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1 Introduction and summary

Noncommutative (NC) actions can be expanded order by order in the noncommutativ-

ity parameter θ and be interpreted as effective actions on commutative spacetimes, the

noncommutativity leading to extra interaction terms, possibly capturing some quantum

spacetime effect. These actions involve higher derivatives in the field strengths. For gauge

theory actions one can expand not only the ⋆-products but also the noncommutative fields

in terms of the commutative ones using the Seiberg-Witten (SW) map [1]. This allows to

define NC gauge theories with any simple gauge group in arbitrary representations [2, 3].

In the literature deformations have been studied mainly at first order in θ.

In [4–9], extensions of Yang-Mills and gravity theories have been obtained at second

order in the noncommutativity parameter θ starting from NC actions. The second order

expansion is needed in the case ofD = 4 gravity theories because the first order θ-correction

vanishes.1

Some gauge theory actions have the remarkable property of being invariant under

the SW map. This is notably the case for the CS action in 3 dimensions [13] and, if we

consider slowly varying field strengths, for the Dirac-Born-Infeld theory in any dimension [1,

1A complementary route, named θ-exact approach, is to expand the NC actions in power series of the

gauge potential while keeping all orders in θ, see [10, 11] for expansions up to second order in the gauge

potential and quantum field theories applications and [12] for expansions up to third order.
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14]. Noncommutative CS actions can be studied in any (odd) dimension [15–18]. In [18]

noncommutativity is given by a Drinfeld twist defined by a set of commuting vector fields

(so-called abelian Drinfeld twist), this noncommutativity including as a special case Moyal-

Groenewold noncommutativity.

In this paper we apply the geometric Seiberg-Witten map [5] (i.e. the geometric gen-

eralization of the SW map that applies to Drinfeld twist noncommutativity) to the non-

commutative Chern-Simons actions in any odd dimension studied in [18]. We obtain the

correction to the classical action up to first order in the noncommutativity parameter θ.

The correction is expressed in terms of the curvature R = dΩ − Ω ∧ Ω, of its contraction

along the vector fields determining the noncommutativity and of its covariant derivative.

These terms are covariant under gauge transformations and therefore the correction is truly

gauge invariant (not just up to boundary terms). The construction of these extended com-

mutative CS actions obtained by adding correction terms order by order in θ applies to

any gauge group G. For slowly varying field strength we show that these correction terms

vanish, so that, as for Dirac-Born-Infeld theory, also noncommutative and commutative

CS theories coincide in any dimension in this approximation.

The variation of the NC Chern-Simons form under SW map has an intriguing struc-

ture. We find that the SW map relates the NC topological terms Tr(Rn) and Tr(Rn+1)

and therefore relates the NC CS forms in D and in D+2 dimensions. In fact D-dimensional

CS forms are mapped into double contractions of the (D + 2)-dimensional CS forms, plus

contractions of (D+1)-forms, plus extra terms that are covariant under gauge transforma-

tions. Since in D dimensions (D + 2)- and (D + 1)-forms vanish, only the extra covariant

terms are relevant in computing the SW map of the CS action. In D = 1 and D = 3

the extra covariant terms are absent, which easily explains why in these cases the SW

map is trivial, as first observed by [13]. Our results confirm those of [19], where, using a

different approach based on operator valued fields, a (generalized) NC CS action defined

only in terms of covariant derivatives was shown to be nontrivial under the SW map in

dimension D > 3. We sharpen the findings in [19] by explicitly computing and analyzing

the extra terms in D > 3. Moreover we are not constrained to consider Moyal-Groenewold

noncommutativity, and our commutative limit, never involving the inverse of θµν , is well

under control for θ → 0.

The first nontrivial θ dependence occurs in D = 5 NC CS theory. For this case we

compute also the second order expansion in θ.

Next we specialize to NC CS gravity [18] where the gauge group is G = SU(2, 2), and

explicitly compute its expansion to first order in θ in terms of component fields.

In this paper we focus on local properties of CS forms: in particular the connection Ω

is always globally defined, and the underlying principal G-bundle is trivial.

It would be interesting to extend our analysis to the D = 5 noncommutative Chern-

Simons supergravity theory constructed in [18], invariant under the local action of the

⋆-supergroup U(2, 2|N) that includes N supersymmetries. In this case the SW map relates

⋆-supersymmetry to ordinary supersymmetry, so that the θ-correction terms of the SW ex-

pansion are separately invariant under ordinary supersymmetry. The result is an extended

D = 5 CS supergravity with (locally) supersymmetric higher order terms. This work is in

progress.
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The paper is organized as follows. In section 2 we recall a few facts on Chern-Simons

forms and their noncommutative versions. In section 3 we recall the geometric general-

ization of the Seiberg-Witten map. In section 4 we compute the SW variation of the NC

topological term Tr(Rn), of the CS forms and of the CS actions. In section 5 we apply

these results to D = 5 CS and present the first and second order corrections in θ; finally

we consider the case of D = 5 CS gravity. In appendix A we give the derivation of the

SW variation of the noncommutative topological term Tr(Rn). In appendix B we collect

useful identities, and appendix C contains a summary of D = 5 gamma matrix properties.

