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1 Introduction

Many scattering amplitudes were shown to have an universal soft behavior when the mo-

mentum of an external leg tends to zero. The soft limit can be traced back to the work [1–

6]. In recent years, a new soft theorem for gravity amplitudes was studied in [7–9]. Using

Britto-Cachazo-Feng-Witten (BCFW) recursion [10, 11] , Cachazo and Strominger have

proved the sub- and subsub- leading orders in the soft expansion [12], i.e.,1

Mn+1({ελs, λ̃s}, 1, . . . , n) =

(
1

ε3
S
(0)
GR +

1

ε2
S
(1)
GR +

1

ε
S
(2)
GR

)
Mn(1, . . . , n) +O(ε0). (1.1)

The leading, subleading and subsubleading orders of soft factors are given by

S
(0)
GR =

n∑
a=1

εsµνp
µ
ap
ν
a

ps · pa
, S

(1)
GR = −i

n∑
a=1

εsµνp
µ
a(ps,ρJ

ρν
a )

ps · pa
, S

(2)
GR =

−1

2

n∑
a=1

εsµν(ps,ρJ
ρµ
a )(ps,σJ

σν
a )

ps · pa
,

(1.2)

1The leading soft factor S
(0)
GR is not corrected to all loop orders is shown in [5, 6, 13] while the general

subleading behavior of soft gluons and gravitons has also been discussed in [14–16].
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where the εsµν is the polarization of the soft graviton, pi are external momenta and Jµν

are angular momenta of external legs. Using the BCFW recursion relation, the soft limit

of color-ordered tree-level Yang-Mills amplitudes was also studied in [17] and the result is

given by

An+1({ελs, λ̃s}, 1, . . . , n) =

(
1

ε2
S
(0)
YM +

1

ε
S
(1)
YM

)
An(1, . . . , n), (1.3)

where the leading and subleading soft factors are given by

S
(0)
YM =

∑
a∼s

εs · pa
ps · pa

, S
(1)
YM = −i

∑
a∼s

εsνpsµJ
µν
a

ps · pa
, (1.4)

with εsν denoting the polarization of the soft gluon and a ∼ s meaning partial a is next

to soft particle s. Many related studies have been achieved including the soft limits from

Poincare symmetry and gauge invariance [18, 19], Feynman diagram approach [20], con-

formal symmetry approach to the soft limits in Yang-Mills theory [21], the soft limit in

arbitrary dimension [22–25], loop correction of the soft limit [26–28, 30], string-theory

approach to the soft limit [29, 30] and ambitwistor string approach [31, 32].

In physics, it is very fruitful to study same thing from various angles because it will

deepen our understanding and reveal many hidden relations. Now on-shell graviton scat-

tering amplitudes can be calculated using many different ways, such as BCFW recursion

relation, the double-copy formula [33], CHY formula [34, 35] and KLT formula [36] (and

many more). Since the BCFW recursion relation and CHY formula have been successfully

used in the study, in this note we will try to use the KLT formula to investigate the new

soft graviton theorem.

Gravity amplitudes at tree level satisfy the famous Kawai-Lewellen-Tye (KLT) rela-

tion [36], with which, one can express the stripped tree-level gravity amplitudes Mn (i.e., the

momentum conservation δ4(
∑
pi) has been moved away) in terms of products of tree-level

color-ordered stripped Yang-Mills amplitudes An and Ãn

Mn(1, 2, . . . , n) =
∑
σ,ρ

An(σ)S[σ|ρ]Ãn(ρ), (1.5)

where S[σ|ρ] is called momentum kernel, which is a function of kinematic factors sij =

2pi · pj and depends on the permutations σ and ρ.2 KLT relation was firstly proposed

in string theory [36] and then was proved in field theory [37, 38] using BCFW recursion.

One important feature should be emphasized is that KLT is relation between stripped

amplitudes without imposing momentum conservation delta function.

