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Abstract: In full one-loop generality and in next-to-leading order in QCD, we study rare

top to Higgs boson flavour changing decay processes t → qh with q = u, c quarks, in the

general MSSM with R-parity conservation. Our primary goal is to search for enhanced

effects on B(t→ qh) that could be visible at current and high luminosity LHC running. To

this end, we perform an analytical expansion of the amplitude in terms of flavour changing

squark mass insertions that treats both cases of hierarchical and degenerate squark masses

in a unified way. We identify two enhanced effects allowed by various constraints: one

from holomorphic trilinear soft SUSY breaking terms and/or right handed up squark mass

insertions and another from non-holomorphic trilinear soft SUSY breaking terms and light

Higgs boson masses. Interestingly, even with O(1) flavour violating effects in the, presently

unconstrained, up-squark sector, SUSY effects on B(t→ qh) come out to be unobservable

at LHC mainly due to leading order cancellations between penguin and self energy diagrams

and the constraints from charge- and colour-breaking minima (CCB) of the MSSM vacuum.

An exception to this conclusion may be effects arising from non-holomorphic soft SUSY

breaking terms in the region where the CP-odd Higgs mass is smaller than the top-quark

mass but this scenario is disfavoured by recent LHC searches. Our calculations for t→ qh

decay are made available in SUSY FLAVOUR numerical library.
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1 Introduction

The last fundamental elementary particles discovered during the last 20 years are the

tau-neutrino by DONUT Collaboration [1], the top quark at Tevatron [2, 3] with mass

mt = 172.5 GeV and the Higgs boson [4–6] at LHC [7, 8], with mass mh ≈ 126 GeV.

Among them, the top quark has been and will be produced in large numbers at LHC,

allowing for increasingly accurate measurements of its properties. LHC operating at c.m.

energy of 7 and 8 TeV has already collected about two-million tt̄-pairs. It is therefore timely

to examine the possibility of rare, flavour-changing (FC), top decays to the light up-quarks,

u or c, and the Higgs boson h,

t→ uh , or t→ c h . (1.1)

We collectively denote these processes as t → q h with q = u, c. The Higgs boson field h

is understood as one of the possible scalar fields that couples to up-quarks and has mass

smaller than that of the top-quark.

If the decays t→ q h are governed only by the Standard Model (SM) [9] dynamics they

would never be observed at LHC because their branching ratios, B(t→ uh)SM ≈ 4×10−17

and B(t→ c h)SM ≈ 4× 10−14 [10, 11], are tiny. This extraordinary suppression is caused

because, firstly, the Glashow-Iliopoulos-Maiani (GIM) [12] suppression prohibits the loop
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diagram leading contribution for t → q h, and secondly, because the quarks circulating in

the t→ q h loop amplitude are those of down type with small mass differences.

On the contrary, in a well motivated extension of the SM, the R-parity conserving

Minimal Supersymmetric Standard Model (MSSM) [13–15], although the GIM mechanism

is still operative in the quark-interactions, it is not, in general, in the squark interactions.

Eventually, coloured scalars, the squarks, enter in loops with potentially large mass differ-

ences. The question is then whether these new interactions are able to enhance B(t→ q h)

up to an observable level at LHC. Depending on MSSM input parameters, Guasch and

Sola [16] arrived at a maximum prediction B(t → c h) ≈ 4 × 10−4, while a more recent

analysis by Cao et al. [17, 18], taking into account constraints from rare B-meson decays,

concluded a maximum branching fraction of up to B(t → c h) ≈ 6 × 10−5 (for an earlier

study see also [19]). Finally, not long ago, a new analysis by the authors of [20] concluded

a maximum branching ratio at the level of O(10−6) after constraints.

The relevant Lagrangian governing the rare top decays t → q h in the physical quark

basis, after integrating out all heavy degrees of freedom, is simply,

− L ⊃ C
(h)
L q̄R tL h + C

(h)
R q̄L tR h + H.c , (1.2)

with dimensionless (Wilson) coefficients C
(h)
L,R. Note that in the MSSM h may stand for

one of the two CP-even Higgs bosons denoted as h,H, respectively. Currently LHC sets

an upper bound [21, 22]

B(t→ q h) ≤ 0.79% (ATLAS) , B(t→ q h) ≤ 0.56% (CMS) . (1.3)

This result places rather weak restrictions onto the Wilson coefficients: |CL|, |CR| . 0.1.

In renormalisable theories like the MSSM, the coefficients CL and CR would come from

one-loop diagrams involving gluino (or neutralino)-up squarks, chargino-down squarks and

charged Higgs-down quarks. The gluino-loop gives the dominant contribution to B(t→ q h)

that generically is of the order αs/4π ≈ 0.01, which is by an order of magnitude less than

the current bound, but probably within LHC’s projected reach at
√
s = 14 TeV with 3000

fb−1 [23] (see also note [24])

B(t→ q h) . 2.0× 10−4 ⇔ |CL|, |CR| . O(1)× 10−2 . (1.4)

There are already many phenomenological studies for these decays, a partial list included

in [25–32]. Very recently in [33, 34], plausible techniques that distinguish between t→ uh

and t→ c h have been suggested. It is therefore worth looking for MSSM branching fraction

predictions from both rare top decays, t→ uh and t→ c h.

The new flavour structure in the MSSM Lagrangian can be parametrized in terms of

supersymmetry soft breaking squark mass matrices mQL
,mUR

,mDR
and trilinear holomor-

– 2 –



J
H
E
P
1
1
(
2
0
1
4
)
1
3
7

phic AU , AD matrices as well as the trilinear non-holomorphic A′U , A
′
D matrices [35–38]1

LMSSM ⊃ −Q̃†Lm
2
QL
Q̃L − Ũ †Rm

2
UR
ŨR − D̃†Rm

2
DR
D̃R

+
(
H2 Q̃L AU ŨR +H1 Q̃L AD D̃R + H.c

)
+
(
H†1 Q̃L A

′
U ŨR +H†2 Q̃L A

′
D D̃R + H.c

)
, (1.5)

where flavour and gauge group indices have been suppressed. As we already mentioned,

soft breaking terms in (1.5) may have non-trivial structure, so that the quark and squark

mass matrices cannot be diagonalized simultaneously in the same flavour basis. However,

a fully generic structure for these matrices is far excluded by Kaon, charm, and B-physics

experiments with the exception of the right handed up-squark mass matrix m2
UR

and the

trilinear soft SUSY breaking matrices AU and A′U . For all other matrices m and A in (1.5),

“flavour” experiments help to single out four possible categories:

1. Minimal Flavour Violation (MFV) assumption [36, 39]: flavour violation arises only

from Yukawa matrices YU and YD.

2. Almost degenerate m’s - their diagonal elements proportional to the unit matrix; A’s

almost diagonal; small off-diagonal terms in m’s and A’s.

3. As in point (2) but m’s become hierarchical: 1st and 2nd generation are much heavier

than the third. In this case off-diagonal squark mass matrix elements may be of

order one.

4. Alignment: no particular hierarchy among diagonal squark masses, but small squark

mixing angles, enforced by some symmetries, as required by experimental constraints.

MFV basically leads to the same suppression pattern for t→ q h as in the SM and therefore

no signal observation is expected at LHC [40].2 We need therefore to depart from MFV.

This is most conveniently done by considering the dimensionless flavour violating expansion

parameters (commonly called “mass insertions”) [41, 42]:

∆IJ
X̃

=
(m2

X)IJ√
(m2

X)II (m2
X)JJ

, (1.6)

which denotes the ratio of flavour-violating squark mass matrix elements over an average

of flavour-conserving squark mass matrix elements (X̃ can be Ũ or D̃). It has been shown

1Non-holomorphic terms may arise from the Kähler potential non-renormalizable operators like for exam-

ple XX†H†1QLUR/M
3 interaction between MSSM superfields and hidden sector superfield X whose F-term

vev, 〈FX〉, is responsible for spontaneous SUSY breaking in the hidden sector. In contrast, the holomor-

phic SUSY breaking terms arise from superpotential non-renormalizable operators like, XH2QLUR/M . If

SUSY breaking mediators of mass O(M) are very heavy, as for instance in gravity mediated SUSY breaking

scenario where M = MPl, then non-holomorphic terms (A′U ) are negligible compared to the holomorphic

ones (AU ). However, they could both be of the same order of magnitude if SUSY breaking happens at low

SUSY breaking scales, comparable to electroweak scale [37].
2This is also due to the fact that no tanβ enhanced top flavour changing decay amplitudes arise in the

MSSM as we will see shortly.
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in ref. [43] that, for ∆F = 1 processes, the same (in magnitude) ∆-parameter can be used

to parametrize flavour effects in both cases of hierarchical and degenerate squark masses,

although the ∆-parameter may have different meaning in each case. We develop a similar

technique here in expanding the full amplitude for t→ q h in powers of ∆’s and therefore

discussing cases (2) and (3) in a unified way.

