not be Bp-orthogonal. We have Hp '
StabH′′p (ζ(p)), where ζ(p) denotes the Bp-orthogonal projection of ξ−1 (p) onto the

subspace Ξ−(p). We distinguish the cases:

• ζ(p) = 0. Then Hp = H ′′p ' SU(3).

• ζ(p) 6= 0. Then Hp ' SU(2), since it is known8 that SU(3) acts transitively on

the sphere S5, with stabilizer SU(2).

The results of appendix F show that the first case arises iff rkD0(p) = 6 while the

second case arises iff rkD0(p) = 4.

Remark. Appendix F gives an explicit construction of a one-parameter deformation of

the pair (ξ1, ξ2) which breaks the stabilizer group from SU(3) to SU(2).

Corollary. The stabilizer stratification coincides with the rank stratification of D0.

3.6 Characterizing the chirality stratification

Theorem 1. The K-special locus is given by:

S = b−1(∂R) = {p ∈M |b(p) ∈ ∂R} . (3.15)

Furthermore, we have:

• S11 = b−1(∂1R) = b−1(∂D)

• S12 = b−1(∂+
2 R) and S21 = b−1(∂−2 R)

• S02 = b−1(∂+
0 R) and S20 = b−1(∂−0 R).

Moreover, we have G = b−1(IntR) and hence the chirality stratification of M coincides with

the b-preimage of the connected refinement of the canonical Whitney stratification of R.

8For any n ≥ 2, the action of SU(n) on S2n−1 induced from the fundamental representation of SU(n)

on Cn = R2n is transitive and has stabilizer isomorphic with SU(n− 1).
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stratum R-description r−(p) r+(p) rkD rkD0 b+ ρ Hp σ+(p) σ−(p)

S02 b−1(∂+
0 R) 0 2 8 8 +1 0 SU(4) 2 0

S20 b−1(∂−0 R) 2 0 8 8 −1 0 SU(4) 0 2

S11 b−1(∂1R) 1 1 7 7 0 1 G2 1 1

S12 b−1(∂+
2 R) 1 2 6 6 1− ρ (0, 1) SU(3) 1 0

S21 b−1(∂−2 R) 2 1 6 6 −(1− ρ) (0, 1) SU(3) 0 1

G b−1(IntR) 2 2 5, 6, 7 4, 6 (−1, 1) < 1− |b+| SU(2) or SU(3) 0 0

Table 2. Chirality stratification for s = 2. The quantities σ± are defined through σ±(p) =

dimK±(p) = 2− r∓(p) (see (1.14)).

Proof. Relation (3.13) implies:

det Γ±(p) = 0⇐⇒ ρ(p) = 1± b+(p) . (3.16)

Since det Γ±(p) ≥ 0, we have ρ(p) ≤ 1 ± b+(p) and hence ρ(p) ≤ 1 − |b+(p)|. Thus

det Γ+(p) = 0 can be realized only for b+(p) ≤ 0 and det Γ−(p) = 0 can be realized only for

b+(p) ≥ 0 and in both cases we have ρ(p) = 1−|b+(p)| i.e. b(p) ∈ ∂R. The case det Γ+(p) =

det Γ−(p) = 0 occurs for b+(p) = 0 and ρ(p) = 1, i.e. on the median circle ∂D. We also have:

Γ±(p) = 0 ⇐⇒ b3(p) = 0 & b1(p) = b2(p) = ∓1 ⇐⇒ ρ(p) = 0 & b+(p) = ∓1 .

Hence Γ+(p) = 0 or Γ−(p) = 0 corresponds to b(p) ∈ ∂I, namely Γ+(p) = 0 corresponds

to the left tip (b+(p), ρ(p)) = (−1, 0) of R while Γ−(p) = 0 corresponds to the right tip

(b+(p), ρ(p)) = (+1, 0) of R. The remaining statements follow since b(M) ⊂ R.

The situation is summarized in table 2 and figure 5.

Remarks.

1. Theorem 1 implies a similar characterization of the stratification S as the b′-preimage

of the obvious stratification with connected strata of the set ∆ \ (−1, 1) × {0}; we

leave the details of this to the reader.

2. For every p ∈ M , the dimensions σ±(p)
def.
= dimK±(p) = 2 − r∓(p) of the chiral

slices of Kp count the number of linearly independent spinors inside the space Kp

which have chirality ±1. In the case of compactifications down to AdS3, σ+(p) can

be interpreted [26] as the number of supersymmetries of the background which are

preserved by a space-time filling M2-brane placed at p, while σ−(p) counts the number

of supersymmetries preserved by a space-time filling M2-antibrane placed at p; these

numbers are indicated in the last column of the table.
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4 Algebraic constraints

The Fierz identities for ξ±1 , ξ
±
2 imply that the following relations hold (see appendix B):

||V−||2 + b2− = ||V3||2 + b23 , ||V+||2 + b2+ = 1− (||V3||2 + b23)

〈V+, V−〉+ b+b− = 〈V+, V3〉+ b+b3 = 〈V−, V3〉+ b−b3 = 0

||W ||2 + ||V3||2 = 1 + b2− − b2+
〈W,V+〉 = 0 , 〈W,V−〉 = b3 , 〈W,V3〉 = −b− .

(4.1)

In particular, the first two rows of (4.1) form the following system for Vr, br:

||V−||2 + b2− = ||V3||2 + b23

||V+||2 + b2+ = 1− (||V3||2 + b23)

〈V+, V−〉+ b+b− = 〈V+, V3〉+ b+b3 = 〈V−, V3〉+ b−b3 = 0 .

(4.2)

Relations (4.2) constrain the norms ||Vr||2 and the angles θrs = θsr between Vr and Vs (a

total of six quantities) in terms of the three quantities br. Fixing the latter generally fails

to completely determine the former.

Remark. For a general choice of Vr, one cannot find br such that (4.2) is satisfied. The

conditions on Vr under which it is possible to solve for br are given in appendix D.

4.1 Reduction to a semipositivity problem

Let us define:

β
def.
=
√
b23 + ||V3||2 =

√
b2− + ||V−||2 (4.3)

as well as:

ρ
def.
=
√
b2− + b23 (4.4)

and consider the map B : M → R4 defined through:

B(p)
def.
= (b(p), β(p)) , p ∈M . (4.5)

The second line in (4.2) gives:

||V+||2 = 1− b2+ − β2 , (4.6)

which shows that β contains the same information as the norm of V+, provided that b+ is

known.

When β is fixed, the constraints (4.2) amount to the condition that the Gram matrix

of V+, V−, V3 be given by:

G(b, β) =


1− β2 − b2+ − b+b− − b+b3
−b−b+ β2 − b2− − b−b3
−b3b+ − b3b− β2 − b23

 . (4.7)
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The system given by (4.3) and the last two rows of (4.2) has solutions Vr iff the sym-

metric matrix G(b, β) is positive semidefinite; in this case, Vr are determined by β and br
up to a common action of the group Γ(M,O(TM, g)). Furthermore, V+, V− and V3 are

linearly independent at p ∈M iff G(p)
def.
= G(b(p), β(p)) is positive definite. Similarly, the

system (4.1) amounts to the condition that the Gram matrix of V+, V−, V3,W be given by:

Ĝ(b, β) =


1− β2 − b2+ − b+b− − b+b3 0

−b−b+ β2 − b2− − b−b3 b3

−b3b+ − b3b− β2 − b23 −b−
0 b3 −b− 1− β2 − b2+ + ρ2

 . (4.8)

Notice that V+ ⊥W and ||W ||2 = ||V+||2 + ρ2.

Remark. Relation (4.6) and the observations of subsection 2.3 imply that β is invariant

under any proper or improper rotation of the orthonormal basis of K. Hence b+, ρ and

β depend only on K. Relations (4.7) and (4.8) show that all scalar invariants under the

transformations (2.6) which can be constructed from V+, V−, V3 and W can be expressed

as functions of b+, ρ and β.

The semipositivity conditions for G(b, β) can be analyzed using Sylvester’s criterion,

leading to a nonlinear programming problem whose solution is given in appendix D. To

state the results concisely, we introduce a compact four-dimensional semi-algebraic body

P which can be viewed as a singular segment fibration over R.

4.2 The four-dimensional body P

Recall that the image of b is contained in R. The determinant of the Gram matrix (4.7)

takes the form:

detG = −β2P (b, β) , (4.9)

where:

P (b, β)
def.
= β4 − β2(1 + b23 + b2− − b2+) + b23 + b2− = β4 − β2(1 + ρ2 − b2+) + ρ2 . (4.10)

Thus detG(b, β) vanishes for β = 0 or β =
√
f±(b), where the functions f± : R → R

(which give the roots of the second order polynomial x2 − (1 + ρ2 − b2+)x+ ρ2) are defined

through:

f±(b+, b−, b3) = f±(b+, ρ)
def.
=

1

2

(
1− b2+ + ρ2 ±

√
h(b+, ρ)

)
. (4.11)

The discriminant:

h(b) = h(b+, ρ)
def.
= (1 + b+ + ρ)(1− b+ + ρ)(1 + b+ − ρ)(1− b+ − ρ) (4.12)

is non-negative on ∆ and vanishes only for ρ = 1 − |b+|, i.e. on the left and right sides of

∆. The functions f± satisfy:

0 ≤ f−(b) ≤ f+(b) ≤ 1 , ∀b ∈ R ,

where:
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(a) Graphs of the functions f+(b+, ρ) (green)

and f−(b+, ρ) (red) for (b+, ρ) ∈ ∆ (blue).

(b) Graphs of the functions
√
f+(b+, ρ) (green)

and
√
f−(b+, ρ) (red) for (b+, ρ) ∈ ∆ (blue).

Figure 7. Graphs of β =
√
f+(b+, ρ) (green) and β =

√
f−(b+, ρ) (red) for various fixed values

of |b+| ∈ [0, 1]. Notice that the two graphs match each other smoothly at |b+| = 1 − ρ < 1

(corresponding to ∂R), where both f+ and f− equal
√
ρ. The matching is non-smooth only when

ρ = β = 1, b+ = 0, which corresponds to the circle ∂D defined below.

• the equality f−(b) = f+(b) is attained iff b ∈ ∂R, where we have f+|∂R = f−|∂R = ρ;

• the equality f−(b) = 0 is attained iff b ∈ I;

• the equality f+(b) = 1 is attained iff b ∈ D.

Notice that f± depend only on b+ and ρ and hence they can be viewed as functions defined

on ∆ (see figures 6 and 7). In fact, they are symmetric under b+ → −b+, so they depend

only on |b+| and ρ. Various special values of f± are summarized in table 3.

For every b ∈ R, consider the closed interval:

J(b) = J(b+, ρ)
def.
= [

√
f−(b),

√
f+(b)] ⊂

[√
b2− + b23,

√
1− b2+

]
. (4.13)
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b∈ IntI

(b+∈(−1, 1), ρ=0)

b∈∂I
(b+=±1, ρ=0)

b∈ IntD \ {(0, 0, 0)}
(b+=0, ρ∈(0, 1))

b∈∂D
(b+ =0 , ρ=1)

b∈∂R
(ρ=1− |b+|)

f+(b+, ρ) 1− b2+ 0 1 1 ρ

f−(b+, ρ) 0 0 ρ2 1 ρ

β [0,
√

1− b2+] 0 [ρ, 1] 1
√
ρ

rkG {1, 2, 3} 0 {2, 3} 1 {0, 1, 2}

Table 3. Special values for f+ and f−. The values allowed for rkG on each region follow from

Theorem 2 of subsection 5.1.

This interval degenerates to a single point for b ∈ ∂R, namely J |∂R = {√ρ}. Finally,

consider the following four-dimensional compact body:

P
def.
= {(b, β) ∈ R4|b ∈ R & β ∈ J(b)} , (4.14)

which is fibered over R via the projection (b, β)
π→ b. The fiber over b ∈ R is the segment

J(b), which, as mentioned above, degenerates to a point over ∂R.

The frontier of P. Let:

C
def.
=
{

(b−, b3, β) ∈ R3| 0 ≤
√
b2− + b23 ≤ β ≤ 1

}
(4.15)

be the full compact cone in R3 with apex at the origin and base given by the disk D2×{1}
and let:

F
def.
= ∂C =

{
(b−, b3,

√
b2− + b23)|(b−, b3) ∈ Int(D2)

}
t {(b−, b3, 1)|(b−, b3) ∈ D2}

denote its frontier. Let Ċ
def.
= C \ {(0, 0, 0)} and Ḟ

def.
= F \ {(0, 0, 0)}. Notice that C is

homeomorphic with the compact 3-dimensional ball, F is homeomorphic with S2 and Ḟ

is homeomorphic with R2 (and hence with the interior of the unit disk D2). Consider the

function g : Ċ → R given by (see figure 8):

g(b−, b3, β) = g(ρ, β)
def.
=

1

β

√
(1− β2)(β2 − ρ2) . (4.16)

The quantity under the square root is non-negative for (b−, b3, β) ∈ C and we have 0 ≤
g(ρ, β) ≤

√
β2−ρ2

β ≤ 1 for (b−, b3, β) ∈ Ċ. Notice that g vanishes on Ḟ and is strictly

positive in the interior of C.

