
J
H
E
P
1
1
(
2
0
1
4
)
1
4
3

Published for SISSA by Springer

Received: August 31, 2014

Revised: October 15, 2014

Accepted: November 3, 2014

Published: November 25, 2014

Minimal modifications to the Tri-Bimaximal neutrino

mixing

Zhen-hua Zhao

Institute of High Energy Physics, Chinese Academy of Sciences,

P.O. Box 918, Beijing, 100049 China

E-mail: zhaozhenhua@ihep.ac.cn

Abstract: In light of the observation of a relatively large θ13, the ever popular Tri-

Bimaximal (TBM) neutrino mixing which predicts a vanishing θ13 needs modifications. In

this paper, we shall discuss the possibility of modifying it in a minimal way to fulfil this

task. In the first part, a neutrino mass matrix with three independent parameters, which

leads to the TM2 mixing, is obtained by analogy with that for the TBM mixing. In the

second part, a model that can realize the TM2 mixing is constructed with flavor symmetries

A4 × U(1) × Z2 × Z2 × Z2. It is the variant of a model that gives the TBM mixing, with

only one more flavon field included. Furthermore, the imaginary vacuum expectation value

(VEV) of this flavon breaks the imposed CP symmetry and results in θ23 = 45◦ and the
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1 Introduction

The fact of neutrino oscillations has been established. On the theoretical side, it can

be explained by neutrinos having masses, and well described by a 3 × 3 unitary matrix

— the PMNS matrix [1, 2] plus two mass squared differences ∆m2
21 = m2

2 − m2
1 and

∆m2
31 = m2

3 −m2
1. The PMNS matrix can be parameterized by three mixing angles and

three CP phases,

UPMNS =







c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13













eiα

eiβ

1






, (1.1)

where sij and cij stand for sin θij and cos θij . As in the CKM matrix [3, 4], there is a

Dirac CP-violating phase δ. Differently, two Majorana phases α and β may appear or not,

depending on the nature of neutrino masses. In this paper, neutrino masses will be taken as

Majorana ones. On the experimental side, neutrinos from different sources, ranging from

the sun [5] and the atmosphere [6] to reactors [7] and accelerators [8], have been observed

to oscillate among different flavors. Thanks to the accumulation of data, neutrino mixing

parameters have been measured with a high precision. According to the latest global-fit

results [9], they have the values as given in table 1. Only the values in the case of normal

hierarchy are shown here, because the models in this paper just allow this situation.

Before the measurement of θ13 [7], the TBM mixing [10, 11] was very popular,

UTBM =













√
2√
3

1√
3

0

− 1√
6

1√
3

1√
2

1√
6

− 1√
3

1√
2













, (1.2)
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Parameter best fit 1 σ range 2 σ range 3 σ range

sin2 θ12/10
−1 3.23 3.07−3.39 2.92−3.57 2.78−3.75

sin2 θ13/10
−2 2.34 2.14−2.54 1.95−2.74 1.77−2.94

sin2 θ23/10
−1 5.67 4.39−5.99 4.13−6.23 3.92−6.43

∆m2
21[10

−5eV2] 7.60 7.42−7.79 7.26−7.99 7.11−8.18

|∆m2
31|[10−3eV2] 2.48 2.41−2.53 2.35−2.59 2.30−2.65

δ/π 1.34 0.96−1.98 0.00−2.00 0.00−2.00

Table 1. Global-fit results for neutrino oscillation parameters.

whose prediction for mixing angles

sin2 θ12 =
1

3
, sin2 θ23 =

1

2
, θ13 = 0, (1.3)

was in good agreement with experimental results at that time. When the charged leptons

are diagonal, a neutrino mass matrix of the following form can give us the TBM mixing,

Mν =







A

A

A






+







0 C −C
C B + C B

−C B B + C






. (1.4)

Due to its simplicity and predictive power, many models starting from a discrete non-

Abelian flavor symmetry [12–14] were proposed to realize this mass matrix and thus the

TBM mixing.

However, considering the significant deviation of θ13 from 0, we need to modify the

TBM mixing [15–27]. First of all, a natural question arises as whether there is still a

neutrino mass matrix that can accommodate the large θ13 and assumes a simple form like

that in eq. (1.4) [28–30]. In section 2, a mass matrix for this purpose is obtained through

twisting eq. (1.4), and its phenomenological consequences are discussed. As we will see,

this mass matrix actually leads to the so-called TM2 mixing [15]. Therefore, a model

with flavor symmetries is constructed to realize this mixing pattern in section 3. Special

attention will be paid to the origin of CP violation. Furthermore, the generalization of this

model to the TM1 mixing is also discussed [15, 31]. Finally, a brief summary is given in

section 4.