In the fourth case of alignment quark and squark mass matrices are forced by some

approximate flavour symmetry to be diagonalized almost by the same field rotation. This

means that the remaining squark rotation angles in the super-CKM basis are small, but

in general, squark masses are far from degenerate leading to serious constraints from K-

physics. In any case, having the light Higgs boson mass at 126 GeV, one needs pushing the

stop mixing angle to the maximal value. This situation does not fit naturally to the case

of small mixing angles. On this ground we will not examine this case.

In fact we shall show below that the LHC projected bound (1.4) is impossible to be

reached in the general R-parity conserved MSSM with degenerate or hierarchical squark

mass spectrum. This is partly due to cancellations between self energy and penguin con-

tributions prohibiting non-decoupling SUSY effects. As a result, in the best case scenario,

and before constraints, an estimate of the dominant gluino-squark diagrams results in

C
(h)
L,R ≈

αs
4π

(
mt

MS

)2

∆ . 2× 10−4 , (1.7)

for degenerate SUSY squark masses MS at 1 TeV scale and ∆ = O(1). Similar cancellations

exist in the chargino-squark loops but now αs → α2 and therefore, following (1.7), C
(h)
L,R

are by at least a factor of three smaller than the gluino contribution.3 Furthermore, as

it is obvious from (1.7), both our analytical and numerical study concludes that there are

no non-decoupling effects whatsoever for large SUSY mass spectrum, collectively indicated

here as MS .

To the best of our knowledge, this study deals with four new aspects of B(t→ q h) not

considered before in the literature [16–20]:

1. We take into account the effects of Next to Leading order QCD corrections due to the

SUSY loop induced chromomagnetic dipole operator and the running of operators

from the SUSY scale MS to the top quark scale (see section 2).

2. We present analytical details of the cancellations and decoupling (section 3), using a

common scheme for both universal and hierarchical squark mass structures.

3. We investigate the effect on B(t→ q h) from non-holomorphic SUSY breaking terms

A′U [see eq. (1.5)] (section 5).

4. Finally, we have encoded all our calculations into a publicly available4 SUSY FLAVOUR

library [44–46]. SUSY FLAVOUR uses the relevant and most complete up-to-date con-

straints from FCNC processes (section 4).

3In fact chargino diagrams are far smaller than that because of the down squark circulation in loop.

The relevant ∆D̃’s in this case must be small to respect experimental constraints from low energy meson

experiments. Similar situation applies to charged Higgs boson one-loop diagrams.
4SUSY FLAVOUR can be downloaded from http://www.fuw.edu.pl/susy flavor
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2 Calculation of B(t → q h) in MSSM

The gauge-invariant dimension-6 operator responsible for the decay t → q h can be, after

decoupling of heavy particles, simply written as5

O(h) =
(
H†H

)
Q
I
L u

J
R H̃ + H.c . (2.1)

H is the SM Higgs field SU(2) doublet, H̃ = iσ2H
∗ is its charged conjugate, indices

I and J denote quark flavours, QIL is the left-handed quark SU(2) doublet while uJR is

the right-handed up-quark singlet. SU(2) and SU(3) indices are not shown explicitly.

The effective operator in O(h) is of (pseudo)-scalar form and affects the renormalizable

Yukawa interaction Q
I
Lu

J
RH̃. After electroweak symmetry breaking (EWSB) it results in

the effective Lagrangian (1.2).

It was shown recently in ref. [47] that the operator O(h) mixes through QCD strong

interactions with the gluonic dipole operator that has the form

O(g) = gs Q
I
L σ

µν λA uJR H̃ GAµν + H.c. , (2.2)

where gs =
√

4παs is the strong QCD coupling, λA are the Gell-Mann matrices, while GAµν
is the SU(3) field strength tensor. Like the operator O(h), the operator O(g) is also chirality

flipping. After EWSB it results in the effective Lagrangian term

− L ⊃ C
(g) IJ
L uIR σµν λ

A uJLG
Aµν + C

(g) IJ
R uIL σµν λ

A uJRG
Aµν + H.c. . (2.3)

Having listed all operators needed, we enumerate here our steps in calculating

B(t→ q h):

1. Full calculation of the relevant 1-Particle-Irreducible (1PI) Feynman diagrams C
(h)
L,R

at scale MS , where MS is the lightest coloured sparticle (squark or gluino) mass.

2. Full calculation of the SUSY induced Wilson coefficient C
(g)
L,R associated with the

dipole operator O(g) that mix with strong (QCD) quantum corrections.

3. Use Renormalization Group Equations (RGEs) with formulae taken from [47] to run

all operators down to the top mass scale.

4. Calculate the branching fraction at mpole
t .

In the next two subsections we append technical details entailed in these steps.

5In full SUSY limit with all Higgs (super)fields present, the corresponding operator is an F-term and,

therefore, holomorphic. It has the form O(h) = (H1H2) QI
L u

J
RH2 + H.c . Note that this operator

breaks Peccei-Quin and R-symmetry invariance and therefore its Wilson coefficient must be proportional to

quantities that violate these symmetries, such as the gluino mass, the trilinear soft SUSY breaking couplings

and the µ-parameter, c.f. eq. (3.9).
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2.1 Branching ratio and QCD corrections

In this section we present the calculation for the decay of the top quark into a light quark

q = u, c and a CP-even Higgs boson h ≡ (H or h) including NLO QCD corrections. In the

limit mq ≈ 0 the tree level decay rate reads:6

Γ0(t→ q h) =
mt

32π

(
|C(h)
L |

2 + |C(h)
R |

2
) (

1−
m2
h

m2
t

)2

, (2.4)

with C
(h)
L,R defined in eq. (1.2). At the top-quark mass scale, µ = mt, the following QCD

NLO decay rate is found [47],

Γ(t→ q h) = 1.018 Γ0 + 0.049
m3
t

16πv

(
1−

m2
h

m2
t

)2

<e
[
C

(h) ∗
R C

(g)
R + C

(h) ∗
L C

(g)
L

]
, (2.5)

with C
(g)
L(R) defined in eq. (2.3). We use αs(mt) = 0.1079, mt(mt)DR = 163.6 GeV, mpole

t =

172.5 GeV, GF = 1/
√

2v2 = 1.1664× 10−5 GeV−2. In our results we have neglected terms

proportional to |C(g)
L,R|2 since they are small for mh ' 126 GeV. For the branching fraction

B(t → q h), the next-to-next-to-leading order top quark width is used, Γ(t → bW ) =

1.39 GeV [48]. Furthermore, we assume that the “tree level” decay width Γ(t→ bW ) is not

affected substantially by SUSY loop contributions. In this section, we calculate the Wilson

coefficients, C
(h)
L,R and C

(g)
L,R, at the scale µ = MS = mg̃, and use the renormalization group

equations [47] to run them down to the scale µ = mt,

C
(h)
L,R(mt) = C

(h)
L,R(MS)

(
αs(MS)

αs(mt)

)−4/b3
+

24

7

mt(mt)
2

v
C

(g)
L,R(MS)

[(
αs(MS)

αs(mt)

)2/(3b3)

−
(
αs(MS)

αs(mt)

)−4/b3 ]
, (2.6a)

C
(g)
L,R(mt) = C

(g)
L,R(MS)

(
αs(MS)

αs(mt)

)2/(3b3)

, (2.6b)

where b3 = 11− 2Nf/3 is the 1-loop gluon β-function. In our case Nf = 6, i.e., we assume

there are no other coloured particles below MS except from the six SM quark flavours.

Diagrams that do not involve coloured particles are “frozen” at the mt-scale and do not

participate in the running of Wilson coefficients in eq. (2.6b).

It turns out that the effect of consistently including NLO QCD corrections in B(t→ q h)

is about 20%. This is primarily due to the RGE running of C
(h)
L,R from MS down to the

top quark mass scale, and, secondarily due to finite SUSY corrections in C(g) present in

the decay width (2.5). The C(h) and C(g) coefficients, although in theory different in their

Dirac and Lorentz structures, are both subject to the same squark-gluino Feynman diagram

contribution. C(g) has analogous, and even more persisting, cancellations than C(h), due

to the flavour conserving gluon-squark vertex of the former, and the same flavour changing

6Although straightforward, decays t → q A with A being the CP-odd Higgs boson are only marginally

permitted by recent LHC data and therefore not considered in this work, c.f., discussion in section 5.2.
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J

q

I
1PI

(a)

= −iΣIJ(q)
J

q

k1 I

k2 hK

1PI

(b)

= −iΓIJK(k1, k2)

Figure 1. (a) Quark self energy one-particle irreducible (1PI) diagram corrections. (b) 1PI penguin

contribution to uJ → uI + hK .

insertions i.e., same ∆’s. As a result, it turns out that SUSY contributions to mtC
(g)

are at most of the same order as in C(h) and give an amount of 2–10% correction to the

decay width.