Consider the following three-dimensional subsets of R4, each of which is homeomorphic

with Ċ:

C±
def.
= {(±g(b−, b3, β), b−, b3, β)| (b−, b3, β) ∈ Ċ} (4.17)

and the following compact interval sitting inside R4:

I
def.
= [−1, 1]× {(0, 0, 0)} = I × {0} . (4.18)
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Figure 8. Graph of the function g(ρ, β) for (ρ, β) belonging to the triangular region defined by

the inequalities 0 < ρ ≤ β ≤ 1. Notice that the directional limits of g(ρ, β) at the point ρ = β = 0

(taken from within this triangular region) take any value within the interval [0, 1].

The intersection of the sets C± is given by:

F
def.
= C+ ∩ C− = {0} × Ḟ (4.19)

and C± are disjoint from I (since β 6= 0 on C± while β = 0 on I). Notice that IntC+ and

IntC− are homeomorphic with IntĊ = IntC and hence with the interior of the unit 3-ball

while F is homeomorphic with the interior of the two-dimensional disk. Let:

I+ def.
= [0, 1]× {0R3} = I+ × {0} , I−

def.
= [−1, 0]× {0R3} = I− × {0}

be the compact right and left halves of I, which satisfy I+ ∩ I− = {0R4}. Figure 9 shows

the sections of ∂P with the hyperplane b3 = 0.

Proposition. The frontier of P is given by:

∂P = C+ ∪ C− ∪ I = IntC+ t IntC− t F t I , (4.20)

where the components can be identified as:

IntC± = {(b, β) ∈ ∂P| β > 0 & ± b+ > 0}
F = {(b, β) ∈ ∂P| β > 0 & b+ = 0} (4.21)

I = {(b, β) ∈ ∂P| β = 0} .

Moreover, I is closed (thus frI = ∅), while:9

fr(IntC±) = F t I± , frF = {0R4} . (4.22)

9Since ∂P is a closed subset of R4, the small frontier of a subset A ⊂ P taken with respect to the

topology induced on ∂P from R4 coincides with the small frontier frA of A in R4.
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Figure 9. Section of ∂P with the hyperplane b3 = 0, where the corresponding sections of C−, C+

and I are represented in orange, green and brown.

Remark. Topologically, fr(IntC±) = fr(C±) is obtained from the compact disk upon

picking two opposite points on the boundary circle and identifying the resulting halves of

the boundary to a segment corresponding to I±; the result is of course homeomorphic to

a sphere.

Proof. We have:

P (b, β) = (1− β2)(ρ2 − β2) + b2+β
2 .

The frontier of P is the semi-algebraic set obtained by intersecting R with the hypersurface

P (b, β) = 0. This equation can be written as:

b2+β
2 = (1− β2)(β2 − ρ2) (4.23)

and requires that the right hand side be non-negative, which for b ∈ R is equivalent with

the condition β ∈ [ρ, 1] i.e. (b−, b3, β) ∈ C. To study the solutions of (4.23), assume that

this condition is satisfied and consider the cases:

• β = 0. Then (4.23) requires ρ = 0 while b+ is undetermined within the interval

[−1, 1], which means that (b, β) belongs to the interval I.

• β > 0. Then (4.23) requires (b−, b3, β) ∈ Ċ as well as b+ = ±g(b−, b3, β) , where the

function g : Ċ → R was defined in (4.16).

The above shows that ∂P has the decomposition (4.20) and that (4.21) holds. The remain-

ing statements follow from (4.21).

The body P is a semi-algebraic set, hence it admits a canonical Whitney stratification

by smooth semi-algebraic subsets. To describe this stratification, notice that the set defined

in (4.19) decomposes as:

F = IntD t ∂D t A , (4.24)

where:

D
def.
= {(0, b−, b3, 1)|(b−, b3) ∈ D2} = D × {1}

A
def.
= {(0, b−, b3,

√
b2− + b23)|(b−, b3) ∈ IntD2 \ {0R2}}

(4.25)
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are homeomorphic with the compact disk and with an open annulus, respectively. We have:

∂D = {(0, b−, b3, 1)|(b−, b3) ∈ ∂D2} = ∂D × {1} .

The frontier ∂P has the following decomposition into borderless manifolds of dimensions

k = 0, 1, 2, 3:

∂P = ∂3P t ∂2P t ∂1P t ∂0P , (4.26)

where the k-dimensional pieces are the following unions of connected components:

∂3P = IntC+ t IntC−

∂2P = IntD t A

∂1P = IntI+ t IntI− t ∂D
∂0P = ∂+

0 P t ∂0
0P t ∂−0 P

, (4.27)

with:

∂±0 P
def.
= ∂±0 R× {0} = {(±1, 0, 0, 0)} , ∂0

0P
def.
= {0R4} . (4.28)

The ten connected components listed above give the connected refinement of the canon-

ical Whitney stratification of ∂P, whose incidence poset is depicted in figure 10. Using

relations (4.22) and (4.24), we find:

fr(IntC±) = IntD t ∂D t A t IntI± t ∂0
0P t ∂±0 P

fr(IntD) = ∂D , frA = ∂D t ∂0
0P (4.29)

fr(IntI±) = ∂0
0P t ∂±0 P , fr(∂D) = ∅ ,

which imply:

fr(∂3P) = ∂2P t ∂1P t ∂0P = F t I

fr(∂2P) = ∂D t ∂0
0P (4.30)

fr(∂1P) = ∂0P = ∂I t ∂0
0P .

Notice that frA = ∂D t ∂0
0P.

Remark. The canonical Whitney stratification of ∂P has six strata given by ∂3P, ∂2P,

∂D, IntI+tIntI−, ∂I = ∂+
0 Pt∂−0 P and ∂0

0P. The canonical Whitney stratification of P is

obtained from this by adding the stratum IntP and similarly for its connected refinement.

The values of b+, ρ and β on the connected strata of ∂P are summarized in table 4.

The following statement follows from the results of appendix D:

Proposition. The locus β = 0 on P coincides with the compact segment I, while the

locus β = 1 on P coincides with the compact disk D = D × {1}. The locus β = ρ on P

coincides with Ā = At∂Dt∂0
0P. In particular, the only locus on R where the value β = 0

can be attained is the interval I while the only locus on R where β = 1 can be attained is

the median disk D.
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Figure 10. The Hasse diagram of the incidence poset (see appendix C) of the connected refinement

of the Whitney stratification of ∂P. The B-preimages of the connected components depicted as

points colored in magenta, yellow and cyan are strata of SU(4), G2 and SU(3) structure in M (see

table 5 in subsection 5.2). The diagram depicts the covering relation of the incidence poset, namely

an element of that poset covers another iff it sits above it in the diagram and there is an edge

connecting the two elements. The small frontier of each connected Whitney stratum is the disjoint

union of the strata covered by it in the diagram.

connected stratum dimension component of topology b+ ρ β

∂−0 P 0 ∂0P point −1 0 0

∂+
0 P 0 ∂0P point +1 0 0

∂0
0P 0 ∂0P point 0 0 0

IntI− 1 ∂1P open interval (−1, 0) 0 0

IntI+ 1 ∂1P open interval (0, 1) 0 0

∂D 1 ∂1P circle 0 1 1

IntD 2 ∂2P open disk 0 [0, 1) 1

A 2 ∂2P open annulus 0 (0, 1) ρ

IntC− 3 ∂3P open full cone −g(ρ, β) (0, 1) (ρ, 1)

IntC+ 3 ∂3P open full cone +g(ρ, β) (0, 1) (ρ, 1)

Table 4. Connected refinement of the Whitney stratification of ∂P. The colors used in this table

(magenta, yellow and cyan) correspond to loci of SU(4), G2 and SU(3) structures on M .
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Figure 11. The loci S± correspond to the hypersurface β =
√
ρ (brown) inside IntC (blue).

4.3 The preimage of ∂R inside ∂P

Consider the surjection π : P → R given by π(b, β) = b (the projection on the first three

coordinates). Since J |∂R = {√ρ}, we have:

π−1(b) = {(b,√ρ)} for b ∈ ∂R .

Hence the restriction of π to the subset π−1(∂R) ⊂ ∂P is a bijection onto ∂R. It is clear

that ∂I ∪ ∂D is contained in π−1(∂R) while IntI, A and IntD are disjoint from π−1(∂R).

Using (4.27), this gives:

π−1(∂R) = ∂I t ∂D tS+ tS− (4.31)

where:

S±
def.
= IntC± ∩ π−1(∂R)

We have:

π(∂D) = ∂D

π(∂I) = ∂I namely π(∂±0 P) = ∂±0 R
π(S±) = ∂±2 R hence π(∂3P) = ∂2R. (4.32)

π(∂2P) ⊂ IntD , π(IntI) ⊂ IntI .

In particular, π(∂0
0P) and π(IntI±) are contained in IntR.

Proposition. S± are the following hypersurfaces contained in IntC± (see figure 9):

S± =
{

(±(1− ρ), b−, b3,
√
ρ)|ρ def.

=
√
b2− + b33 ∈ (0, 1)

}
= {(b, (b2− + b23)1/4)|b ∈ ∂±2 R} .

(4.33)

Proof. For (b, β) ∈ IntC±, we have b+ = ±g(ρ, β), where g(ρ, β) was defined in (4.16).

The condition (b, β) ∈ S± further requires b ∈ ∂R, i.e. b+ = ±(1 − ρ). This gives

1 − ρ = g(ρ, β), which (upon squaring both sides) is easily seen to be equivalent with

β =
√
ρ. The condition (b, β) ∈ IntC± excludes the values β = ρ = 0 and β = ρ = 1, hence

we must have ρ ∈ (0, 1).

Remark. Since ρ ≤ 1, we have β|∂R =
√
ρ ≥ ρ, with equality iff b ∈ ∂D, which corre-

sponds to (b, β) ∈ ∂D.
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(a) Plot of
√
f+(0, b−, b3) (green) and

√
f−(0, b−, b3) (red)

for (b−, b3) belonging to the unit disk. The section of P with

the hyperplane b+ = 0 is the compact full cone K = {0}×C
contained between these two graphs, whose basis is the disk

D (green). This disk coincides with the locus on P where

β = 1. The apex of the cone is the midpoint of the interval I.

(b) Plot of
√
f+(b) and

√
f−(b) for

b ∈ R with b+ = 0.5 (thus ρ ≤
1 − 0.5). The section of P with the

hyperplane b+ = 0.5 is the body of

revolution contained between these

two graphs. The boundary of this

body is the union of a cone with a

“cap” (a curved disk).

Figure 12. Presentation of P as a singular fibration over the interval [−1, 1]. The sections of P

with planes b+ = const. 6= ±1 are 3-dimensional bodies of revolution around the β-axis, obtained

by rotating the graphs of figure 7. The points of IntI are conical singularities for these bodies. The

bodies degenerate to points for b+ = ±1.

Sections of P with the hyperplanes b+ = const. The sections of P with such

hyperplanes are depicted in figure 12; they allow one to present P as a fibration over the

interval [−1, 1]. In particular, the section with the hyperplane b+ = 0 is the compact full

3-dimensional cone K = {0} × C, whose frontier equals F.

5 Description of the rank stratifications of D and D0

5.1 Description of the rank stratification of D

The following result shows that the map B has image contained in P and that the rank

stratification of D is a certain coarsening of the B-preimage of the connected refinement of

the Whitney stratification of P.

Theorem 2. The image of the map B defined in (4.5) is contained in P:

imB ⊂ P

Furthermore, the following hold for p ∈M :

• rkD(p) = 5 iff B(p) ∈ IntP

• rkD(p) = 6 iff B(p) ∈ ∂2P ∪ ∂3P = IntD t A t IntC+ t IntC−

• rkD(p) = 7 iff B(p) ∈ ∂0
0P t ∂1P = ∂D t IntI

• rkD(p) = 8 iff B(p) ∈ ∂+
0 P t ∂−0 P = ∂I.