2 A minimal modification to the mass matrix

In this section, we will modify eq. (1.4) minimally to produce a realistic neutrino mixing

pattern. The mass matrix given below can take this responsibility,

Mν =







a

a

a






+







0 c c

c b− c b

c b b+ c






. (2.1)
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It can be viewed as a sister matrix of eq. (1.4), in the sense that their elements possess

similar relations,

mµµ −mee = mµτ −meτ , mττ −mee = mµτ +meµ, meµ = ±meτ . (2.2)

The only difference lies in the fact that eq. (1.4) takes meµ = −meτ , while eq. (2.1) takes

meµ = meτ . Thus, the latter case can be taken as a minimal modification to the former

case. The above way of obtaining eq. (2.1) is a little novel and seems not to be reasonable.

However, it can also be reached from other perspectives which have solid ground. First of

all, we notice that it has something to do with the Friedberg-Lee symmetry [32–35] which

shapes the neutrino mass matrix to be as

Mν =







a

a

a






+







c+ d −d c

−d b+ d b

c b b+ d






. (2.3)

By choosing d = −c, this equation can be reduced to eq. (2.1), so the latter has one

parameter fewer and its results are more predictive as we will see. Eq. (2.1) can also be

understood in terms of the µ− τ symmetry [36] and its breaking [37–44]. As pointed out

in ref. [45], a general neutrino mass matrix can be decomposed into two parts,

Mν =











Mee M+
eµ −M+

eµ

M+
eµ M+

µµ Mµτ

−M+
eµ Mµτ M+

µµ











+







0 M−
eµ M−

eµ

M−
eµ M−

µµ 0

M−
eµ 0 −M−

µµ






, (2.4)

where the first part obeys the µ−τ symmetry, while the second part breaks it. In eq. (2.1),

a and c obey the µ−τ symmetry, while b which corresponds to takingM−
µµ = −M−

eµ violates

it. Anyway, we can put aside the origin of eq. (2.1) for the time being and just study its

implications for phenomenology.

In order to make physical results manifest, instead of the standard parametrization in

eq. (1.1), the matrix that diagonalizes eq. (2.1) is parameterized in a different way,

Uν = R(θ′23)R(θ
′
12)R(θ

′
13), (2.5)

where R(θ′ij) is a rotation in the i–j plane by the angle θ′ij . Here the superscript “′” is

used to distinguish the angles from those in the standard parametrization. In this case,

the three angles can be expressed as

sin θ′23 =
1√
2
, sin θ′12 =

1√
3
, sin θ′13 =

√
b2 + 3c2 − b2

√

2(b2 + 3c2)− 2b2
√
b2 + 3c2

, (2.6)

while the mass eigenvalues are

m1 = a+ b−
√

b2 + 3c2 , m2 = a , m3 = a+ b+
√

b2 + 3c2 . (2.7)

– 3 –
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In the basis where the charged leptons are diagonal, UPMNS is identical with Uν ,

UPMNS =













√
2√
3

1√
3

0

− 1√
6

1√
3

1√
2

1√
6

− 1√
3

1√
2























cos θ′13 sin θ′13

1

− sin θ′13 cos θ′13











. (2.8)

Confronting eq. (2.8) with eq. (1.1), neutrino mixing angles in the standard parameteriza-

tion can be extracted as follows,

sin θ13 =

√
2√
3
sin θ′13 , sin θ12 =

1√
3

√

1− 2
3 sin

2 θ′13

, sin θ23 =

(

− 1√
6
sin θ′13 +

1√
2
cos θ′13

)

√

1− 2
3 sin

2 θ′13

.

(2.9)

For definiteness, θ′13 will take the following value which gives sin θ13 = 0.15,

sin θ′13 = 0.19 , when
c

b
=

2

5
√
3
. (2.10)

With this choice, the mixing angles can be calculated directly,

sin2 θ13 = 0.0237, sin2 θ12 = 0.341, sin2 θ23 = 0.390 . (2.11)

Furthermore, the values of a, b and c are completely determined,

a = 5.06× 10−2eV, b = 9.81× 10−3eV, c = 2.27× 10−3eV. (2.12)

As a result, neutrino masses are calculable and they are of the normal hierarchy

m1 = 4.98× 10−2eV, m2 = 5.06× 10−2eV, m3 = 7.10× 10−2eV. (2.13)

mββ which regulates the rate of neutrino-less double beta decay and
∑

mi can be ob-

tained as

mββ = 0.051eV,
∑

mi = 0.171eV, (2.14)

which are very close to the experimental upper bounds, so expected to be observable in

the near future.

