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1 Introduction

The study of the linear response of a system to a small external perturbation is an essential

tool to gain insight on the collective behavior of its constituents and to provide information

about the transport properties at thermal equilibrium.1 Media having electrically movable

components that can easily respond to an external electromagnetic field are ubiquitous in

physics: high-energy physics plasmas and condensed matter superconductors are instances

of this sort. For such media usually the electromagnetic field interacts with thermal and

mechanical modes; hence the electromagnetic energy finds various channels of propagation

and dissipation through the medium. The response of the system to an external electro-

magnetic field is then in general non-local and the medium is said to be spatially dispersive

(see for instance [5]). This rich dynamics generates an intriguing phenomenology which can

feature exotic electromagnetic effects such as negative refraction (NR) [6] and additional

light-waves (ALW) [7–11] as we will shortly review.

1The topic of linear response is of course extremely wide, for the fundamental material of use here we

refer to standard text-books and in particular to [1–4].
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Exotic electromagnetic phenomena have recently attracted an intense theoretical and

experimental (and even technological) interest especially in relation to artificial systems

called meta-materials [12–22]. Inspired by the amazing developments obtained on meta-

materials, in [23–25] it was first discovered that charged fluids which admit a hydrody-

namical description present exotic electromagnetic properties as a general feature. The

negative refraction phenomenon (in a certain range of frequencies) and the presence of ad-

ditional light-waves are shown respectively in [23, 24] and [25]. The former implies that the

electromagnetic energy flux and the phase velocity of an electromagnetic wave through the

medium propagate in opposite directions [6, 12–22]; the latter means that, even if isotropic,

a medium supports multiple electromagnetic waves with the same frequency but different

wave-vectors [7–11]. Following these results, various authors investigated these topics in

a wide variety of different setups, see for example [26–36]. In particular [37] provides an

analysis of the actual signature of the abovementioned phenomena in condensed matter

systems and it proposes suitable experiments to measure such effects.

Even though much of the previously stated theoretical progress about NR and ALW

was obtained within the framework of strongly coupled plasmas, it turned out that the

qualitative behavior of the discovered phenomena has a more general valence and it consti-

tutes a universal property of electrically charged hydrodynamical systems [24]. The main

purpose of the present paper is to go beyond the regime described by hydrodynamics in

systems characterized by strong coupling physics. In particular, we will show that the

coupling of the external electromagnetic field with the tower of quasi-normal modes of

strongly coupled plasmas leads to the presence of various electromagnetic modes which

present different properties. For instance, it is important to stress that we found negative

refraction with low dissipation for a transverse mode.

Gaining insight on the strongly coupled dynamics is crucial in order to describe some

very interesting phases of matter which have recently been realized both in high energy

physics experiments (e.g. the quark gluon plasma (QGP), see for example [38]) and in con-

densed matter systems (e.g. high-Tc superconductors, see for example [39] for a recent re-

view2). Moreover, the existence of strong interactions among the various resonances in some

of the artificially engineered meta-materials, the so called stereo-meta-materials [41, 42],

provides yet another interesting phenomenological stimulus to investigate the electromag-

netic behavior and response of strongly coupled systems.

The idea of performing an analysis beyond the hydrodynamical regime3 aims at study-

ing the non-hydrodynamical structure of the neutral strongly coupled plasma (being neu-

tral, the plasma does not have the hydrodynamic diffusive transverse mode) and the physics

of the electromagnetic wave modes through such plasma. Particular attention is then paid

to observe whether the exotic electromagnetic phenomena arising already in hydrodynam-

ics are present also beyond the long-wavelength and long-time approximations and what

are their properties in this wider perspective.

2To have a recent and brief introduction on the gauge/gravity approach to describe strongly coupled

superconductors see for instance [40].
3A correlated question which is very interesting and treatable within the framework of the gauge/gravity

correspondence is the relation between thermalization and hydrodynamization. To have a recent account

on this topic we indicate [43, 44] and references therein.
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It is well known that the dynamics at strong coupling is usually very difficult to study

and, outside the regime constrained by hydrodynamics, it is quite difficult to provide univer-

sal predictions. However, some interesting theoretical progress has been recently obtained

thanks to techniques coming from string theory. These new methods exploit a conjectured

duality between a strongly coupled quantum field theory and a weakly coupled gravity

theory; such duality is usually referred to as gauge/gravity correspondence [45, 46]. The

gauge/gravity duality (and similar correspondences) allows us to quantitatively study the

correlation functions of specific models and, at the same time, to understand better many

interesting and generic qualitative behaviors associated to various (universality) classes of

strongly coupled systems. Insights from the gauge/gravity correspondence appeared to be

relevant both to high energy physics and condensed matter (see for instance [47, 48] to

have two paradigmatic examples) especially in relation to the characterization of the phase

structure and transport properties. Within the gauge/gravity correspondence framework,

quantitative computations of expectation values and correlation functions of strongly cou-

pled quantum systems at finite temperature are reduced to classical gravity calculations

in specific black hole backgrounds (which are actually finite temperature gravitational sys-

tems). The thermodynamical observables of the strongly coupled system in equilibrium

are mapped to classical properties of the dual gravity model. A semi-classical study of the

equations of motion for the fields of the dual gravity model unveils both the equilibrium

thermodynamics and the linear response (i.e. the slightly out of equilibrium physics). The

latter being obtained considering linearized equations of motion (equipped with appropri-

ate boundary conditions) describing small fluctuations around the gravitational black hole

background.

To our aim, the benefit of the gauge/gravity framework is twofold: first of all it al-

lows us to study correlation functions for any value of the frequency and wave-vector in

a well defined and complete setup (essential to go beyond hydrodynamics); secondly, it

provides interesting hints on generic responses of strongly coupled systems beyond the

hydrodynamical regime.

A possible phenomenological application of our results is to QGP physics. The neutral

plasma that we study could indeed mimic the QGP plasma in a regime dominated by

the temperature where the finite chemical potential is neglected. In particular we stress

that the electromagnetic modes coupling to the non-hydrodynamical modes of the neutral

plasma have in general smaller wavelengths when compared to those studied in [24] for a

charged plasma; hence they can probe smaller distances which could be relevant for actual

QGP samples produced in experiments.