In particular, the rank stratification of D is given by:

U = B−1(IntP) , W2 = B−1(∂2P ∪ ∂3P) , W1 = B−1(∂D t IntI) , W0 = B−1(∂I)

and we have W = B−1(∂P).
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Proof. See appendix D.

Remark. The map b of (3.10) is related to the map B of (4.5) by:

b = π ◦B .

Using relations (4.31) and (4.32), this implies:

b−1(∂R) = B−1(π−1(∂R)) ,

namely:

b−1(∂±0 R) = B−1(∂±0 P) , b−1(∂D) = B−1(∂D) , b−1(∂±2 R) = B−1(S±) . (5.1)

The behavior of the one-forms Vr on the locusW is given by the following result, whose

proof can be found in appendix D:

Theorem 3. Let p ∈ W and write:

b−(p) = ρ(p) cosψ , b3(p) = ρ(p) sinψ

with ψ ∈ [0, 2π). Then Vr and br behave as follows:

1. When p ∈ W2, we have:

(a) For p ∈ b−1(IntD) we have:

β(p) = 1 , b+(p) = 0 , ρ(p) ∈ [0, 1)

V+(p) = 0 , ||V−(p)|| =
√

1− ρ(p)2 cos2 ψ

||V3(p)|| =
√

1− ρ(p)2 sin2 ψ , cos θ−3 = − ρ2(p) sinψ cosψ

||V−(p)|| ||V3(p)||
.

(b) When p ∈ B−1(A), we have:

β(p) = ρ(p) , b+(p) = 0 , ρ(p) ∈ (0, 1)

||V+(p)|| =
√

1− ρ(p)2 , V−(p) = (ρ(p) sinψ)v , V3(p) = −(ρ(p) cosψ)v

with v ∈ T ∗pM an arbitrary 1-form of unit norm such that V+(p) ⊥ v.

(c) When p ∈ B−1(IntC±), we have:

b+(p) = ±g(ρ(p), β(p)) , 0 < ρ(p) < β(p) < 1

V+(p) = − ||V+||2

b+ρ(p)
(cosψV−(p) + sinψV3(p))

||V−(p)|| =
√
β2−ρ(p)2 cos2ψ , ||V3(p)|| =

√
β2−ρ(p)2 sin2ψ

cos θ−3(p) = − ρ(p)2 sin 2ψ

2||V−(p)|| ||V3(p)||
.
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2. When p ∈ W1, we have:

(a) For p ∈ B−1(∂D) we have:

β(p) = 1 , b+(p) = 0 , ρ(p) = 1

V+(p) = 0 , V−(p) = (sinψ)v , V3(p) = −(cosψ)v ,

where v ∈ T ∗pM is an arbitrary 1-form of unit norm.

(b) For p ∈ B−1(IntI) we have:

β(p) = 0 , b+(p) ∈ (−1, 1) , ρ(p) = 0

||V+(p)|| =
√

1− b+(p)2 , V−(p) = V3(p) = 0 .

3. When p ∈ W0 we have:

β(p) = 0 , b+(p) = ±1 , ρ(p) = 0

V+(p) = V−(p) = V3(p) = 0 .

5.2 Description of the rank stratification of D0 and of the stabilizer stratifi-

cation

The following result shows that the rank stratification of D0 (which coincides with the

stabilizer stratification) is given by another coarsening of the B-preimage of the connected

refinement of the canonical Whitney stratification of P.

Theorem 4. For p ∈M , we have:

• rkD0(p) = 4 iff B(p) ∈ IntP i.e. iff p ∈ U

• rkD0(p) = 6 iff B(p) ∈ IntI t IntD t A t IntC+ t IntC− = IntI t ∂2P t ∂3P

• rkD0(p) = 7 iff B(p) ∈ ∂D

• rkD0(p) = 8 (i.e. D(p) = TpM) iff B(p) ∈ ∂I.

Hence the rank stratification of D0 is given by:

U0 = U , Z3 = ∅ , Z2 = B−1(IntI t ∂2P t ∂3P) , Z1 = B−1(∂D) , Z0 = B−1(∂I) =W0

and the stabilizer group Hp is given by:

• Hp ' SU(2) if p ∈ U0 = U

• Hp ' SU(3) if p ∈ Z2

• Hp ' G2 if p ∈ Z1

• Hp ' SU(4) if p ∈ Z0 .

Proof. Follows immediately from Theorem 1 of section 3 together with the Lemma of

appendix E.

The situation is summarized in table 5.

The b-image of the G-structure stratification is depicted in figure 13.
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P-description D-stratum D0-stratum rkD rkD0 Hp

B−1(∂I) W0 Z0 8 8 SU(4)

B−1(∂D) W1
1 Z1 7 7 G2

B−1(IntI) W0
1 ⊂ Z2 7 6 SU(3)

B−1(∂2P t ∂3P) W2 ⊂ Z2 6 6 SU(3)

IntP U U0 5 4 SU(2)

Table 5. The ranks of D and D0 on various loci and the isomorphism type of Hp.

Figure 13. The b-image of the SU(4) locus is contained in ∂I (orange). The b-image of the G2

locus is contained in ∂D (green). The b-image of the SU(3) locus is contained in R \ (∂I ∪ ∂D)

(blue), while the b-image of the SU(2) locus is contained in IntR (blue).

5.3 Comparing the rank stratifications of D and D0

Using relations (4.27), Theorem 2 shows that Wk decompose as follows:

W0 = W+
0 tW

−
0 where W±0 = B−1(∂±0 P)

W1 = W0
1 tW1

1 where W0
1

def.
= B−1(IntI) , W1

1
def.
= B−1(∂D)

W2 = W2
2 tW3

2 where W2
2

def.
= B−1(∂2P) , W3

2
def.
= B−1(∂3P) ,

where W2
2 and W3

2 decompose further as:

W2
2 = W2+

2 tW2−
2 with W2+

2
def.
= B−1(IntD) , W2−

2
def.
= B−1(A)

W3
2 = W3+

2 tW3−
2 with W3±

2
def.
= B−1(IntC±) ,

so that:

W2 =W2+
2 tW2−

2 tW3+
2 tW3−

2 .

Finally, W0
1 decomposes as:

W0
1 =W0+

1 tW0−
1 tW00

1 with W0±
1 = B−1(IntI±) , W00

1 = B−1(∂0
0P) .

The components listed above give the B-preimage of the connected refinement of the canon-

ical Whitney stratification of ∂P, to which we can add B−1(IntP) to obtain the V -preimage
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P-description b-image D-stratum D0-stratum b+ ρ β Hp

W+
0 B−1(∂+

0 P) ∂+
0 R W0 Z0 +1 0 0 SU(4)

W−0 B−1(∂−0 P) ∂−0 R W0 Z0 −1 0 0 SU(4)

W1
1 B−1(∂D) ∂1R = ∂D W1 Z1 0 1 1 G2

W0+
1 B−1(IntI+) Int(I+) W1 Z2 (0,+1) 0 0 SU(3)

W0−
1 B−1(IntI−) Int(I−) W1 Z2 (−1, 0) 0 0 SU(3)

W00
1 B−1(∂0

0P) {0R3} W1 Z2 0 0 0 SU(3)

W2+
2 B−1(IntD) IntD W2 Z2 0 [0, 1) 1 SU(3)

W2−
2 B−1(A) IntD \ {0} W2 Z2 0 (0, 1) ρ SU(3)

W3+
2 B−1(IntC+) Int(R+) W2 Z2 +g(ρ, β) [0, 1) (ρ, 1) SU(3)

W3−
2 B−1(IntC−) Int(R−) W2 Z2 −g(ρ, β) [0, 1) (ρ, 1) SU(3)

U B−1(IntP) IntR U U0 (−1, 1) [0, 1) J(b+, ρ) SU(2)

Table 6. Preimage of the connected refinement of the canonical Whitney stratification of P.

of the connected refinement of the Whitney stratification of P (see table 6). Theorems 2

and 4 give:

U0 = U , Z3 = ∅ , Z2 =W0
1 tW2 , Z1 =W1

1 , Z0 =W0 .

In view of the last equality, we define Z±0
def.
= W±0 .

5.4 Description of the chirality stratification

We saw in section 3 that S = b−1(∂R). Since b = B ◦ π, this gives S = B−1(π−1(∂R)).

The set π−1(∂R) ⊂ ∂P which was discussed in section 4.3. Together with Theorem 1,

decomposition (4.31) and relations (4.32) imply:

S02 = B−1(∂+
0 P) =W+

0 , S20 = B−1(∂−0 P) =W−0
S12 = B−1(S+) ⊂ W3+

2 , S21 = B−1(S−) ⊂ W3−
2

S11 = B−1(∂D) =W1
1 = Z1 .

In particular, we have S ⊂ W0 tW1
1 tW3

2 ⊂ W and

G = U tB−1(IntI) tB−1(∂2P) tB−1(∂3P \S) ,

where S
def.
= S+tS−. The situation is summarized in table 7, where we remind the reader

that the restrictions of D and D0 to the special locus S coincide (see section 3).

5.5 Relation to previous work

Some aspects of N = 2 compactifications of eleven-dimensional supergravity down to

AdS3 were approached in [26] using a nine-dimensional formalism based on the auxiliary

9-manifold M̂
def.
= M × S1, but without carefully exploring the consequences of that for-

malism for the geometry of M . Sections 3-5 of [26] also discuss some consequences of the
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P-description S-stratum D-stratum D0-stratum rkD rkD0 Hp

B−1(∂+
0 P) S02 W+

0 Z+
0 8 8 SU(4)

B−1(∂−0 P) S20 W−0 Z−0 8 8 SU(4)

B−1(∂D) S11 W1
1 Z1 7 7 G2

B−1(S+) S12 ⊂ W3+
2 ⊂ Z2 6 6 SU(3)

B−1(S−) S21 ⊂ W3−
2 ⊂ Z2 6 6 SU(3)

Table 7. Description of the special strata of the chirality stratification. The table does not show

the non-special locus G.

supersymmetry equations (which were also derived in [25]) using the nine-dimensional for-

malism. Reference [26] makes intensive use of an assumption (equation (3.9) of loc. cit.)

which, as we show in appendix G, can only hold when the SU(2) locus U of M is empty.

Since most results of [26] (including the count of the number of supersymmetries preserved

by membranes transverse to M as well as the discussion of sections 3-6 of that reference)

rely on that assumption, those results can apply only to the highly non-generic case when

U = ∅. As we explain in detail in forthcoming work, failure of [26, eq. (3.9)] is related to

the transversal vs. non-transversal character of the intersection of a certain distribution D̂
defined on M̂ with the pullback to M̂ of the tangent bundle of M .

6 Conclusions

We studied the conditions for “off-shell” extended supersymmetry in compactifications of

eleven-dimensional supergravity on eight-manifolds M . We gave an explicit description of

the stabilizer stratification induced by two globally-defined Majorana spinors as a certain

coarsening of the preimage of the connected refinement of the Whitney stratification of a

four-dimensional compact semi-algebraic set P through a map B : M → R4 whose image is

contained in P. We also described the chirality stratification as a coarsening of the preimage

of the connected refinement of the Whitney stratification of a 3-dimensional compact semi-

algebraic set R through a smooth map b : M → R3 whose image is contained in R. Unlike

the case of N = 1 compactifications, the stabilizer and chirality stratifications do not

agree. We found a rich landscape of reductions of structure group along the various strata,

which we classified explicitly. The open strata of the chirality and stabilizer stratifications

coincide and correspond to an open subset U ⊂M which carries an SU(2) structure. This

locus is present in generic N = 2 flux compactifications of eleven-dimensional supergravity

on eight manifolds, for example in generic N = 2 compactifications down to AdS3 spaces.

We also discussed two natural cosmooth generalized distributions D and D0 which exist

on M when considering such backgrounds. These are defined by the four one-form spinor

bilinears V1, V2, V3 and W which are induced by two independent globally-defined Majorana

spinors given on M , namely D is the intersection of the kernel distributions of V1, V2 and V3

while D0 is the intersection of D with the kernel distribution of W . We showed that the rank

stratification of D0 coincides with the stabilizer stratification, while the rank stratification

of D is another coarsening of the B-preimage of the connected refinement of the Whitney
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stratification of P. The restriction of D to the open stratum U is a rank five regular Frobe-

nius distribution which carries an SU(2) structure in the sense of [42], while the restriction

of D0 to U is a rank four Frobenius distribution (the almost contact distribution of [43]).

Since the image Gp = qp(Hp) ⊂ SO(TpM, gp) of the pointwise stabilizer group Hp of two

independent Majorana spinors fixes the forms V1(p), V2(p), V3(p) and W (p), the distribu-

tion D0|U carries the SU(2) structure of D|U in the sense that Gp is contained in the group

SO(D0(p), gp) ' SO(4) for any point p ∈ U . In this paper, we focused on the classification

of spinor positions and stabilizer groups, which we treated in detail given its complexity.

