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1 Introduction

Compelling evidence strongly supports the idea of inflation, i.e. a phase of accelerated

expansion in the early Universe. The precise measurements of the cosmic microwave back-

ground (CMB) temperature anisotropies by the Planck satellite [1], show an impressive

agreement with the basic inflationary predictions: a spatially flat Universe, with gaussian,

adiabatic and slightly red-tilded scalar perturbations. The BICEP2 collaboration[2] has

recently announced the first detection of B-modes at large angular scales in the CMB. If

these turn out to be due to inflationary tensor perturbations, this detection will represent

a milestone in cosmology, and will become most likely the ultimate tool to validate the

inflationary paradigm. However, much work is needed yet on the observational side, in

order to discard other possible — more mundane — astrophysical sources.

The interpretation of the BICEP2 B-mode detection in light of inflation, implies that

the inflationary energy scale is of the order of ∼ 1016 GeV, which remarkably coincides

with the typical scale of grand unified theories (GUT). The determination of such scale

constitutes an invaluable piece of information by itself, disfavouring all inflationary models

with a lower energy scale. However, it tell us little about the specific model realisation of

inflation, which still remains uncertain.

Besides, the end inflation must be followed by a period of reheating, during which all

the energy available is converted into different particle species, which eventually thermalize

and dominate energy budget of the Universe. However, the details of reheating and of the

first stages of the thermal era, are also unknown. In general, they are expected to be high

energy phenomena, which cannot be probed by the Large Hadron Collider (LHC), nor by

future planned particle colliders. Most likely, only cosmic relics, remnants of these primeval

instants, can be used to probe the physics of these early stages of the Universe.

One of the most promising relics are gravitational waves (GWs). Once produced, GWs

decouple and propagate at the speed of light, carrying information about the source that

originated them. The leading primordial candidate to explain the BICEP2 B-mode signal
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are indeed GWs generated during inflation, due to quantum fluctuations of the metric

tensor perturbations [3]. It is precisely the interpretation1 of the BICEP2 B-signal as due

to the inflationary GW background, which allow us to infer the aforementioned energy

scale of inflation.

Other backgrounds of GWs are also expected from the early Universe, like those from

preheating [8–15], phase transitions [16–22], or cosmic defects [23–28], all corresponding to

phenomena in the post-inflationary period. Each of these backgrounds has a characteristic

spectrum depending on the high energy process that generated them. If detected, they will

provide direct information about the physics of that epoch.

In this paper we want to describe a GW background generated soon after the end

of inflation, due to the decay of the Standard Model (SM) Higgs. The ATLAS and CMS

collaborations have firmly stablished [29, 30] the existence of the Higgs, with a mass of 125-

126 GeV. We ignore however the role of the Higgs in the early Universe or, more precisely,

during inflation. Generically, one expects that the Higgs played no dynamical role during

inflation, though in principle it could also be responsible for it if a non-minimal coupling

to gravity is present [31]. The two situations share in common that at the end of inflation,

the Higgs is in the form of a condensate with a high amplitude, oscillating around the

minimum of its effective potential [32–35]. This gives rise to particle creation through

non-perturbative parametric effects [36–43]. All particle species coupled directly to the

Higgs are then created out-of-equilibrium [33, 44]. The transverse-traceless (TT) part of

the energy-momentum tensor of the Higgs decay products represents a source of GWs. As

a result, each of the produced species contributes to generate a GW background.

In this work we compute the spectral shape of such background of GWs. We find that

each of the species coupled to the Higgs leaves an imprint in the GW spectrum. However,

in practice, the signal from the most strongly interacting species dominates over the rest,

rendering inaccessible the information on the other species. We discuss the implications

of this result as a probe for particle couplings in high-energy physics. We focus on the

situation when the Higgs plays no dynamical role during inflation. We consider also, albeit

more briefly, the case when the Higgs is responsible for inflation. All through the text a(t)

is the scale factor, t conformal time, ~ = c = 1, and Mp = 1/8πG ' 2.44× 1018 GeV is the

reduced Planck mass, with G the gravitational constant.

2 Higgs oscillations after inflation

Let us characterize inflation as a de Sitter period with Hubble rate He, simply demand-

ing that He � MEW, where MEW ∼ O(102) GeV is the electroweak (EW) scale. The

inflationary interpretation of the BICEP2 results indicate that He ' 1014 GeV, so our de-

mand, in principle, is very much fulfilled. In the unitary gauge, the Standard Model Higgs

doublet can be written as Φ = ϕ/
√

2, with the large field effective potential of ϕ given

1Alternative primordial sources to the inflationary background of GWs have been formulated, like e.g. the

presence of magnetic fields [4] or cosmic defects [5–7], both of which also create B-modes in the CMB.