The paper is organized as follows. In section 2 we briefly review the linear response

theory needed to study the electromagnetic properties of a medium. Section 3 contains

our main results obtained by studying the first transverse electromagnetic waves through

the strongly coupled plasma. We show in particular the generic presence of ALW and we

demonstrate the existence of a propagating electromagnetic mode with negative refraction

and very small dissipation. In section 4 we describe the actual calculations venturing into

technical details of both the gauge/gravity setup and the peculiarities of the necessary

renormalization procedure. Section 5 is dedicated to the description of our numerical and

– 3 –
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semi-analytical methods and the checks that our results have undergone. In section 6

we discuss very briefly some phenomenological applications of our study to the QGP. In

section 7 we show the results of an analogous analysis regarding the longitudinal light-

wave modes. Eventually, in section 8 we conclude stressing the significance of the results

and possible future prospects. The appendices contain a characterization of the quasi-

normal modes of the plasma (both transverse and longitudinal) and the details about the

computation regarding the longitudinal light-wave sector.

2 Setting the scene

The electromagnetic response of a system in local equilibrium to an external electromag-

netic perturbation is described by the 2-point retarded correlation function of the elec-

tromagnetic current [49]. If, as in the case we are considering, the system has spatial

dispersion, the response function depends on the space positions where the currents are

evaluated. In the particular case of a homogeneous and isotropic system, the correlation

functions depend only on the distances and they can be further decomposed into a trans-

verse and a longitudinal part with respect to the wave-vector q of the external perturbation.

In this case, as shown for example in [5, 6], it is possible to describe the macroscopic elec-

tromagnetic properties of the system with three fields: D, E and B. Moreover, the linear

response of the medium (in Fourier space) is accounted for by a single tensorial func-

tion depending both on the frequency ω and the wave-vector q, the so-called permittivity

tensor εij(ω, q),

Di = εij(ω, q)Ej . (2.1)

As a consequence of the isotropic assumption, the permittivity tensor is expressed in terms

of only two scalar functions

εij(ω, q) = εT (ω, q)

(
δij −

qiqj
q2

)
+ εL(ω, q)

qiqj
q2

, (2.2)

describing the transverse and longitudinal response with respect to the spatial momentum

q of the external perturbation.

The 2-point retarded correlation functions, denoted as GT (ω, q) and GL(ω, q) for the

transverse and the longitudinal part respectively, characterize completely the permittivity

tensor:

εT,L(ω, q) = 1− 4πe2
GT,L(ω, q)

ω2
, (2.3)

where e is the electromagnetic coupling constant. The knowledge of GT,L(ω, q) allows us

to study the propagation and dissipation of the electromagnetic waves inside the medium

at the linear level. Indeed, the Maxwell equations for the electromagnetic field provide the

dispersion relation between q and ω both for the transverse and the longitudinal channel.4

The Maxwell equations for the transverse and longitudinal part of the electric field E imply

the dispersion equations:

εT (ω, q) =
q2

ω2
, εL(ω, q) = 0 , (2.4)

4In a spatially dispersive medium also the longitudinal electromagnetic waves do propagate.
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which admit solutions q(ω) corresponding to possible electromagnetic waves through the

medium.5 The information about the propagation and dissipation of an electromagnetic

mode through the system is encoded in the refractive index which is defined as n2(ω) =

q2(ω)/ω2 considered on the dispersion relation of the mode under study.

Albeit we study both the transverse and the longitudinal electromagnetic sectors, we

focus mainly on the detailed analysis of the transverse sector (whose properties are more

interesting to us). An analogue detailed treatment of the longitudinal sector is reported in

appendix A.

3 Results

In this section we describe the main results of our analysis. We focus on the refractive

indexes of the first electromagnetic transverse modes inside a strongly coupled plasma

composed of electrically charged constituents but globally neutral. The plasma we study

is the finite temperature state of a relativistic and conformally invariant particle physics

theory composed of fermions and bosons.6 The choice of this particular kind of plasma

is due to the existence of very powerful theoretical tools (provided by the gauge/gravity

correspondence) to study its strongly coupled dynamics. Indeed the present analysis can be

read as a first example to investigate the potentiality of the gauge/gravity correspondence to

explore exotic electromagnetic phenomena of strongly coupled, finite temperature systems

beyond the hydrodynamic regime.

The plasma is assumed to be homogeneous and isotropic.7 Previous studies have

shown that plasmas described with the gauge/gravity correspondence have in general an

infinite set of discrete quasi-normal (complex valued) self-frequencies [51–56], that appear

as poles in the two-point retarded correlation function of the currents. In this paper we

are interested to couple these quasi-normal modes of the plasma to an external electro-

magnetic field and study the possible electromagnetic modes supported by the system. It

is important to observe that, even if the quasi-normal modes of the medium appear as

poles of the correlation functions, due to high dissipation, the quasi-particle approximation

is usually not valid. This implies that at any frequency the response function can not

be approximated by a single resonance. Indeed, the self-frequencies of the system are in

general complex and the amount of dissipation and propagation of the quasi-normal modes

is usually comparable.8

The propagation and dissipation of an electromagnetic wave is described by the cor-

responding refractive index: the real part of the index accounts for the propagation of the

wave while the imaginary part describes its attenuation. We focus here on the transverse

modes of the electromagnetic field. The analysis of the longitudinal channel is contained in

5A description of the electromagnetic waves in terms of functions ω(q) is possible as well; see for in-

stance [50].
6Further details of the actual theory and setup will be provided in section 4.
7These are assumptions that make our analysis easier. Non-homogeneous or non-isotropic cases, charged

plasmas, superconducting phases and non-relativistic theories are very interesting to investigate too and

are left for future work.
8Note that only in this paragraph we refer to the framework in which ω is complex and q is real.
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Figure 1. Real (left) and imaginary (right) parts of the rescaled wave-vector q as a function of

the rescaled frequency w for the first three transverse electromagnetic modes of the neutral plasma

under study.
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Figure 2. Real (left) and imaginary (right) parts of the refraction index n as a function of the

rescaled frequency w for the first three transverse electromagnetic modes of the neutral plasma

under study.