We mention that considerably more can be said about the chirality and stabilizer stratifi-

cations provided that one makes appropriate Thom-Boardman type genericity assumptions

which allow one to apply results from the singularity theory of differentiable maps [44–48].

Since the manifolds M considered in this paper are eight-dimensional, it is not en-

tirely clear how a description of such backgrounds may be given within the framework of

exceptional generalized geometry [4–10], similar to the one given in [7–9] for 7-dimensional

backgrounds of eleven-dimensional supergravity and in [35, 36, 49, 50] for six-dimensional

type II backgrounds. This stems from difficulties10 in building an appropriate general-

ized connection in eight dimensions, which in turn relates to the presence of Kaluza-Klein

monopoles in the U-duality algebra and hence to the problem of including “dual gravi-

tons” at the nonlinear level in E8(8)-covariant formulations of eleven-dimensional super-

gravity [11–14] (which is obstructed by the no-go results of [15, 16]). A solution to this

problem was recently proposed in [51] within the framework of exceptional field theory

but, as pointed out in [52], that solution may be incomplete. It would be interesting to

understand what light may be shed on our results by exceptional generalized geometry.

The results of this paper show that the rich landscape of G-structures arising in N = 2

flux compactifications of eleven-dimensional supergravity on eight-manifolds admits a natu-

ral description using stratification theory and standard constructions of real semi-algebraic

geometry [30–32], thus giving clues about the mathematical tools required for general

treatments of flux backgrounds. We note that the approach via cosmooth generalized dis-

tributions, stratified G-structures and semi-algebraic sets appears to be quite general and

thus could be applied to flux backgrounds of any supergravity theory. In general, the

complexity of the stratifications involved grows rather fast with the number of spinors (as

implied by the results of [41]), but such stratifications can be computed algorithmically.

We mention that powerful algorithms exist [32] for the study of semi-algebraic sets.
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A Notations and conventions

Throughout this paper, (M, g) denotes a connected and compact smooth Riemannian eight-

manifold, which we assume to be oriented and spin. The unital commutative R-algebra of

smooth real-valued functions on M is denoted by C∞(M,R). The fact that M is orientable

and spin means that its first two Stiefel-Whitney classes vanish, i.e. w1(M) = w2(M) =

0. All fiber bundles we consider are smooth.11 We use freely the results and notations

of [25, 38, 54], with the same conventions as there.

Recall that the set of isomorphism classes of spin structures of M is a torsor for the

finite group H1(M,Z2). Let (T ∗M, �) denote the Kähler-Atiyah bundle of (M, g), which

is a bundle of unital associative R-algebras. Consider the set A consisting of all pairs

(S, γ), where S is a vector bundle of rank 16 over M and γ : (T ∗M, �) ∼→ (End(S), ◦)
is a unital isomorphism of bundles of R-algebras. Two pairs (S, γ), (S′, γ′) are called

equivalent (and we write (S, γ) ∼ (S′, γ′)) if there exists an isomorphism of Z2-graded

vector bundles f : S
∼→ S′ such that γ′ = f̃ ◦ γ, where f̃ : End(S) → End(S′) is the

unital isomorphism of bundles of algebras corresponding to f̃(Q)
def.
= f ◦ Q ◦ f−1 for all

Q ∈ Γ(M,End(S)). Given a spin structure on M , let S± be the corresponding bundles

of spinors of positive and negative chirality and S
def.
= S+ ⊕ S− denote the corresponding

bundle of real pinors (a.k.a. Majorana spinors). Then S is a bundle of modules over the

Kähler-Atiyah bundle (T ∗M, �) whose structure morphism is an isomorphism of bundles

of algebras γ : (T ∗M, �) ∼→ (End(S), ◦) and hence the pair (S, γ) is an element of A. This

gives a map which associates an element of A to every spin structure of M . It is easy to

see that two spin structures are equivalent iff the corresponding pairs (S, γ) and (S′, γ′)

are equivalent in the sense described above, hence we have a bijection between H1(M,Z2)

and the set A/∼. Throughout the paper, we assume that a spin structure has been chosen

for M and we work with the corresponding pair (S, γ) ∈ A.

Up to rescalings by smooth nowhere-vanishing real-valued functions defined on M , the

bundle S of Majorana spinors has two admissible pairings B± (see [54–56]), both of which

are symmetric. These pairings are distinguished by their types εB± = ±1. Throughout the

paper, we work with B
def.
= B+, which we can take to be a scalar product on S, denoting

the induced norm on S by || ||.
Our convention for the Clifford algebra Cl(h) of a bilinear form h is that common in

Physics, i.e. the generators satisfy ekel + elek = 2hkl; the convention common in Mathe-

11The generalized bundles [37, 53] considered in this paper are not fiber bundles and they will be either

smooth or cosmooth.
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matics has a minus on the right hand side. One recovers the Mathematics convention by

multiplying all ek with the imaginary unit i; accordingly, the Killing constant of a Killing

spinor is multiplied by i. Unlike in some of the literature on flux compactifications, we re-

serve the name “Killing spinor” for the mathematically consecrated notion, i.e. for a spinor

ξ which satisfies ∇kξ = λekξ, where λ is the Killing constant and the right hand side

involves Clifford multiplication; spinors which satisfy generalizations of this equation in

which the right hand side contains a polynomial in ei are called generalized Killing spinors,

as usual in the Mathematics literature.

The generalized distributions [37, 53] D and D0 considered in this paper are cosmooth

in the sense of [37] rather than smooth. As explained in appendix D of [24], their in-

tegrability theory (see [57]) is in some sense “orthogonal” to that of smooth generalized

distributions [58–61]. When integrable, a cosmooth generalized distribution integrates to

a Haefliger structure (a.k.a. a singular foliation in the sense of Haefliger) while a smooth

generalized distribution integrates to a singular foliation in the sense of [62, 63].

We use the “mostly plus” convention for pseudo-Riemannian metrics of Minkowski

signature. Given a subset A of M , we let Ā denote the closure of A in M (taken with

respect to the manifold topology of M). The frontier (also called topological boundary)

of A is defined as ∂A
def.
= Ā \ IntA, where IntA denotes the interior of A. The small

topological frontier is frA
def.
= Ā\A. When considering the canonical Whitney stratification

of a semi-algebraic set, we always work with its connected refinement (see appendix B). In

some references (such as [41]) it is this connected refinement which is called the canonical

Whitney stratification of that semi-algebraic set.

B Algebraic constraints for Vr,W and b

Relations (4.1) can be obtained through direct computation using Fierz identities. Here,

we give a proof which relies on reducing (4.2) to a Fierz identity satisfied by a single spinor.

Consider the Majorana spinor:

ξ(x)
def.
= x1+ξ

+
1 + x1−ξ

−
1 + x2+ξ

+
2 + x2−ξ

−
2 ∈ Γ(M,S)

and the corresponding one-form:

V (x)
def.
= U B(ξ(x), γaξ(x))ea ,

where U ⊂M and xi± are arbitrary real numbers. This satisfies the relation [38]:

||V (x)||2 = ||ξ(x)||4 − b(x)2 , (B.1)

where:

b(x)
def.
= U B(ξ(x), γ(ν)ξ(x)) .

The relations γta = γa and γ(ν)t = γ(ν) give:

B(ξαi , γaξ
β
j ) = B(ξβj , γaξ

α
i ) , B(ξαi , γ(ν)ξβj ) = B(ξβj , γ(ν)ξαi )
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for all i, j = 1, 2 and all α, β ∈ {−,+}. Using these as well as B(ξ±i , ξ
∓
j ) = 0, we find:

V (x) = x1+x1−V1 + x2+x2−V2 + 2x1−x2+V
+
3 + 2x1+x2−V

−
3

||ξ(x)||2 = x2
1+||ξ+

1 ||
2 + x2

2+||ξ+
2 ||

2 + x2
1−||ξ−1 ||

2 + x2
2−||ξ−2 ||

2 + 2x1+x2+B(ξ+
1 , ξ

+
2 ) + 2x1−x2−B(ξ−1 , ξ

−
2 )

b(x) = x2
1+||ξ+

1 ||
2 + x2

2+||ξ+
2 ||

2 − x2
1−||ξ−1 ||

2 − x2
2−||ξ−2 ||

2 + 2x1+x2+B(ξ+
1 , ξ

+
2 )− 2x1−x2−B(ξ−1 , ξ

−
2 ) .

Using (3.11), these relations become:

V (x) = x1+x1−V1 + x2+x2−V2 + 2x1−x2+V
+
3 + 2x1+x2−V

−
3

||ξ(x)||2 =
1

2

[
x21+(1 + b1) + x22+(1 + b2) + x21−(1− b1) + x22−(1− b2)

]
+ x1+x2+b3 − x1−x2−b3

b(x) =
1

2

[
x21+(1 + b1) + x22+(1 + b2)− x21−(1− b1)− x22−(1− b2)

]
+ x1+x2+b3 + x1−x2−b3 .

Substituting these expressions into (B.1) gives an algebraic equation which must hold for all

xiα, i.e. a certain polynomial in the variables xiα must vanish identically. This means that

the coefficients of all monomials in xiα in that polynomial must vanish, giving the relations:

||V1||2 = 1− b21 , ||V2||2 = 1− b22 ,

||V +
3 ||

2 =
1

4
(1− b1 + b2 − b1b2) , ||V −3 ||

2 =
1

4
(1 + b1 − b2 − b1b2) ,

〈V1, V2〉+ 4〈V −3 , V +
3 〉 = 2b23 , (B.2)

〈V1, V
+

3 〉 = 1/2(1− b1)b3 , 〈V1, V
−

3 〉 = −1/2(1 + b1)b3 ,

〈V2, V
+

3 〉 = −1/2(1 + b2)b3 , 〈V2, V
−

3 〉 = 1/2(1− b2)b3 .

Using V3 = V +
3 + V −3 , W = V +

3 − V
−

3 and V± = 1
2(V1 ± V2), we can write (B.2) in the

form (4.1). The system (4.1) can also be written as:

||V1||2 = 1− b21 , ||V2||2 = 1− b22 , ||V3||2+||W ||2 = 1− b1b2 ,
〈V1, V2〉+2||V3||2 = 1−b1b2−2b23 , 〈V1, V3〉 = −b1b3 , 〈V2, V3〉 = −b2b3 , (B.3)

〈V1,W 〉 = b3 , 〈V2,W 〉 = −b3 , 〈V3,W 〉 =
1

2
(b2 − b1) .

Using (3.11), we find:

1− b2i = (1− bi)(1 + bi) = 4||ξ+
i ||

2||ξ−i ||
2 (i = 1, 2)

1∓ b1 ± b2 − b1b2 = (1∓ b1)(1± b2) = 4||ξ∓1 ||
2||ξ±2 ||

2 . (B.4)

This allows us to write the norms of Vi, V
±

3 given in (4.1) in the form:

||Vi|| = 2||ξ+
i || ||ξ

−
i || , ||V ±3 || = ||ξ

∓
1 || ||ξ

±
2 || . (B.5)

Proposition. Assume that ξ±j does not vanish anywhere on the open subset U ⊂ M

which supports the local orthonormal coframe (ea)a=1...8 of (M, g). Then (γaξ±j )a=1...8 is

an orthogonal frame of S∓ defined above U which satisfies ||γaξ±j ||2 = ||ξ±j ||2 and we have:

ξ∓i =U
1

||ξ±j ||2

8∑
a=1

B(ξ∓i , γaξ
±
j )γaξ±j .
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In particular, if ξ+
1 , ξ

−
1 , ξ

+
2 and ξ−2 are all non-vanishing on U then:

ξ+
1 =U

1

2||ξ−1 ||2
γ(V1)ξ−1 =

1

||ξ−2 ||2
γ(V −3 )ξ−2 , ξ+

2 =U
1

2||ξ−2 ||2
γ(V2)ξ−2 =

1

||ξ−1 ||2
γ(V +

3 )ξ−1

ξ−1 =U
1

2||ξ+
1 ||2

γ(V1)ξ+
1 =

1

||ξ+
2 ||2

γ(V +
3 )ξ+

2 , ξ−2 =U
1

2||ξ+
2 ||2

γ(V2)ξ+
2 =

1

||ξ+
1 ||2

γ(V −3 )ξ+
1 .

(B.6)

Proof. Follows immediately by applying a result proved in [24, section 2.6] (the Corollary

on page 14 of loc. cit.).