However, in their simplest formulation, these alternatives do not predict the correct shape of the observed

B-mode angular power spectrum, unless very ‘contrived’ parameters are chosen.
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by V = λ(µ)ϕ4/4, where λ(µ) is the Higgs self-coupling at the renormalization scale µ =

ϕ [45, 46]. If the Higgs is decoupled (or weakly coupled) from (to) the inflationary sector, it

plays no dynamical role during inflation, behaving as a light spectator field, independently

of its initial amplitude [32, 33]. The Higgs then performs a random walk at superhorizon

scales, reaching quickly an equilibrium distribution Peq ∝ exp{−(2π2λ/3)(ϕ/He)
4} [33, 47],

with variance 〈ϕ2〉 ' 0.13λ−1/2H2
e . A typical Higgs amplitude at the end of inflation is

ϕe ∼ O(0.1)He/λ
1/4
e , with λe = λ(ϕe). More concretely, ϕe ranges between 0.01He/λ

1/4
e

and He/λ
1/4
e with ∼ 98% probability.

Note that the running of the Higgs self-coupling shows that λ(µc) = 0 at some scale

µc, above which λ(µ) becomes negative [45, 46, 48, 49]. For the best fit SM parameters one

finds µc ∼ 1011 GeV. This scale, however, can be pushed up even to Mp, by considering

the top quark mass 3σ below its best fit. To guarantee the stability of the SM all the way

up to inflation, we will demand λe > 0. This allows us to effectively consider λe as a free

parameter, simply constrained as 0 < λe � 1.

The Higgs slowly starts rolling down its potential as soon as inflation ends. Depending

on the inflationary sector (which we do not specify here), the universe can be, just after

inflation, matter-dominated (MD), radiation-dominated (RD), or in-between. The Hubble

rate H decreases in any case faster than ϕ, eventually becoming sufficiently small, verifying

H2 < d2V/dϕ2. From then on, the Higgs starts oscillating around ϕ = 0, with an initial

amplitude ϕI = HI/λ
1/2
I (< ϕe), where λI ≡ λ(ϕI) & λe, andHI is the Hubble rate whenH =

d2V/dϕ2 is satisfied. The initial velocity can be read from the slow-roll condition, dϕI/dt =

−V ′/2HI. Ignoring the logarithmic running of λ and rescaling the Higgs amplitude as

h ≡ aϕ/ϕI, the Higgs condensate oscillates according to

ḧ(τ) + h3(τ) = (ä/a)h(τ) , (2.1)

where the dots denote derivatives with respect the time variable dτ ≡
√
λIϕIdt, and the

initial conditions are given by hI = 1, ḣI = 1/2. If the Universe after inflation is RD,

a(τ) = (1 + τ), whereas if it is MD, a(τ) = (1 + 0.5τ)2. Either way, the term ä/a is

irrelevant, since ä = 0 for RD, or ä/a ∝ 1/τ2 for MD, which becomes negligible very quickly.

Therefore, independently of the expansion rate of the Universe just after the end of inflation

(which, let us insist, depends on the unspecified inflationary sector), the Higgs condensate

oscillates an-harmonically according to eq. (2.1), with a decaying amplitude as ϕ ∝ 1/a.

As we will see next, the oscillations of the Higgs condensate have a striking consequence.

3 Gravitational waves from the Higgs decay products

It is a well known phenomenon in quantum field theory that whenever a scalar homogeneous

scalar field oscillates around the minimum of its potential, if there are quantum fields

coupled to it, then the quanta of such fields are created out-of-equilibrium through non-

perturbative effects, see for instance [37]. In our case of study, it is expected that every time

the Higgs ϕ passes through zero, all particle species coupled to it are non-perturbatively

created out-of-equilibrium, as indeed has been recently studied in [33]. This occurs much

faster than particle production from the perturbative decay of the Higgs [33]. In particular,
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the SU(2)L gauge bosons and the charged fermions of the SM are all created at the first and

successive Higgs zero crossings. The energy momentum tensor Tµν of the created species

will represent an anisotropic stress over the background and, consequently, its TT part

will act as a source of GWs. Thus, all species excited due to the Higgs oscillations, are

expected to generate GWs. In this paper we focus on the GW production from the SM

charged fermions. Nonetheless we note that gauge bosons are also expected to produce

GWs, see section 5. For later convenience, we define now the times te, tI, tF and tRD, as

the end of inflation, the start of the Higgs oscillations, the end of GW production, and the

first moment when the Universe becomes RD.