section 7 and appendix A. A study of the first three transverse modes (i.e. those associated

to the lowest wave-numbers) reveals the rich structure of the electromagnetic response of

the medium. We have analyzed the real and imaginary parts of their refractive index and

of the wave-vector q as functions of the frequency, and, in order to characterize the prop-

agation/dissipation rate of the aforementioned modes, we have studied the absolute value

of the ratio Im(n)/Re(n).9

The results are presented in figures 1, 2 and 3. For reasons that will become clear in the

next sections we plot the results using the rescaled wave-vector q and the rescaled frequency

w, obtained by dividing the wave-vector number and the frequency by the temperature of

the system

w =
ω

2πT
, q =

q

2πT
. (3.1)

9Since n = q/ω, studying the ratio Im(n)/Re(n) is equivalent to studying Im(q)/Re(q); recall indeed

that ω is here a real quantity. Therefore, the ratio Im(n)/Re(n) can be read as the comparison between

the wavelength and the characteristic attenuation length of the signal.
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Figure 3. Absolute value of the ratio of the dissipation/propagation ratio for the first three

electromagnetic modes of the plasma (left). Rescaled plot of the negatively refractive mode (right).

A quite interesting picture arises from our analysis of the electrodynamic response of the

plasma. The system can indeed support various electromagnetic modes, some of them

evanescent and other propagating, with different peculiar characteristics. The wave-vector

of one of the modes vanishes for vanishing frequency while those corresponding to the

other two modes reach a finite value at zero frequency (one purely real and the other

purely imaginary). The presence of a finite value of q at null frequency (regardless of its

real, imaginary or complex character) is due to the coupling of the electromagnetic waves to

non-hydrodynamical quasi-normal modes of the plasma. The mode presenting an imaginary

q at zero frequency is very dissipative in the low-frequency region. On the contrary, the

one presenting a real q at zero frequency propagates with very small damping. It is very

interesting to observe that the real part of the refractive index of this last propagating

electromagnetic mode is negative implying that it is a negatively refractive mode, i.e. its

energy flux and phase velocity are directed in opposite directions.10

In some previous studies [23, 24] it has been proven that for charged plasmas in the

hydrodynamic regime it always exists a mode with negative refraction for small enough

frequency, while there is no negative refraction for globally uncharged plasmas. In the

present paper we investigated the electromagnetic linear response of the neutral plasma

beyond the hydrodynamical regime and we have proven that globally neutral, strongly

coupled plasmas can support modes with negative refraction too. Moreover, in [25], the

presence of multiple electromagnetic modes was shown to be generic for the hydrodynamical

regime of charged plasmas. Here we perform a similar analysis which however entails the

non-hydrodynamical modes of the neutral plasma. We show that ALW still appear to be

present. In this extended context it is natural to relate the presence of ALW to the coupling

of the electromagnetic radiation to the infinite tower of non-hydrodynamic quasi-normal

modes of the plasma.

10The system we are studying is a passive medium which can only dissipate and not source energy. This

implies that the sign of the imaginary part of the refractive index agrees with the direction of propagation

of the electromagnetic energy flux in the medium [57]. Intuitively, in a passive medium, a wave propagates

in the direction in which it is damped.
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Note that we studied the modes at frequencies w . 1. In this regime a neat hierarchy

between the modes arises from their dissipation over propagation ratio. From figure 3

one can observe that the negative refraction mode dominates the signal propagation. In

line with the collected numerical data one expects that, increasing the frequency, more

electromagnetic waves propagate significantly. To have a faithful picture of the plasma

response (in terms of propagating waves) at higher frequency it is therefore necessary

to include higher modes into the analysis.11 The negative refraction phenomenon of the

plasma at hand is then likely to be significant in the low-frequency regime. Of course a

careful study of the boundary conditions would be required to actually understand which

modes are excited in a specific experimental setup. In this paper we concentrate on the

bulk properties of the medium and we leave this problem for future investigation.

As a final comment, let us mention that in this section we presented the results without

making reference to the specific value of the temperature or other physical parameters of

the system. Let us anticipate that the qualitative behavior of the system is robust and valid

in a wide range of parameters. A precise treatment of the quantitative predictions of our

model requires a careful analysis of the regularization/renormalization procedure which we

postpone to later sections. Furthermore, because of isotropy the equation for the light-wave

modes is always quadratic in q. Its solutions q(w), which represent the dispersion relations

for the light-wave modes, are always organized in pairs of opposite solutions. We retain

only the solutions with a positive imaginary part. This amounts to selecting just the waves

with a defined direction of propagation, namely the direction along which the waves are

damped. The set of excluded solutions is however completely equivalent and would lead

to the same physical conclusions and, specifically, to the same refraction properties.12

4 Stringy setup and gauge/gravity computation

In this section we provide some details about the actual class of systems we consider,

the computations we performed and the associated dual gravitational setup. The mate-

rial collected in the first two subsections is quite standard and describes how to perform

computations in the gauge/gravity correspondence at finite temperature. Nevertheless, we

decided to report it in some detail since some subtleties of the computation are relevant for

our analysis concerning the electromagnetic modes. Experts in gauge/gravity correspon-

dence could however speed through the discussion below and go to subsection 4.3.

As we have previously stated we consider the electromagnetic response of strongly

coupled neutral plasmas. The gauge/gravity correspondence allows us to describe the

quantum dynamics at strong coupling of a gauge field theory defined on 4-dimensional

Minkowski space-time in terms of a classical gravitational model living in a 5-dimensional

Anti-de Sitter space-time (AdS5). Furthermore, the gauge/gravity correspondence maps

the finite temperature phase of a quantum field theory into a finite temperature gravity

11Our methods allow also a study at higher frequency though a heavier numerical effort is required. For

instance, the negatively refracting mode has been studied up to w ∼ 2.5, see the right plot of figure 3.
12Actually negative refraction corresponds to Re[q] Im[q] < 0. The refraction properties of the opposite

solutions q(w) constituting a pair are therefore the same.

– 8 –



J
H
E
P
1
1
(
2
0
1
4
)
1
5
3

configuration: namely a black hole solution which becomes asymptotically AdS5 at large

distances (AdS black hole).