The result for θ23 is on the edge of the 3 σ range of the global-fit results and outside

of the 2 σ range of T2K’s recent result sin2 θ23 = 0.514+0.055
−0.056 [46]. However, it is consistent

with results of the MINOS experiment sin2 θ23 = 0.388+0.051
−0.035 [8] or sin2 θ23 = 0.35 − 0.65

(90% C.L.) in another analysis [47]. Thus, we can’t come to a definite conclusion before

θ23 is measured with a high precision. More importantly, the prediction for θ23 will be

changed if CP violation is taken into consideration. For example, we can take c as a

complex parameter |c|eiφ while keeping a and b real, for which case the PMNS matrix

becomes,

UPMNS =













√
2√
3

1√
3

0

− 1√
6

1√
3

1√
2

1√
6

− 1√
3

1√
2























cos θ′13 sin θ′13e
−iρ

1

− sin θ′13e
iρ cos θ′13











, (2.15)
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where θ′13 and ρ can be obtained from

tan ρ =
b tanφ

a+ b
, tan 2θ′13 =

√
3c cosφ

b cos ρ
. (2.16)

Accordingly, there is a correlation among θ13, θ23 and ρ

sin2 θ23 =

1
2(1− sin2 θ13)− 1√

3
cos ρ sin θ13

√

3
2

(

1− 3
2 sin

2 θ13
)

1− sin2 θ13
. (2.17)

For illustration, we can fix sin θ13 at 0.15, then sin2 θ23 would vary from 0.393 to 0.607

when ρ takes values in the range [0, 2π]. Obviously, we can go back to the mixing matrix

given in eq. (2.8) by taking ρ = 0. On the other hand, in the case of ρ = π/2 or 3π/2,

θ23 remains maximal. This interesting possibility [48–50] is still allowed by experimental

results and provides a promising CP-violating effect, with the Jarlskog invariant [51] as

large as 0.036.

3 A minimal modification to the model building

As we have seen, the modified mass matrix eq. (2.1) results in the TM2 mixing given by

eq. (2.15) where the particular case ρ = π/2or3π/2 deserves special attention. A model

realizing this mixing pattern will be given in the following. There have already been

several models for this purpose in the literature [52–57, 59, 60]. But from a different point

of view, we will achieve this goal by modifying a model that gives the TBM mixing as

minimally as possible. Our starting point is an observation: as eq. (2.15) itself suggests,

the PMNS matrix can be split into two parts which have different origins. This can be

realized through the following thread: at the first stage, right handed neutrinos N1, N2

and N3 are diagonal and their Yukawa couplings with left-handed neutrinos have such a

form that light neutrinos have the TBM mixing after the seesaw mechanism [61–64]. At

the second stage, a flavon field which acquires a VEV induces the mixing between N1 and

N3, contributing the second part of the mixing matrix. In order to control the source of

CP violation, we will impose the CP symmetry [65–70] and spontaneously break it by this

same flavon field.

The model is constructed under the simplest non-Abelian discrete group — A4, which

has 4 different representations 1,1′,1′′ and 3, whose multiplication rules are listed here for

consultation [58],

1′ × 1′′ → 1 = ab

1′ × 3 → 3 = (ab3, ab1, ab2)

1′′ × 3 → 3 = (ab2, ab3, ab1)

3× 3 → 1 = a1b1 + a2b3 + a3b2

3× 3 → 1′ = a3b3 + a1b2 + a2b1

3× 3 → 1′′ = a2b2 + a1b3 + a3b1

3× 3 → 3A = (a2b3 − a3b2, a1b2 − a2b1, a1b3 − a3b1)

(3.1)
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Li ec µc τ c N1 N2 N3 Hu,d φ ϕ χ ψ ξ

A4 3 1 1′′ 1′ 1 1 1 1 3 3 3 3 1

U1 1 −5 −3 −2 0 0 0 0 1 −1 −1 −1 0

Z1
2 1 1 1 1 −1 1 1 1 1 −1 1 1 −1

Z2
2 1 1 1 1 1 −1 1 1 1 1 −1 1 1

Z3
2 1 1 1 1 1 1 −1 1 1 1 1 −1 −1

Table 2. Quantum numbers of the fields.

and

3× 3 → 3S = (2a1b1 − a2b3 − a3b2, 2a3b3 − a1b2 − a2b1, 2a2b2 − a1b3 − a3b1). (3.2)

ai and bi denote the components of a multi-dimensional representation. In order to estab-

lish the relations among different mass matrix elements as suggested by eq. (2.2), three

lepton doublets Li=1,2,3 are organized to form the representation 3. Since there are large

hierarchies among the charged leptons, ec, µc and τ c (here we have employed the conven-

tion in supersymmetry (SUSY) to denote the singlets under the SU(2)L gauge symmetry)

are specified as representations 1, 1′′ and 1′ respectively. An additional U(1) symmetry,

which plays the same role as the well-known Froggatt-Nielsen symmetry [71], is introduced

to produce these hierarchies, by letting ec, µc and τ c have different charges under it. As

mentioned, we want the mass matrix for right-handed neutrinos to be diagonal at the first

step, so they are arranged to be the representation 1 and have Zi=1,2,3
2 quantum numbers

respectively. The flavon field ξ which is charged under both Z1
2 and Z3

2 will induce the

mixing between N1 and N3 after obtaining a VEV. Finally, there are some other flavon

fields φ, ϕ, χ and ψ which will spontaneously break the A4 symmetry. All the fields and

their quantum numbers are summarized in table 2.