2 Chern-Simons forms and their noncommutative versions

Commutative CS forms. The CS Lagrangian in (2n−1)-dimensions is a (2n−1)-form

given in terms of the G-gauge connection Ω and its exterior derivative dΩ, or equivalently

its curvature 2-form R = dΩ− Ω ∧ Ω, by the following expressions (see e.g. [20, 21]):

L
(2n−1)
CS = n

∫ 1

0
Tr[Ω(tdΩ− t2Ω2)n−1]dt = n

∫ 1

0
tn−1Tr[Ω(R+ (1− t)Ω2)n−1]dt (2.1)

where we have omitted writing explicitly the wedge product. For example:

L
(1)
CS = Tr[Ω] (2.2)

L
(3)
CS = Tr

[
RΩ+

1

3
Ω3

]
(2.3)

L
(5)
CS = Tr

[
R2Ω+

1

2
RΩ3 +

1

10
Ω5

]
(2.4)

L
(7)
CS = Tr

[
R3Ω+

2

5
R2Ω3 +

1

5
RΩ2RΩ+

1

5
RΩ5 +

1

35
Ω7

]
. (2.5)

These expressions are obtained by solving the condition

dL
(2n−1)
CS = Tr(Rn) . (2.6)

The CS form L
(2n−1)
CS contains (exterior products of) the Lie(G)-valued gauge potential

one-form Ω and its exterior derivative. The trace Tr is taken on some representation of

the Lie algebra Lie(G).2

Because of (2.6), the CS action on the boundary ∂M of a manifold M is related to a

topological action in 2n dimensions via Stokes theorem:

∫

∂M

L
(2n−1)
CS =

∫

M

Tr(Rn) . (2.7)

Infinitesimal gauge transformations are defined by

δεΩ = dε− Ωε+ εΩ, ⇒ δεR = −Rε+ εR (2.8)

2More generally Tr can be any multilinear function of the Lie algebra, invariant under cyclic permuta-

tions. In this paper Tr stands for the usual matrix trace.
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so that Tr(Rn) is manifestly gauge invariant. Therefore also the CS action is gauge invari-

ant under infinitesimal gauge transformations.3

Considering L
(2n−1)
CS as a function of Ω and R, a convenient formula for its gauge

variation is (see for example ref. [18])

δεL
(2n−1)
CS = d(jεL

(2n−1)
CS ) (2.9)

where jε is a contraction acting selectively on Ω, i.e.

jεΩ = ε, jεR = 0 (2.10)

with the graded Leibniz rule jε(ΩΩ) = jε(Ω)Ω − Ωjε(Ω) = εΩ − Ωε etc. Considering

instead L
(2n−1)
CS as a function of Ω and dΩ, formula (2.9) holds with the rules jεΩ = ε and

jεdΩ = εΩ− Ωε.

⋆-Exterior products from abelian Drinfeld twists. The preceding discussion is

based on algebraic manipulations, and relies on the (graded) cyclicity of Tr. As such,

it can be exported immediately to the noncommutative setting, provided we ensure that

cyclicity holds. The noncommutativity we consider here is controlled by an abelian twist,

and amounts to a deformation of the exterior product:

τ ∧⋆ τ
′ ≡

∞∑

n=0

1

n!

(
i

2

)n

θA1B1 · · · θAnBn(ℓA1 · · · ℓAnτ) ∧ (ℓB1 · · · ℓBnτ
′)

= τ ∧ τ ′ +
i

2
θAB(ℓAτ) ∧ (ℓBτ

′) +
1

2!

(
i

2

)2

θA1B1θA2B2(ℓA1ℓA2τ) ∧ (ℓB1ℓB2τ
′) + · · ·

(2.11)

where θAB is a constant antisymmetric matrix, and ℓA are Lie derivatives along commuting

vector fields XA. The product is associative due to [XA, XB] = 0 (⇒ [ℓA, ℓB] = 0). If the

vector fields XA are chosen to coincide with the partial derivatives ∂µ, and if τ , τ ′ are

0-forms, then τ ⋆τ ′ reduces to the well-known Moyal-Groenewold product [22, 23]. A short

review on twisted differential geometry can be found for example in [24].

The deformed exterior product differs from the undeformed one by a total Lie deriva-

tive, indeed since [ℓA, ℓB] = 0 we can write

τ ∧⋆ τ
′ = τ ∧ τ ′ + ℓA1

∞∑

n=1

1

n!

(
i

2

)n

θA1B1 · · · θAnBn(ℓA2 · · · ℓAnτ) ∧ (ℓB1ℓB2 · · · ℓBnτ
′)

= τ ∧ τ ′ + ℓA1 Q
A1 (2.12)

where for brevity we have renamed the summation QA1 . In particular when τ ∧ τ ′ is a top

form we have ∫
τ ∧⋆ τ

′ =

∫
τ ∧ τ ′ (2.13)

3Notice that this argument does not work for finite gauge transformations because not all finite gauge

transformations on the boundary ∂M are induced by finite gauge transformations in the bulk M . In general

under finite gauge transformations the CS form changes by a locally exact form, related to a winding number.