2.2 Wilson coefficients: full MSSM corrections

Expressions for Wilson-coefficients are more transparent if we write them in terms of the

one particle irreducible (1PI) diagrams for self energies (Σ) and penguins (∆F ), as in

figure 1. We define:

ΣIJ(p) = ΣIJ
V L(p2) /pPL + ΣIJ

V R(p2) /pPR + ΣIJ
mL(p2)PL + ΣIJ

mR(p2)PR , (2.7)

ΓIJK(k1, k2) = ∆F IJKL (k1, k2)PL + ∆F IJKR (k1, k2)PR . (2.8)

All Σ’s and ∆F ’s depend on external momenta and internal masses. We follow everywhere

the Feynman rules, notation and conventions, from refs. [49, 50]. For specific processes,

the top-quark is identified with J = 3 and the charm-(up-)quark with I = 2 (I = 1), the

“little h” Higgs boson with K = 2, the “big H” with K = 1, but otherwise we keep the

I, J and K notation as general as possible.

Using standard on-shell renormalization scheme techniques we obtain for I 6= J :

C
(h) IJK
L =

ηK

m2
J −m2

I

{
mI m

2
J

[
ΣIJ
V L(m2

J)− ΣIJ
V L(m2

I)
]

+m2
I mJ

[
ΣIJ
V R(m2

J)− ΣIJ
V R(m2

I)
]

+mI mJ

[
ΣIJ
mR(m2

J)− ΣIJ
mR(m2

I)
]

+
[
m2
I ΣIJ

mL(m2
J)−m2

J ΣIJ
mL(m2

I)
]}

+(∆FL)IJK , (2.9)

and CR = CL : (L ↔ R). The parameter η is defined as ηK ≡ Z2K
R /v2 with ZR defined

in (A.1). The self energy components obey the following hermicity conditions ΣJI?
V L(R) =

ΣIJ
V L(R) and ΣJI?

mL(R) = ΣIJ
mR(L) and explicitly read in a most compact notation as (S=scalar,

F=fermion):

ΣIJ
V L[p, S, F ] ≡

∑
i,j

V Iji ∗
uSF,LV

Jji
uSF,L(B1 +B0) [p,mSj ,mFi ] , (2.10a)

ΣIJ
mL[p, S, F ] ≡

∑
i,j

mFiV
Iji ∗
uSF,RV

Jji
uSF,L B0 [p,mSj ,mFi ] , (2.10b)

– 7 –
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with L ↔ R for ΣIJ
V R and ΣIJ

mR. Generic vertices VuSF follow the notation of appendix

A.2 in ref. [51]. Explicitly for individual SUSY particles, their forms, copied from ref. [50],

are given in A for complementarity. Detailed definitions for two-point one-loop functions

B0, B1 are given in B.

The SUSY-mediated t → q h penguin amplitudes can be classified into

two distinct topologies: (SFS) squark-gluino/neutralino/chargino-squark and (FSF)

chargino/neutralino-squark-chargino/neutralino vertex diagrams. They both contribute

to the expressions for the C
(h)
L,R in (1.2),

∆FL = ∆F
(SFS)
L + ∆F

(FSF )
L , (2.11)

where in a self-explanatory notation

∆F
(SFS)
L = ∆F

(D̃χD̃)
L + ∆F

(Ũχ0Ũ)
L + ∆F

(Ũ g̃Ũ)
L ,

∆F
(FSF )
L = ∆F

(χD̃χ)
L + ∆F

x(χ0Ũχ0)
L , (2.12a)

and similar for ∆F
(SFS,FSF )
R with the substitution L ↔ R. Each term in the above

expressions will be given by a straightforward substitution in the following compact forms

(again explicit vertices for the generalised V ’s as well as integral functions can be found in

the appendices.) External momenta follow the conventions of figure 1b:

∆F
(SFS) IJK
L = −

∑
i,j,l

{
mI (V Kl i

HSSV
I l j ∗
uSF,LV

J i j
uSF,L)(C12 − C11)

+mJ (V Kl i
HSSV

I l j ∗
uSF,RV

J i j
uSF,R)(C11 + C0) (2.13a)

+ mFj (V
Kl i
HSSV

I l j ∗
uSF,RV

J i j
uSF,L) C0

}
[k2, k1,mSi ,mSl

,mFj ] ,

∆F
(FSF ) IJK
L = −

∑
i,j,l

{
(V Ij l ∗
uSF,RV

iK l
FHF,RV

Jj i
uSF,L)

(
C̃0 +m2

I C11 + (m2
J −m2

I)C12

)
+mImJ(V Ij l ∗

uSF,LV
iK l
FHF,LV

Jj i
uSF,R) (C0 + C11)

+mFl
mFi(V

Ij l ∗
uSF,RV

iK l
FHF,LV

Jj i
uSF,L)C0

+mImFi(V
Ij l ∗
uSF,LV

iK l
FHF,LV

Jj i
uSF,L) (C0 + C11 − C12)

+mJmFi(V
Ij l ∗
uSF,RV

iK l
FHF,RV

Jj i
uSF,R)C12

+mImFl
(V Ij l ∗
uSF,LV

iK l
FHF,RV

Jj i
uSF,L) (C11 − C12) (2.13b)

+mJmFl
(V Ij l ∗

uSF,RV
iK l
FHF,LV

Jj i
uSF,R) (C0 + C12)

}
[k1, k2,mSj ,mFl

,mFi ] .

Again, from these expressions one may also derive the corresponding ∆F
(SFS,FSF )
R by just

letting L↔ R. Integral functions and vertices are given in A and B. We have checked both

analytically and numerically that the SUSY contributions to t→ q h amplitudes CL,R are

finite and renormalization scale invariant. For our numerical analysis, we have included all

the above full expressions into the SUSY FLAVOUR library.

Note that a calculation of the effective Higgs-quark vertices in the MSSM, however

without detailed analysis of their phenomenological implications for top quark decays, can
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also be found in refs. [52, 53]. As discussed there, effects of resummation from higher order

chiral corrections are small in the up-quark sector and should not change our qualitative

discussion below. However, as such corrections are implemented in SUSY FLAVOUR library,

they can indirectly affect those bounds on the flavour changing up-squark ∆ parameters

which are given by measurements of processes involving down quarks but sensitive to up-

squarks circulating in loop amplitudes.

3 B(t → q h): cancellations, decoupling and qualitative results

The formulae given previously, although most general, are quite opaque and do not allow

for, at least qualitative, discussion of possible cancellation or enhancement effects taking

place in coefficients C
(h)
L,R of eq. (1.2). We therefore need to perform some approximations.

In the limit where mI = mu(mc) → 0, the coefficients in (2.9) can be written simply

as (I = 1, 2, J = 3),

C
(h) IJ
L = ∆F

(h) IJ
L − 1

v

(
cosα

sinβ

)
ΣIJ
mL(0) , (3.1)

C
(H) IJ
L = ∆F

(H) IJ
L − 1

v

(
sinα

sinβ

)
ΣIJ
mL(0) , (3.2)

with an obvious substitution L ↔ R for the coefficients C
(h)
R , C

(H)
R . The coefficients that

multiply the self energy 1PI diagrams are not simply proportional to tanβ as for example

is the case for the b̄ s h transitions in the MSSM. In the SM limit, where the CP-odd Higgs

mass MA (and therefore the CP-even Higgs boson mass MH) is taken to be much heavier

than MZ , we have [54]

MA �MZ : cosα ≈ sinβ , sinα ≈ − cosβ . (3.3)

In this case only the decay t→ q h (i.e., K = 2) is relevant and the amplitude is

C
(h) IJ
L

SM limit
= ∆F

(h) IJ
L − 1

v
ΣIJ
mL(0) , (3.4)

with an analogous formula for C
(h)
R .7 In our analytical results for t→ q h amplitude below,

we shall work with the general expressions in eqs. (3.1) and (3.2) and take the SM-limit (3.3)

when necessary.

Due to the presence of the strong QCD coupling, gluino diagrams are expected to

be dominant. Their contributions can be deduced easily from the general expressions in

7At the moment, LHC data cannot completely exclude [55] but rather disfavour [56] the existence of

more than one Higgs boson lighter than mt, with such scenario limited only to certain “tuned” scenarios

(see for example ref. [57]).
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eqs. (2.10b) and (2.13a) and give

C
(hK) IJ
L = −2αs

3π

(
mt

m2
g̃

)
6∑

i,l=1

V Kli
HUU Z

(J+3)i ∗
U Z

(I+3)l
U (C0 + C11) [κ2, κ1, ri, rl, 1] (3.5a)

+
2αs
3π

(
1

mg̃

) 6∑
i,l=1

V Kli
HUU Z

Ji ∗
U Z

(I+3)l
U C0 [κ2, κ1, ri, rl, 1] (3.5b)

+
2αs
3π

(
Z2K
R

v2

)
mg̃

6∑
i=1

ZJi ∗U Z
(I+3)i
U B0 [0, ri, 1] , (3.5c)

where the first two (∆FL) contributions arise from the gluino penguin with flipped chi-

rality in the top quark external line and the gluino internal line respectively, while the

last from the self energy (ΣmL), gluino diagram. The symbols in (3.5) are defined in A.