As it has been shown recently, parametrically excited fermions can indeed generate

very efficiently GWs [14, 15]. To see this, let us consider a given fermion species ψa,

coupled to the Higgs with a Yukawa interaction 1√
2
yaϕψ̄ψ, with ya is the Yukawa coupling

strength. We can decompose the fermionic field as

ψa(x, t) =
1

a3/2(t)

∫
dk

(2π)3
e−ikx

{
ak,ruk,r(t) + b†−k,r(iγ2)u

∗
k,r(t)

}
, uk,r =

(
uk,+Sr

uk,−Sr

)
,

(3.1)

with S1,2 eigenvectors of the helicity operator, and ar, br the standard creation/annihilation

operators, obeying the usual anti-commutation relations {ar(k), a†s(q)} = {br(k), b†s(q)} =

(2π)3δrsδD(k − q), {ar(k), b†s(q)} = 0. Introducing eq. (3.1) into the Dirac equation, and

after some algebraic manipulations, one obtains that the fermion mode functions follow

the second order differential equation (see [15] for more details)

ük,± +
(

(k/HI)
2 + qah

2 ± i√qaḣ
)
uk,± = 0 , (3.2)

where qa is a ‘resonance’ parameter given by

qa ≡
y2a
λI
, (3.3)

and uk,±(tI) ≡
[
1± (qa/[qa + (k/HI)

2])1/2
]1/2

and u̇k,±(tI) ≡ i[(k/HI)uk,∓(tI) ∓
q
1/2
a uk,±(tI)] guarantee an initially vanishing fermion number density [15]. From solving

eq. (2.1), we then find h(t), which we plug into eq. (3.2) in order to solve for the mode

functions uk,±(t). This scheme is consistent as long as the backreaction from fermions into

the Higgs is not relevant.

The energy density spectrum of GWs generated by a fermionic field with mode func-

tions uk,±(t), and normalized to the critical energy density ρc = 3H2

8πG , is given by [15]

ΩGW(k, t) ≡ 1

ρc

dρGW

d log k
=

4

3π3
G2k3

H2a4(t)

∫
d~p p2 sin2θ

(∣∣I(c)∣∣2 +
∣∣I(s)∣∣2) , (3.4)

where

I(c)(~k, ~p, t) ≡
∫
t

dt′

a(t′)
cos(kt′)Kreg(k, p)

[
u|k−p|,+(t′)up,+(t′)− u|k−p|,−(t′)up,−(t′)

]
, (3.5)
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with K(reg)(k, p) ≡ 2(nk−pnp)
1/2, np, nk−p the fermion occupation numbers, and I(s) anal-

ogously defined as I(c) but with sin(kt). Note that parametric creation of fermions excites

modes up to a given cut-off scale k∗ ' q
1/4
a HI, i.e. only infrared (IR) modes (k . k∗)

are excited, whilst ultraviolet (UV) modes (k & k∗) remain in vacuum. The contribution

from the UV modes therefore diverges and must be subtracted (’regularized’). The kernel

Kreg(p, k) appears precisely due to the regularization of the anisotropic-stress [15], acting

as a IR filter which suppresses the UV contribution, i.e. Kreg(p, k)→ 0 when p, k � k∗.

Since the fermionic spectrum has a hard cut-off at k∗, the GW spectrum must be

peaked at a scale kp ∼ k∗, with a k3 slope for k � k∗ (simply because eq. (3.5) becomes

independent of k in such regime), and a decaying UV tail at k � k∗ (due to the suppresion

of the fermion occupation number). Figure 1 shows several GW spectra computed for

different resonant parameters qa = 102, 103, 104 in RD. All spectra depict the expected

behavior, i.e. the k3 IR tail, a peak at kp ∼ q
1/4
a HI, and a decaying amplitude at k � kp.

The UV tails are well fitted to a power-law ∝ k−1.5, but this should be taken with care

given the limited momenta range probed.2 From the given shape of the fermion spectrum,

the amplitude of the GW peak is expected to scale as Ω(p)
GW
≡ ΩGW(k = kp) ∝ q

(3+δ)/2
a [15],

with δ < 1 a small correction depending on the fermion number suppression details at

k & k∗. Numerically we find Ω(p)
GW
∝ q1.55a for either RD or MD, so δ ' 0.1 for both cases.

Denoting as w the effective equation of state parameter characterizing the expansion

history between tI and tRD, the GW spectrum for a given resonance parameter qa ≥ 1, can

be parametrized as

ΩGW(k, tF; qa) = q1.55a U(k/kp)× (HI/Mp)
4 (aI/aF)1−3w , (3.6)

with U(x) a ‘universal’ function

U(x) ≡ U1 ·
x3

(α+ βx4.5)
, (3.7)

capturing the essence of the spectral features (peak amplitude and IR/UV slopes), with

U1 ≡ U(1) and α+β = 1. We find U1 ' 10−5 for RD, U1 ' 10−6 for MD, and α = 0.25, β =

0.75 for both RD and MD. Note that U(x) characterizes the shape of the spectrum of GWs

independently of the resonance parameter qa. Therefore, this function can be obtained by

inverting eq. (3.6) from any GW spectrum calculated for an arbitrary resonance parameter

qa, U(k/kp) ≡ q−1.55a ΩGW(k, tF; qa)(Mp/HI)
4 (aF/aI)

1−3w, ∀ qa. In figure 2 we plot U(x) as

extracted from the spectra shown in figure 1 calculated for qa = 102, 103 and 104 in RD.