Since KLT relation (1.5) connects gravity amplitudes to Yang-Mills amplitudes, it is

natural to expect that the soft limit of gravity amplitudes can be derived from that of

Yang-Mills amplitudes via KLT relation. In this work, we investigate this connection and

its consequences. Although the KLT relation holds to general dimension, for simplicity we

will focus on the pure 4D. We will show how the leading and sub-leading soft factors of

2In fact, the momentum kernel can be treated as the metric on the space of (n− 3)! BCJ basis.
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gravity amplitudes can be reproduced by the leading and sub-leading soft factors of Yang-

Mills amplitudes as it should be. However, to reach such now well established fact, some

nontrivial relations among changing matrix of (n − 3)! BCJ-basis and momentum kernel

S[ρ|σ] must be true. These nontrivial hidden identities are one of our main results.

The structure of this paper is following. In section 2, we provide a brief review of

KLT relation. In section 3, we recall the soft limit for stripped amplitudes of gravity and

Yang-Mills theory. In section 4, using results in section 3, we present the frame of the proof

of the soft graviton soft theorem via KLT relation. In section 5, two examples have been

given to demonstrate the frame in section 4. In section 6, we summarize our work with

some future directions. In appendix A, we present another more complicated example.

2 A review of KLT relation

In this section, we provide a brief review of various formulations of KLT relation for gravity
amplitudes (for more details, please refer [37, 38]). The most general formula [13] is given as

Mn(1, 2, . . . , n) =(−1)n+1
∑

σ∈Sn−3

∑
α∈Sj−1

∑
β∈Sn−2−j

An(1, σ2,j , σj+1,n−2, n− 1, n)S[ασ(2),σ(j)|σ2,j ]p1

× S[σj+1,n−2|βσ(j+1),σ(n−2)]pn−1Ãn(ασ(2),σ(j), 1, n− 1, βσ(j+1),σ(n−2), n) , (2.1)

where A and Ã are two copies of color-ordered Yang-Mills amplitudes and the momentum

kernel [37–39] is defined as

S[i1, i2, . . . , ik|j1, j2, . . . , jk]p1 =
k∏
t=1

(sit1 +
k∑
q>t

θ(it, iq)sitiq) (2.2)

where p1 is the pivot and θ(it, iq) is zero when pair (it, iq) has same ordering at both

set I = {i1, i2, . . . , ik},J = {j1, j2, . . . , jk}, otherwise it is one.3 In this definition, the

set J = {j1, j2, . . . , jk} is the reference ordering set, i.e., this set provides the standard

ordering. The set I = {i1, i2, . . . , ik} is the dynamical set which determines the dynamical

factor by comparing with set J . A few examples are the following:

S[2, 3, 4|2, 4, 3]p1 = s21(s31 + s34)s41, S[2, 3, 4|4, 3, 2]p1 = (s21 + s23 + s24)(s31 + s34)s41.

Although it is not so obvious, the momentum kernel, in fact, contains all BCJ-relations by

following identities

0 =
∑

α∈Sn−2

S[α(i2, . . . , in−1)|j2, j3, . . . , jn−2]An(n, α(i2, . . . , in−1), 1) , ∀j ∈ Sn−2 (2.3)

Using (2.3) we can derive following relation∑
α,β

S[αi2,ij |i2, . . . , ij ]p1S[ij+1, . . . , in−2|βij+1,in−2 ]pn−1Ãn(αi2,ij , 1, n− 1, βij+1,in−2 , n)

=
∑
α′,β′

S[α′i2,ij−1
|i2, . . . , ij−1]p1S[ij , ij+1, . . . , in−2|β′ij ,in−2

]Ãn(α′i2,ij−1
, 1, n− 1, β′ij ,in−2

, n) ,

(2.4)

3The function S is nothing, but the f -function defined in [13] with more symmetric and improved

expression
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Thus we can shift j in (2.1) all the way to make the left- or right-hand part empty, i.e.

we can choose j = 1 or j = n − 2. These special cases corresponds to the manifest

Sn−3-symmetric form (2.5) and its dual form (2.6), which are given by

Mn(1, . . . , n)=(−)n+1
∑

σ,σ̃∈Sn−3

An(1, σ2,n−2, n− 1, n)S[σ̃2,n−2|σ2,n−2]p1Ãn(n− 1, n, σ̃2,n−2, 1).

(2.5)

and

Mn(1, . . . , n)

= (−1)n+1
∑

σ,σ̃∈Sn−3

An(1, σ2,n−2, n− 1, n)S[σ2,n−2|σ̃2,n−2]pn−1Ãn(1, n− 1, σ̃2,n−2, n).