We do not restrict ourselves to any particular model, but we study instead the generic

behavior of the universal sector of a strongly coupled theory containing the energy momen-

tum tensor Tµν and the U(1) conserved current Jµ.

In the context of the gauge/gravity correspondence, these two minimal ingredients are

mapped respectively to a 5-dimensional metric gmn and a 5-dimensional vector field Am,

whose dynamics is encoded in the 5-dimensional Maxwell-Einstein action13

S = − N2

32π2

∫
d5x
√
−g (R− 2Λ) +

N2

16π2

∫
d5x
√
−g 1

4
FmnF

mn , (4.1)

where Λ is the cosmological constant and N is, in the gravity model perspective, a nor-

malization constant. The gravitational constant has been related to the AdS5 radius of

curvature L and the string constant α′ which have been both put to 1.

The ground state at finite temperature T and zero charge density of a strongly coupled

quantum field theory is dually described by the neutral AdS5 black hole solution of the

action (4.1) specified by the following bulk metric written in the Poincaré patch

ds2 =
π2T 2

u

[
−f(u)dt2 + dxidx

i
]

+
1

4u2f(u)
du2 , (4.2)

where f(u) = 1 − u2. The horizon of the black hole is located at u = 1, while the AdS5
conformal boundary corresponds to u = 0.

In the gauge/gravity framework, the study of the fluctuations of the 5-dimensional

photon Am on the background specified by (4.2) provides information on the retarded 2-

point correlation functions of the U(1) current Jµ of the dual (3 + 1)-dimensional quantum

field theory [58]. As already stated, the knowledge of the retarded 2-point correlation

function of the currents is the required element to discuss the electromagnetic properties

of such strongly coupled plasmas.

4.1 Vector transverse fluctuations

We focus on the fluctuations of the 5-dimensional bulk photon Am. We fix partially the 5-

dimensional gauge invariance imposing Au = 0; note that this 5-dimensional “radial” gauge

condition still leaves the usual 4-dimensional gauge freedom for the remaining components

of the vector potential Aµ. In other words, we study the fluctuations of the bulk gauge

field along the 4-dimensional space-time directions parametrized with µ = t, x, y, z where

the dual theory is actually defined. Moreover, we consider the fluctuations which are

transverse to the direction of propagation, namely the fluctuations that are perpendicular

to the spatial wave-vector ~q.

We decompose Aµ in 4-dimensional Fourier modes:

Aµ(u, t, ~x) =

∫
dωd3q

(2π)4
e−i(ωt−~q·~x)Aµ(u, ω, ~q) . (4.3)

13Our notations are coherent with [59, 60].
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Since the system is invariant with respect to spatial rotations, we can in general take the

spatial momentum of the fluctuations to be along the z direction so that the 4-momentum

is kµ = (ω, 0, 0, q). The transverse fluctuations are therefore those along the x and y

directions and we introduce the label α = x, y to refer to this transverse space. Note that,

as we have cylindrical symmetry around the z direction, we can focus on the gauge field

fluctuations along x without spoiling the generality of the treatment. Specifically, we adopt

the following ansatz for the Fourier components

Aα(u, ω, q) dxα = φ(u, ω, q) dx . (4.4)

Plugging this ansatz into the Maxwell equation derived from the action (4.1) and considered

on the background (4.2), we obtain

φ′′ +
f ′(u)

f(u)
φ′ +

w2 − q2f(u)

uf(u)2
φ = 0 , (4.5)

which, by cylindrical symmetry, is valid for the fluctuations along a generic transverse

direction. The u, q and ω dependence of φ is understood, the prime indicates the deriva-

tive with respect to the radial coordinate u; we also adopted the dimensionless frequency

w = ω/(2πT ) and momentum q = q/(2πT ) already introduced in (3.1), where T is the

temperature of the dual field theory14 or, equivalently, of the AdS black hole in (4.2).

A near-horizon analysis of Equation (4.5) yields the following asymptotic behavior for

the field φ

φ = (1− u)±iw/2
[
a± + b±(1− u) + c±(1− u)2 + . . .

]
. (4.6)

The generic solution to the differential equation is given by the superposition of an in-going

and an out-going solutions. We select the in-going solution imposing the condition a+ = 0

in accordance with the idea that nothing can be emitted by the black hole horizon at the

classical level. This choice corresponds to compute retarded correlators in the dual field

theory. As we are confronted with a second order differential equation we need to impose

one further boundary condition. Relying on the linearity of Equation (4.5) we choose

a− = 1; as we will shortly explain, we are eventually interested in ratios like φ′/φ which

are completely insensitive to this specific choice. As we will describe in detail in section 5,

once equipped with these horizon boundary conditions, we are able to solve the differential

problem propagating the solution from the horizon.

We now turn the attention to the near-boundary region corresponding to small u. This

asymptotic UV analysis is necessary to extract from our model the physical quantities we

are interested in. A near-boundary term-wise study of the equation of motion (4.5) near

the AdS boundary at u = 0 shows that the asymptotic expansion of the field φ is there

φ = φ0 + uφ1 + u ln(u) φ̃1 + u2φ2 + u2 ln(u) φ̃2 + . . . , (4.7)

14Equations (3.1) provide a meaningful definition of the concept of small or large frequency and wave-

vector. Recall that the microscopic theory that we describe is conformally invariant at zero temperature;

hence the temperature is the only scale against which we can meaningfully compare the magnitude of the

frequency and wave-vector.

– 10 –
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where the φi and φ̃i coefficients are independent of the u coordinate, and satisfy15

(w2 − q2)φ0 + φ̃1 = 0 , (4.8)

2φ̃2 + (w2 − q2)φ̃1 = 0 , (4.9)

2φ2 + 3φ̃2 + (w2 − q2)φ1 = 0 . (4.10)

Note that, since the equation of motion is a second order differential equation, we can

express all the coefficients of this term-wise solution as functions of the first two coefficients

φ0 and φ1.