Hence only the equations of motion are invariant under finite transformations.
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for suitable boundary conditions; indeed
∫
ℓA1Q

A1 =
∫
(iA1d + diA1)Q

A1 = 0 because

dQA1 = 0 since QA1 is a top form, and
∫
diA1Q

A1 = 0 if we integrate on a manifold without

boundary or if the forms τ and τ ′ have suitable boundary conditions. The equality (2.13)

implies that the integral of ⋆-wedge products of homogeneous forms has the usual graded

cyclic property
∫
τ ∧⋆ τ ′ = (−1)deg(τ) deg(τ

′)
∫
τ ′ ∧⋆ τ . Notice however that in general∫

τ ∧⋆ τ
′ ∧⋆ τ

′′ 6=
∫
τ ∧ τ ′ ∧ τ ′′.

If we now consider homogeneous forms T , T ′ that are Lie algebra valued, the trace of

the ∧⋆-product of forms is still graded cyclic up to total Lie derivative terms:

Tr(T ∧⋆ T
′) = (−1)deg(T ) deg(T ′) Tr(T ′ ∧⋆ T ) + ℓAQ

A ; (2.14)

and for suitable boundary conditions the integral of the trace has the graded cyclic property.

Noncommutative CS forms. We define noncommutative Chern-Simons actions by re-

placing ∧-products with ∧⋆-products in the commutative Chern-Simons action. This proce-

dure is unique if we integrate over manifolds without boundary or if the fields are properly

behaving at the boundary; it is not unique for CS forms because of the cyclic ordering

ambiguities (2.14), that are however irrelevant in the present paper. We denote by L
(2n−1)
CS∗

any one of the NC generalizations of the CS form L
(2n−1)
CS .

The check that the exterior derivative of the commutative CS form L
(2n−1)
CS gives

Tr(Rn) is algebraic, and relies only on the Leibniz rule property of the exterior deriva-

tive and on the graded cyclicity of the trace. Since the exterior derivative satisfies the

Leibniz rule also in the noncommutative case, and the graded cyclicity of the trace holds

up to total Lie derivatives, we can conclude that the noncommutative Chern-Simons form

satisfies the relation

dL
(2n−1)
CS∗ = Tr(R∧⋆n) + ℓCQ

(2n)C (2.15)

where Q(2n)C is due to cyclic reorderings and is a sum of wedge products of Lie derivatives

of connections and of their exterior derivatives.

We note that Q(2n)C is local in the noncommutative connection, in the sense that

expanding the ∧⋆-product, for any finite order in θ there is a finite number of Lie or

exterior derivatives.

In the noncommutative case the gauge group G usually has to be extended, because

⋆-commutators in general do not close in the original Lie algebra Lie(G). For example

Ω ∧⋆ Ω = Ωa ∧⋆ Ω
b T aT b (2.16)

=
1

2
(Ωa ∧⋆ Ω

b − Ωb ∧⋆ Ω
a)[T a, T b] +

1

2
(Ωa ∧⋆ Ω

b +Ωb ∧⋆ Ω
a){T a, T b} ,

with the second term nonvanishing because the ∧⋆-product is not antisymmetric. We

therefore consider Lie algebras with representations T a that close under the usual matrix

product (i.e. under commutators and anticommutators). Note however that this restriction

can be lifted when using the Seiberg-Witten map (see section 5).

It is easy to prove the invariance of the noncommutative Chern-Simons action under

infinitesimal ⋆-gauge transformations defined by:

δ⋆εΩ = dε− Ω ⋆ ε+ ε ⋆ Ω, ⇒ δ⋆εR = −R ⋆ ε+ ε ⋆ R . (2.17)
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Indeed

δ⋆ε

∫
L
(2n−1)
CS∗ =

∫
d(jεL

(2n−1)
CS∗ ) = 0 (2.18)

for suitable boundary conditions. This is so because in the ⋆-deformed case the variation

formulae (2.9), (2.10) still hold true under integration.

For example the D = 5 ⋆-Chern-Simons action reads
∫

L
(5)
CS∗ =

∫
Tr

[
R ∧⋆ R ∧⋆ Ω+

1

2
R ∧⋆ Ω ∧⋆ Ω ∧⋆ Ω+

1

10
Ω ∧⋆ Ω ∧⋆ Ω ∧⋆ Ω ∧⋆ Ω

]
.

(2.19)

and is invariant under the ⋆-gauge variations (2.17).

3 The Seiberg-Witten map

In the framework of Moyal deformed gauge theories, Seiberg and Witten showed how to

relate noncommutative fields (that transform under deformed gauge transformations) to

ordinary fields, called also classical fields, transforming with the usual gauge variation laws.

The Seiberg-Witten map expresses the NC fields as functions of the ordinary fields in such a

way that usual gauge variations on the latter induce ⋆-gauge variations on the former. The

map is nonlinear, and is determined order by order in the noncommutativity parameter θ.

Under this map, a NC action can be re-expressed in terms of classical fields. The result

is invariant under usual gauge variations (since the NC action is invariant under ⋆-gauge

variations), and can be written as the classical action plus higher order θ corrections, each

of which is separately gauge invariant under usual gauge variations (because usual gauge

variations do not involve θ). This map provides therefore an interesting mechanism to

generate extensions of usual commutative actions, with interaction terms that depend on

θ (for gravity actions see [5–9]).