Remark. Under the assumption of the second part of the proposition, relations (B.5)

show that V1, V2 and V ±3 are nowhere-vanishing on U and that the following rescaled

1-forms have unit norm everywhere on U , where i = 1, 2:

V̂i
def.
=

1

2||ξ+
i || ||ξ

−
i ||

Vi , V̂ ±3
def.
=

1

||ξ∓1 || ||ξ
±
2 ||

V ±3 .

Using these normalized 1-forms, relations (B.6) can be written as:

ξ+
1

||ξ+
1 ||

=U γ(V̂1)
ξ−1
||ξ−1 ||

= γ(V̂ −3 )
ξ−2
||ξ−2 ||

,
ξ+

2

||ξ+
2 ||

=U γ(V̂2)
ξ−2
||ξ−2 ||

= γ(V̂ +
3 )

ξ−1
||ξ−1 ||

ξ−1
||ξ−1 ||

=U γ(V̂1)
ξ+

1

||ξ+
1 ||

= γ(V̂ +
3 )

ξ+
2

||ξ+
2 ||

,
ξ−2
||ξ−2 ||

=U γ(V̂2)
ξ+

2

||ξ+
2 ||

= γ(V̂ −3 )
ξ+

1

||ξ+
1 ||

. (B.7)

Notice V̂1, V̂2, V̂
±

3 square to one in the Kähler-Atiyah algebra of (U, g) and hence the en-

domorphisms γ(V̂i), γ(V̂ ±3 ) square to the identity automorphism of the bundle S|U . Also

note that the second part of the proposition applies to any open subset of the non-special

locus G ⊂M which supports a local orthonormal coframe of (M, g).

Remark. The sub-system (4.2) can be obtained more directly as follows. An arbitrary

norm one element ξ of K has the form:

ξ(u) = cos
(u

2

)
ξ1 + sin

(u
2

)
ξ2 (B.8)

where u ∈ R is constant on M . This induces a function b(u) ∈ C∞(M,R) and a one-form

V (u) ∈ Ω1(M) given by:

b(u) =U B(ξ(u), γ(ν)ξ(u)) , V (u) =U B(ξ(u), γaξ(u))ea . (B.9)

Relation (B.8) gives:

b(u) = b+ + b− cosu+ b3 sinu , V (u) = V+ + V− cosu+ V3 sinu . (B.10)

Since ||ξ(u)|| = 1, relation (B.1) implies that the following equality must hold for all u

(cf. [19, 23, 24]):

||V (u)||2 = 1− b(u)2 . (B.11)

Substituting (B.10) into (B.11), we can separate the Fourier components in u, using the

fact that {1, cos(u), sin(u)|n ∈ N∗} form an orthogonal basis of the Hilbert space L2(S1)

of (complex-valued) square integrable functions on the circle. This leads to a system of

algebraic constraints for br and Vr which is equivalent with (B.11). Expanding in Fourier

components, one finds after some computation that (B.11) is equivalent with (4.2).
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C Stratified spaces

We recall some basic notions from stratification theory in order to fix terminology. In this

paper, a finite stratification of a topological space X is understood in the most general

sense, i.e. as a finite partition of X into non-empty subsets called strata. We say that the

stratification is connected if all strata are connected. We let Σ ⊂ P(X) (where P(X) is

the power set of X) denote the set of all strata, thus:

X = tS∈ΣS .

C.1 Incidence poset of a stratification

Consider the partial order relation ≤ defined on Σ through:

S′ ≤ S iff S′ ⊆ S .

Then (Σ,≤) is a finite poset called the incidence poset of the stratification. We let <

denote the transitive binary relation defined on Σ through:

S′ < S iff S′ ≤ S and S′ 6= S

i.e.:

S′ < S iff S′ ⊆ fr(S) ,

where fr(S) denotes the small frontier of S (see appendix A). For any S ∈ Σ, let C(S)

denote the strict lower set of S:

C(S)
def.
= {S′ ∈ Σ|S′ < S} = {S′ ∈ Σ|S′ ⊆ frS} .

For all S ∈ Σ, we have the obvious inclusion:

tS′∈C(S) S
′ ⊆ fr(S) . (C.1)

C.2 The adjointness relation

We say that a stratum S′ adjoins a stratum S (and write S′ E S) if the intersection S′ ∩ S̄
is non-empty. This defines a reflexive (but generally non-transitive) binary relation on Σ.

We say that S′ strictly adjoins S (and write S′ /S) if S′ E S and S′ 6= S i.e. if S′ intersects

frS. We have:

frS ⊆ tS′/SS′ , ∀S ∈ Σ

and:

C(S) ⊆ {S′ ∈ Σ|S′ / S} . (C.2)

– 49 –



J
H
E
P
1
1
(
2
0
1
5
)
0
0
7

C.3 The frontier condition

We say that the stratification satisfies the frontier condition if the small frontier of each

stratum is a union of strata. This amounts to the requirement that equality is always

realized in (C.1):

fr(S) = tS′∈C(S)S
′ , ∀S ∈ Σ

and with the condition that equality is realized in (C.2). This happens iff the binary rela-

tions < and / coincide, in which case ≤ and E also coincide i.e. iff S′∩S̄ 6= ∅ implies S′ ⊆ S̄.

When the frontier condition is satisfied, the small frontier of any stratum can be determined

immediately by looking at the Hasse diagram of the incidence poset of the stratification.

C.4 Refinements and coarsenings

We say that a stratification Σ′ is a refinement of Σ if any stratum of Σ is a union of strata

of Σ′. In this case, we also say that Σ is a coarsening of Σ′. The connected refinement of

Σ is the refinement whose strata are the connected components of the strata of Σ; it is the

coarsest connected stratification which is a refinement of Σ. We say that two stratifications

Σ and Σ′ agree if one of them is a refinement of the other.

D The semipositivity conditions for G

Consider the Gram matrix (4.7). We use the notation G[ij|ij] for the 2 by 2 submatrix of

G obtained by keeping only the i-th and j-th rows and columns of G, where 1 ≤ i < j ≤ 3.

By Sylvester’s criterion:

• G is positive semidefinite, iff each of its principal (unsigned) minors:

detG , detG[12|12] , detG[23|23] , detG[13|13] , G11 , G22 , G33

is non-negative.

• G is positive definite iff each of its leading principal minors detG, detG[12|12] and G11

is positive; in this case, the non-leading principal minors are automatically positive.

Remark. When G is positive semidefinite, Kosteljanski’s inequality [64] gives:

detG[I ∪ J ] detG[I ∩ J ] ≤ detG[I] detG[J ] ,

where G[I] denotes the unsigned principal minor defined by keeping only those rows and

columns of G indexed by elements of the subset I of the set {1, 2, 3}. For I ∩ J = ∅, this

reduces to Fisher’s inequality:

detG[I ∪ J ] ≤ detG[I] detG[J ] when I ∩ J = ∅ ,

which gives:

detG ≤ min(G11 detG[23|23], G22 detG[13|13], G33 detG[12|12]) (D.1)

detG[12|12] ≤ G11G22 , detG[13|13] ≤ G11G33 , detG[23|23] ≤ G22G33 .
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To study Sylvester’s conditions, we start by computing the determinants of the various

submatrices ofG. Consider the polynomial (4.10), which we reproduce here for convenience:

P (b, β) = β4 − β2(1 + ρ2 − b2+) + ρ2 . (D.2)

Notice that:

P (b, ρ) = b2+ρ
2 . (D.3)

Direct computation gives:

G11 = 1− β2 − b2+ , G22 = β2 − b2− , G33 = β2 − b23
detG[12|12] = −P (b+, b−, 0, β) , detG[13|13] = −P (b+, 0, b3, β) (D.4)

detG[23|23] = β2
[
β2 − (b2− + b23)

]
, detG = −β2P (b+, b−, b3, β) .

When viewing P as a quadratic polynomial in β2, its discriminant equals the function

h(b+, ρ) defined in (4.12).

Proposition. We have h(b) ≥ 0 for b ∈ R, with equality iff b ∈ ∂R.

Proof. The statement follows by noticing that:

h(b+, ρ) = [(1 + b+)2 − ρ2][(1− b+)2 − ρ2] = [(1 + |b+|)2 − ρ2][(1− |b+|)2 − ρ2]

and using the fact that b ∈ R implies (b+, ρ) ∈ ∆, which in turn means that |b+| ≤ 1 and

ρ ≤ 1− |b+|.

It follows that for any b ∈ R we can factorize P (b, β) as:

P (b, β) = (β2 − f+(b))(β2 − f−(b)) , (D.5)

where f±(b) are given in (4.11). This allows us to write:

− detG[12|12] = (β2 − f+(b+, b−, 0))(β2 − f−(b+, b−, 0))

detG[23|23] = β2(β2 − ρ2) (D.6)

− detG[13|13] = (β2 − f+(b+, 0, b3))(β2 − f−(b+, 0, b3)) .

D.1 Proof of Theorem 2

Theorem 2 is an immediate consequence of Lemmas A, B and C proved below.

Proposition. The following inequality holds for b ∈ R:√
h(b+, ρ) ≤ 1− b2+ − ρ2 , (D.7)

with equality iff b+ρ = 0.

Proof. For b ∈ R, we have (b+, ρ) ∈ ∆ and hence ρ ≤ 1 − |b+|, which implies ρ2 ≤
(1−|b+|)2 ≤ (1−|b+|)(1+|b+|) = 1−b2+. Hence the right hand side of (D.7) is non-negative

for b ∈ R. It follows that (D.7) is equivalent with the inequality obtained by squaring both

of its sides, which can be seen by direct computation to be equivalent with 4b2+ρ
2 ≥ 0.
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Proposition. For b ∈ R, we have:

ρ2 ≤ f−(b+, ρ) ≤ f+(b+, ρ) ≤ 1− b2+ . (D.8)

The first and third inequalities in (D.8) are both strict unless b+ρ = 0, in which case both

of them become equalities. In particular, we have J(b) ⊂ [ρ,
√

1− b2+], where the interval

J(b) was defined in (4.13).

Proof. The middle inequality is obvious, while the first and third inequalities are both

equivalent with (D.7). The other statements follow immediately.

Remark. For (b, β) ∈ P, we have:

1. G11 = 0 (i.e. ||V+|| = 0) iff one of the following holds:

• β = 1 or

• b+ = b− = 0 and β =
√

1− b2+, which requires ||V−|| = ||V3|| =
√

1− b2+ and

〈V−, V3〉 = 0

2. detG[23|23] = 0 (i.e. V− and V3 are linearly dependent) iff one of the following holds:

• β = ρ = 0 and hence V− = V3 = 0 and ||V+|| =
√

1− b2+ or

• b+ = 0 and β = ρ =
√
b2− + b23, which requires ||V+||2 = 1−b2−−b23, ||V−|| = |b3|,

||V3|| = |b−|, V+ ⊥ (V−, V3) and 〈V−, V3〉 = −b−b3 .

Lemma A. Let b ∈ R. Then the condition detG(b, β) ≥ 0 is equivalent with the

condition that B = (b, β) belong to the body P. Furthermore, this condition implies that

G11, G22, G33 and detG[23|23] are non-negative.

Proof. Equation (D.5) shows that condition detG ≥ 0 is equivalent with:12

f−(b) ≤ β2 ≤ f+(b) i.e. β ∈ J(b) , (D.9)

which is equivalent with (b+, β) ∈ P (see (4.14)). By (D.8), this implies ρ2 ≤ β2 ≤ 1− b2+,

which upon using (D.6) implies that Gii and detG[23|23] are non-negative.

Proposition. For each fixed value of b+ ∈ [−1, 1], f−(b+, ρ) is monotonically increasing

while f+(b+, ρ) is monotonically decreasing as a function of ρ ∈ [0, 1− |b+|]. Moreover:

• f−(b+, ρ) is strictly increasing as a function of ρ ∈ (0, 1− |b+|) for any b+ ∈ [−1, 1]

• f+(b+, ρ) is strictly decreasing as a function of ρ ∈ (0, 1− |b+|) for any b+ ∈ [−1, 0)∪
(0, 1] while f+(0, ρ) = 1 for any ρ ∈ [0, 1].