4.2 Correlation functions and holographic renormalization

In this section we follow the gauge/gravity prescription to compute the retarded two-point

correlator of the transverse currents of the strongly coupled plasma. Indeed, once we

found the solution to Equation (4.5) with the boundary condition explained in the previ-

ous section, we can obtain the retarded correlator of the current [58]. More specifically,

as it is usual in quantum field theory, one can derive the correlators through functional

differentiation with respect to the sources; from the gravity model standpoint, the proce-

dure corresponds to functionally differentiate the on-shell bulk action with respect to the

boundary value of the fluctuating fields.

The on-shell gauge field action for the transverse vector field (described by the solution

φ of the previous section) becomes

(NT )2

16

∫
dωd3q

(2π)4
f(u)(φ′)2 , (4.11)

which, after integration by parts and having considered the equation of motion, leads to

the boundary term
(NT )2

16

[
f(u)φφ′

]′
. (4.12)

This latter is to be integrated on the boundary manifold. Interestingly, the on-shell action

reduces to boundary terms and only the contribution from the AdS conformal boundary

at u = 0 is not vanishing. The contribution from the horizon at u = 1 actually vanishes

because f(u) is there null. As a consequence, we just focus on the contribution to the

primitive of (4.12) at asymptotically small u; we expand the field φ and its derivative as

in (4.7) discarding the terms that vanish at u = 0 and we obtain

(NT )2

16

∫
dωd3q

(2π)4
φ0
[
φ1 − φ0(w2 − q2)(1 + ln(u))

]
. (4.13)

It is important to observe that there exists a logarithmically diverging term. This signals

the need to renormalize the model. The occurrence of a large-volume divergence in the grav-

ity theory living on the asymptotically AdS geometry corresponds (through gauge/gravity

correspondence) to the UV divergences of the dual quantum field theory.

15The background specified in (4.2) is asymptotically AdS5 and a similar study of the near-boundary

behavior of the transverse vector fluctuations on pure AdS5 leads to the same relations (4.8) among the

first UV coefficients.
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Let us describe the renormalization procedure [61] of the model at hand. At first we

regularize the on-shell action considering a small u = ε cutoff,

Sreg =
(NT )2

16

∫
u=ε

dωd3q

(2π)4
φ0
[
φ1 − φ0(w2 − q2)(1 + ln(ε))

]
. (4.14)

We then add an appropriate boundary counter-term

Sc.t. = − N2

16(2π)2

∫
u=ε

dωd3q

(2π)4
√
−γ 1

2
(ln(ε) + c̃)FijF

ij , (4.15)

where γ represents the determinant of the metric induced by the bulk metric on the u = ε

shell, the indexes i, j run only over the 4 boundary directions and c̃ is a real numerical

constant (we will later comment on this constant). Notice that the overall factor is chosen

to express Sc.t. in terms of the gothic variables w and q. The renormalized action is

obtained from

Sren = lim
ε→0

[Sreg + Sc.t.] , (4.16)

and, explicitly, we have

Sren =
(NT )2

16

∫
dωd3q

(2π)4
φ0

[
φ1 − φ0(w2 − q2)

c

2

]
, (4.17)

where we have introduced c = 2(1− c̃) for later convenience.

We remind the reader that φ0 represents the boundary value of the bulk fluctuation field

which, through the gauge/gravity dictionary, is mapped to a source of the dual boundary

theory. It is therefore with respect to φ0 that we are interested in taking derivatives of

the on-shell bulk action. Specifically, the renormalized 2-point correlation function for

the transverse current is obtained taking the second order derivative of the renormalized

on-shell action (4.17) with respect to φ0. In Fourier space we obtain

δ2Sren
(δφ0)2

=
(NT )2

16

[
δφ1
δφ0
− c(w2 − q2)

]
∼ (NT )2

16

[
φ1
φ0
− c(w2 − q2)

]
.

(4.18)

In the last passage we exploited the linearity assumption and the fact that for zero source

φ0 the fluctuation profile becomes trivial.16

From (4.18) we can define the renormalized retarded correlator for the transverse

current:

G(c)(w, q) = −(NT )2

16

[
φ1
φ0
− c(w2 − q2)

]
; (4.19)

the label (c) is a reminder of the dependence of the correlation function on the coefficient

c in front of the contact term. The correlation function (4.19) is the fundamental quantity

that allows us to compute the electromagnetic response of the strongly coupled plasma

16More precisely, the differential problem (4.5), being linear, is invariant under a rescaling of the field

φ(u). The solution then depends actually on only one parameter; said otherwise, φ1 is proportional to φ0.
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according to equations (2.3) and (2.4), as explained in section 2. It is easy to check that

the function defined in equation (4.19) satisfies the usual properties for a response function

of a causal quantum field theory: namely it has poles in the negative imaginary part of the

complex plane and its imaginary part is negatively defined when ω and q are real.

4.2.1 Contact term

As explained above, the computation of the current-current correlator requires the renor-

malization of the on-shell action. In particular, the renormalization demands to consider a

counter-term to cancel the logarithmic divergence in (4.13). However, as usual in quantum

field theory, the choice of the counter-term is not unique, and only its diverging part is

specified by the renormalization procedure; the finite part should instead be fixed by some

experimental measure. Such ambiguity is accounted by the real constant c in the definition

of the correlator in (4.19), that is actually not fixed by any consistency requirement related

to symmetries and Ward identities. The arbitrariness of the finite part of the counter-term

introduces a term proportional to w2− q2 in the correlator (4.19) which is usually referred

to as a contact term.17 Therefore, the constant c in the correlator should be in principle

fixed with an experimental measure of an observable containing it. Once the value of c

is fixed, the model does provide quantitative results depending on N (a quantity which,

roughly speaking, is associated to the number of degrees of freedom of the system) and the

temperature T (which represents a physical scale of the model considered on the black hole

solution). As we will see, it is particularly important to underline that the qualitative be-

havior of the electromagnetic modes in the medium, and more specifically of the refractive

index, is a robust feature with respect to the actual value of c.

4.3 Electromagnetic modes

As explained in section 2, the possible electromagnetic transverse modes supported by the

plasma are obtained solving the dispersion equation18 involving q and w:

q2

w2
= 1− 4πe2

(2πT )2w2
G(c)(w, q) , (4.20)

where e is the electromagnetic coupling constant as previously introduced in (2.3).19 In

the limit e→ 0 the electromagnetic perturbations and the plasma decouple, the light-wave

equation loses the term proportional to the correlator, and we remain only with the q = ±w
solutions describing free propagation in the vacuum. Solving for the light-wave dispersion

relation at finite e is a process which do not commute with the e→ 0 limit.