Denoting by Ω̂ the NC gauge field, and by ε̂ the NC gauge parameter, the Seiberg-

Witten map relates Ω̂ to the ordinary Ω, and ε̂ to the ordinary ε and to Ω so as to satisfy:

Ω̂(Ω) + δ̂ε̂Ω̂(Ω) = Ω̂(Ω + δεΩ) (3.1)

with

δεΩ = dε+ ε Ω− Ωε , (3.2)

δ̂ε̂Ω̂ = dε̂+ ε̂ ⋆ Ω̂− Ω̂ ⋆ ε̂ . (3.3)

Thus the dependence of the NC gauge field on the ordinary gauge field is determined

by requiring that ordinary gauge variations of Ω inside Ω̂(Ω) produce the noncommutative

gauge variation of Ω̂.

The condition (3.1) is satisfied if the following differential equations in the noncom-

mutativity parameter θAB hold [1, 5]:

δθΩ̂ ≡ δθAB ∂

∂θAB
Ω̂ =

i

4
δθAB{Ω̂A, ℓBΩ̂ + R̂B}⋆ , (3.4)

δθε̂ ≡ δθAB ∂

∂θAB
ε̂ =

i

4
δθAB{Ω̂A, ℓB ε̂}⋆ , (3.5)

– 6 –
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where:

• Ω̂A, R̂A are defined as the contraction iA along the tangent vector XA of the exterior

forms Ω̂, R̂, i.e. Ω̂A ≡ iAΩ̂, R̂A ≡ iAR̂.

• The bracket { , }⋆ is the usual ⋆-anticommutator, for example {ΩA, RB}⋆ = ΩA ⋆

RB +RB ⋆ ΩA.

The differential equations (3.4)–(3.5) hold for any abelian twist defined by arbitrary

commuting vector fields XA [5]. They reduce to the usual Seiberg-Witten differential

equations [1] in the case of a Moyal-Groenewold twist, i.e. when XA → ∂µ.

We can solve these differential equations order by order in θ by expanding Ω̂ and

ε̂ in power series of θ, so that (the factor i
2 is inserted for ease of later notation) Ω̂ =

Ω + i
2θ

ABΩ′
AB − 1

8θ
ABθEFΩ′′

AB EF + . . . where i
2Ω

′
AB = ∂

∂θAB Ω̂|θ=0 etc., and similarly for

ε̂. For example up to first order in θ from (3.4) and (3.5) we immediately find

Ω̂ = Ω +
i

4
θAB{ΩA, ℓBΩ+RB}+O(θ2) , (3.6)

ε̂ = ε+
i

4
θAB{ΩA, ℓBε}+O(θ2) . (3.7)

Recursive formulas were found in [25] for the Moyal-Weyl product, and generalized for

the geometric SW map in [5]. Typically Ω̂ is a power series in θ of sums of products of

commutative connections, also contracted and differentiated (e.g. ΩA, iAdΩ, ℓAℓBΩ, etc.).

Again we say that Ω̂ is local in the commutative connection because for every power of

θ only a finite number of exterior derivatives appears. It follows that in this framework

noncommutative Lagrangians are power series in θ of commutative Lagrangians that are

local in the connection Ω.

4 The SW variation of NC Chern-Simons forms

In the following we omit the hat denoting noncommutative fields, the ⋆ and ∧⋆ products,

and simply write { , }, [ , ] for the ⋆-anticommutator and the ⋆-commutator { , }⋆, [ , ]⋆.

SW variation of Tr(Rn). An expression equivalent to (3.4) for the SW variation of

the connection 1-form is

δθΩ =
i

4
δθAB{ΩA,LBΩ− dΩB} . (4.1)

The “fat” Lie derivative LB is defined by LB ≡ ℓB +LB where LB is the covariant Lie

derivative along the tangent vector XB; it acts on every field P as

LBP = ℓBP − [Ω, P ].

In fact the covariant Lie derivative LB can be written in Cartan form:

LB = iBD +DiB , (4.2)

– 7 –
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where D is the covariant derivative: DP = dP − [Ω, P ] for P even form, DP = dP −{Ω, P}

for P odd form. In particular DR = 0 (Bianchi identity) follows from the definition of R.

Moreover LAR = iADR+DiAR = DRA.

The SW variation of the connection implies the following variation for the curvature

2-form R = dΩ− Ω ∧ Ω (an easy derivation uses equation (A.4) with P = Q = Ω),

δθR =
i

4
δθAB({ΩA,LBR} − [RA, RB]) . (4.3)

From this formula and iterated use of (A.4) the SW variation of the trace of Rn can be

proven to be (see appendix A):

δθTr(R
n) =

i

2
δθABTr

(
1

n+ 1
iBiAR

n+1

)
+

i

2
δθAB

(
dUAB +ℓCQ

C
AB

)
(4.4)

where the (2n− 1)-form UAB is given by

UAB = Tr

(
n−1∑

i=2

Ri−1DR[A(R
n−i)B]

)
(4.5)

with (Rn−i)B ≡ iB(R
n−i). Antisymmetrization in the indices A B has weight one (i.e.