In particular, the mass dimension one, Higgs-squark vertex, V Kli
HUU , can be read explic-

itly from (A.4) and ZU is the unitary matrix diagonalizing the up-squark mass matrix

(see (A.2)), in the basis where quarks are diagonal.8 Finally, in (3.5), we have changed to a

more suggestive form of Passarino-Veltman (PV) functions with dimensionless parameters,

κi ≡ ki/mg̃, ri ≡ m2
i /m

2
g̃, by simply factoring out the gluino mass scale (details of the

transformation along with useful properties of the PV functions can be found in B). Note

that in the completely universal case (MFV scenario) where ri = const, the whole gluino

contribution (3.5) vanishes identically due to unitarity of the ZU -matrices.

It is interesting to check (3.5) for non-decoupling effects. As we can see from (A.4),

the vertex behaves at most as VHUU ∼MS and therefore, individually, the last two terms

in (3.5), do not decouple separately when all SUSY parameters are scaled up by the same

factor. However, this non-decoupling behaviour is not realised because of partial can-

cellations between the penguin and self energy contributions given in (3.5b) and (3.5c),

respectively. More specifically, potentially non-decoupled contributions cancel among each

other leaving behind remnants with ∼ m2
t /M

2
S as leading behaviour. In this section, we

will show this behaviour both numerically, in the full expression, and analytically, up to

a certain order in the relevant expansion. For the following quantitative analysis of can-

cellations and the leading order contributions, it is sufficient to work in the zero external

momentum approximation for the penguin and self energy diagrams.

Before proving the cancellations and estimating the behaviour of surviving contribu-

tions, we open a parenthesis here to present a useful theorem from matrix algebra. It says

the following: consider a Hermitian n×n matrix A. The trivial decomposition A = A0+Ã,

where A0 = diag(a01, a
0
2, . . . ., a

0
n) contains the diagonal elements of A and Ã contains the

non-diagonal elements of A, is always possible. Let the unitary matrix U diagonalizes the

matrix A as U †AU = D, where D = diag(d1, d2, . . . , dn) is a diagonal matrix containing

the eigenvalues of matrix A. If we assume that f is an arbitrary analytic function, we can

8For more details on the exact definitions of the squark mass and rotation matrices the reader is referred

to ref. [50].

– 10 –



J
H
E
P
1
1
(
2
0
1
4
)
1
3
7

write down the following decomposition of matrix f(A) in powers of Ã matrix elements:

[f(A)]ij = Uik f(dk)U
†
kj = δij f(a0i ) +

(
f(a0i )− f(a0j )

a0i − a0j

)
Ãij +

+

n∑
`=1 ,(` 6=i,j)

 f(a0i )−f(a0` )
a0i−a0`

− f(a0j )−f(a0` )
a0j−a0`

a0i − a0j

 Ãi` Ã`j + . . . . . (3.6)

In case of degenerate eigenvalues, the ill-defined ratios in (3.6) should be replaced by

appropriate derivatives. The first line of eq. (3.6) has been presented in ref. [58].9 A formal

proof of eq. (3.6) generalised to all orders in powers of Ã and its applications to flavour

physics will be given elsewhere [59].

For our purpose here, we only require the implementation of eq. (3.6) to the relevant

expressions in eq. (3.5). The zero external momentum expansion of self energies and

penguins respectively gives (we use here ÎIJ as for a Kronecker “delta” symbol, to avoid

confusion with other notation for supersymmetric parameters):

6∑
i=1

ZJi ∗U ZI+3,i
U B0 [0, ri] = ∆̂J,I+3 C0 [0 ; rJ , rI+3, 1]

+

6∑
K=1

∆̂JK∆̂K,I+3 D0 [0 ; rJ , rK , rI+3, 1] (3.7a)

+
6∑

K,M=1

∆̂JK∆̂KM ∆̂M,I+3 E0 [0 ; rJ , rK , rM , rI+3, 1] + O
(

∆̂4
)
,

6∑
i,l=1

ZJi∗U ZI+3,l
U ZKiU ZMl∗

U {C0, C11} [0 ; ri, rl, 1] = ÎJK ÎM,I+3 {C0, C11} [0 ; rJ , rI+3, 1]

+ÎJK∆̂M,I+3 {D0, D11} [0 ; rJ , rM , rI+3, 1]

+ÎM,I+3∆̂JK {D0, D12} [0 ; rJ , rK , rI+3, 1]

+∆̂JK∆̂M,I+3 {E0, E12} [0 ; rJ , rK , rM , rI+3, 1]

+ÎJK
6∑

N=1

∆̂MN∆̂N,I+3 {E0, E11} [0 ; rJ , rM , rN , rI+3, 1] (3.7b)

+ÎM,I+3
6∑

N=1

∆̂JN∆̂NK {E0, E13} [0 ; rJ , rN , rK , rI+3, 1] + O
(

∆̂3
)

in terms of the diagonal and non-diagonal elements of the dimensionless squark mass matrix

r2K ≡
(M2

U )KK

m2
g̃

, ∆̂KM ≡
(M2

U )KM

m2
g̃

(K 6=M) , ∆̂KK ≡ 0 , (3.8)

9We would like to thank A. Romanino for correspondence on this point.
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respectively. The quartic product of ZU matrices in eq. (3.7b) appears after substituting

the explicit form of the VHUU vertex in (3.5). The “higher derivative” PV functions D,E

are defined in B, together with iterative relations generating them from B and C functions.

An important feature of this “flavour expansion” framework, also noted in ref. [43], is

that it allows for a common treatment of completely different flavour structures inM2
U . It

may apply with the same efficiency in the “degenerate” case where the diagonal elements

rK are considered to be equal and the mass splitting originates only from ∆̂ or in the

“hierarchical” case where the mass splitting from ∆̂ adds to a pre-existing hierarchical

pattern in rK .

Substituting (3.7) into (3.5) in zero external momentum approximation for ∆FL and

using the explicit form of the vertex VHUU from A, the aforementioned partial cancella-

tions between self-energy and penguin can be seen to take place. While (3.5a) itself has

the proper decoupling behaviour, after adding (3.5b) and (3.5c) only few terms survive,

remarkably only those with a good decoupling behaviour. After cancellations and in the

most general case where the non-holomorphic trilinear couplings A′U are also present, the

scale dependence of the leading remnants in C
(h) IJ
L , will behave as

(3.5b) : ∼ A′JIU
cos(α− β)

sinβ
×O

(
1

MS

)

∼ (µ?Y J +A
′JJ
U )δJIRR

cos(α− β)

sinβ
×O

(
1

MS

)

∼ δJILR
(

cosα

sinβ

)
×O

(
mt

MS

)

∼ δJJLRδJIRR
(

cosα

sinβ

)
×O

(
mt

MS

)

∼
3∑

A,B=1

δJALR δ
AB
RL δ

BI
LR

(
cosα

sinβ

)
×O

(
MS

mt

)
,

(3.9)

(3.5a) : ∼ δJIRR
(

cosα

sinβ

)
×O

(
m2
t

M2
S

)
∼

3∑
A=1

δJARLδ
AI
LR

(
cosα

sinβ

)
×O(1)

where we have expressed our results in terms of the more useful 3 × 3 block matrices δ.

These are defined through,

∆̂ ≡

(
δLL δLR
δRL δRR

)
: δLR = (δRL)† , δAALL = δAARR = 0 , (A = 1, . . . 3) . (3.10)

The analytic expressions in (3.9) reveal certain regions in MSSM parameter space where

B(t→ q h) is enhanced and could be accessible in the high luminosity LHC data. We will

investigate these enhanced scenarios in section 5.
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The scaling behaviour of the leading contributions presented in (3.9) is obtained after

considering all SUSY mass parameters scaling simultaneously as ∼MS and all electroweak

mass parameters as ∼ mt in the full expression for the leading remnants using (3.6). Under

these assumptions the blocks of ∆̂ in eq. (3.10) will behave as

δLL ∼ δRR ∼ O (1) , δLR ∼ O
(
mt

MS

)
, (3.11)

due to the non-uniform scaling of the respective blocks inside M2
U . Using this obser-

vation, it is important to notice that all leading remnants in (3.9) scale as O
(
m2
t /M

2
S

)
,

which is straightforward to see for all contributions besides the ∼ cos (α− β) terms arising

from (3.5b). These at first sight seem to exhibit a non-decoupling behaviour, however, a

closer look reveals that the decoupling is hidden within the quantity

cos(α− β)

sinβ

SM-limit' 2 cosβ cos (2β)
M2
Z

M2
A

∼ O
(
m2
t

M2
S

)
, (3.12)

and their contribution can become comparable with all other terms, obviously subject to

the tanβ value chosen.