12The case β = 0 requires ρ = 0, which gives f+(b+, 0) = 1 − b2+ and f−(b+, 0) = 0, in which case (D.9)

is satisfied.
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Proof. We have:13

∂f−(b+, ρ)

∂ρ
= ρ

1 + b2+ − ρ2 +
√

(1 + b2+ − ρ2)2 − 4b2+√
(1 + b2+ − ρ2)2 − 4b2+

≥ 0

∂f+(b+, ρ)

∂ρ
= −ρ

1 + b2+ − ρ2 −
√

(1 + b2+ − ρ2)2 − 4b2+√
(1 + b2+ − ρ2)2 − 4b2+

≤ 0 ,

where the inequalities follow using ρ2 ≤ 1. The first inequality is strict unless ρ = 0 or

(b+, ρ) = (0, 1). The second inequality is strict unless ρ = 0 or b+ = 0. Notice that

f+(0, ρ) = 1 for ρ ∈ [0, 1].

Proposition. For any b ∈ R, we have:

f−(b+, b−, 0) ≤ f−(b+, b−, b3) ≤ f+(b+, b−, b3) ≤ f+(b+, b−, 0)

f−(b+, 0, b3) ≤ f−(b+, b−, b3) ≤ f+(b+, b−, b3) ≤ f+(b+, 0, b3) . (D.10)

In particular, the condition β2 ∈ [f−(b+, ρ), f+(b+, ρ)] implies detG[12|12] ≥ 0 and

detG[13|13] ≥ 0. Furthermore, we have:

• detG[12|12] = 0 iff β = 1 or (b3 = 0 and β2 ∈ {f−(b+, b−, 0), f+(b+, b−, 0)})

• detG[13|13] = 0 iff β = 1 or (b− = 0 and β2 ∈ {f−(b+, 0, b3), f+(b+, 0, b3)}).

Proof. Inequalities (D.10) follow immediately from the Lemma. When β2 ∈
[f−(b+, ρ), f+(b+, ρ)], these inequalities imply that β lies between the two roots of

P (b+, b−, 0;β)) and P (b+, 0, b3;β) (viewed as polynomials in β2), which shows that

detG[12|12] ≥ 0 and detG[13|13] ≥ 0 (see (D.4)). The other statements follow from the strict

monotonicity properties listed in the lemma, recalling that β = 1 requires b+ = 0.

Lemma B. The determinants detG[12|12] and detG[23|23] are non-negative for any (b, β) ∈
P.

Proof. Follows immediately from the previous proposition upon recalling that the body P

is a fibration over R with fiber given by the interval J(b) defined in (4.13).

Remark. Lemma B implies that we have f−(b+, ρ) ≥ 0, with equality iff ρ = 0 and

|b+| = 1.

Proposition. For (b, β) ∈ P, the equality β = ρ can be attained only for (b, β) ∈ I ∪ Ā.

Proof. For (b, β) ∈ P, we have β ∈ J(b) and hence ρ2 ≤ f−(b) ≤ β2 by (D.8). Thus β = ρ

means that equality is realized in the first inequality of (D.8), which requires b+ρ = 0, i.e.

b+ = 0 or ρ = 0. In the first case we have (b, β) ∈ Ā while in the second case we have

(b, β) ∈ I.
13These relations should be interpreted in a limiting sense for ρ = 1− |b+|.
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Lemma C. Let B = (b, β) ∈ P. Then rkG(B) ≤ 1 iff B ∈ I t ∂D. Furthermore, we

have rkG = 0 iff B ∈ ∂I.

Proof. (Necessity) The condition rkG(B) ≤ 1 requires that all two by two minors of G van-

ish. Relations (D.6) show that detG[23|23] = 0 implies β = 0 or β = ρ. In the first case, the

first row of (D.4) and the conditions G22 ≥ 0 andG33 ≥ 0 imply ρ = 0, hence the first case is

contained in the second. Thus we must have β = ρ and the Proposition gives (b+, ρ) ∈ I∪Ā.

Consider the case (b+, ρ) ∈ Ā, i.e. b+ = 0. Substituting β = ρ and b+ = 0 in (D.4), we find:

detG[12|12] = b23(1− ρ2) , detG[13|13] = b2−(1− ρ2) . (D.11)

Hence these two by two minors of G(B) vanish simultaneously iff ρ = 1 or ρ = 0, i.e. iff

(b+, β) belongs to ∂0
0Pt∂D. Since ∂0

0P is the midpoint of I, we conclude that rkG(B) ≤ 1

requires (b+, ρ) ∈ I t ∂D.

(Sufficiency) For B ∈ I (i.e. for ρ = β = 0), we have:

G(B) =


1− b2+ 0 0

0 0 0

0 0 0


and hence rkG ≤ 1. Notice that rkG = 0 iff b+ = ±1 i.e. iff B ∈ ∂I. For B ∈ ∂D (i.e. for

b+ = 0 and β = ρ = 1), we have:

G(B) =


0 0 0

0 1− b2− −b−b3
0 −b−b3 1− b23

 =


0 0 0

0 b23 −b−b3
0 −b−b3 b2−

 ,
where in the second row we used the relation b2− + b23 = ρ2 = 1. Thus rkG ≤ 1, since the

two by two minor in the lower right corner has vanishing determinant. In this case, we

cannot have rkG = 0 (i.e. G = 0) since b2− + b23 = 1 and hence b− and b3 cannot vanish

simultaneously.

Proof of Theorem 2. The following result follows by combining Lemmas A, B and C:

Theorem 2’. Let b ∈ R. Then the matrix G(b, β) is semipositive iff β ∈ J(b), i.e. iff

B
def.
= (b, β) ∈ P. It is strictly positive iff B ∈ IntP. In particular, we have rkG(B) < 3 at

a point p ∈M iff B(p) ∈ ∂P. When B ∈ ∂P, we have:

• rkG(B) = 0 iff B ∈ ∂+
0 P t ∂−0 P = ∂I

• rkG(B) = 1 iff B ∈ ∂0
0P t ∂1P = ∂D t IntI

• rkG(B) = 2 iff B ∈ ∂2P ∪ ∂3P = IntD t A t IntC+ t IntC−.

We know from subsection 3.2 that imb ⊂ R. Combining this with Theorem 2’, we find

that the image of B is contained in P. Theorem 2 now follows immediately.
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D.2 Proof of Theorem 3

Theorem 3 is an immediate consequence of Lemma D proved below.

Lemma D. Let p ∈M . Then:

1. The value β(p) = 0 is attained iff B(p) ∈ I. At such points, we have b−(p) = b3(p) =

0, V−(p) = V3(p) = 0 and ||V+(p)|| =
√

1− b+(p)2, thus D(p) has dimension seven

or eight, according to whether |b+| < 1 or |b+| = 1.

2. The value β(p) = 1 is attained iff B(p) ∈ D. At such points, we have V+(p) = 0,

detG[12|12](p) = detG[13|13](p) = 0 and:

||V−(p)|| =
√

1− b−(p)2 , ||V3(p)|| =
√

1− b3(p)2 , 〈V−(p), V3(p)〉 = −b−(p)b3(p) .

The space D(p) has dimension six when B(p) ∈ IntD and dimension seven when

B(p) ∈ ∂D.

3. When B(p) ∈ ∂D (i.e. when β(p) = ρ(p) = 1), we have b+(p) = 0 , V+(p) = 0,

V−(p) = (sinψ)v , V3(p) = −(cosψ)v , b−(p) = cosψ , b3(p) = sinψ

and 〈V+(p), V−(p), V3(p)〉 = 〈v〉, where ψ ∈ [0, 2π) and v ∈ T ∗pM is an arbitrary

1-form of norm one.

4. When B(p) ∈ Ā (i.e. when β(p) = ρ(p)), we have detG[23|23](p) = 0 and ||V+(p)|| =√
1− ρ(p)2, V−(p) = (ρ(p) sinψ)v, V3(p) = −(ρ(p) cosψ)v with ψ ∈ [0, 2π) and

v ∈ T ∗pM an arbitrary 1-form of unit norm such that V+(p) ⊥ v. The space D(p) has

dimension six when B(p) ∈ A and dimension seven when B(p) ∈ frA = ∂0
0P t ∂D.

Proof. Inequalities (D.8) imply that β = 0 can be attained only at ρ = 0, i.e. only for

B(p) ∈ I. They also imply that β = 1 can be attained only at b+ = 0, i.e. only for

B(p) ∈ Ā. The remaining statements follow immediately using the system (4.2).

D.3 Solving for br in terms of Vr

Notice that G12G23G13 = −(b+b−b3)2, so the condition b+b−b3 6= 0 amounts to the re-

quirement that no two of the vectors Vr are orthogonal. In this case, we have:

b+ = ε

√
−G12G23G13

G23
, b− = ε

√
−G12G23G13

G13
, b3 = ε

√
−G12G23G13

G12
(D.12)

where ε ∈ {−1, 1} and hence (4.2) can be solved for br iff the following conditions are

satisfied:

0 ≤ 1−G11 +
G12G13

G23
= G22 −

G12G23

G13
= G33 −

G13G23

G12
(= β2) . (D.13)

Conditions (D.13) show that the triples of vectors allowed by (4.2) are constrained.
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E The rank of Ĝ

Direct computation using (4.8) gives:

det Ĝ(b, β) = P (b, β)2 , (E.1)

The determinants of the 3 by 3 principal minors of Ĝ are given by:

det Ĝ[123|123] = detG = −β2P (b, β) ,

det Ĝ[124|124] = −(1− b2+ − β2 + b2−)P (b, β) , (E.2)

det Ĝ[134|134] = −(1− b2+ − β2 + b23)P (b, β) ,

det Ĝ[234|234] = (ρ2 − β2)P (b, β) ,

where P (b, β) was defined in (4.10):

P (b, β) = (1− β2)(ρ2 − β2) + β2b2+ = −β2(1− b2+ − β2 + ρ2) + ρ2 ,

while the determinants of the 2 by 2 principal minors are:

det Ĝ[12|12] = detG[12|12] = β2(1− b2+ − β2 + b2−)− b2− = −P (b, β) + b23(1− β2) ,

det Ĝ[13|13] = detG[13|13] = β2(1− b2+ − β2 + b23)− b23 = −P (b, β) + b2−(1− β2) ,

det Ĝ[14|14] = (1− b2+ − β2)(1− b2+ − β2 + ρ2) ,

det Ĝ[23|23] = detG[23|23] = β2(β2 − ρ2) , (E.3)

det Ĝ[24|24] = (1− b2+ − β2 + ρ2)(β2 − b2−)− b23 ,
det Ĝ[34|34] = (1− b2+ − β2 + ρ2)(β2 − b23)− b2− .

Lemma. The rank of Ĝ(B) is given as follows:

1. For B ∈ IntP, we have rkĜ(B) = 4.

2. For B ∈ IntI t IntD t A t IntC+ t IntC−, we have rkĜ(B) = 2.

3. For B ∈ ∂D, we have rkĜ(B) = 1.

4. For B ∈ ∂I, we have rkĜ(B) = 0.

Proof. Since P (B) vanishes iff B ∈ P, relation (E.1) implies that Ĝ is non-degenerate on

IntP and degenerate on ∂P. In particular, we have rkĜ(B) = 4 for B ∈ IntP. For B ∈ ∂P,

we have P (B) = 0 and hence det Ĝ = 0. Furthermore, all 3 by 3 minors of Ĝ vanish by

relations (E.2). We distinguish the cases:

• B ∈ I. Then β = ρ = 0 and rkG(B) ≤ 1, thus det Ĝ[12|12] = det Ĝ[13|13] =

det Ĝ[23|23] = 0. Relations (E.3) give:

det Ĝ[14|14] = (1− b2+)2 , det Ĝ[24|24] = det Ĝ[34|34] = 0 ,

which show that rkĜ(B) = 2 for B ∈ IntI. The case B ∈ ∂I = ∂+
0 P t ∂−0 P

corresponds to ρ = β = b− = b3 = 0 with b2+ = 1. For these values, (4.8) gives

Ĝ(B) = 0 and hence rkĜ(B) = 0.
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• B ∈ ∂D, i.e. b+ = 0 and β = ρ = 1. Then (E.3) shows that all 2 by 2 minors of Ĝ

vanish while (4.8) shows that Ĝ 6= 0, which means that we must have rkĜ(B) = 1.

• B ∈ IntD, i.e. b+ = 0, β = 1 and ρ ∈ [0, 1). Then (E.3) gives det Ĝ[23|23] = 1−ρ2 > 0

and hence rkĜ(B) = 2.

• B ∈ A, i.e. b+ = 0 and β = ρ ∈ (0, 1). Then (E.3) gives det Ĝ[14|14] = 1− ρ2 > 0 and

hence rkĜ(B) = 2.

• B ∈ IntC+ t IntC−, i.e. P (b, β) = 0 with b+ = ±g(ρ, β) and 0 ≤ ρ < β < 1, where

g is the function defined in (4.16). Then det Ĝ[23|23] = detG[23|23] > 0 and hence

rkĜ(B) = 2.