[A B] =
1
2A B − 1

2B A). The precise expression (see appendix A for details) of the 2n-form

QC
AB, local in the NC connection, will not be relevant in the following.

SW variation of Tr(Rn) on a 2n-dimensional manifold M . If the forms are de-

fined on a 2n-dimensional manifold M , Tr(Rn) has top degree and its SW variation (4.4)

simplifies since Rn+1 = 0 being a (2n + 2)- form. Moreover, writing ℓC = iCd + d iC and

observing that dQC
AB = 0 because it is a (2n+ 1)-form, we obtain the SW variation of the

top form Tr(Rn):

δθTr(R
n) =

i

2
δθABd

(
UAB +iCQ

C
AB

)
. (4.6)

Let’s comment on the nontrivial information in this formula. The exactness of δθTr(Rn)

is a trivial consequence of considering Rn a top form. We write δθTr(R
n) = dη and

compare this expression with the SW variation of (2.15) that when Rn is a top form reads

δθTr(R
n) = dδθL

(2n−1)
CS⋆ −diCδθQ

(2n)C . Recalling the differential equation (3.4) we see that

η is local in the NC connection (i.e., that expanding the ∧⋆-product, for any finite order in

θ we have a finite number of Lie or exterior derivatives in the NC connection).

The nontrivial information in (4.6) is that ηAB, defined by η = δθABηAB, is given by

the sum UAB +iCQ
C
AB where the second term is a contraction of a 2n-form (local in the

NC connection), and the first term is expressed only in terms of products of curvatures,

their contractions and covariant derivatives, i.e., in terms of only gauge covariant fields.

SW variation of L
(2n−1)
CS⋆ . The SW variation of L

(2n−1)
CS⋆ can be inferred from eq. (2.15):

dL
(2n−1)
CS⋆ = Tr(Rn)+ℓCQ

(2n)C , where the Lie derivative term on the right hand side comes

from cyclic reorderings (in the commutative limit Q(2n)C = 0 since the trace in that case

– 8 –
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is cyclic). Using this relation in (4.4) yields the SW variation of dL
(2n−1)
CS⋆ in a manifold of

arbitrary dimension,

δθdL
(2n−1)
CS⋆ =

i

2
δθABd

(
1

n+ 1
iBiA(L

(2n+1)
CS ) + UAB

)
(4.7)

+
i

2
δθAB

(
−1

n+ 1
iBiAℓCQ

(2n+2)C + ℓCQ
C
AB

)
+ ℓC(δθQ

(2n)C) .

For forms living in a 2n-dimensional manifold M , this becomes

δθdL
(2n−1)
CS⋆ =

i

2
δθABd

(
UAB +iCQ

C
AB

)
+ diC(δθQ

(2n)C)

where we used the identity ℓC = iCd + d iC and the vanishing of forms of degree higher

than 2n. Equivalently on M we have

δθL
(2n−1)
CS⋆ =

i

2
δθAB

(
UAB + iCQ

C
AB

)
+ iC(δθQ

(2n)C) + dϕ

for some (2n− 1)-form ϕ written in terms of the connection, of exterior derivatives and of

contraction operators along the noncommutative directions.4

We now consider a (2n− 1)-dimensional submanifold N of M and choose commuting

vector fields {XA} on M that restrict to vector fields on N . In this case L
(2n−1)
CS⋆ is a top

form on N , and QC
AB = δθQ

(2n)C = 0 being 2n-forms on the (2n−1)-dimensional manifold

N . The SW variation of the CS action on a manifold N with no boundary or with fields

that have appropriate boundary conditions is therefore

δθ

∫
L
(2n−1)
CS⋆ =

i

2
δθAB

∫
UAB (4.8)

=
i

2
δθAB

∫
Tr

(
n−1∑

i=2

Ri−1DRA(R
n−i)B

)

=
i

2
δθAB

∫
Tr

(
RDRA

n−3∑

k=0

(k + 1)Rn−3−kRBR
k

)

where in the last equality we have evaluated the contraction operator iB on (Rn−i), inte-

grated by parts and cyclically reordered the terms in the sum.

This variation is zero for n = 1, 2. The first non vanishing SW variation of a Chern-

Simons action occurs for n = 3. In particular in three dimensions the SW expansion of the

noncommutative Chern-Simons action equals the commutative Chern-Simons action; this

result, for Moyal-Groenewold noncommutativity, was obtained in [13].5

In higher dimensions the variation is nonvanishing, and is expressed in terms of the

gauge covariant quantities R, RA and their covariant derivatives.

4The local structure of ϕ follows observing that the SW map is local in the sense discussed at the end

of section 3.
5We mention that the solution to (3.1) is not unique. For example if Â is a solution, any finite non-

commutative gauge transformation of Â gives another solution. Another source of ambiguities is related to

field redefinitions of the gauge potential. Use of a nonstandard solution to SW map may lead to different

results, see [26] where a nontrivial second order in θ expansion of the D = 3 CS action is constructed via a

nonstandard solution to SW map.
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Slowly varying fields and invariance of NC CS action under SW map. In [1]

(section 4.1) it is shown that for slowly varying field strength the noncommutative and

commutative Dirac-Born-Infeld actions coincide (up to a redefinition of the coupling con-

stant and of the metric). In our geometric framework, where the noncommutativity is

given by the vector fields {XA}, we can consider field strengths that are slowly varying

just along the noncommutative directions. The gauge covariant formulation of the slowly

varying field strength condition is LAR ∼ 0. In this case the noncommutative and commu-

tative CS actions coincide. Indeed DRA = iADR+DiAR = LAR ∼ 0, and hence UAB ∼ 0

(cf. (4.8)).