The flavour structure of (3.9) may provide us with useful guiding information on the

leading dependence of C
(h) IJ
L in terms of the Lagrangian parameters involved. For example,

for t→ c h-amplitude [J = 3, I = 2 in (3.9)], the parameters directly involved are A′32U , δ32RR
and A32

U with the last parameter always introduced through the δ32LR squark mass matrix

element. At a secondary level, flavour conserving parameters such as µ or δ33LR ∼ At may

enter the expressions, however only as pre-factors of the previous ones. As a result they

modify substantially the final result of B(t→ c h). Analogous results hold for B(t→ uh),

with obvious superscript replacements 2→ 1 into parameters above.

At this point, it seems instructive to present numerically, in figure 2, the cancellation

of self energy and penguin contributions in C
(h) IJ
L for a typical choice of the parameters

involved, and for uniform scaling case MA = mg̃ = MS (for the examples illustrated in

figure 2 we ignore experimental bounds on δ-parameters). We choose to present results in

t → c h amplitude but analogous results hold also for the t → uh amplitude. It is clear

from figure 2 (left), where we plot the full numerical result for the Wilson coefficient |C(h)23
L |

with respect to MS , that the non-decoupling behaviour of the penguin (∆FL) cancels the

non-decoupling behaviour of the self-energy diagrams leaving behind remnants in |C(h) 23
L |

which are decreasing as m2
t /M

2
S . This is scaling behaviour exactly as our approximate

expressions in (3.9) indicate.

An analogous situation is realised in figure 2(right) in the case of |C(h) 23
R | for which,

due to the aforementioned L ↔ R symmetry in the expression for the Wilson coefficients

in (3.9), the result primarily depends on δ32LL, A
′23 ∗
U and A23 ∗

U . This clear decoupling be-

haviour is in qualitative agreement with ref. [20], for MA = MS .

One should note that the terms listed in (3.9) are leading or next to leading order

contributions in terms of δ-parameters, obtained in the approximation of vanishing mo-

menta of the external particles. Under the uniform scaling of all SUSY parameters these

terms scale as ∼ m2
t /M

2
S . There are other contributions that scale similarly and can be
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Figure 2. Left : cancellation and remnants of |C(h)23
L | for two values of the non-diagonal squark

mass parameter δ32RR, assumed here to be related to trilinear term as δ32RR = −A32
U /MS , in the case of

degenerate squark mass spectrum (r2K = 1) and a uniform scaling (MA = mg̃ = MS). The penguin

contribution (upper lines) is denoted by (∆FL). Right : Similarly, for the Wilson coefficient |C(h)23
R |

and for two values of δ32LL parameter.

extracted from the full amplitude expression (3.5). For example, the first non-trivial order

in the external momentum expansion of the penguin amplitude δFL(R)(k1, k2) has the sim-

ilar flavour structure and decoupling properties, so it will modify the coefficients of terms

in (3.9) but does not change our qualitative discussion. Other possible terms, e.g. higher

order contributions in the flavour expansion, are either subleading in δ’s or small due to

other suppression factors, so we do not display them explicitly. They are of course included

in the numerical analysis presented in next sections, as for that we use full unexpanded

formulae (2.10) and (2.13).

Finally, similar cancellations of non-decoupling contributions can be observed numeri-

cally (and as we checked also analytically, although after more complicated calculations) for

chargino and neutralino contributions to the considered t → q h decay amplitude. There-

fore, they always become smaller than the gluino diagrams, independently of the soft SUSY

breaking parameters scale (see also footnote 3).

4 Constraints from other observables

As we discussed already in section 2 we have added our calculations for B(t → q h) into

the SUSY FLAVOUR library [44–46]. For every input MSSM parameter set, SUSY FLAVOUR

calculates a number of B-, K-, and D-meson physics observables. Comparing them with

experimental bounds [60] allows us to plot predictions for the t → q h decay rate only for

realistic values of the MSSM parameters.

Most of these observables are related to the processes involving down quarks and they

constrain strongly the flavour structure of m2
QL

soft mass matrix, common from both D̃ and

Ũ squarks. Thus, it is unlikely to have δI3LL & 10% and this is impossible to generate large

effects in t → q h decays. We are therefore going to set δi3LL zero in the numerical results
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Quantity Current Measurement

mg̃ > 1.1 TeV

single light squark mq̃ > 500 GeV

mt̃L
> 600 GeV

mt̃R
> 200 GeV

mh (125.9± 0.4) GeV

Neutron EDM (|dn|) < 2.9 · 10−26 e cm [64]

Table 1. Experimental bounds used throughout in our numerical analysis.

below. For δI3LR and δI3RR and at low and moderate values of tanβ, potentially important

constraints for B(t→ q h) arise from the D-meson mass difference, ∆MD. However, ∆MD is

particularly sensitive to δ12RR element, which affects B(t→ q h) only through higher powers

of δ-insertions than those attributed to the leading effect in (3.9). Also B(B → Xsγ) and

B̄s(d)−Bs(d) mixing could be potentially bound to constraints but they are not significant

as contributions from the right up-squark sector to these processes are suppressed by the

powers of light quark Yukawa couplings.

There are of course relevant constraints for parameters important for B(t → q h)

emerging from direct, mainly LHC, SUSY searches [60, 61]. These are shown in table 1.

A scenario which is particularly interesting for enhancing B(t → q h) is the one with the

light stop mostly “right handed”. In this case a lower bound for light stop, together with a

nearly degenerate neutralino, as low as mt̃R
≈ 200−400 GeV cannot be excluded in current

LHC data [61–63].

The recent discovery of the Higgs boson mass at LHC [7, 8], if interpreted as a “natural”

MSSM light Higgs boson, requires a large, often close to maximal, trilinear soft breaking

coupling δ33LR ∝ At/MS ≈
√

6. In fact, this helps B(t→ q h) to be enhanced as we observe

from our qualitative results in (3.9). We have incorporated in SUSY FLAVOUR two-loop

approximate expressions for the CP-even Higgs bosons, based on ref. [65] for contributions

from the top/stop sector, and supplied with results from ref. [66] for contributions from

other sectors. As stated in ref. [65], such approximation should reproduce the full 2-loop

result for the Higgs boson mass with accuracy better than 2 GeV. Therefore, we allow for a

region 123 GeV . mh . 128 GeV, because of unaccounted theory errors from higher loop

corrections. Note that full 2-loop formula for the MSSM CP-even Higgs boson mass has

not been calculated yet in the fully general flavour violating case, with large off-diagonal

squark mass insertion. Thus, actual theoretical error of expressions given in ref. [65] can

be bigger, affecting the Higgs mass constraints.

5 Results

Our goal here is to find out the maximal outcome on B(t → q h) in the MSSM. By read-

ing (3.9) the maximal effect on B(t → q h) will be led by the following parameters [FC
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Figure 3. Enhancing the t → c h decay rate by varying the A32
U parameter for a degenerate

spectrum (rK = 1) and a uniform scaling (mg̃ = MA = MS). At ≈ 2MS and 2 . tanβ . 4 are

assumed to be consistent with the measured Higgs boson mass of table 1. The position of the left

edge of each line corresponds to the condition mt̃L
≥ 600 GeV.

stands for Flavor Changing and At(A
′
t) ≡ A33

U (A
′33
U )]:

Non− FC : At, A′t, mt̃L
, mt̃R

, µ, mg̃ , tanβ , MA, (5.1)

Holomorphic (FC) : δI3LL , δI3RR , AI3U , A3I
U , (5.2)

Non−Holomorphic (FC) : A
′I3
U , A

′3I
U . (5.3)

Below we present full numerical results mostly for B(t → c h). This is affected by (I = 2)

parameters in eqs. (5.2) and (5.3). Results for B(t→ uh) are exactly the same as one can

see from the leading order expansion (3.9) with the obvious replacement (I = 1) in the

parameters of eqs. (5.2) and (5.3). Constraints from neutron EDMs are stronger on the

latter and as a result we consider mainly B(t→ c h) in investigating observability at LHC.

As we have remarked earlier, the analytic formulae, eq. (3.9), allow for the occurrence of

enhanced effects in certain regions of parameter space. This saves us from time consuming,

and often difficult to understand and interpret, grid-scan plots. Consequently, the following

possibilities for an enhanced B(t→ q h) emerge.

5.1 Enhancement through large
|A3I

U |
MS

and
|AI3

U |
MS

Inspection of (3.9) shows that in leading approximation the expression for B(t → q h)

contains several terms depending on up-squark trilinear mixing parameters AIJU . The
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relevant terms in C
(h)
L (for C

(h)
R one needs to exchange chiral indices L↔ R) are

C
(h)
L : ∼ δJILR

(
cosα

sinβ

)
O
(
mt

MS

)
, ∼

3∑
A,B=1

δJALR δ
AB
RL δ

BI
LR

(
cosα

sinβ

)
O
(
MS

mt

)
,

∼
3∑

A=1

δJARLδ
AI
LR

(
cosα

sinβ

)
O(1) . (5.4)

Thus, large AIJU values can enhance the discussed decay rates.