(2.6)

3 Review of soft limits of gravity and Yang-Mills theory

In this section, we review the soft behavior of gravity and Yang-Mills theory given in [12, 17].

Since in KLT formula, amplitudes used are these stripped amplitudes, thus we will focus

on the soft behaviors of these amplitudes.

We focus on the four dimensional case, thus we can use spinor variables. Under these

variables, soft factors in (1.2) and (1.4) are given by [12] for gravity theory4

S
(0)
GR = −

n∑
i=1

[s|i] 〈x|i〉 〈y|i〉
〈s|i〉 〈x|s〉 〈y|s〉

, S
(1)
GR = −1

2

n∑
i=1

[s|i]
〈s|i〉

(
〈x|i〉
〈x|s〉

+
〈y|i〉
〈y|s〉

)
λ̃α̇s

∂

∂λ̃α̇i

S
(2)
GR = −1

2

n∑
i=1

[s|i]
〈s|i〉

λ̃α̇s λ̃
β̇
s

∂2

∂λ̃α̇i λ̃
β̇
i

, (3.1)

where x, y are two auxiliary spinors used to define the helicity of soft graviton

ε+2 =

(
λxλ̃k
〈x|k〉

)(
λyλ̃k
〈y|k〉

)
+ {x↔ y} , (3.2)

and by [17] for Yang-Mills theory5

S
(0)
YM (n, s, 1, . . .) =

〈n|1〉
〈n|s〉 〈s|1〉

, S
(1)
YM (n, s, 1, . . .) =

1

〈s|1〉
λ̃s

∂

∂λ̃1
+

1

〈n|s〉
λ̃s

∂

∂λ̃n
. (3.3)

To reach these expressions, we have used the fact that in 4D, angular momentum can be
written as spinor form

Jµν → −2Jαβεα̇β̇ − 2J̃α̇β̇εαβ , Jαβ =
i

2

(
λα

∂

∂λβ
+ λβ

∂

∂λα

)
, J̃α̇β̇ =

i

2

(
λ̃α̇

∂

∂λ̃β̇
+ λ̃β̇

∂

∂λ̃α̇

)
.

(3.4)

We will explain the meaning of differential operators for stripped amplitudes shortly.

4It is worth to emphasize that here we have used the QCD convention, i.e., 2p · q = 〈p|q〉 [q|p].
5We have assumed the color ordering is (1, . . . , n, s).
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For stripped amplitudes, we must impose momentum conservation from beginning.

This can be done as given in [12]. Under the holomorphic soft limit which is defined as

λs → ελs, λ̃s → λ̃s (3.5)

momentum conservation
∑n

i=1 ki + εks = 0 can be used to solve two arbitrarily chosen

anti-spinors λ̃i, λ̃j as

λ̃i = −
∑
k 6=i,j

〈j|k〉
〈j|i〉

λ̃k − ε
〈j|s〉
〈j|i〉

λ̃s, λ̃j = −
∑
k 6=i,j

〈i|k〉
〈i|j〉

λ̃k − ε
〈i|s〉
〈i|j〉

λ̃s (3.6)

In other words, for stripped amplitudes, now the independent variables are λi( i = 1, . . . , n),

λs, λ̃s and λ̃k (k = 1, . . . , n and k 6= i, j). With the fixed choice of pair (i, j), when we use

the BCFW recursion relation to discuss the soft behavior as was done in [27], for example,

for an (n+1)-point color-ordered Yang-Mills amplitude A({ελs, λ̃s}, {λ1, λ̃1}, . . . , {λn, λ̃n})
with hs = +1, we will receive contributions to the singular part from the two-particle

channel

An+1

(
{ελs, λ̃s}+, 1, . . . , n

)
|div = A3

(
ŝ+, 1h1 ,−P̂−hi1s

) 1

P 2
1s

An

(
P̂ hi1s , . . . , n̂

)
|div (3.7)

under the (s, n)-shift

ελs(z) = ελs + zλn, λ̃n(z) = λ̃n − zλ̃s . (3.8)