The Lemma follows by combining these results.

Proposition. For p ∈ G, we have dimD0(p) ∈ {4, 6}.

Proof. Follows immediately from the Lemma upon noticing that b(G) ⊂ IntR while

π(∂D), π(∂I) ⊂ ∂R.

F On certain deformations of (ξ1, ξ2)

F.1 A family of special deformations

Consider a locally non-degenerate and B-compatible two-dimensional subspace K ⊂
Γ(M,S) and let (ξ1, ξ2) be an orthonormal basis of K. Thus ξ1(p) and ξ2(p) form an

orthonormal system of Majorana spinors for any p ∈ M . Let G denote the non-special

locus of K, i.e. the set consisting of those points p ∈ M such that the positive chirality

components ξ+
1 (p) and ξ+

2 (p) are linearly independent and such that the same holds for the

negative chirality components ξ−1 (p) and ξ−2 (p).

Consider the special class of deformations of the pair (ξ1, ξ2) to another pair of Majo-

rana spinors (ξ̃1, ξ̃2) such that only ξ−1 changes:

ξ̃2 = ξ2 and ξ̃+
1 = ξ+

1 . (F.1)

Recall that ξ±1 and ξ±2 generate the chiral projections K± of the spinor sub-bundle K

associated to S. Under a special deformation obeying (F.1), the positive chirality projection

is invariant while the negative chirality projection may change:

K̃+ = K+ , K− → K̃− .

As a result, the bundle K changes to K̃ and the space K changes to the space K̃ = Rξ̃1 +

Rξ̃2 ⊂ Γ(M,S). We require that the system (ξ̃1, ξ̃2) is everywhere orthonormal, so that K̃
is again a two-dimensional and B-compatible locally-nondegenerate subspace of Γ(M,S).

For the remainder of this appendix, consider two Majorana spinors ξ̃1, ξ̃2 ∈ Γ(M,S)

which satisfy (F.1) and are everywhere orthonormal. Let b̃1, b̃2, b̃3 and Ṽ1, Ṽ2, Ṽ3, W̃ denote

the zero- and one-forms defined by the spinors ξ̃1, ξ̃2 according to relations (2.1) and (2.3)
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and b̃±, Ṽ
±

3 denote the associated quantities defined as in section 2. Let β̃ ∈ C∞(M,R+)

denote the function defined according to (4.3). Notice that ξ̃−1 has the form:

ξ̃−1 = α1ξ
−
1 + α2ξ

−
2 + ζ ∈ Γ(M,S−) , (F.2)

where α1, α2 ∈ C∞(M,R) and ζ ∈ Γ(M,S−) is the projection of ξ̃1 onto the B-

orthocomplement of K− inside S−. Hence ζ is a section of S− which is everywhere orthog-

onal to K− and whose norm we shall denote by:

λ
def.
= ||ζ|| . (F.3)

Recall that b(p) ∈ IntR for any p ∈ G.

Lemma. The following inequalities hold for any point p ∈ G:

|b1(p)| < 1 , |b2(p)| < 1 , ρ(p) < 1− |b+(p)| (F.4)

Proof. For any point p ∈ G, we have b(p) ∈ IntR and hence ρ(p) < 1− |b+(p)| ≤ 1− b+(p),

which shows that detA(p) > 0. On the other hand, the planes b1 = ±1↔ b+ + b− = 1 and

b2 = ±1↔ b+ − b− = ±1 in the space R3 with coordinates b+, b−, b3 intersect the body R
along two segments which lie within ∂R and hence we have |b1(p)| < 1 and |b2(p)| < 1.

Proposition. We have b̃i = bi for all i = 1, 2, 3 and hence b̃± = b±. On the locus G, we

have:

|α1| ≤G 1 (F.5)

and:

α2 =G
b3

1− b2
(α1 − 1) (F.6)

Furthermore, the norm of ζ has the following form on the locus G:

λ
def.
= ||ζ|| =G λM

√
1− α2

1 . (F.7)

where:

λM
def.
=

√
(1− b+)2 − ρ2

2(1 + b− − b+)
=

√
(1− b1)(1− b2)− b23

2(1− b2)
∈ C∞(G,R) . (F.8)

Proof. Consider the scalars (2.1) defined by the orthonormal Majorana spinors ξ̃1(p) and

ξ2(p), namely b̃1
def.
= B(ξ̃1, γ(ν)ξ̃1) , b̃3

def.
= B(ξ̃1, γ(ν)ξ2) and b̃2

def.
= B(ξ2, γ(ν)ξ2) = b2.

Since (3.11) hold for ξ̃1, ξ2 and b̃r and since the positive chirality components of ξ̃1 and ξ1

coincide, we find b̃3 = 2B(ξ+
1 , ξ

+
2 ) = b3 and b̃1 = 2||ξ+

1 ||2 − 1 = b1. Thus b̃i = bi for all

i = 1, 2, 3.

It is clear that ξ̃−1 |G has the form (F.2), where ζ = (idS− − P−)ξ̃−1 is the projection of

ξ̃−1 |G onto the orthocomplement of K−|G inside S−|G . Since ζ is Bp-orthonormal on ξ−1 (p)

and ξ−2 (p), we have:

||ξ̃−1 ||
2 = ||α1ξ

−
1 + α2ξ

−
2 ||

2 + λ2 ,
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B(ξ̃−1 , ξ
−
2 ) = α1B(ξ−1 , ξ

−
2 ) + α2||ξ−2 ||

2 ,

where we set λ
def.
= ||ζ||. Since (ξ1, ξ2) is Bp-orthonormal and since ξ̃+

1 = ξ+
1 , the condition

that (ξ̃1, ξ2) be orthonormal amounts to the constraints:

||ξ̃−1 ||
2 = ||ξ−1 ||

2 (= 1− ||ξ+
1 ||

2) ,

Bp(ξ̃
−
1 , ξ

−
2 ) = Bp(ξ

−
1 , ξ

−
2 ) (= −Bp(ξ

+
1 , ξ

+
2 )) ,

which upon using (3.11) gives the system:

(1− b1)α2
1 + (1− b2)α2

2 − 2b3α1α2 = 1− b1 − 2λ2

b3(1− α1) + (1− b2)α2 = 0 . (F.9)

The left hand side of the first equation defines the quadratic form αTA(p)α, where A is

the symmetric matrix-valued function:

A
def.
=

[
1− b1 −b3
−b3 1− b2

]
,

whose determinant equals:

detA = (1− b1)(1− b2)− b23 = (1− b+)2 − ρ2 .

The inequalities |b1| ≤ 1, |b2| ≤ 1 and ρ ≤ 1−|b+| imply that A(p) is a semi-positive matrix

for any p ∈ M while (F.4) imply that A(p) is strictly positive for p ∈ G. The eigenvalues

a−, a+ of A are given by:

a± = 1− b+ ± ρ .

Since A is semipositive on M , we have αTAα ≥ 0, which shows that the first equation

in (F.9) has solutions iff the right hand side is non-negative, i.e. only for λ ≤ λ0, where

λ0
def.
=
√

1−b1
2 ∈ C∞(M,R). For any λ(p) ≤ λ0(p) in this interval, the first equation

of (F.9) considered at the point p ∈ M defines an ellipse Eλ(p) in the α(p)-plane, whose

half-axes have length 1√
a±(p)

. This ellipse degenerates to a single point (namely the

origin α1(p) = α2(p) = 0) for λ(p) = λ0(p). For b2(p) 6= 1, the second equation in (F.9)

(considered at p) defines a line in the α(p)-plane which passes through the points (1, 0)

and (0,− b3(p)
1−b2(p)). This equation implies α2(1− b2) = b3(α1 − 1), which combines with the

first relation of (F.9) to give:

2λ2(1− b2) = (1− α2
1)[(1− b+)2 − ρ2] .

Since the left hand side is non-negative and since ρ2 < (1 − b+)2 on the locus G, this

implies (F.5). Provided that (F.5) is satisfied, we can solve (F.9) in terms of α1. This

gives (F.6) and (F.7), with λM is as in (F.8). The second equation in (F.9) shows that

solutions of (F.9) exist only for λ ≤ λM .
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Proposition. The 1-forms defined by ξ̃1 and ξ̃2 = ξ2 are given by:

Ṽ1 = α1V1 + α2V3 − α2W + 2U1

Ṽ2 = V2 (F.10)

Ṽ3 = Ṽ +
3 + V −3 =

1

2
α2V2 +

1

2
(1 + α1)V3 −

1

2
(1− α1)W + U2

W̃ = Ṽ +
3 − V

−
3 =

1

2
α2V2 −

1

2
(1− α1)V3 +

1

2
(1 + α1)W + U2 ,

where:

Ui
def.
= B(ζ, γaξ

+
i )ea ∈ Ω1(M) (i = 1, 2) (F.11)

and Ṽ −3 = V −3 .

Proof. Using (2.5), we find that the following relations hold on M :

Ṽ1
def.
= 2B(ξ̃−1 , γaξ

+
1 )ea = α1V1 + 2α2V

−
3 + 2U1

Ṽ +
3

def.
= B(ξ̃−1 , γaξ

+
2 )ea = α1V

+
3 +

1

2
α2V2 + U2 (F.12)

Ṽ2 = V2 , Ṽ −3 = V −3 .

Recall that Ṽ±
def.
= 1

2(Ṽ1 ± Ṽ2) and W̃
def.
= Ṽ +

3 − Ṽ
−

3 = B(ξ̃1, γaγ(ν)ξ2). Equations (F.12)

give (F.10), where we used (2.4).

Consider the following open subset of G:

G0
def.
= {p ∈ G|ζ(p) 6= 0} = {p ∈ G|λ(p) 6= 0} = {p ∈ G|α1(p) 6= ±1} .

Proposition. We have U1(p) 6= 0 and U2(p) 6= 0 at any point p ∈ G0.

Proof. Since p ∈ G, the spinors ξ+
1 (p) and ξ−2 (p) are linearly independent and in particular

non-vanishing. It was shown in [24, section 2.6] that, for any non-vanishing spinor η ∈ S+
p \

{0}, the spinors (γaη)a=1...8 form a basis of S−p . Thus (γaξ
+
1 (p))a=1...8 is a basis of S−p and

the same is true for (γaξ
+
2 (p))a=1...8. Since ζ(p) is non-zero, this gives the conclusion.

Proposition. The one-forms U1 and U2 satisfy the following relations on the locus G:

〈U1, V1〉 = 〈U2, V2〉 = 0 , 〈U1, U2〉 =
b3
2
λ2

||U1||2 =
1 + b1

2
λ2 , ||U2||2 =

1 + b2
2

λ2 , (F.13)

〈U1, V3〉 = 〈U1,W 〉 = −1

2
〈U2, V1〉 ,

〈U2, V3〉 = −〈U2,W 〉 = −1

2
〈U1, V2〉 .

while β̃ is given by the following expression on the same locus:

β̃2 = α1β
2 +

1− α1

2
(1 + ρ2 − b2+)− 〈U1, V2〉 . (F.14)
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Proof. Since the system (ξ̃1, ξ̃2) is everywhere-orthonormal, the 1-forms Ṽ+, Ṽ−, Ṽ3, W̃ sat-

isfy (4.1) and hence their Gram matrix ˆ̃G must have the form (see (4.8)):

ˆ̃G = Ĝ(b, β̃) =


1− β̃2 − b2+ − b+b− − b+b3 0

−b−b+ β̃2 − b2− − b−b3 b3

−b3b+ − b3b− β̃2 − b23 −b−
0 b3 −b− 1− β̃2 − b2+ + ρ2

 , (F.15)

where we used the fact that b̃i = bi and thus β̃2 = b3 + ||V3||2. The Gram determinant is

given by (E.1):

det Ĝ(b, β̃) = P (b, β̃)2 =
[
(b23+b2−)(β̃2−1)−β̃2(β̃2−1+b2+)

]2
=
[
(β̃2−1)(ρ2−β̃2)−β̃2b2+

]2
,

where P is the polynomial given in (4.10). Using (4.1), (F.10) and (F.6), we find that β̃

can be expressed as follows as a function of α1 on the locus G:

β̃2 =
1

4

(
1+ρ2−b2++2b−+

2b23
1+b−−b+

)
+〈U2, V3〉−〈U2,W 〉+||U2||2−

b3〈U2, V2〉
1+b−−b+

+ α1

[
1

2

(
−1 + 2β2 − ρ2 + b2+

)
+ 〈U2, V3〉+ 〈U2,W 〉+

b3
1 + b− − b+

||U2||2
]

+
α2

1(−1 + b− − b+)[ρ2 − (1− b+)2]

1 + b− − b+
. (F.16)

On the locus G0, we have ζ = λζ̂, where ζ̂
def.
= ζ

λ is a unit norm spinor of negative chirality

defined on G0 and which is orthonormal to ξ−1 and ξ−2 at every point of G0. On this locus,

we can write Ui = λÛi, with:

Ûi
def.
= B(ζ̂, γaξ

+
i )ea ∈ Ω1(G0) (i = 1, 2) . (F.17)

Substituting this into (F.10), we find an expression for the Gram matrix ˆ̃G as a function

of α1, α2 and λ, where α2 and λ can be expressed as functions of α1 using the previous

proposition. Thus ˆ̃G(α1) must equal the matrix Ĝ(b, β̃(α1)) of (F.15) (where β̃(α1) is given

by (F.16)) for any α1 ∈ [−1, 1]. Expanding both of these matrices to order two in α1, we

find three linear systems in the quantities 〈Ui, V+〉, 〈Ui, V−〉, 〈Ui, V3〉 and 〈Ui,W 〉, which can

be shown to be equivalent14 with (F.13). Using (F.13), relation (F.16) simplifies to (F.14).