The overlapping of the extracted U(x) functions from different resonance parameters qa,

demonstrate very nicely the universality of the shape of the GW spectra irrespectively of qa.

Similar results are obtained as well in MD. In summary, the value of qa simply determines

the height (∝ q1.55a ) and peak position (∝ q1/4a ) of the GW spectrum, whereas the shape of

the spectra, characterized by U(x), is dictated by the form of the Higgs effective potential

V (ϕ) ∝ ϕ4 as well as by the Higgs-Fermion Yukawa-type interaction ψ̄aϕψa.

2Note as well that the k−1.5 behaviour depends on Kreg(k, p), which is based on an ansatz presented

in [15]. Current work in progress [50] will eventually review this result using the more rigorous procedure

of adiabatic regularization for fermions [51, 52].
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Figure 1. Three GW spectra calculated for the resonance parameters qa = 102, 103, 104 in RD

and for He = HB2
e . As expected, the spectra peak at kp ∼ q1/4HI. The dots (circles, triangles and

squares) correspond to the actual numerical spectra, whereas the lines are just fits. Similar plots

are obtained for the MD case.

Redshifting the amplitude and wavenumbers, we can easily find the GW energy density

spectrum today from the spectrum computed at the time of production as (see section 2.2

of [15] for details)

f = ε
1/4
I × (k/ρ

1/4
I )× 5 · 1010 Hz , (3.8)

h2Ω(0)
GW

(f) = h2Ω
(0)
rad(g0/gF)1/3 × (HI/Mp)

4 × εI q1.55a U(k/kp) , (3.9)

where

εI ≡ (aI/aRD)(1−3w) ≤ 1 , (3.10)

h2Ω
(0)
rad ' 4 · 10−5 is the fractional energy in radiation today, and (g0/gF)1/3 ' 0.1 is the

(third root of the) ratio of relativistic species today to those at tF. Using ρI = 3λIϕ
2
IM

2
p ,

today’s frequency fp and amplitude of the GW background peak h2Ω(p)
GW
≡ h2ΩGW(fp), are

given by

fp ' ε
1/4
I y1/2a (ϕI/Mp)

1/2 × 5 · 1010 Hz , (3.11)

h2Ω(p)
GW
' εI U1 q1.55a (HI/Mp)

4 × 10−6 , (3.12)

where we used h2Ω
(0)
rad(g0/gF)1/3 ' 10−6. Eqs. (3.11), (3.12) describe the peak of the GWs

from a single fermion species with Yukawa coupling strength ya. The position and height

of the GW peak from a given fermion species is univocally determined by ya and the Higgs

self-coupling λI, from which we build the resonance parameter qa ≡ y2a/λI.
In the SM every charged fermion couples directly to the Higgs, each with a different

Yukawa coupling strength, yt > yb > yτ > yc > yµ & ys > yd > yu > ye, the labels standing

– 6 –
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Figure 2. Universal function U(k/kp) obtained from the GW spectra calculated for qa =

102, 103, 104 in RD, and shown in figure 1. The continuous line is a fit to all the points. As expected,

the maximum of U(x) is at x ∼ 1, signalling that the GW spectra peak all at kp ∼ q1/4a HI. Similar

plots are obtained for the MD case.

for the quarks, top (t), bottom (b), strange (s), charm (c), down (d) and up (u), and the

charged leptons, electron (e), muon (µ) and tau (τ). The derivation of eqs. (3.4) actu-

ally relies on computing an unequal-time-correlator of the type ∼ 〈TijTij〉 [15], assuming

that only one fermion species contributes to the energy momentum tensor Tij . However,

in our case, there is a sum over all the fermion species Tij =
∑

a Tij,a, so that 〈TijTij〉
=
∑

a〈Tij,aTij,a〉 +
∑

a6=b〈Tij,aTij,b〉. Since the creation/annihilation operators of differ-

ent species anticommute, the cross-terms 〈Tij,aTij,b〉 vanish. Eqs. (3.4) and, consequently,

eq. (3.6) and eqs. (3.11), (3.12) are valid for each species individually. This implies that

the total spectrum of GWs is a superposition of each individual species’ spectra

h2Ω(0)
GW

(f) ' εI 10−6 (HI/Mp)
4
∑

a
q1.55a U(q−1/4a κ) , (3.13)

with the a-index running over all SM charged fermions {t, b, s, c, d, t} and {e, µ, τ}.
Let us note that if the amplitude of the GW peaks had scaled as Ω(p)