This result holds in particular in the U(1) case where the slowly varying field strenght

condition on commutative spacetime reads ℓAR
commutative ∼ 0. For nondegenerate Moyal-

Groenewold noncommutativity this is equivalent to ∂µR
commutative
νσ ∼ 0 that is the condition

considered in [1].

5 Extended CS actions from NC CS actions

Consider the Taylor series expansion of a NC CS action in powers of θ (the θ dependence

is due to the ⋆-product and to the SW map),
∫
L
(2n−1)
CS⋆ =

∫
L
(2n−1)
CS +

i

2
θAB

∫
L
(2n−1) ′

CS AB −
1

8
θABθEF

∫
L
(2n−1) ′′

CS ABEF + O(θ3) (5.1)

where
∫
L
(2n−1)
CS =

∫
L
(2n−1)
CS⋆ |θ=0 ,

i
2

∫
L
(2n−1) ′

CS AB = ∂
∂θAB

∫
L
(2n−1)
CS⋆ |θ=0, etc.. The right hand

side is a higher derivative action on commutative spacetime. It is an extension, with θ

corrections, of the commutative CS action
∫
L
(2n−1)
CS . The result of the previous section

gives the first order θ-correction to the commutative CS theory, so that the action of the

extended CS theory reads

∫
L
(2n−1)
CS +

i

2
θAB

∫
Tr

(
RDRA

n−3∑

k=0

(k + 1)Rn−3−kRBR
k

)
. (5.2)

We notice that this action is well defined for any gauge group G, and that it has the same

(off shell) degrees of freedom as the usual CS action. Like in modified gravity theories the

θ correction is just a further interaction term among the fields.

Note. In section 2 we had to consider NC CS actions with fields valued in a Lie alge-

bra representation T a closed under the matrix product rather than under commutators

(recall (2.16)). This in general is a severe restriction on the gauge group G (typically

requiring G = U(N)). Here however, the SW map relates the noncomutative fields corre-

sponding to products of generators T aT b . . . to the classical gauge fields of any gauge group

G [2, 3]. Thus the SW map allows to define NC CS actions for any gauge group.

5.1 D = 5 CS form to second order in θ

To evaluate the second order variation of
∫
L
(5)
CS⋆ ,

δθδθ

∫
L
(5)
CS⋆ =

i

2
δθδθ

AB

∫
RDRARB (5.3)
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we need the SW variation of RB and DRA. The first one is easily obtained by applying

the contraction operator iB to the SW variation of the curvature 2-form R, eq. (4.3).

The second one is obtained by summing the SW variation of dRA to the SW variation of

{Ω, RA}, that is evaluated using (4.1) and (A.4). The result is

δθRB =
i

4
θCD

(
{ΩC ,LDRB} − 2{RCB, RD}

)
,

δθDRA =
i

4
θCD

(
{ΩC ,LDDRA}+ 2{DRC , RDA} − LA[RC , RD]

)
. (5.4)

Next with the help of (A.4) we compute δθDRARB and finally using (B.3) we obtain6

δθδθ

∫
L
(5)
CS⋆ =

i

2
δθδθ

AB

∫
Tr(RDRARB) (5.5)

= −
1

4
δθABδθCD

∫
Tr

(
DRA

(
{RBR,RCD}+ {RB, RCDR}+ 2{RBC , RD}R+

+2{RBC , RDR} − 2[RB, RCRD] + 2[RBC , [R,RD]]− 2iD(DRB)DRC

))
.

The expansion at second order in power series of θ of the D = 5 noncommutative CS

action (2.19) is then given by

∫
L
(5)
CS⋆ =

∫
L
(5)
CS +

i

2
θAB

∫
Tr(RDRARB)−

1

8
θABθCD

∫
L
(5) ′′

CS ABCD +O(θ3) (5.6)

where L
(5) ′′

CS ABCD is the integrand in (5.5).

5.2 Extended D = 5 CS gravity to first order in θ

CS gravities and supergravities [27–31] present interesting alternatives to standard (su-

per)gravities in odd dimensions. Indeed CS gravities are a particular case of Lovelock

gravities [32], with at most second order equations for the metric. Moreover the gauge

(super)group contains the anti-de Sitter (super)algebra, so that the theory is translation

invariant and does not have dimensionful coupling constants. One can use group contrac-

tion to recover the (super)Poincaré algebra, but retrieving the Einstein-Hilbert term in this

limit is problematic. There are however techniques (S-expansion method [33]) to recover

Poincaré gravity from CS gravity with a particular “expanded” gauge algebra.