Such scenario is illustrated in figure 3, where we plot B(t → c h) (so that J = 3 and

I = 2) as a function of MS = mg̃ = MA for various values of A32
U /MS and for a fixed value

of At = 2MS . In addition, the higgsino mass parameter is set to µ = 0.5 TeV and all other

non-diagonal elements of δ vanish. For simplicity in figure 3 we vary only A32
U /MS , setting

it to several real-positive values, however as can be seen from analytic formulae, the result

for B(t → c h) is symmetric under replacement A32
U ↔ A23

U and depends primarily on the

absolute values of both parameters, so we do not discuss dependence on A23
U separately.

As can be seen from (5.4), the form factor C
(h)
L contain terms with linear dependence

and a term with cubic dependence in δ32LR = − v2A32
U√

2M2
S

. Linear dependence dominates for

A32
U /MS � 1 while, more importantly, cubic dependence dominates for A32

U /MS � 1. As

it is obvious from second line of (5.4), the parameter At ≈ 2MS , required for a 126 GeV

Higgs boson mass, enhances |CL| and therefore B(t → c h), only in parameter regions

where linear dependence dominates, namely for A32
U /MS � 1. In the more interesting

cubic dependence region, where A32
U /MS � 1 and the maximal values of B(t → c h) are

obtained, the branching ratio can reach LHC attainable values, exceeding estimate (1.7)

by two orders of magnitude, for A32
U & 8MS and for a light MS value, as can be seen in the

left upper corner of figure 3. There, the minimum value of MS is subject to the condition

that the left handed stop squark mass is heavier than 600 GeV, as table 1 indicates.

We should note that our results for B(t→ c h) shown in figure 3 do not display any

non-decoupling effect. The decay rate increases with the A32
U /MS ratio, but for each fixed

choice of A32
U /MS it decreases as our analytic formulae indicate, i.e., as |CL|2 ∼ m4

t /M
4
S .

In the most interesting region A32
U /MS � 1, where the cubic dependence in δ32LR dominates

CL, the branching ratio behaves as

B(t→ c h) ∝
(A32

U

MS

)6
O
(m4

t

M4
S

)
. (5.5)

A small deviation from this behaviour can be seen on the left edge of the upper curves where

steeper slopes appear due to |δ32LR| closing to unity and higher order corrections becoming

increasingly important. For large MS , deep in the SM (decoupling)-limit, although the

effect is substantially smaller, the B(t→ c h) is still enhanced by many orders of magnitude

as compared to the SM prediction.

Another important remark should be done concerning how realistic are very large

values of |A32
U |/MS (or |A23

U |/MS), required to enhance the B(t → c h). As previously

mentioned, they are always constrained by the condition |δ32(23)LR | . 1 resulting from the
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light stop mass bound:

|δ32LR| ∼
v2√
2MS

|A32
U |

MS
. 1 −→

|A32
U |

MS
.

√
2MS

v2
. (5.6)

Thus, in principle even very large values of |A32
U |/MS are possible assuming sufficiently

high SUSY mass scale, e.g. for MS > 1.5 TeV one can reasonably consider A32
U ∼ 8MS .

However, such large AU in connection with light stop mass square can possibly trigger

unwanted Charge and Colour Breaking minima (CCB) [67–78]. For example, allowing for

non-vanishing A32
U and following the steps of ref. [69], and assuming possible vevs in the

five dimensional field space direction, H0
1 = 0, H0

2 = 1, t̃L = 0, t̃R = c̃R = 1,10 we arrive

analytically at the following constraint,

|A32
U |2 ≤ Y 2

t (m2
H2

+m2
t̃L

+m2
c̃R

+ µ2) , (5.7)

in agreement with ref. [73]. One can arrive at an even stronger bound involving both |At|
and |A32

U |, which is appreciable because of the Higgs mass constraint, following the field

direction t̃L = H0
2 = 1, H0

1 = 0, t̃R = c̃R = 1/
√

2,(
|At|+ |A32

U |
)2 ≤ 4 Y 2

t

[
m2
H2

+m2
t̃L

+
1

2
(m2

t̃R
+m2

c̃R
)
]2
, (5.8)

in agreement with a similar one found recently in ref. [79]. For a common squark and Higgs

mass scale, MS , the constraint (5.7) results in |A32
U | .

√
3MS , which is far more stringent

than the positivity physical mass squared constraint of (5.6). For such values of A32
U , and,

after reading from figure 3, we deduce that

B(t→ c h) . 10−7 . (5.9)

This rate is out of any near future LHC expected sensitivity [see (1.4)].

A detailed analysis of the CCB problem in the general flavour violating MSSM is

beyond the scope of this paper. Nevertheless, in most cases the issue is a cosmological

one, since sometimes the inverse transition rate between meta-stable vacua exceeds the

lifetime of the universe. In this case, the pre-factor of O(1) in the r.h.s. of eq. (5.7) may

be modified, but it is unlikely that it increases by an order of magnitude or so, necessary

to achieve B(t → c h) ∼ 10−4. This claim is supported by the results of ref. [75], where

the bound in eq. (5.7) is only marginally relaxed by meta-stability. For recent accounts on

meta-stability of the MSSM vacuum in MFV scenario, see refs. [76–78].11

In a more general case both A32
U and δ32RR parameters can be present simultaneously. In

this case the possibly largest contributions to the C
(h)
L form factor, out of all listed in (3.9),

are given by terms

∼ δJJLRδ
JI
RR

(
cosα

sinβ

)
×O

(
mt

MS

)
, ∼ δJILR δ

IJ
RL δ

JI
LR

(
cosα

sinβ

)
×O

(
MS

mt

)
. (5.10)

10Fields are normalized to H0
2 and we take the limit, Y 2

c /Y
2
t → 0.

11A more robust check for CCB vacua can be studied with the publicly available code Vevacious [80]

which performs a full numerical check of the potential (meta)stability even at 1-loop level. A thorough scan

of the interesting parameter space can be however limited by long computer run-time.
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Figure 4. Contour plot for B(t → c h) prediction on a δ32RR vs. A32
U /MS plane. All other FC

parameters are set to zero. In addition, we take (mg̃ = MA = µ = MS) and At/MS = 2 while other

values are shown in the figure.

In figure 4 we plot B(t → c h) on the δ32RR and A32
U /MS plane, varying A32

U within the

region |A32
U |/MS . 3 in order to avoid potential CCB bounds. Note that contributions

from these two parameters can interfere constructively (top-left and bottom-right corners

of the plot) or destructively (bottom-left and top-right corners). However, even in the most

optimistic case, the branching ratio B(t→ c h) cannot exceed values of order ∼ 10−5 which

is an order of magnitude less than the expected sensitivity of LHC.

An analogous effect for B(t→ c h) may also arise from the C
(h)
R contribution, namely

from the A23∗
U and δ32LL pair of parameters. However including such an effect has little to

offer since the enhancement that could be obtained this way (factor 2 at most) is suppressed

due to the stringent experimental bounds on δLL.

In figure 5 we present results for B(t→ uh) on a δ31RR vs. A31
U /MS plane. As we have

already discussed, formulae for this decay are exactly the same as for B(t → c h), with

obvious replacements of indices of flavour violating parameters. However, the important

difference comes from the fact that A31
U , A13

U and δ13RR are highly constrained by experimental

bound on neutron Electric Dipole Moment (EDM), see e.g. [81]. Although we have assumed

real parameters throughout this article, this is an effect that arises from the terms of the

higher order in the mass insertion expansion of the gluino contribution to the down quark

electric and chromoelectric dipole moments. Such terms are proportional to A
31(13)
U or δ13RR

multiplied by the CKM matrix elements containing imaginary phase. Effects of this kind are

usually quite small and unobservable, comparing to experimental and theoretical accuracy

with which most of the rare processes is known. However, the bound on neutron EDM is

so strong, that it has visible impact on the acceptable ranges of the real soft parameters.

Approximately, the whole effect results in a strong correlation of the allowed values of
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Figure 5. Contour plot for B(t → uh) on a δ31RR vs. A31
U /MS plane with all other parameters set

as in figure 4. Due to severe neutron EDM constraints, the effect is confined to a region where the

decay rate is far beyond the reach of LHC.

A31
U /MS and δ31RR, such that their linear combination with O(1) coefficients (depending on

up-squark and gluino masses) must vanish with O(10−2) accuracy, to satisfy the current

experimental neutron EDM bound in table 1. As it is obvious from figure 5, we then find

B(t→ uh) . 10−7 which is unobservable at LHC.

Based on (3.9), one can in principle search how to enhance B(t → q h) other than by

previously analysed its cubic dependence on A32
U /MS . An analogous effect may also be

produced by increasing ∼ δ32RR together with the unnatural choice of |µ|/MS � 1. Even

so, such a contribution is suppressed by the condition δ32RR < 1 and thus will be typically

subleading, unless µ/MS � A32
U /MS . Therefore, the parameter space exploited in figures 3

and 4 seems to be the optimal one.

Finally, for comparison with the recent literature, we recalculate results presented in

Scan-I of ref. [20]. We find numerical agreement for B(t → c h) within 10%. This may

be understandable since we take into account QCD renormalization group running effects

and threshold corrections for Wilson-coefficients neglected in ref. [20] or in other literature

quoted in the introduction section.