3.1 The VEV alignments

In models with discrete flavor symmetries, flavon fields such as φ, ϕ, χ and ψ which

are multi-dimensional representations are normally required to have VEVs with specific

alignments, so that a particular mixing pattern can be guaranteed. This model is not an

exception and the VEVs have a form as follows

〈φ〉 = (1, 0, 0)V1, 〈ϕ〉 = (2,−1,−1)V2, 〈χ〉 = (1, 1, 1)V3, 〈ψ〉 = (0, 1,−1)V4.

(3.3)

As usual, the reasonableness of this choice can be justified by the approach developed

in [13]: in the framework of SUSY, we can introduce some “driving fields” to make the

flavon fields have the required VEVs, with the help of R-symmetry — U(1)R. Driving fields

are the ones that have charge 2 under U(1)R, while the flavon fields have charge 0. Since the

terms in superpotential are required to have charge 2 in total, they should have the form

∆(· · · ), where ∆ represents a driving field and dots in the bracket are linear combinations

of the flavon fields. If there are driving fields with quantum numbers as shown in table 3,

– 6 –
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∆1 ∆2 ∆3 ∆4 ∆5 ∆6 ∆7 ∆8 ∆9 ∆10 ∆11 ∆12

A4 1′ 1′′ 1 1 1 1 1′ 1′′ 1 1 1′ 1′′

U1 −2 −2 −1 0 2 2 2 2 2 2 2 2

Z1
2 1 1 1 1 1 −1 −1 −1 −1 1 1 1

Z2
2 1 1 1 1 1 −1 −1 −1 1 −1 −1 −1

Z3
2 1 1 −1 1 1 1 1 1 −1 −1 −1 −1

Table 3. Quantum numbers of Driving Fields.

the superpotential — W, which is relevant to VEVs of the flavon fields, is constrained to

the following form, up to next-to-leading-order (NLO),

∆1{λ1(φφ)1′′}+∆2{λ2(φφ)1′}+∆3

{

λ3
Λ
(φφψ)1

}

+∆4{λ4(ξξ)1 ±M2}+

∆5

{

λ5(ϕϕ)1 + λ6(χχ)1 + λ7(ψψ)1 +
λ8
Λ
(ϕψξ)1

}

+∆6

{

λ9(ϕχ)1 +
λ10
Λ

(χψξ)1

}

+

∆7

{

λ11(ϕχ)1′′ +
λ12
Λ

(χψξ)1′′

}

+∆8

{

λ13(ϕχ)1′ +
λ14
Λ

(χψξ)1′

}

+∆9

{

λ15(ϕψ)1+

λ16
Λ

(ϕϕξ)1 +
λ17
Λ

(χχξ)1 +
λ18
Λ

(ψψξ)1

}

+∆10

{

λ19(χψ)1 +
λ20
Λ

(ϕχξ)1

}

+

∆11

{

λ21(χψ)1′′ +
λ22
Λ

(ϕχξ)1′′

}

+∆12 +

{

λ23(χψ)1′ +
λ24
Λ

(ϕχξ)1′

}

.

(3.4)

In the above, λi are dimensionless coefficients and M is a dimension-one parameter, and Λ

is the cut-off scale for non-renormalizable operators. The symbol (· · · )1/1′/1′′ means that

linear combinations in the bracket must form the representation 1 or 1′ or 1′′ to match the

corresponding ∆i.

SUSY requires each F component of the driving fields to have a vanishing VEV,

〈F ∗
i 〉 = −∂W

∂∆i
= 0. (3.5)

This leads to some constraint equations on the VEVs,

λ1(φ2φ2 + 2φ1φ3) = 0, λ2(φ3φ3 + 2φ1φ2) = 0,

λ8(ϕ1ψ1 + ϕ2ψ3 + ϕ3ψ2)ξ = 0, λ9(ϕ1χ1 + ϕ2χ3 + ϕ3χ2) = 0,

λ10(χ1ψ1 + χ2ψ3 + χ3ψ2)ξ = 0, λ11(ϕ2χ2 + ϕ1χ3 + ϕ3χ1) = 0,

λ12(χ2ψ2 + χ1ψ3 + χ3ψ1)ξ = 0, λ13(ϕ3χ3 + ϕ1χ2 + ϕ2χ1) = 0,

λ14(χ3ψ3 + χ1ψ2 + χ2ψ1)ξ = 0, λ15(ϕ1ψ1 + ϕ2ψ3 + ϕ3ψ2) = 0,

λ19(χ1ψ1 + χ2ψ3 + χ3ψ2) = 0, λ20(ϕ1χ1 + ϕ2χ3 + ϕ3χ2)ξ = 0,

λ21(χ2ψ2 + χ1ψ3 + χ3ψ1) = 0, λ22(ϕ2χ2 + ϕ1χ3 + ϕ3χ1)ξ = 0,

λ23(χ3ψ3 + χ1ψ2 + χ2ψ1) = 0, λ24(ϕ3χ3 + ϕ1χ2 + ϕ2χ1)ξ = 0,

(3.6)
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and
λ3[(φ1φ1 − φ2φ3)ψ1 + (φ3φ3 − φ1φ2)ψ3 + (φ2φ2 − φ1φ3)ψ2] = 0,