GW
∝ qra with r � 1,

a series of peaks would have emerged in the final spectrum, one peak per fermion. The

presence of these peaks could have represented a method for probing particle couplings,

i.e. a ‘spectroscopy’ of particle physics. However, the real scaling of the peaks amplitude

with a much greater exponent, as ∝ q1.55a , implies that the IR tail of the highest peak

completely dominates over the amplitude of the lower peaks, see figure 1. Given the Yukawa

coupling strengths of the SM, the amplitudes of each species peak are in proportion Ω(p)
GW

∣∣
t

: Ω(p)
GW

∣∣
b

: Ω(p)
GW

∣∣
τ

: ... = y3.1t : y3.1b : y3.1τ : . . . located at frequencies f
(t)
p : f

(b)
p : f

(τ)
p : . . .

= y
1/2
t : y

1/2
b : y

1/2
τ : . . .. The IR tail of the top quark dominates over the lower peaks,

thus making the information on the other species’ couplings inaccessible. In other words,
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despite the fact that each of the fermion species coupled to the Higgs produce a GW peak

with a characteristic amplitude and position, only the peak from the top quark will remain

in the final spectrum. The rest of the peaks contribute only to a tiny distortion of the

top quark’s IR tail. Hence, from the final GW spectrum, in principle only the information

about λI and yt can be extracted. The information about the couplings of the rest of

species ya < yt, unfortunately remain ‘buried’ under the long wavelength tail of the GW

signal from the top quark.

To compute the frequency f
(t)
p and amplitude h2Ω(p)

GW

∣∣
t

of the top quark peak today,

we need to fix first the resonance parameter qt = y2t /λI at the energy scale EI. The Yukawa

coupling yt runs very mildly from ∼ 0.9 to ∼ 0.4, between ∼ 102 GeV and ∼ 1019 GeV,

so we can set yt(EI) ∼ 0.5 as a representative value. The resonant parameter is then

qt ∼ O(0.1)/λI � 1, for instance qt ∼ 106 if λI ∼ 10−7. The smaller λI the bigger qt,

and hence the higher the GW peak amplitude. Using the fact that ϕI = (ae/aI)ϕe '
0.1(ae/aI)He/λ

1/4
I , we find

f (t)p ∼ ε
1/4
I (He/H

B2
e )1/2 × 107 Hz , (3.14)

h2Ω(p)
GW

∣∣
t
∼ εI U1 10−24(He/H

B2
e )4 λ−1.55I (3.15)

with HB2
e = 1014 GeV the inflationary Hubble scale inferred from the B-mode BICEP2

results [2]. Since the BICEP2 results yet need an independent confirmation,3 let us con-

sider the possibility for the time being that the inflationary Hubble rate could be smaller

than the BICEP2 value HB2
e . In such case, the lower He, the smaller f

(t)
p , shifting the GW

peak towards the observable low-frequency window of currently planned detectors. How-

ever, lowering He also suppresses significantly the amplitude of the signal, which scales as

∝ (He/H
B2
e )4 � 1. Therefore, He . HB2

e is the only situation at which the peak ampli-

tude might not be strongly suppressed. If the BICEP2 results are finally confirmed, the

unexpectedly high inflationary energy scale that they indicate, provides indeed the optimal

scenario for the enhancement of the signal that we are studying. Yet, in that case, very

small values of λI are needed to reach a sufficiently high peak amplitude. For instance,

assuming a RD scenario immediately after inflation (i.e. εI = 1), λI . 10−7, 10−10, 10−13

are needed to achieve h2Ω(p)
GW

∣∣
t
& 10−20, 10−15, 10−10, respectively. Such small values of λI

represent indeed a fine-tuning. The GW background predicted here exists independently

of how small λI is (as long as λI > 0), but only for such fine-tuned values of λI does the

signal not become extremely tiny.

In summary, we see that only if the SM is stable but is extremely close to the instability

region, i.e. 0 < λI ≪ 1, does the peak signal of the GWs from the quark top have a

significant amplitude.

A subtle aspect that we have not commented about so far, is the following. Since the

Higgs at the end of Inflation is a condensate which fluctuates over superhorizon scales,

one might think that this could invalidate the notion of parametric excitation of fields.