It is easy to calculate the divergent part and we find

−〈n|1〉
ε2 〈n|s〉 〈s|1〉

An

(
{λ1, λ̃1 + ε

〈n|s〉
〈n|1〉

λ̃s}h1 , . . . , {λi, λ̃i(ε)}, . . . {λj , λ̃j(ε)}, . . . , {λn, λ̃n + ε
〈1|s〉
〈1|n〉

λ̃s}
)

(3.9)

where (3.6) must be used. A compact way to rewrite above expression is to assume λ̃i, λ̃j
to be independent first, so we have

−〈n|1〉
ε2 〈n|s〉 〈s|1〉

×{
e
ε
〈n|s〉
〈n|1〉 λ̃s

∂

∂λ̃1
−ε 〈j|s〉〈j|i〉 λ̃s

∂

∂λ̃i
−ε 〈i|s〉〈i|j〉 λ̃s

∂

∂λ̃j
+
ε〈1|s〉
〈1|n〉 λ̃s

∂

∂λ̃nAn

(
{λ1, λ̃1}, . . . , {λj , λ̃j}, . . . , {λn, λ̃n}

)}
(3.10)

Only after the action of ∂

∂λ̃i
and ∂

∂λ̃j
, we can replace λ̃i, λ̃j by (3.6) with ε = 0. However, if

we insist to use (3.6) from beginning, λ̃i, λ̃j will depend on λ̃1, λ̃n thus the total derivative

of d

dλ̃1
and d

dλ̃n
must be written as

d

dλ̃1
=

∂

∂λ̃1
+

∂

∂λ̃i

(
−〈j|1〉
〈j|i〉

)
+

∂

∂λ̃j

(
−〈i|1〉
〈i|j〉

)
d

dλ̃n
=

∂

∂λ̃n
+

∂

∂λ̃i

(
−〈j|n〉
〈j|i〉

)
+

∂

∂λ̃j

(
−〈i|n〉
〈i|j〉

)
. (3.11)

– 5 –
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Using above formula, it is easy to check that

〈n|s〉
〈n|1〉

λ̃s
d

dλ̃1
+
〈1|s〉
〈1|n〉

λ̃s
d

dλ̃n
=
〈n|s〉
〈n|1〉

λ̃s
∂

∂λ̃1
+
〈1|s〉
〈1|n〉

λ̃s
∂

∂λ̃n
− 〈j|s〉
〈j|i〉

λ̃s
∂

∂λ̃i
− 〈i|s〉
〈i|j〉

λ̃s
∂

∂λ̃j
, (3.12)

thus (3.10) becomes

−〈n|1〉
ε2 〈n|s〉 〈s|1〉

{
e
〈n|s〉
〈n|1〉 λ̃s

d

dλ̃1
+
〈1|s〉
〈1|n〉 λ̃s

d

dλ̃nAn

(
{λ1, λ̃1}, . . . , {λj , λ̃j}, . . . , {λn, λ̃n}

)}
(3.13)

Having this new understanding, the meaning of soft factors in (3.1) and (3.3) becomes clear:

while there are no variables λ̃i, λ̃j anymore in stripped amplitudes, all partial derivatives

should be considered as a kind of “total derivative” in the sense of (3.11).

4 KLT relation approach to the soft behavior of gravity amplitude

Having above preparations, now we study the soft behavior of stripped gravity amplitudes

using the soft behavior of stripped Yang-Mills amplitudes as input through KLT relation.

The total symmetry among the n-particles of gravity amplitudes allows us to choose any

leg to be soft leg. We take p1 to be soft and solve n− 1, n as

λ̃n−1 = −
n−2∑
k=2

〈n|k〉
〈n|n− 1〉

λ̃k − ε
〈n|1〉
〈n|n− 1〉

λ̃1, λ̃n = −
n−2∑
k=2

〈n− 1|k〉
〈n− 1|n〉

λ̃k − ε
〈n− 1|1〉
〈n− 1|n〉

λ̃1. (4.1)

The choice of KLT formula: in section 2, we have reviewed various formulations of

KLT relation. To make the discussion simpler, we should start with proper choice of KLT

formula. Since the leading contribution from two gluon amplitudes is the order 1
ε2
× 1