λ5(ϕ1ϕ1 + 2ϕ2ϕ3) + λ6(χ1χ1 + 2χ2χ3) + λ7(ψ1ψ1 + 2ψ2ψ3) = 0,

λ16(ϕ1ϕ1 + 2ϕ2ϕ3)ξ + λ17(χ1χ1 + 2χ2χ3)ξ + λ18(ψ1ψ1 + 2ψ2ψ3)ξ = 0.

(3.7)

Eq. (3.3) is a solution to these equations, so it is fair to say that the VEVs can have the

form as shown by it at least to NLO. Besides, there are some relations among V2, V3 and V4,

V3 =

√

2λ5λ18 − 2λ7λ16
λ7λ17 − λ6λ18

V2, V4 =

√

3λ5λ17 − 3λ6λ16
λ7λ17 − λ6λ18

V2. (3.8)

In particular, ξ also gets a VEV: V5 = ±M/
√
λ4 for the minus sign or V5 = ±iM/

√
λ4 for

the plus sign in the below equation,

λ4ξξ ±M2 = 0. (3.9)

The latter case will be the only source for CP violation in the lepton sector, if the CP

symmetry is required. This method of obtaining a complex VEV for a scalar field is

proposed in [72].

3.2 The mass matrix and mixing pattern

Now we can discuss the consequences of the model on mass matrices and the mixing

pattern. The flavor symmetries only allow higher than dimension-four Yukawa-like opera-

tors, which have a general form yijN
c
i LjHu(Φ/Λ)

nij or yijE
c
iLjHd(Φ/Λ)

nij . Φ represents

the flavon fields φ, ϕ, χ, ψ and ω, and Λ is the cut-off scale where an underlying theory

emerges, when nij is an integer measuring the power of Φ/Λ. After the flavon fields gain

VEVs which are commonly denoted as V , these operators become effective Yukawa terms

yijN
c
i LjHu(V/Λ)

nij or yijE
c
iLjHd(V/Λ)

nij . Usually, V/Λ (labeled as ǫ) is assumed to be

an O(0.1) quantity. In this case, effective Yukawa couplings yij(V/Λ)
nij are controlled by

the corresponding coefficients — ǫnij , so that mass hierarchies can be understood in terms

of the power of ǫ.

The terms that contribute to masses of the charged leptons include

y1τ
cLHd

φ

Λ
+ y2µ

cLHd
φ2

Λ2
+ y3e

cLHd
φ4

Λ4
, (3.10)

which lead to a diagonal mass matrix

Ml =







y3
(

V1

Λ

)4

y2
(

V1

Λ

)2

y1
V1

Λ






Vd ∼







ǫ41
ǫ21

ǫ1






Vd, (3.11)

where Vd is the VEV of Hd and V1/Λ is replaced with ǫ1, indicating that it is a small

quantity. Accordingly, the hierarchies of me, mµ and mτ get an explanation. On the other

side, Zi=1,2,3
2 symmetries fix the mass matrix for N1, N2 and N3 to be diagonal too,

MN =







M1

M2

M3






, (3.12)
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which arises from the Majorana mass terms

M1N
c
1N

c
1 +M2N

c
2N

c
2 +M3N

c
3N

c
3 . (3.13)

The flavon fields ϕ, χ, ψ which have quantum numbers separately under Zi=1,2,3
2 make the

Yukawa couplings between left-handed and right-handed neutrinos have a form

y4N
c
1LHu

ϕ

Λ
+ y5N

c
2LHu

χ

Λ
+ y6N

c
3LHu

ψ

Λ
, (3.14)

which give the Dirac neutrino mass matrix as

MD =







2y4 −y4 −y4
y′5 y′5 y′5
0 −y′6 y′6






ǫ2Vu, (3.15)

where Vu is the VEV of Hu and ǫ2 is V2/Λ, y′5 and y′6 are the abbreviations for

y5
√

(2λ5λ18 − 2λ7λ16)/(λ7λ17 − λ6λ18) and y6
√

(3λ5λ17 − 3λ6λ16)/(λ7λ17 − λ6λ18).