The excited wavelength should not be larger than the coherence length scale of the Higgs

3Hopefully the Planck collaboration will be able to confirm the signal when their new data analysis is

released.
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∼ 1/He, so that the notion of a homogeneous condensate applies. A rapid look into this

condition indicates that, independently of the expansion rate after Inflation, a neccesary

condition is that q
1/4
a > (ae/aI)(He/HI). With the help of λ

1/2
I ϕI = HI = He(ae/aI)

2 and

ϕI ∼ (ae/aI)He/λ
1/4
e , the condition translates into a lower bound for the Yukawa coupling,

ya > (λe/λI)
1/2. Since for the enhancement of GWs we need λI � 1, it is expected that

λe/λI < 1. The smallness of this ratio is unfortunately uncertain, since it depends on

the fine dependence of the running of the Higgs self-coupling with respect the top quark

mass, the strong coupling, etc. In principle it is even posible that λe/λI � 1, but it seems

more natural that λe is perhaps only one or two — few at most — orders of magnitude

smaller than λI . Therefore, what this condition tell us, is that indeed we can only trust the

parametric excitation analysis for the most heavy fermions, possibly only for the top quark,

for which yt ∼ 0.5 at high energy scales. Fortunately, we just concluded that only the GW

peak from the top quark remains as a feature in the GW spectrum, so in principle the whole

analysis is consistent at least for the dominant signal by the top quark. Interestingly, let us

note that, at the same time, the spatial superhorizon modulation of the Higgs is expected

to lead to anisotropies in the amplitude of the GW background, similarly as it has been

recently studied [53, 54] in the case of GW production from light scalar fields at preheating.

4 What if the Higgs was responsible for inflation?

In the Higgs-inflation scenario a non-minimal coupling to the Ricci scalar ξRϕ2, allows the

Higgs to play the role of the inflaton [31]. An intense debate is currently ongoing about

the viability of this scenario. As a matter of fact, the BICEP2 results point towards the

inability of this scenario to predict the detected B-mode signal, clearly disfavouring it.4

We will nevertheless compute the GW production after inflation in this scenario, simply

assuming the validity of the model. Whereas this should be considered simply as a pure

academic exercise, or a viable physical possibility, only time will tell. For the time being,

it will serve as an illuminating exercise just for the sake of comparison with the previous

Higgs spectator scenario.

Thus, considering that Higgs-inflation describes correctly the inflationary period, the

Higgs oscillates as well after the end of inflation, around the minimum of its effective

potential. In the Einstein frame, redefining the Higgs amplitude as h = a3/2(3ξ/4)(ϕ/Mp)
2,

it is found [34, 35] that the Higgs oscillates as h ' sin(τ)/τ , with dτ ≡ a(t)Mdt and

M ≡ λ/
√

3ξMp the effective mass of the Higgs. The Higgs pressure averages to zero over

the oscillations, so the universe expands effectively as in MD.

A background of GWs is generated after the end of inflation, again due to the non-

perturbative decay of the Higgs, which corresponds to preheating in this scenario. From

the Yukawa interactions, fermions acquire an effective mass in the Einstein frame given

by mψ(τ) = q
1/2
a h1/2(τ)M , with qa ≡ 2r2(y2a/ξ) a resonance parameter, ya the Yukawa

coupling of a given species ψa, and r ≡ ξ/λ1/2. Using this effective mass, we can solve the

corresponding fermion mode equations, choosing again initial conditions corresponding to

4If the BICEP2 results held, a version of known as ‘critical point Higgs-Inflation’ would still be viable [55],

though the universality of the predictions characteristic of the original formulation would be lost.
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vanishing fermion number density. To compute the GW spectrum ΩGW(k, t; qa), we simply

need to insert the new mode functions uk,±(t) into eq. (3.4). Following a similar analysis

as in section 3, we find that fermions are excited up to a cut-off scale, this time given

by k∗ ∼ j1/3q
1/3
a M , with j the number of Higgs zero-crossings since the end of inflation.

Considering that fermion production ends after jF zero-crossings, we find the amplitude

and frequency of the GW peak today, for a given fermion species, given by

fp ' ε
1/4
I j

1/3
F q1/3a r−1/2 × 2 · 1010 Hz ,

h2Ω(p)
GW
' εI U1 q1.7a r−4 × 10−7 , (4.1)

where εI ≡ (aI/aRD) < 1, whilst the scaling ∝ q1.7a and the amplitude U1 ' 102 are found

from a numerical fit. A 2-loop analysis of the running of the parameters in this model [56]

shows that, for the allowed 125− 126 GeV Higgs mass range, ξ ∼ O(103) and r ∼ 5 · 104 at

the energy scale of inflation. Besides, in [34, 35, 56, 57] it has been shown that the Higgs

transfers efficiently its energy into the decay products after O(100) zero-crossings. Finally,

note that we can estimate εI as ∼ j−2/3RD , with jRD (& jF) the number of Higgs zero-crossings

until RD. Putting everything together, the frequency of each peak today is estimated as

fp ' 2 y
2/3
a ×1010 Hz, were we used as fiducial values ξ = 1000, r = 5 ·104, jRD ∼ jF = 100,

and ε
1/4
I j

1/3
F ∼ j

1/6
RD ' 2. The GW peaks are in a proportion f

(a)
p : f

(b)
p = y

2/3
a : y

2/3
b , with

ya, yb the Yukawa couplings of different species. As in the Higgs spectator scenario, the GW

peak from the most strongly coupled species — the quark top — dominates over the rest of

peaks. Therefore, only the peak associated to the top quark remains in the final spectrum

of GWs, this time located at f
(t)
p ∼ 1010 Hz. Choosing the previous fiducial values for ξ, r

and εI, the amplitude of the peak today is estimated as h2Ω(p)
GW

∣∣
t
' U1 y3.4t ×10−15 ∼ 10−14.