17It is indeed a polynomial function of w and q that corresponds to space-time delta-functions or deriva-

tives thereof. These contributions are clearly associated to the behavior of the correlator at coincident

points.
18This is actually the wave equation for the transverse component of the electric field inside the medium.
19In the gauge/gravity correspondence setting, J is the conserved current of a global U(1) symmetry of

the quantum field theory. In order to obtain the electromagnetic response of the medium, the standard

procedure is to introduce in the QFT action the interaction term eJA where A is the electromagnetic

field considered as external and e is the associated electromagnetic coupling constant considered to be

perturbatively small. The retarded correlator of the global current provides, at leading order in e, the exact

result for the retarded correlator of the local current.
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Substituting the explicit expression of the correlation function obtained in (4.19), the

wave equation becomes

q2

w2
= 1 +

1

w2

e2N2

16π

[
φ1
φ0
− c(w2 − q2)

]
. (4.21)

Note that, since our system is conformally invariant at zero temperature, as long as we

work with the dimensionless quantities w and q, we have no explicit dependence on T in

the wave equation. T actually provides only a scale with respect to which we measure the

actual physical quantities. Furthermore it could be interesting to notice that in (4.20) the

presence of a finite value of c can be reabsorbed by an overall rescaling of the correlation

function; more precisely

G(c)(w, q)↔ G(c=0)(w, q)

1− c e2N2

16π

. (4.22)

The rescaling (4.22) suggests that, as far as the study of the wave equation (4.20) is

concerned, it is possible to trade the contact term with a normalization factor in front of

the correlator, this latter being related to eN . We could therefore work without specifying

the value of eN and reducing everything to a contact term to be fixed against a physical

measure performed on the electromagnetic modes. One could for example think to fix c

with the requirement that the value of q(w = 0) for a specified mode coincides with that

measured in an experiment.

To check the soundness of our results we did a scan of the electromagnetic modes over

a broad range of values of c and eN . The results show that the qualitative behaviour

presented in section 3 is the same for a very broad range of parameters inside the validity

of the numerical computation. For convenience in the paper we decided to plot the results

for the specific values: eN = 3 and c = 5.5.

5 Semi-numerical analysis and checks

In this section we would like to explain briefly how we actually performed the computations

and characterized the various electromagnetic modes supported by the strongly coupled

plasma. We refer again to figures 1, 2 and 3 in section 3. The aim is to solve the wave

equation (4.20) and find the dispersion relations qA = qA(w) (the label A distinguishes the

different modes) connecting the complex wave-vector q and the real frequency w.

At first we solve the equation for the transverse vector fluctuations (4.5); once a solution

is obtained, we can read the near-boundary coefficients and plug them into (4.19) to find

the correlator. To solve the differential equation (4.5) we use two different methods whose

results are later compared and cross-checked. The first method consists in integrating

numerically the equation of motion (4.5) as explained in [59]. The second method is semi-

analytical and consists in expanding the function φ(u) near the horizon (as in (4.6)) and

solving Equation (4.5) order by order along the lines of [62]; this infrared solution is then

matched with an analogous term-wise solution computed at the boundary, see (4.7). It

turns out that, while the numerical method yields more precise answers, the semi-analytical

method is instead more agile.
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Once a solution to (4.5) is obtained, it is then possible to follow the gauge/gravity recipe

and define a correlation function as described in subsection 4.2. For very small values of

w and q we check that the correlation function agrees with the analytical result of [63].

The correlator is then inserted in the electromagnetic wave equation (4.19) to search for

the dispersion relations qA = qA(w) of the various transverse modes. As the correlator is a

complicated rational function of q and w, the electromagnetic wave equation has in general

many solutions. The set of possible solutions qA(w) can be studied relying on a simplifying

approximation: we build the correlator using the previously introduced semi-analytical

matched solution of (4.5); we then write the correlator as the ratio of two polynomials in w

and q; we expand both the numerator and the denominator up to a suitable order in q and

w around a chosen point in the (w, q) space (this statements will be shortly made more

precise). The results we obtained with the aforementioned approximations are afterwards

checked against the correlation function computed from the full numerical solution.

Let us be more specific on the computational procedure. We find solutions to the

electromagnetic wave equation expressed as complex functions qA(w) where the frequency

is a real quantity. We test the soundness of the solutions as follows: we first repeat the

procedure with an increased order in w and q up to which we expand the numerator

and the denominator of the correlation function; we than check that the solutions found

previously (i.e. with shallower expansions) still solve the equation within the numerical

tolerance. As an additional test we check that the solutions fall in the (w, q) region where

the approximated correlation function adhere well to the correlation function obtained in

the fully numerical approach. Eventually and more stringently we also check that the

solutions obtained with the approximate method solve the electromagnetic wave equation

written in terms of the fully numerical correlation function within the numerical tolerance.

We start looking for reliable electromagnetic wave solutions in the small w and q region

(w, q . 1); we then follow the modes iterating the approximate procedure and expanding

around a generic point of their dispersion relation q(w). This allows us to analyze the

modes at higher values of the frequency.

6 Phenomenology: wavelengths and the QGP

The analysis presented so far should be able to capture the electromagnetic response of a

generic globally neutral strongly coupled plasma described by the gauge/gravity correspon-

dence. A natural candidate for phenomenological application of the model at hand is the

QGP studied in high energy physics experiments such as RHIC or LHC, where the plasma

is dominated by the temperature, while the charge density is comparatively smaller. A

similar phenomenological investigation has been already performed in [24] for the hydro-

dynamical modes of strongly coupled and charged plasmas. However in [24] it was observed

that, even if the fluid dynamic analysis demonstrates the generic presence of negative re-

fraction, the wavelength of the electromagnetic mode is larger than the dimension of the

typical QGP sample produced in actual experiments.

In this section, without pretending to provide any specific experimental or phenomeno-

logical prediction, we briefly investigate the wavelengths of the modes studied in the paper.
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Figure 4. Wavelengths of the transverse electromagnetic modes. This values has been obtained

considering T = 200 MeV. We set eN = 3 and c = 5.5.