5.2 The light MA scenario and non-holomorphic dominance

The second enhancement scenario requires a light Higgs sector and significant contribution

from the non-holomorphic trilinear soft couplings, A′U . The numerical results are displayed

in figure 6. We shall attempt here an explanation of the enhancement based on analytic

expansion in (3.9). We must warn the reader however that this case scenario is disfavoured

by LHC data and we mostly present it here for complementarity reasons.
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Figure 6. Branching ratios for the light MA = 110 GeV scenario and chosen set of MSSM param-

eters: tanβ = 6, µ = 250 GeV, MS = 1.1 TeV, At/MS = 2.7. The leading contribution (left panel)

originates from the non-holomorphic coupling A′
32
U . If A′

32
U ≈ 0 the next to leading contribution

(right panel) is controlled by (µ∗δ32RR). The allowed δ32RR range for each m33
UR

value corresponds to

the 200 < mt̃R
< 400 GeV constraint of the “light stop window” [62].

This scenario departs from the assumption of uniform scaling for MA and assume light

MA ∼ MZ . Only terms proportional to cos(α − β) in (3.5a), (3.5b) will be enhanced [see

also eq. (3.12)]. To illustrate the size of possible light MA effects we assume for simplicity

vanishing non diagonal squark mass matrix elements beside A′23U and δ32RR in left and right

panels of figure 6, respectively. In order to make this point quantitative, we follow the

scenario of ref. [57] in which the heavy Higgs boson is the one seen at LHC with mass

around 125.5 GeV and the light one lies in the region 95 . mh . 101 GeV where LEP had

seen some small excess in Higgs data.

As we observe from the left panel of figure 6, the non-holomorphic soft breaking term

A′23U ≈ 3MS may easily bring B(t → c h) to the level observable in future LHC measure-

ments. This is not true in the right panel of figure 6, where δ32RR is varied instead. Here effect

is much smaller due to the constraints δ32RR < 1 (physical squark masses) and |µ| < 400 GeV

(b→ sγ). In that case we obtain B(t→ c h) . 10−6, far off LHC’s future sensitivity.

Also the more promising scenario with enhanced non-holomorphic contribution in fig-

ure 6 (left panel) can only be realised in particular parameter choice. In such a scenario,

the B → Xsγ constraint imposes µ . 400 GeV. One of the two charginos, namely the

higgsino-like one, with mass proportional to µ, should be light and cancel the charged

Higgs terms in the respective penguin diagrams. Thus we choose µ small and heavy winos

in order to split the chargino masses. We have also taken a tuned value for trilinear SUSY

breaking coupling, At/MS = 2.7± 0.05, which allows to pass the constraints of table 1 and

B → Xsγ, for a large region in µ, namely 150 < |µ| < 350 GeV. We could relax the tuning

here but only at the cost of severely restricting the µ parameter space, µ ' (125 ∼ 150). In

any case |At/MS | ' (2 ∼ 3) is always required in this scenario. Finally, following ref. [57]

we can only vary tanβ within the tanβ ' 6 ∼ 7 region.

In the light of recent searches for charged Higgs boson produced in t → H+b decays

and decaying to τ ’s [56] this scenario seems increasingly unlikely, at least assuming MSSM
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relations between the Higgs boson masses. In principle, there is an open window (at

1σ) around 6 . tanβ . 10 but only at very low mH± masses less than 110 GeV. Using

the MSSM Higgs boson mass sum rule m2
H± = m2

A + m2
W , this would require very light

MA . 75 GeV far below MA = 110 GeV suggested by the LEP possible excess.

6 Conclusions

In the present article we have studied rare, flavour-changing top quark decays to light

up-quarks u or c and the Higgs boson h,

t→ uh or t→ c h ,

in the framework of MSSM with R-parity conservation. Although the corresponding pro-

cesses in the framework of the Standard Model are highly suppressed, mostly due to the

GIM mechanism, such a suppression is not a priori expected in the case of MSSM.

We improve upon existed calculations, most notably from refs. [16–18], by including

next to leading order QCD corrections and RGE running from the SUSY soft breaking

masses down to mt. SUSY finite threshold effects into t → q g that mixes with t → q h,

are fully included. This set of most up-to-date one-loop corrections to t→ q h amplitudes

are then included in publicly available SUSY FLAVOUR library, and therefore combined with

MSSM predictions from numerous other flavour physics observables. In addition to current

literature, we study effects arising from the non-holomorphic soft SUSY breaking terms.

These turn out to be important for enhancing B(t→ q h) but in a parameter region already

disfavoured by LHC.

Moreover, we have obtained an analytical expansion of the dominant gluino amplitude

by using a theorem of matrix algebra [59] and have arrived at the approximate master for-

mula (3.9). This formula worked as a guide in order to understand better the cancellations

between various contributions, decoupling effects and enhancement scenarios in t → q h

amplitude. We conclude that the main enhancement for B(t → c h) arises basically from

the largeness of the parameters: |δ32LR| ∼ |A32
U |/MS (and/or |δ32RL|) and |δ32RR|.

Numerical results depicted in figures 3 and 4 show that for |A32
U |/MS & O(1) or |δ32RR| ∼

O(1), the branching ratio B(t→ c h) ≈ 10−5 is enhanced almost by 9 orders of magnitude

w.r.t. SM expectation, but unfortunately it is still below the near future LHC sensitivity

of (1.4). This is because of cancellations between leading order penguin and self energy

diagrams, so that decoupling always takes place. Only in case where |A32
U | & 8MS the

branching ratio is approaching the expected LHC sensitivity. In such a case however CCB

minima are likely to appear as we briefly showed in eq. (5.7) or (5.8).

For t→ uh on the other hand, although in principle the decay rate is expected to be

of the same order as with t → c h, the neutron EDM constraints, induced from the CKM

phase, severely suppress the allowed parameter space into a tuned region in which decay

rates are small, B(t→ uh) < 10−7, again far below experimental sensitivity.

We therefore conclude that an MSSM driven B(t → q h) is unlikely to be observed

even at high luminosity LHC. Apart from rather unnatural corners of the parameter space,

the typical MSSM prediction, even for flavour changing insertions in the up sector of
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δLR,RR ∼ O(1), is B(t→ q h) ≈ 10−8 − 10−9. Although small, this is still five to six orders

of magnitude above the SM expectation. If LHC discovers up-squarks and gluinos it will

be vital to develop techniques that will take us to such small branching ratios for t→ q h

decay. If however LHC observes the rare t → q h decays at projected maximal sensitivity

of about 10−4, their origin must probably lie in physics other than, or beyond, MSSM with

R-parity conservation.
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A Explicit expressions for MSSM vertices

Throughout the paper we follow the notation and conventions of refs. [49, 50], where the

definitions of the Lagrangian parameters, mass matrices and mixing matrices used for their

diagonalization are given for all MSSM sectors. Here for completeness we repeat just the

explicit expressions for the couplings needed to calculate the effective t → q h vertex in

section 2. For more details the reader is referred to more up-to-date ref. [50].

The CP-even Higgs boson mass rotation matrix ZR is defined in terms of commonly

used angle-α as (also as usual tanβ = v2
v1

)

ZR =

(
cosα − sinα

sinα cosα

)
. (A.1)

Matrices used to mass matrices of supersymmetric particles are defined, respectively, as:

ZT−MCZ+ = diag(mχ1 ,mχ2) chargino ,

ZTNMNZN = diag(mχ0
1
, . . . ,mχ0

4
) neutralino ,

Z†DM
2
DZD = diag(m2

D1
, . . . ,m2

D6
) down− squarks ,

ZTUM
2
UZ
∗
U = diag(m2

U1
, . . . ,m2

U6
) up− squarks , (A.2)

where the expressions for MC ,MN ,M
2
D,M

2
U can be found in ref. [50].

With the above definitions, relevant tree-level vertices can be written down as (sum-

mation from 1 to 3 over all repeating flavour indices A,B, . . . is always assumed):
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• Neutral CP-even Higgs-up quark coupling is:

V IKI
uHu = − 1√

2
Y I
u Z

2K
R , (A.3)

where up-quark Yukawa coupling is Y I
u =

√
2mI

u
v2

.

• Couplings relevant for diagram with gluino exchange:

V Kli
HUU = − e2

3c2W
(v1Z

1K
R − v2Z2K

R )(Î li +
3− 8s2W

4s2W
ZAl∗U ZAiU )

−v2(Y A
u )2Z2K

R (ZAl ∗U ZAiU + Z
(A+3)l∗
U Z

(A+3)i
U )

+
1√
2
Z2K
R (AAB ∗u ZAl ∗U Z

(B+3)i
U +AABu ZAiU Z

(B+3)l ∗
U )

+
1√
2
Z1K
R (A′

AB ∗
u ZAl ∗U Z

(B+3)i
U +A′

AB
u ZAiU Z

(B+3)l ∗
U )

+
1√
2
Y A
u Z

1K
R (µ∗ZAiU Z

(A+3)l ∗
U + µZAl ∗U Z

(A+3)i
U ) , (A.4)

V Jji
uUg̃,L = g3

√
2T iab(−Z

Jj ∗
U ) , (A.5)

V Iji
uUg̃,R = g3

√
2T iab(Z

(I+3)j ∗
U ) , (A.6)

where the generators T i are the Gell-Mann of SU(3) with Casimir invariant nor-

malised to C2 =
∑

j T
jT j = 4

3 Î.