The mass matrix for light neutrinos can be obtained through the seesaw mechanism,

Mν =MT
DM

−1
N MD

=















4y2
4

M1
+

y′2
5

M2

y′2
5

M2
− 2y2

4

M1

y′2
5

M2
− 2y2

4

M1

· · · y2
4

M1
+

y′2
5

M2
+

y′2
6

M3

y2
4

M1
+

y′2
5

M2
− y′2

6

M3

· · · · · · y2
4

M1
+

y′2
5

M2
+

y′2
6

M3















(ǫ2Vu)
2,

(3.16)

where the elements represented by “· · · ” can be known through the symmetric property of

Mν . It can be diagonalized by the TBM matrix

UT
TBMMνUTBM =









6y2
4

M1

3y′2
5

M2

2y′2
6

M3









(ǫ2Vu)
2. (3.17)

Both of the normal and inverted hierarchies are allowed by this mass spectrum, but it’s

more natural for the former case. This is because the latter case needs a fine-tuning at

one percent level to make the first two mass eigenvalues nearly degenerate, but 6y24/M1

and 3y′25 /M2 are two independent quantities. With the assumption 6y24 ∼ 3y′25 ∼ 2y′26 ,

the hierarchy between ∆m2
21 and ∆m2

31 can be attributed to the hierarchies among right-

handed neutrinos M1 ∼M2 ∼ 5M3. Up to now, we have reproduced the well-known TBM

mixing. In the following, we will obtain the TM2 mixing by including the effect of ξ.

After ξ obtains a VEV, the mass matrix for N1, N2 and N3 becomes

M ′
N =







M1 ∆M

M2

∆M M3






, (3.18)
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where ∆M = yV5 comes from the term yN1N3 ξ. MD remains the form given by eq. (3.15),

so the mass matrix for light neutrinos turns into

M ′
ν =MT

DM
′−1
N MD

= (ǫ2Vu)
2·













y′2
5

M2
+

4y2
4
M3

D
y′2
5

M2
+

2y4(y′6∆M−y4M3)
D

y′2
5

M2
− 2y4(y′6∆M+y4M3)

D

· · · y′2
5

M2
+

y′2
6
M1−2y4y′6∆M+y2

4
M3

D
y′2
5

M2
− y′2

6
M1−y2

4
M3

D

· · · · · · y′2
5

M2
+

y′2
6
M1+2y4y′6∆M+y2

4
M3

D













,

(3.19)

where D =M1M3 − (∆M)2. A TBM rotation transforms it into the following form

UT
TBMM

′
νUTBM =









6y2
4
M3

D −2
√
3y4y′6∆M

D
3y′2

5

M2

· · · 2y′2
6
M1

D









(ǫ2Vu)
2, (3.20)

which is then diagonalized by a rotation in the 1-3 plane,

U(θ′13) =







cos θ′13 sin θ′13e
−iρ

1

− sin θ′13e
iρ cos θ′13






, (3.21)

with

ρ = 0, tan 2θ′13 =
2
√
3y4y

′
6∆M

3y24M3 − y′26 M1
, if V5 = ± M√

λ4
;

ρ =
3π

2
/
π

2
, tan 2θ′13 =

2
√
3y4y

′
6|∆M |

3y24M3 + y′26 M1
, if V5 = ±i M√

λ4
.

(3.22)

As a result, the PMNS matrix UPMNS = UTBMU(θ′13) has the same form as the TM2

mixing in three special cases: ρ = 0, ρ = π/2 or ρ = 3π/2. As we have seen in eq. (2.10),

θ′13 should be about 1/5 to generate the realistic θ13. This can be achieved by further

assuming ∆M ∼ 1/5M1. In summary, the following approximation can be taken to fit the

experimental results,

6y24 ∼ 3y′25 ∼ 2y′26 , M1 ∼M2 ∼ 5M3 ∼ 5|∆M |. (3.23)

3.3 Leptogenesis

Since the imaginary VEV of ξ is the only source for CP violation in the lepton sector, it

is also expected to play an important role in the leptogenesis mechanism [73], which is a

popular scenario for generating the baryon asymmetry of the universe

nB
s

= (8.79± 0.44)× 10−11. (3.24)

Here nB and s are the number densities of baryons and entropy respectively. In this

mechanism, the CP-violating and lepton-number-violating out-of-equilibrium decay of the
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lightest right-handed neutrino creates the net lepton number ∆L, which is then converted

to baryon number by the sphaleron process [74]. To study this issue, right-handed neutrinos

are transformed to the mass basis N ′
1, N

′
2 and N ′

3 by a 1-3 rotation,







M ′
1

M ′
2

M ′
3






=







cos θ ∓i sin θ
1

∓i sin θ cos θ













M1 ∆M

M2

∆M M3













cos θ ∓i sin θ
1

∓i sin θ cos θ






,

(3.25)

with tan 2θ = 2|∆M |/(M1 +M3). Correspondingly, the Yukawa couplings between N ′c
i

and Lj are

η =







cos θ ∓i sin θ
1

∓i sin θ cos θ













2y4 −y4 −y4
y′5 y′5 y′5
0 −y′6 y′6






ǫ2. (3.26)