We study here the example of D = 5 Chern-Simons AdS pure gravity. The commuta-

tive SU(2, 2) connection and curvature are given by

Ω =
1

4
ωabγab −

i

2
V aγa, R =

1

4
Rabγab −

i

2
Raγa (5.7)

with

Rab = dωab − ωacω b
c + V aV b, Ra = dV a − ωa

cV
c (5.8)

6The last two terms are obtained from the term −2DRA(LDRB)LCR by use of the Cartan identity

LD = iDD+DiD, integrating by parts the exterior covariant derivative, observing that DDRA = −[R,RA]

and renaming indices.
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all indices a, b, . . . running on five values. The D = 5 gamma matrices γa, together with

their commutators γab ≡ 1
2 [γa, γb], close on the D = 5 AdS algebra SU(2, 2) ≈ SO(2, 4).

The SU(2, 2) connection contains both the vielbein V a and the spin connection ωab, and

correspondingly the SU(2, 2) curvature contains both the AdS curvature Rab and the torsion

Ra. After applying the SW map to the D = 5 noncommutative CS action (2.19), and using

the expression for the first order correction in (5.6), we obtain the extended D = 5 AdS

gravity action:

∫
L
(5)
CS⋆ =

∫
1

8
ǫabcde

(
RabRcdV e +

2

3
RabV cV dV e +

1

5
V aV bV cV dV e

)
+ (5.9)

+
1

2
θAB

(
RabDRac

A Rbc
B + 2RabV aRc

AR
bc
B +RabDRa

AR
b
B +

+RabRac
A V cRb

B +RaD(Rab
A Rb

B) + 2RaV [aR
b]
AR

b
B +RaRbc

AV cRab
B

)
+O(θ2),

where D is the SO(1, 4) Lorentz covariant derivative (with connection ωab).
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A The SW variation of Tr(Rn)

We first recall some formulas for the variation of a ∧⋆-product of fields [6]. We omit writing

explicitly star products.

Lemma 1. Let P,Q be arbitrary exterior forms. Then

{Ω[A,LB]P}Q+ P{Ω[A,LB]Q}+ 2ℓ[APℓB]Q = {Ω[A,LB](PQ)}+ 2L[APLB]Q , (A.1)

where we recall that the bracket [A B] denotes antisymmetrization of the indices A and B

with weight 1, so that for example Ω̂[ALB] =
1
2(Ω̂ALB − Ω̂BLA).

The proof is by a straightforward calculation.

Lemma 2. Let P,Q be arbitrary exterior forms and P ′
[AB], Q

′
[AB] be defined by their vari-

ations via the equations

δθP =
i

4
δθAB

(
{ΩA,LBP}+ P ′

[AB]

)
, (A.2)

δθQ =
i

4
δθAB

(
{ΩA,LBQ}+Q′

[AB]

)
. (A.3)
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Then

δθ(PQ) =
i

4
δθAB

(
{ΩA,LB(PQ)}+ 2LAPLBQ+ P ′

[AB]Q+ PQ′
[AB]

)
. (A.4)

This result easily follows from the previous lemma and from the ∧⋆-product variation

P ∧⋆θ+δθ
Q = P ∧⋆θ Q+ i

2δθ
ABℓAP ∧⋆θ ℓBQ.

We can now apply formula (A.4) to δθR
n written as δθ(RRn−1). Recalling the SW

variation of R given in (4.3), and defining (Rn−1)′[AB] from

δθR
n−1 =

i

4
δθAB

(
{ΩA,LBR

n−1}+ (Rn−1)′[AB]

)
(A.5)

one finds

δθR
n =

i

4
δθAB

(
{ΩA,LBR

n}+ 2LARLBR
n−1 − 2RARBR

n−1 +R(Rn−1)′[AB]

)
. (A.6)

Comparison with δθR
n = i

4δθ
AB

(
{ΩA,LBR

n}+ (Rn)′[AB]

)
leads to the recursive relation

(Rn)′[AB] = 2L[ARLB]R
n−1 − 2R[ARB]R

n−1 +R(Rn−1)′[AB]

= 2DR[AD(Rn−1)B] − 2R[ARB]R
n−1 +R(Rn−1)′[AB] (A.7)

with initial condition R′
[AB] = −[RA, RB] = −2R[ARB]. This recursive relation is easily

seen to be solved by

(Rn)′[AB] = 2
n−1∑

i=1

Ri−1DR[AD(Rn−i)B] − 2
n∑

i=1

Ri−1R[ARB]R
n−i . (A.8)

Using this expression, the Leibniz rule for LB and the identity LBΩA = RBA, we can

rewrite the SW variation of Tr(Rn) as

δθTr(R
n) =

i

4
δθABTr

(
LB{ΩA, R

n}+ {RAB, R
n} − 2

n∑

i=1

Ri−1RARBR
n−i +

+2
n−1∑

i=1

Ri−1DRAD(Rn−i)B

)

=
i

2
δθABTr

(
ℓB{ΩA, R

n}+RABR
n − nRARBR

n−1 + ℓCQ̌
C
AB +

+
n−1∑

i=1

RiRA(R
n−i)B −

n−1∑

i=1

Ri−1RAR(Rn−i)B +D

n−1∑

i=1

Ri−1DRA(R
n−i)B

)