Note that contrary to the Higgs spectator case, there is no freedom to tune the value of the

Higgs self-coupling λ for modulating the final amplitude. The amplitude of the GW peak

is actually fixed, and its position is also at higher frequencies than in the previous case.

As a final comment, let us note that the last remark made in section 3, about the

possible limitations of parametric excitation due to the finite correlation length of the

Higgs condensate, does not apply here, since the Higgs is the inflaton and therefore is

homogeneous over cosmological scales.

5 Discussion and conclusions

A number of aspects not considered in our derivations, might have an impact on the results.

The most relevant aspect is the parametric excitation of the SU(2)L gauge vectors Z,W±,

from which new peaks are expected to appear in the GW spectrum. On general grounds,

these peaks should be higher than the fermionic ones, since bosons can grow in amplitude

arbitrarily, but fermions cannot. However, in the absence of lattice simulations consider-

ing the non-linearities and charge currents in the bosonic sector, we will not attempt to

estimate their peak amplitude. Let us observe, nonetheless, that given the fact that the

SU(2)L gauge coupling is g2 ∼ yt, the GW peaks from the gauge bosons will be located at

similar frequencies as that of the top quark, most likely not being possible to resolve them
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separately. The SU(2)L gauge bosons might therefore enhance the amplitude of the final

single peak in the GW spectrum, but we leave the study of this for future research.5

Another relevant aspect is the fermion decay width, which for the top quark is Γt ∼
O(10−3)g22(mt/mW )2mt, mt = ytϕ/

√
2, mW = g2ϕ/2. The GWs are created in a step

manner only, during the brief periods of fermion non-perturbative excitation ∆t � Tϕ,

when the Higgs crosses around zero (twice per oscillating period Tϕ). The GW production

will not be affected by the top decay unless Γt∆t > 1. In the Higgs spectator scenario,√
λIϕI∆t ∼ q

−1/4
t , and the Higgs amplitude during that time is |ϕ| ≤ ϕ∗ = q

−1/4
t ϕI, so

Γt∆t . O(10−3) ×(y2t /q
1/4
t )(yt/

√
λI)(|ϕ|/ϕI) . O(10−3)y2t � 1. Therefore, the top decay

does not affect the GW production. Similar conclusions follow in the Higgs-Inflation case.

Other aspects that could impact on the final details are the fermions’ backreaction

onto the Higgs and the possible thermal coupling of the Higgs. Note, for instance, that in

previous studies of non-perturbative fermion production in the early Universe [40], it was

concluded that backreaction from the created fermions into the scalar condensate creating

them, becomes only relevant for resonant parameters q & 1010, which in our case translates

to λI . 10−11. On the other hand, the possible coupling of the Higgs to the expected

thermal bath from the decay of the inflaton, represents a ‘model dependent’ question

depending on the assumptions about the inflationary sector. The different possibilities

need to be studied therefore, separately, case by case [50]. Finally, let us note that the

study of quantum corrections in the fermion dynamics beyond the Dirac equation [59] is

an interesting aspect that remains to be investigated further in detail, at least in what

concerns its impact on the GW production from fermions.

To conclude, let us stress the fact that the generation of GWs from non-perturbatively

excited fields can also be expected in beyond the SM scenarios. For instance if the Higgs

couples to non-SM fields, say to species heavier than the top quark, right-handed neu-

trinos, etc. Alternatively, we can also conceive an oscillatory scalar field φ other than

the SM Higgs, coupled to either SM or non-SM fields. The single peak in the final GW

spectrum will then probe the coupling of the most strongly interacting particle with the

oscillatory field. The rest of the GW peaks from any species more weakly coupled to φ,

are expected to be completely ‘buried’ under the long wavelength tail of the signal from

the most strongly interacting species. The corresponding GW background, if detected,

would provide a methodology for probing couplings at energies much higher than what any

particle accelerator will ever reach.