And ηη† which will be needed below has a form as

ηη† =







6y24 cos
2 θ + 2y′26 sin2 θ i(±6y24 ∓ 2y′26 ) cos θ sin θ

3y′25
i(∓6y24 ± 2y′26 ) cos θ sin θ 6y24 sin

2 θ + 2y′26 cos2 θ






ǫ22. (3.27)

In the following analysis, we will adopt the approximation in eq. (3.23) which results in

M ′
1 ∼M ′

2 ∼ 5M ′
3, cos θ ∼ 1, sin θ ∼ 0.2. (3.28)

In this case, N ′
3 is the lightest right-handed neutrino and the CP asymmetry in its decay

to the lepton doublet lj can be expressed as [75]

δj3 ∼ −1

8π

1

(ηη†)33
Im

{

η1j η
∗
3j

[

3

2
(ηη†)13

M ′
3

M ′
1

+ (ηη†)31

(

M ′
3

M ′
1

)2
] }

. (3.29)

The final baryon asymmetry can be estimated by

nB
s

= −cs
∑

j

δj3 κ. (3.30)

In this equation, cs ∼ 10−3 is a coefficient accounting for the entropy dilution of ∆B and

conversion factors in the sphaleron process. κ which has a value about 10−2–10−3 is the

efficiency factor due to the washout effects. Although there is a CP phase in η, the total

CP asymmetry is vanishing

∑

j

δj3 =
−1

8π

1

(ηη†)33
Im

{

(ηη†)13

[

3

2
(ηη†)13

M ′
3

M ′
1

+ (ηη†)31

(

M ′
3

M ′
1

)2
] }

= 0, (3.31)

leading to a zero baryon asymmetry.

However, if N ′
3 is lighter than 1012GeV, the situation will change dramatically. In

this case, the Yukawa interaction of τ will approach equilibrium during the decay process,

making τ distinguishable from µ and e. Thus, we have to take into consideration the flavor
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effects [75] which do not allow the CP asymmetries for different flavors to be summed

directly. Alternatively, every δj3 should be with a corresponding efficiency factor κj in the

expression for baryon asymmetry

nB
s

= −cs
∑

j

δj3 κj , (3.32)

where κj = κ/Kj , with Kj defined as

Kj =
η3j η

∗
3j

(ηη†)33
. (3.33)

From the experience of eq. (3.30), we can see that the baryon asymmetry will be propor-

tional to |κτ − (1 − κτ )|, which can be approximated as κ sin2 θ. At last, we can get the

baryon asymmetry
nB
s

∼ −cs
−3

16π
y2 ǫ22 sin θ

M ′
3

M ′
1

κ sin2 θ, (3.34)

where y is used to denote all the Yukawa couplings and the O(1) coefficients have been

omitted. If we require M ′
3 to be in the range 1010–1012GeV and consider that

m3 ∼
y2 ǫ22 V

2
u

M ′
3

, (3.35)

y2 ǫ22 should be about 10−4–10−2. As a consequence, the baryon asymmetry produced will

be 10−14–10−11, consistent with the value given by eq. (3.24).

3.4 Discussions

Finally, several comments are given in order.

1. The first thing to note is the NLO corrections might disturb the mixing pattern, so

we have to treat them carefully. Due to the setting of this model, there are only two

terms contributing to fermion masses at NLO,

y7N
c
1LHu

ψω

Λ2
+ y8N

c
3LHu

ϕω

Λ2
. (3.36)

After receiving this contribution, the Dirac neutrino mass matrix becomes

M ′
D =







2y4 −y4 − ǫ1y
′
7 −y4 + ǫ3y

′
7

y′5 y′5 y′5
2ǫ3y8 −y′6 − ǫ3y8 y′6 − ǫ3y8






ǫ2Vu, (3.37)

where ǫ3 = V5/Λ and y′7 = y7
√

(3λ5λ17 − 3λ6λ16)/(λ7λ17 − λ6λ18). The mass matrix

for light neutrinos can be calculated in the usual way

M ′′
ν =M ′T

D M ′−1
N M ′

D. (3.38)
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As before, a TBM rotation is first performed,

UT
TBMM

′′
νUTBM

=







√
6y4

√
6ǫ3y8√

3y′5√
2ǫ3y

′
7

√
2y′6






M ′−1

N







√
6y4

√
2ǫ3y

′
7√

3y′5√
6ǫ3y8

√
2y′6






(ǫ2Vu)

2

=









6(ǫ2
3
y2
8
M1−2ǫ3y4y8∆M+y2

4
M3)

D
2
√
3(ǫ3y′6y8M1−y4y′6∆M+ǫ3y4y′7M3)

D
3y′2

5

M2

· · · 2(y′2
6
M1−2ǫ3y′6y

′

7
∆M+ǫ2

3
y′2
7
M3)

D









(ǫ2Vu)
2.