• Additional couplings necessary for neutralino mediated diagrams are:

V lKi
χ0Hχ0,L = V iKl∗

χ0Hχ0,R =
e

2sW cW

(
(Z1K

R Z3i
N − Z2K

R Z4i
N )(Z1l

NsW − Z2l
NcW )

+ (Z1K
R Z3l

N − Z2k
R Z

4l
N )(Z1i

N sW − Z2i
N cW )

)
, (A.7)

V Jji
uUχ0,L

=
−e√

2sW cW
ZIj?U

(
1

3
Z1i
N sW + Z2i

N cW

)
− Y I

u Z
(I+3)j?
U Z4i

N , (A.8)

V Iji
uUχ0,R

=
2
√

2e

3cW
Z

(I+3)j?
U Z1i?

N − Y I
u Z

Ij?
U Z4i?

N . (A.9)

• Couplings relevant for chargino mediated diagrams are:

V lKi
χHχ,L = V iKl∗

χHχ,R = − e√
2sW

(
Z1K
R Z2i

−Z
1l
+ + Z2K

R Z1i
−Z

2l
+

)
, (A.10)

V Jji
uDχ,L = −

(
e

sW
ZAjD Z1i

− + Y A
d Z

A+3j
D Z2i

−

)
KJA ∗ , (A.11)

V Iji
uDχ,R = Y I

u ZAjD Z2i ∗
+ KIA ∗ , (A.12)

V Kli
HDD =

e2

6c2W
(v1Z

1K
R − v2Z2K

R )

(
Î li +

3− 4s2W
2s2W

ZAl∗D ZAiD

)
−v1(Y A

d )2Z1K
R (ZAl ∗D ZAiD + Z

(A+3)l∗
D Z

(A+3)i
D )
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SLHA2 [82] Ref. [49, 50]

T̂U , T̂D, T̂E −ATu , +ATd , +ATl

m̂2
Q̃

, m̂2
L̃

m2
Q, m2

L

m̂2
ũ, m̂2

d̃
, m̂2

l̃
(m2

U )T , (m2
D)T , (m2

E)T

M2
ũ, M2

d̃
(M2

U )T , (M2
D)T

Table 2. Comparison of SLHA2 [82] and refs. [49, 50] conventions.

− 1√
2
Z1K
R (AAB ∗d ZAiD Z

(B+3)l ∗
D +AABd ZAl ∗D Z

(B+3)i
D )

+
1√
2
Z2K
R (A′

AB ∗
d ZAiD Z

(B+3)l ∗
D +A′

AB
d ZAl ∗D Z

(B+3)i
D )

− 1√
2
Y A
d Z

2K
R (µ∗ZAl ∗D Z

(A+3)i
D + µZAiD Z

(A+3)l ∗
D ) , (A.13)

where K is the Cabibbo-Kobayashi-Maskawa matrix and Y I
d = −

√
2mI

d
v1

.

One should also note that the conventions used in the paper, following refs. [49, 50]

differ minimally from the now commonly accepted SLHA2 convention [82] for the MSSM

parameters. However, translation of the soft breaking parameters (others do not differ at

all) can be done immediately using information from table 2.

B Passarino-Veltman loop functions

Our convention for Passarino-Veltman integral functions follows Axelrod’s in ref. [83]. For

the integrals entering directly our 1PI-irreducible amplitudes, we have the defining expres-

sions for 2- and 3-point functions:

{B0, B
µ}[k1,m1,m2]

≡
∫

d4p

(2π)4
{1, pµ}

(p2 −m2
1)((p+ k1)2 −m2

2)
, (B.1)

{C0, C
µ, C̃0}[k1, k2,m1,m2,m3]

≡
∫

d4p

(2π)4
{1, pµ, p2}

(p2 −m2
1)((p+ k1)2 −m2

2)((p+ k1 + k2)2 −m2
3)
. (B.2)

The expression above can be generalised to the case of general n-point 1-loop functions as:

PV µ1...µs
n [k1, . . . , kn−1,m1, . . . ,mn] =∫

d4p

(2π)4
pµ1 . . . pµs

(p2 −m2
1)
∏n
j=2((p+ k1 + · · ·+ kj−1)2 −m2

j )
, (n ≥ 2) .

(B.3)
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Obviously, for n = 2, 3 one obtains the analytic expression for the B,C-functions given in

eqs. (B.1) and (B.2) (with C̃0 = gµνPV
µν
3 ). In standard notation higher order n = 4, 5 . . .

functions are commonly denoted as D,E, . . .-functions. Such higher order integrals are

absent from the calculation of t→ q h decays at one-loop [eqs. (2.10) and (2.13)], but they

unavoidably arise in the flavour expansion approximation of eq. (3.7).

In practical calculations, it is usually more convenient to replace the tensorial integral

functions by functions transforming as scalars under the Lorentz group. For the lowest

vectorial functions they are defined through the relation

Bµ = kµ1 B1 , [k1,m1,m2] (B.4)

Cµ = kµ1 C11 + kµ2C12 , [k1, k2,m1,m2,m3] (B.5)

. . .

PV µ
n = kµ1PV

1
n + · · ·+ kµn−1PV

n−1
n =

n−1∑
i=1

kµi PV
i
n , [k1 . . . kn−1;m1 . . .mn] (B.6)

and similarly for higher tensor functions. In our notation, all arguments, common for

PV-functions of equal order n, are displayed separately within the respective brackets.

For FC processes, where partial cancellations between topologically distinct diagrams

take place, it is considerably more convenient to work in a different description of the

PV-functions in which all arguments become dimensionless. As follows directly from the

definition (B.3), PV loop integrals are homogeneous functions of their arguments:

PV µ1...µs
n [k1, . . . , kn−1,m1, . . . ,mn] = M4+s−2n PV µ1...µs

n

[
k1
M
, . . . ,

kn−1
M

,
m1

M
, . . . ,

mn

M

]
,

with M being an arbitrary mass scale, usually chosen as a typical scale for a given

loop diagram.

A useful property associates differences of integral functions of a certain order with

integral functions of next order. For example, as can be directly verified from the definitions

in eqs. (B.1) and (B.2), one has

B0[k1,m1,M2]−B0[k1,m
′
1,M2]

m2
1 −m′1

2 = C0[0, k1,m1,m
′
1,M2] . (B.7)

In general case this relation has the following structure:

PV X
n [k1 . . . kn−1;m1 . . .Mn]− PV X

n [k1 . . . kn−1;m
′
1 . . .Mn]

m2
1 −m′1

2

= PV X
n+1[0, k1 . . . kn−1;m1,m

′
1 . . .Mn] , (B.8)

PV X
n [. . . kj−1 . . . ; . . .mj . . . ]− PV X

n [. . . kj−1 . . . ; . . .m
′
j . . . ]

m2
j −m′j

2

= PV X
n+1[. . . kj−1, 0 . . . ; . . .mj ,m

′
j . . . ], (j ≥ 2) , (B.9)

with X being any set of Lorentz indices of momenta in the numerator of loop integrand.
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For auxiliary scalar functions, defined in eqs. (B.4)–(B.6) this property manifests in a

slightly more complicated manner. That is, depending on the position of mj ,m
′
j within

the brackets, the differences of PV
i
n can either produce PV

i
n+1 or PV

i+1
n+1. For the lowest

order integrals, this property has the suggestive form

B1[k1,m1,M2]−B1[k1,m
′
1,M2]

m2
1 −m′1

2 = C12[0, k1,m1,m
′
1,M2] , (B.10)

B1[k1,M1,m2]−B1[k1,M1,m
′
2]

m2
2 −m′2

2 = C11[k1, 0,M1,m2,m
′
2] . (B.11)

For any order of scalar PV functions defined in (B.6) one has

PV
i
n[. . . kj−1 . . . ; . . .mj . . . ]− PV

i
n[. . . kj−1 . . . ; . . .m

′
j . . . ]

m2
j −m′

2
j

(j>i)
= PV

i
n+1[. . . kj−1, 0 . . . ; . . .mj ,m

′
j . . . ]

(j≤i)
= PV

i+1
n+1[. . . kj−1, 0 . . . ; . . .mj ,m

′
j . . . ] . (B.12)

Formulae (B.7)–(B.12) are particularly useful because their r.h.s. ’s are explicitly

regular in the limit of degenerate masses (as all functions defined by 1-loop integrals).

Thus, they allow to generalise (3.6) to the case of mass matrices with degenerated

diagonal elements.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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