Summarizing, in this paper we predict a background of GWs created due to the non-

perturbative decay of the SM Higgs after inflation, with the simple requisite that the

SM is stable during inflation. The existence of this background and the location of its

spectral features should be considered as a robust prediction, though the final details

might be affected by the inclusion of some of the effects mentioned above, to be investigate

elsewhere [50]. The GW spectral features could be used for spectroscopy of elementary

particles in/beyond the SM, probing at least the coupling of the most strongly interacting

5After completion of this work, the preprint [58] appeared in the ArXiv, studying analytically the

dynamics of the non-abelian gauge bosons after inflation. Their results reinforce the idea that the GW

from the bosonic sector might possibly enhance the final GW peak.
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species. For this, new high frequency GW detection technology must be developed, beyond

that currently planned [60–62].
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[57] J. Garćıa-Bellido, J. Rubio, M. Shaposhnikov and D. Zenhausern, Higgs-dilaton cosmology:

from the early to the late universe, Phys. Rev. D 84 (2011) 123504 [arXiv:1107.2163]

[INSPIRE].

[58] K. Enqvist, S. Nurmi and S. Rusak, Non-abelian dynamics in the resonant decay of the Higgs

after inflation, JCAP 10 (2014) 064 [arXiv:1404.3631] [INSPIRE].

[59] J. Berges, D. Gelfand and J. Pruschke, Quantum theory of fermion production after

inflation, Phys. Rev. Lett. 107 (2011) 061301 [arXiv:1012.4632] [INSPIRE].

[60] A.M. Cruise and R.M.J. Ingley, A prototype gravitational wave detector for 100 MHz, Class.

Quant. Grav. 23 (2006) 6185 [INSPIRE].

[61] T. Akutsu et al., Search for a stochastic background of 100 MHz gravitational waves with

laser interferometers, Phys. Rev. Lett. 101 (2008) 101101 [arXiv:0803.4094] [INSPIRE].

[62] A.M. Cruise, The potential for very high-frequency gravitational wave detection, Class.

Quant. Grav. 29 (2012) 095003 [INSPIRE].

– 15 –

http://dx.doi.org/10.1007/JHEP08(2012)098
http://dx.doi.org/10.1007/JHEP08(2012)098
http://arxiv.org/abs/1205.6497
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.6497
http://dx.doi.org/10.1103/PhysRevD.50.6357
http://arxiv.org/abs/astro-ph/9407016
http://inspirehep.net/search?p=find+EPRINT+astro-ph/9407016
http://dx.doi.org/10.1016/j.physletb.2009.07.054
http://arxiv.org/abs/0906.0954
http://inspirehep.net/search?p=find+EPRINT+arXiv:0906.0954
http://dx.doi.org/10.1016/j.physletb.2012.02.013
http://dx.doi.org/10.1016/j.physletb.2012.02.013
http://arxiv.org/abs/1112.3022
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.3022
http://dx.doi.org/10.1103/PhysRevD.88.061501
http://arxiv.org/abs/1305.7374
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.7374
http://dx.doi.org/10.1103/PhysRevD.89.044030
http://arxiv.org/abs/1311.4958
http://inspirehep.net/search?p=find+EPRINT+arXiv:1311.4958
http://dx.doi.org/10.1103/PhysRevLett.111.011301
http://arxiv.org/abs/1304.2657
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.2657
http://dx.doi.org/10.1088/1475-7516/2014/06/047
http://arxiv.org/abs/1309.1148
http://inspirehep.net/search?p=find+EPRINT+arXiv:1309.1148
http://dx.doi.org/10.1016/j.physletb.2014.05.074
http://dx.doi.org/10.1016/j.physletb.2014.05.074
http://arxiv.org/abs/1403.6078
http://inspirehep.net/search?p=find+EPRINT+arXiv:1403.6078
http://dx.doi.org/10.1088/1126-6708/2009/07/089
http://arxiv.org/abs/0904.1537
http://inspirehep.net/search?p=find+EPRINT+arXiv:0904.1537
http://dx.doi.org/10.1103/PhysRevD.84.123504
http://arxiv.org/abs/1107.2163
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.2163
http://dx.doi.org/10.1088/1475-7516/2014/10/064
http://arxiv.org/abs/1404.3631
http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.3631
http://dx.doi.org/10.1103/PhysRevLett.107.061301
http://arxiv.org/abs/1012.4632
http://inspirehep.net/search?p=find+EPRINT+arXiv:1012.4632
http://dx.doi.org/10.1088/0264-9381/23/22/007
http://dx.doi.org/10.1088/0264-9381/23/22/007
http://inspirehep.net/search?p=find+J+Class.Quant.Grav.,23,6185
http://dx.doi.org/10.1103/PhysRevLett.101.101101
http://arxiv.org/abs/0803.4094
http://inspirehep.net/search?p=find+EPRINT+arXiv:0803.4094
http://dx.doi.org/10.1088/0264-9381/29/9/095003
http://dx.doi.org/10.1088/0264-9381/29/9/095003
http://inspirehep.net/search?p=find+J+Class.Quant.Grav.,29,095003

	Introduction
	Higgs oscillations after inflation
	Gravitational waves from the Higgs decay products
	What if the Higgs was responsible for inflation?
	Discussion and conclusions