(A.9)

where in the third line we have used cyclic reorderings to simplify the first line; the effect

of these reorderings is the addition of a total Lie derivative term ℓCQ̌
C
AB that can be

explicitly computed. The last line is the rewriting of the second line using the Leibniz rule

for D: Ri−1DRAD(Rn−i)B = D
(
Ri−1DRA(R

n−i)B
)
−Ri−1DDRA(R

n−i)B and DDRA =

−RRA +RAR.
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We next use the Leibniz rule for the contraction operator in the form RA(R
n−i)B =

RARBR
n−i−1 + RAR(Rn−i−1)B and then cyclic reorder the first and second terms in the

last line: they drastically simplify to just two summands (up to a total Lie derivative

absorbed in the term ℓCQ̌
C
AB), and we obtain

δθTr(R
n) =

i

2
δθABTr

(
ℓB{ΩA, R

n}+RABR
n −RARBR

n−1 −RAR(Rn−1)B +

+D

n−1∑

i=1

Ri−1DRA(R
n−i)B + ℓCQ̌

C
AB

)

=
i

2
δθABTr

(
ℓB{ΩA, R

n}+
1

n+ 1
iBiAR

n+1 + ℓCQ̌
C
AB

)
+

+
i

2
δθAB d Tr

(
n−1∑

i=2

Ri−1DRA(R
n−i)B

)
. (A.10)

To derive the last equality we observe that up to cyclic reorderings (absorbed in the ℓCQ̌
C
AB

term):

• Tr(iBiAR
n+1) = (n+1)Tr[RABR

n−RA(R
n)B] = (n+1)Tr[RABR

n−RARBR
n−1−

RAR(Rn−1)B],

• the covariant derivative can be replaced by the exterior derivative,

• the first term in the sum δθABd Tr
(∑n−1

i=1 Ri−1DRA(R
n−i)B

)
, i.e.

δθABd Tr
(
DRA(R

n−1)B
)
, vanishes.7

In conclusion the SW variation of Tr(Rn) is given by

δθTr(R
n) =

i

2
δθABTr

(
1

n+ 1
iBiAR

n+1

)
+

i

2
δθAB d Tr

(
n−1∑

i=2

Ri−1DRA(R
n−i)B

)

+
i

2
δθABℓCQ

C
AB (A.11)

where the sum Tr(ℓB{ΩA, R
n}+ ℓCQ̌

C
AB) has been renamed ℓCQ

C
AB.

B Useful identities

Cartan formulae. The usual Cartan calculus formulae simplify if we consider commut-

ing vector fields XA, and read

ℓA = iAd+ diA , LA = iAD +DiA

[ℓA, ℓB] = 0 , [LA, LB] = iAiBR

[ℓA, iB] = 0 , [LA, iB] = 0

iAiB + iBiA = 0 , d ◦ d = 0 , D ◦D = −R .

7One proves that up to cyclic reorderings Tr
(

DRA(R
n−1)B

)

is a total derivative, and therefore its

exterior derivative vanishes (since d2 = 0). Indeed Tr
(

DR[A(R
m)B]

)

= Tr
(
∑m−1

j=0 DR[AR
jRB]R

m−j−1
)

and the terms in this sum combine in pairs to give total derivatives (for m odd the central term is by itself

a total derivative). For example up to cyclic reorderings Tr
(

DR[AR
jRB]R

m−j−1+DR[AR
m−j−1RB]R

j
)

=

Tr
(

DR[AR
jRB]R

m−j−1 +R[BR
jDRA]R

m−j−1
)

= Tr
(

D(R[AR
jRB]R

m−j−1)
)

= dTr
(

R[AR
jRB]R

m−j−1
)

.
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Other useful identities are (cf. also [6]):

θABLALBP = −
1

2
θAB[RAB, P ] (B.1)

θAB
LAΩB = θABRAB (B.2)

θAB

∫
Tr

(
{ΩA,LB(PQ)}+ 2LAP LBQ

)
= θAB

∫
Tr

(
{RAB, P}Q

)
(B.3)

where LAP = ℓAP − [ΩA, P ], LA ≡ ℓA + LA and RA ≡ iAR, RAB ≡ iBiAR.

C Gamma matrices in D = 5

We summarize in this appendix our gamma matrix conventions in D = 5.

ηab = (1,−1,−1,−1,−1), {γa, γb} = 2ηab, [γa, γb] = 2γab, (C.1)

γ0γ1γ2γ3γ4 = −1, ε01234 = ε01234 = 1, (C.2)

γ†a = γ0γaγ0, (C.3)

γTa = CγaC
−1, C2 = −1, C† = CT = −C. (C.4)

C.1 Gamma identities

γaγb = γab + ηab (C.5)

γabc =
1

2
ǫabcdeγ

de (C.6)

γabcd = −ǫabcdeγ
e (C.7)

γabγc = ηbcγa − ηacγb +
1

2
ǫabcdeγ

de (C.8)

γcγab = ηacγb − ηbcγa +
1

2
ǫabcdeγ

de (C.9)

γabγcd = −εabcdeγ
e − 4δ

[a
[c γ

b]
d] − 2δabcd (C.10)

where δabcd ≡ 1
2(δ

a
c δ

b
d − δbcδ

a
d), and indices antisymmetrization in square brackets has total

weight 1.
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