In particular we show that the wavelengths of the modes that we have considered so far are

in general smaller than those of the electromagnetic modes arising from the hydrodynam-

ical description considered in [24]. Therefore the electromagnetic modes that we describe

can actually be comparable with the typical dimension of a QGP sample (namely few fm).

This result supports the possibility that the coupling of the electromagnetic field with the

non-hydrodynamical quasi-normal modes could in principle have phenomenological and

experimental relevance and it calls for further investigation.

In figure 4 we report the wavelengths of our electromagnetic transverse modes. The

wavelength of a mode is given by λ = 2π/Re[q] = 1
TRe[q] in accordance with (3.1). To

associate a physical order of magnitude to the wavelength of the analyzed modes we need

to specify the temperature of interest. In relation to the QGP a typical value for the tem-

perature is 200 MeV for experiments like RIHC or LHC.20 Re-introducing the dimensionful

physical constants, we find the following estimate for the wavelength

λ =
~c

T Re[q]
∼ 1 fm , (6.1)

for frequency of the order of 1024 Hz, as reported in figure 4. In particular, note that the

negative refracting mode of figure 4 (solid line) presents a wavelength of order 1 fm for the

full range of frequency.

The size of the QGP samples in current experiments is actually of the order of

few fm’s [38, 64, 65], therefore (higher) non-hydrodynamical modes could actually probe

the plasma and perhaps leave there their footprint. We leave a deeper exploration of the

higher modes and their possible effects on the QGP for future work.

7 Longitudinal channel

In this section we want to analyze briefly the longitudinal electromagnetic modes supported

by the strongly coupled plasma and we proceed with a similar spirit as with the transverse

modes. As we have previously recalled (see section 2), in the presence of spatial dispersion

20Due to our numerical procedure, with the choice of temperature T = 200 MeV, the regime of validity

of our results corresponds to a frequency interval roughly between 1014 Hz and 1024 Hz.
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Figure 5. Real (left) and imaginary (right) parts of the rescaled wave-vector q as a function of the

rescaled frequency w for the first three longitudinal electromagnetic modes.

the response function of a medium depends also on the wave-number vector q. This fact

implies that also the longitudinal component of the electric field can propagate when the

Maxwell equation for the longitudinal modes of the electric field (in Fourier space)

εL(ω, q) = 1− 4πe2
GL(ω, q)

ω2
= 0 (7.1)

is satisfied. GL(ω, q) is the retarded correlator of the longitudinal current and, as in the

transverse modes case, it is a rational function whose poles correspond to the longitudinal

quasi-normal modes of the plasma. Equation (7.1) provides a set of dispersion relations

qA = qA(ω) between the complex longitudinal wave-vectors q and the real frequency ω

of the mode. In this section we simply give an account of some of the results whose

computational details can be found in appendix A. In figures 5 and 6 we plot the real and

imaginary parts of the wave-vector21 q, the real part of the longitudinal refractive index

n = q/w and the ratio between the imaginary and the real parts of n for the first three

electromagnetic modes supported by the strongly coupled plasma. These figures should be

compared with figures 1, 2 and 3 in section 3 which instead refer to the transverse sector.

It is very interesting to observe that also the longitudinal channel supports various

electromagnetic modes. However, we did not find any negative refractive longitudinal

mode. All the modes have finite momentum at vanishing frequency. Nevertheless for two

of them q(w = 0) is purely imaginary, while for the remaining mode is purely real. The

modes having an imaginary momentum at vanishing frequency are highly dissipative in the

IR regime even though the increase of the real part of q with the frequency indicates that

they could become more propagating at higher frequencies, as it can be seen in figure 6.

The mode with purely real momentum at w = 0 is highly propagating already in the low-

frequency region and it keeps this characteristic in the whole range of frequency that we

considered. Notice that the sign of the real part of the momentum shows that all these

modes have positive refracting index.

21As for the transverse modes, we use the rescaled quantities q = q/2πT , w = ω/2πT .
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Figure 6. Real part of the refraction index n and of the ratio Im(n)/Re(n) as functions of the

rescaled frequency w for the first three longitudinal electromagnetic modes.

8 Conclusion

In this paper we studied the electromagnetic linear response of strongly coupled neutral

plasmas described by the gauge/gravity correspondence and characterized the electromag-

netic modes with the lowest wave-vectors. The salient features of the present analysis

are the presence of multiple electromagnetic waves with different refractive indexes and

a propagating negative refracting mode with very small dissipation. Our study has been

performed without adopting any hydrodynamical approximation; hence we extended some

previous hydrodynamical studies of strongly coupled plasmas beyond the regime of small

frequencies and wave-vectors.

Our simple model highlights the potential richness of the electrodynamic response of

strongly coupled plasmas and this calls for further investigations. In particular, on a phe-

nomenological level, we showed that the characteristic wavelengths of the electromagnetic

modes in the plasma could be comparable to the typical size of the QGP samples produced

in high-energy physics experiments. This fact provides some arguments supporting the

possible relevance of the presented exotic phenomena for actual physical systems.

Our results suggest many future lines of investigation. Similar systematic analyses of

the electromagnetic properties can be indeed performed using different kinds of gravita-

tional backgrounds featuring appealing characteristics such as finite charge density, spon-

taneous symmetry breaking, non-relativistic or non-isotropic setups and the presence of

magnetic fields. These extensions could find application in various physical systems such

as the QGP but also in condensed matter and astrophysics.