Substituting (F.13) into ˆ̃G, we find that ˆ̃G equals the matrix Ĝ(b, β̃) of (F.15), where β̃ is

given by (F.14). It follows that there are no further constrains on U1 and U2 and hence

that equality of ˆ̃G(α1) and (F.15) is equivalent with relations (F.13) and (F.14) on the

locus G0. These relation also hold on G \ G0 since U1, U2 and λ vanish on that locus.

Since U1 depends continuously on α1, relation (F.14) shows that:

β̃2 = t(B,α1)

14At this step we used Mathematica R©, which we acknowledge here.
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where B = (b, β) ∈ P and t : P× [−1, 1]→ R is a continuous function. Since β̃ is the func-

tion associated by relation (4.3) to the system of everywhere orthonormal spinors (ξ̃1, ξ̃2), we

know that β̃(p) must belong to the interval J(p) = J(b(p)) for any value of α1(p), where J(b)

was defined in (4.13). Hence the image of the function tB : [−1, 1]→ R defined through:

tB(α1)
def.
= t(B,α1) (B ∈ P)

is contained in the interval [f−(b), f+(b)]. On the sub-locus of G \ G0 where α1 = ±1, we

have ζ = 0 and U1 = 0, hence (F.14) gives:

t(B,+1) = β2 , t(B,−1) = −β2 + 1 + ρ2 − b2+ (F.18)

while on the locus G0, relation (F.14) gives:

t(B,α1) = α1β
2 +

1− α1

2
(1 + ρ2 − b2+)− λM

√
1− α2

1〈Û1, V2〉 (α1 ∈ (−1, 1)) , (F.19)

which shows that t is differentiable on P× (−1, 1).

Proposition. Let B ∈ ∂P. Then the image of tB equals the interval [f−(b), f+(b)] and

hence the image of the function
√
tB equals the interval J(b) defined in (4.13).

Proof. The condition B ∈ ∂P means that β =
√
f±(b), where the functions f±(b) =

f±(b+, ρ) were defined in (4.11). Then tB(+1) = β2 = f±(b) while tB(−1) = 1 + ρ2 − b2+ −
f±(b) = f∓(b), where we used (4.11). Thus:

tB(+1) = f±(p) and tB(−1) = f∓(p) . (F.20)

Since tB is continuous, its image (which is contained in [f−(b), f+(b)]) is an interval which

must contain the two values (F.20) and hence must equal [f−(b), f+(b)].

F.2 Explicit spinor deformations which break the stabilizer from SU(3) to

SU(2)

Let B̃ = (b, β̃) : M → P be the function (4.5) defined by the system of spinors (ξ̃1, ξ̃2) and

let D̃0
def.
= ker Ṽ1 ∩ ker Ṽ2 ∩ ker Ṽ3 ∩ ker W̃ .

Proposition. Let p ∈ G be such that B(p) = (b(p), β(p)) belongs to ∂P and let β0 be any

point in the interior of the interval J(b). Then we can find a deformation (ξ1, ξ2)→ (ξ̃1, ξ̃2)

such that (ξ̃1, ξ̃2) is a system of everywhere-orthonormal Majorana spinors on M and such

that B̃ = (b, β̃) with β̃(p) = β0.

Proof. Follows immediately from the results of the previous subsection.

Remark. Together with the results of subsection 3.5, the proposition implies that, for ev-

ery value B0 ∈ P and every point p ∈M , there exists a pair of everywhere-orthonormal Ma-

jorana spinors (ξ1, ξ2) on M whose function B satisfies B(p) = B0. In particular, all points

of P can be realized by some two-dimensional and B-compatible locally-nondegenerate

subspace K ⊂ Γ(M,S).
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Corollary. Let p ∈ G be such that Hp ' SU(3). Then dimD0(p) = 6 and B(p) ∈
IntItIntDtAtIntC+tIntC− ⊂ P. Moreover, we can find a deformation (ξ1, ξ2)→ (ξ̃1, ξ̃2)

(given explicitly in the previous subsection) such that (ξ̃1, ξ̃2) is a system of everywhere-

orthonormal Majorana spinors on M and such that:

• dim D̃0(p) = 4

• The stabilizer H̃p of (ξ̃1(p), ξ̃2(p)) inside Spin(TpM, gp) ' Spin(8) is isomorphic with

SU(2).

Proof. For p ∈ G such that B(p) ∈ ∂P, we have rkĜ(B(p)) = 2 and (2.18) implies that the

1-forms V1(p), V2(p), V3(p) and W (p) are stabilized by a subgroup containing SU(3). Since

dimD0(p) ∈ {4, 6} for p ∈ G (see appendix E) and since SU(3) does not embed into SO(4),

we must have dimD0(p) = 6 and the common stabilizer of the one-forms must equal SO(6).

In particular, the space spanned by V1(p), V2(p), V3(p) and W (p) inside T ∗pM has dimension

two. Since dimD0(p) = 6, the results of appendix E, imply that the point B(p) belongs to

the subset IntItIntDtAtIntC+tIntC− of the frontier ∂P. Let (ξ̃1, ξ̃2) be chosen as in the

previous proposition. Then we have B̃(p) ∈ IntP and hence rk
˜̂
G(p) = rkĜ(b(p), β̃(p)) = 4

by the results of appendix E. Thus the 1-forms Ṽ1(p), Ṽ2(p), Ṽ3(p) and W̃ (p) are linearly

independent at p and we have dim D̃0(p) = 4. Moreover, the spinor ζ(p) of the previous

subsection is non-zero and hence H̃p is isomorphic with SU(2) (see subsection 3.5).

Remark. The orthogonal complement of K−(p) inside S−p equals the space Ξ−(p) con-

sidered in the proof of point 4 of the Proposition of subsection 3.5, a space which carries

the fundamental representation of the group H ′′p
def.
= StabSpin(TpM,gp)(ξ

+
1 (p), ξ+

2 (p), ξ−2 (p)) '
SU(3). The fact that the deformed spinor ξ̃−1 (p) has non-zero projection ζ(p) on the space

Ξ−(p) is responsible for breaking the stabilizer group at p from SU(3) to SU(2).

G The non-generic assumption made in [26]

Let π1 : M̂ → M and π2 : M̂ → S1 denote the projections on the first and second factor

of the direct product M̂ = M × S1 (which, as in [26], we endow with the direct product

metric). Let θ ∈ Ω1(M̂) be the π2-pullback of the canonical normalized 1-form of S1

(notice that θ is the normalized Killing form on M̂ corresponding to the symmetry given

by rotations along the circle). Loc. cit. uses three one-forms15 V̂+, V̂−, V̂3 ∈ Ω1(M̂) defined

on the 9-manifold M̂ which are invariant under S1-rotations and hence are given by:

V̂r = π∗1(Vr) + (br ◦ π1)θ , ∀r ∈ {+,−, 3} (G.1)

where Vr ∈ Ω1(M) and br ∈ C∞(M,R). The quantities Vr, br turn out to coincide with the

0-forms and 1-forms given in (2.2) and (2.4). Indeed, it is easy to see that the algebraic

constraints for (G.1) given in equations [26, eq. (2.15)] are equivalent with the system (4.2)

15The one-forms used by [26] on M̂ are denoted there by V+, V− and V3. The relation with our notation

is V̂ here
± = 1

2
V there
± and V̂ here

3 = V there
3 , cf. [26, eq. (2.26)].
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for Vr if one takes into account relation [26, eq. (2.26)]. Since θ and π∗1(Vr) are orthogonal

at every point of M̂ , relations (G.1) give:

〈θ, V̂r〉 = br ◦ π1 . (G.2)

Loc cit. makes intensive use of the assumption (cf. [26, eq. (3.9)]) that the following

relation holds on M̂ :

θ =
2

1 + α̂
〈θ, V̂+〉V̂+ +

2

1− α̂
〈θ, V̂−〉V̂− +

2

1− α̂
〈θ, V̂3〉V̂3 , (G.3)

where16 α̂ ∈ C∞(M̂,R) is a function independent of the S1 coordinate, hence α̂ = α ◦ π1

for any α ∈ C∞(M,R). To arrive at (G.3), we used the fact that V̂ here
± = 1

2V
there
± and

V̂ here
3 = V there

3 . Comparing with (4.2), it is not hard to check that α = 1 − 2β2, where β

was defined in (4.3). Equations (G.2) give:

2

1± α̂
〈θ, V̂±〉 = a± ◦ π1 ,

2

1− α̂
〈θ, V̂3〉 = a3 ◦ π1 ,

where a±,3 ∈ C∞(M,R) are given by:

a±
def.
=

2b±
1± α

, a3
def.
=

2b3
1− α

.

Hence (G.3) takes the form:

θ = (a+ ◦ π1)V̂+ + (a− ◦ π1)V̂− + (a3 ◦ π1)V̂3 . (G.4)

Since θ and π∗1(Vr) are orthogonal at every point of M̂ , substituting (G.1) into (G.4) and

projecting onto π∗1(T ∗M) gives:

a+V+ + a−V− + a3V3 = 0 . (G.5)

Hence equation [26, eq. (3.9)] requires that V+, V− and V3 be linearly dependent at every

point of M , a requirement which cannot be satisfied in the generic case. In the non-generic

case when (G.5) holds, we have rkD ≥ 6 on M and hence the SU(2) locus U of M must be

empty (see table 5).

The fact that the SU(2) locus U is not generally empty follows from the results of

subsection 3.5 (which gives a proof of this fact directly in terms of spinors), from the

results of appendix E (which shows that the 1-forms V1(p), V2(p), V3(p) and W (p) are

linearly independent in the generic case) and also from the results of appendix F, which

gives an explicit construction of a family of spinor deformations which can be used to

break the stabilizer group Hp from SU(3) to SU(2). The condition U = ∅ is a very strong

restriction since the locus U is open in M . This condition amounts to vanishing of the

spinor projection ζ(p) arising in the proof of point 4 of the Proposition of subsection 3.5

for every point p of M ; it is also equivalent with the condition that the image of the map

16The function α̂ is denoted by α in [26].
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B defined in (4.5) is contained in the frontier ∂P of the four-dimensional semi-algebraic

body P, rather that in the body P itself.

We also note that the cosmooth generalized distribution D̂ def.
= ker V̂+ ∩ ker V̂− ∩ ker V̂3

defined on M̂ may have transverse or non-transverse intersection with the distribution

π∗1(TM). This is one reason why one cannot conclude (as [26] does) that the stabilizer

stratification of M would be “directly inherited” from that of M̂ . As we show in a different

publication, the relation between the stabilizer stratifications of M and M̂ is in fact rather

involved, in particular due to the non-transversality issue mentioned above.

Remark. Loc cit. gives an argument (see the discussion there introducing equation [26,

(3.9)]) according to which (G.3) would always have to hold. That argument relies on confus-

ing θ (a one-form which exists on M̂ by the definition of M̂
def.
= M×S1 and therefore is not a

spinor bilinear) with a combination of one-forms constructed from the canonical lifts to M̂ of

the supersymmetry generators ξ1, ξ2 ∈ Γ(M,S). It is further based on the assumption that

θ would induce, in certain cases, a nowhere-vanishing vector field/one-form on M . However,

the projection of θ on the bundle π∗1(T ∗M) ⊂ T ∗M̂ always vanishes, hence that projection

can never define a non-vanishing one-form on M and thus it can never give a non-trivial sin-

glet for the structure group of M . For these reasons, the argument given in loc. cit. cannot

be used to conclude that θ would always have to be a linear combination of V̂± and V̂3.
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