(3.39)

This matrix is then diagonalized by U(θ′13) with

ρ = 0, tan 2θ′13 =
2
√
3(ǫ3y

′
6y8M1 − y4y

′
6∆M + ǫ3y4y

′
7M3)

y′26 M1 + 2ǫ3(3y4y8 − y′6y
′
7)∆M − 3y24M3

, if V5 = ± M√
λ4

;

ρ =
π

2
/
3π

2
, tan 2θ′13 =

2
√
3(|ǫ3|y′6y8M1 − y4y

′
6|∆M |+ |ǫ3|y4y′7M3)

y′26 M1 − 2ǫ3(3y4y8 + y′6y
′
7)∆M + 3y24M3

, if V5 = ±i M√
λ4
.

(3.40)

Thus, we can say the mixing pattern is stable against at least NLO corrections.

2. If the requirement of CP symmetry is relaxed, this model can give the TM2 mixing

with an arbitrary ρ, which is determined by the diagonalization of eq. (3.20) in which

y4, y
′
5 and y′6 are complex coefficients for now. In this case, θ23 can be obtained

through eq. (2.17). For example, if we take ρ (which approximates to δ in the standard

parameterization) as the best-fit value 1.34π in table 1, sin2 θ23 will be 0.55 and close

to the best-fit value 0.567.

3. Analogously, the model building and phenomenological analysis in this section com-

pletely apply to the TM1 mixing [76–78]

UPMNS =













√
2√
3

1√
3

0

− 1√
6

1√
3

1√
2

1√
6

− 1√
3

1√
2























1

cos θ′23 sin θ′23e
−iρ

− sin θ′23e
iρ cos θ′23











. (3.41)

Put simply, if we assign ξ the quantum numbers of Z2
2 and Z3

2 , its VEV will introduce

the mixing between N2 and N3. That is to say, the PMNS matrix would be the TBM

matrix multiplied by a 2-3 rotation from the right-hand side, just like the TM1

mixing.

4. The last point to stress is that the CP symmetry imposed on the model is consistent

with the flavor symmetry A4, although it is not defined in the way as the so-called

generalized CP transformation does. This is because in the particular basis of A4 we

have chosen [58], the would-be generalized CP transformation can be represented as

the identity matrix times a phase, i.e., a trivial one [79]. In other words, the naive

CP transformation φ→ φ∗ can work well in our model.
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4 Summary

In this paper, we have attempted to modify the TBM mixing as minimally as possible to

accommodate the recent observation of a relatively large θ13. Above all, we have examined

whether there is a neutrino mass matrix with a simple form that can describe the realistic

mixing scheme. By analogy with that for the TBM mixing, we find one neutrino mass

matrix with only three independent parameters, which is connected with the Friedberg-

Lee symmetry and µ − τ symmetry breaking. Unlike in the TBM case, the masses and

mixing angles of this mass matrix are correlated, so that the mass values can be determined

with reference to the values of mixing angles. The values of mass sum and mββ are close

to the experimental sensitivities, thus will be observed or excluded in a short time.

As a matter of fact, the mixing pattern given by this mass matrix is the so-called TM2

mixing. Therefore, we have also discussed the way to build a model generating this mixing

pattern, invoking the minimal modification to a model that produces the TBM mixing [80].

The model is constructed with A4×U(1)×Z1
2×Z2

2×Z3
2 as the flavor symmetries. The mass

matrix for charged leptons is diagonal and the hierarchies among them are guaranteed by

the U(1) symmetry. Similarly, the mass matrix for right-handed neutrinos is also diagonal,

because of the Z1
2 ×Z2

2 ×Z3
2 symmetry. Their Yukawa couplings with left-handed neutrinos

have a special form, as a consequence of the specific VEV alignments, which are justified to

NLO, possessed by the flavon fields. At this stage, the mixing pattern for light neutrinos is

the TBM after the seesaw mechanism. However, a flavon field which acquires a VEV can

introduce the mixing between the first and third right-handed neutrinos, transforming the

mixing pattern to the TM2. More interestingly, this VEV can be purely imaginary if we

impose the CP symmetry on this model, leading to the maximal CP violation and maximal

θ23. On the other side, this maximal CP violation gives a zero total CP asymmetry in the

leptogenesis mechanism. But after the flavor effects are considered, the observed value of

baryon asymmetry can be marginally reproduced. If the CP symmetry is given up, the

CP phase will become free and θ23 can departure from 45◦. Besides, it is found the NLO

contributions do not change the mixing pattern. The last thing to mention is that this

approach can be directly generalized to realizing the TM1 mixing.

In conclusion, the TBM mixing can be modified in a minimal way, in terms of both

the mass matrix and model building, to accommodate the non-zero θ13 and CP phase.

Therefore, it can still serve as a guide for model building.
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