We know that strong spatial dispersion is a crucial ingredient in producing the exotic

electromagnetic response we are concerned with, however it would be desirable to under-

stand whether some more precise connection between the modes of the plasma and its

associated electromagnetic modes can be clarified. In particular it would be nice to have a

direct understanding of the presence or not of negative refraction for the various electro-

magnetic modes based on the QNM structure. A technical but very interesting possibility

is to tune the coupling e and the finite counter-term c in such a way that the negatively

refracting mode possesses very small momentum at small frequency. The concomitant
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smallness of both the momentum and the frequency allows one to study the negatively

refracting mode retaining just the first few terms in the hydrodynamical expansion of the

correlator. Such privileged circumstance could be useful to connect the existence on neg-

ative refraction to the properties of few coefficients in the correlator which are in turns

related to the (always non-hydrodynamical) QNM structure of the plasma.22
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A Details about the longitudinal channel

In this appendix we would like to provide some details on the actual computation done

for the longitudinal electromagnetic modes. The procedure is similar to that explained in

the main text for the transverse modes. However there exist some differences to be taken

into account. Using the rotation invariance of the system we fix the four momentum as

k = (ω, 0, 0, q). The longitudinal current then corresponds to the z direction of the field

A in the dual gravity setup: Az. However in this case Az mixes with the time component

At [62]. We consider the following ansatz

Amdx
m = Ate

−i(ωt−qz)dt+Aze
−i(ωt−qz)dz . (A.1)

and define the gauge invariant combination:

ψ = qAt + wAz , (A.2)

which represents the electric field in the z direction. The At and Az equations then leads

to a single equation for ψ, namely

ψ′′(u) +
w2f ′(u)

f(u) [w2 − q2f(u)]
ψ′(u) +

w2 − q2f(u)

uf(u)2
ψ(u) = 0 . (A.3)

22We thank the referee for suggesting us this important possibility.
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From a near-boundary study we find the asymptotic behavior of the field

ψ(u) = ψ0 + uψ1 + u ln(u)ψ̃1 + u2ψ2 + u2 ln(u)ψ̃2 + . . . , (A.4)

which is identical to that of φ written in (4.7). Recall indeed that in the limit of vanishing

q the longitudinal and the transverse sector coincide. Moving to finite q does not affect the

general form of the UV asymptotic expansions. The same UV asymptotic behavior for the

longitudinal and traverse modes implies that the holographic renormalization procedure is

analogous in both channels.We can indeed use the same counter-term c(w2 − q2) for both

polarizations.

The on-shell action for the combination (A.2) is:

(NT )2

16

∫
dωd3q

(2π)4
f(u)

q2f(u)−w2
ψ′ψ ; (A.5)

This is the longitudinal version of Equation (4.11). Hence the A′zAz term of the on-shell

action is
(NT )2

16

∫
dωd3q

(2π)4
w2f(u)

q2f(u)−w2
A′zAz . (A.6)

We understand that, in a similar way as for the transverse channels, the zz current-current

correlator related to the second functional differentiation of the on-shell action with respect

to Az can be expressed as follows

G(c)
zz (w, q) = −(NT )2

16

w2

q2 −w2

[
ψ1

ψ0
− c(w2 − q2)

]
. (A.7)

These last passages are done in line with [62] to which we refer for further details. Note

that the tt and tz correlators are obtained in a similar way leading to

G
(c)
tt (w, q) = −(NT )2

16

q2

q2 −w2

[
ψ1

ψ0
− c(w2 − q2)

]
(A.8)

and

G
(c)
tz (w, q) = −(NT )2

16

wq

q2 −w2

[
ψ1

ψ0
− c(w2 − q2)

]
. (A.9)

It is important to notice that the set of zz, tt and tz correlators satisfy the Ward

identity

kµG(c)
µν (w, q) = 0 . (A.10)

This fact is related to the structure of the frequency and momentum dependent factors in

front of the expressions of the correlators. As a consequence, the contact term proportional

to c is not fixed by the Ward identities or, in other words, it is not constrained by symmetry

requirements. All the arguments about the contact terms that we have described in relation

to the transverse sector can be repeated for the longitudinal sector.
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Figure 7. Real (left) and imaginary (right) parts of the rescaled wave-vector q as a function of the

rescaled frequency w for the first transverse quasi-normal modes. The numerical analysis suggest

the presence of an infinite tower of analogous modes.

B Quasi-normal modes

In order to characterize better the strongly coupled plasma under study in the main text,

we report here an analysis of its internal modes. The retarded correlation function ac-

counting for the electromagnetic response of the plasma presents poles at specific values

for the momentum and frequency of the external perturbation. Such poles correspond in

the dual gravitational picture to quasi-normal modes of the black hole solution (see for

instance [55, 56, 58, 62, 66–70]). To find the dispersion relations between q and w of the

above-mentioned quasi-normal modes it is enough to look at the zeros of the inverse of the

correlation function. These solutions can be represented (for instance) as complex func-

tions q(w) of the real frequency.23 In this appendix we perform a characterization of the

first quasi-normal modes of the plasma both in the longitudinal and transverse sectors.

The results for the transverse sector are summarized in figure 7. All the modes we

found are qualitatively similar: they all show a finite imaginary part and null real part

for q as the frequency goes to zero. Such circumstance corresponds to having a highly

dissipative (and non-propagating) set of modes at low frequency. At higher values of the

frequency, however, the real part of q increases until it becomes significantly bigger than

its imaginary part. The modes are then propagating for higher values of the dimensionless

frequency w.

The longitudinal sector features different kinds of modes (see figure 8): we have a

diffusive mode whose complex momentum vanishes as the frequency goes to zero. This

is the hydrodynamical longitudinal mode discussed24 in [63]. The remaining modes are

closely analogous to those we found in the transverse sector. They have a purely imaginary

23It is important to underline that these dispersion relations between q and w are the ones associated

to the quasi-normal modes of the plasma and they are different from the dispersion relations for the

electromagnetic modes supported by the plasma and discussed in the main text. Indeed the first ones

come from solving the equations: (GT,L(ω, q))−1 = 0, while the second ones solve equations which look

approximately as q2 = ω2 −GT (ω, q) and ω2 −GL(ω, q) = 0.
24We also checked explicitly that at low frequency this longitudinal hydrodynamical mode is well approx-

imated by the diffusive pole structure with diffusion constant D=2πT (referred to dimensionful ω and k).
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Figure 8. Real (left) and imaginary (right) parts of the rescaled wave-vector q as a function of the

rescaled frequency w for the first three longitudinal quasi-normal modes.

momentum q as the frequency vanishes. The numerical investigation leads us to imagine

that we have an infinite tower of such modes which again are strongly dissipating at low

frequency.

As a final comment we want to underline that whenever possible we checked our results

with [56].
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