ε2

while the leading contribution of graviton amplitude is 1
ε3

, we are better to have manifest

ε-factor from kernel part. Furthermore, since we have solved λ̃n−1, λ̃n in (4.1), it is more

convenient to have formula as less related to pn−1, pn as possible. Taking these things into

consideration, we use the general formula given by (2.1) with j = 2

Mn = (−1)n+1
n−2∑
t=2

∑
σ,β∈Sn−4

An(1, t, σ, n− 1, n)S[t|t]p1S[σ|β]pn−1Ãn(t, 1, n− 1, β, n) (4.2)

In this form, S[t|t]p1 → εs1t, while the expansion of the other kernel S[σ|β]pn−1 can be

written as6

e
+ε
〈n|1〉
〈n|t〉 λ̃1

d

dλ̃t S[σ|β]pn−1 . (4.3)

6From the definition of kernel, the ε-expansion should be given by e
−ε 〈n|1〉〈n|n−1〉 λ̃1| ∂

∂λ̃n−1 S[σ|β]pn−1 . How-

ever, noticing that

λ̃1
d

dλ̃t
S[σ|β]pn−1 = λ̃1

(
− 〈n|t〉
〈n|n− 1〉

)
∂

∂λ̃n−1

S[σ|β]pn−1

where we have used the fact that λ̃s
d

dλ̃t
S[σ|β]pn−1 does not contain momentum pt, we obtain (4.3).

– 6 –
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For convenience, we use (3.3) to write down the singular soft limit of two stripped ampli-
tudes in (4.2) as

A(n−1,n)
n (1, t, σ, n− 1, n) → 1

ε2
〈n|t〉

〈n|1〉 〈1|t〉
A

(n−1,n)
n−1 (t, σ, n− 1, n)

+
1

ε

〈n|t〉
〈n|1〉 〈1|t〉

(
〈n|1〉
〈n|t〉

λ̃1
d

dλ̃t
+
〈t|1〉
〈t|n〉

λ̃1
d

dλ̃n

)
An−1(t, σ, n− 1, n), (4.4)

Ã(n−1,n)
n (t, 1, n− 1, β, n) → 1

ε2
〈t|n− 1〉

〈t|1〉 〈1|n− 1〉
Ãn(t, n− 1, β, n)

+
1

ε

〈t|n− 1〉
〈t|1〉 〈1|n− 1〉

(
〈t|1〉
〈t|n− 1〉

λ̃1
d

dλ̃n−1
+
〈n− 1|1〉
〈n− 1|t〉

λ̃1
d

dλ̃t

)
Ãn(t, n− 1, β, n).

(4.5)

In the remainder of this section, we discuss the soft behavior of gravity amplitudes by

KLT relations order by order.

4.1 The leading order part

Substituting the leading part of color-ordered Yang-Mills amplitudes A, Ã (given by 1
ε2

terms of (4.4), (4.5)) as well as the leading part of momentum kernel S (given by the ε

term of S[t|t]p1S[σ|β]pn−1) into the KLT expression (4.2), we get the leading part of gravity

amplitude under soft limit

Mn = (−1)n+1
n−2∑
t=2

∑
σ,β∈Sn−4

1

ε2
〈n|t〉

〈n|1〉 〈1|t〉
A

(n−1,n)
n−1 (t, σ, n− 1, n)εs1tS[σ|β]pε→0

n−1

1

ε2
〈t|n− 1〉

〈t|1〉 〈1|n− 1〉
Ã(n−1,n)
n (t, n− 1, β, n)

=
1

ε3
(−1)n+1

n−2∑
t=2

[t|1]

〈t|1〉
〈n|t〉
〈n|1〉

〈n− 1|t〉
〈n− 1|1〉

×∑
σ,β∈Sn−4

A
(n−1,n)
n−1 (t, σ, n− 1, n)S[σ|β]pε→0

n−1
Ã(n−1,n)
n (t, n− 1, β, n)

=
1

ε3
(−)

n−2∑
t=2

[t|1]

〈t|1〉
〈n|t〉
〈n|1〉

〈n− 1|t〉
〈n− 1|1〉

Mn−1(2, . . . , n)

=
1

ε3
S
(0)
GRMn−1(2, . . . , n) (4.6)

where, on the third line, we have used the Sn−3-symmetric KLT relation (2.6) for (n− 1)-

point amplitudes. The soft factor of gravity is nothing but the S
(0)
GR defined in (3.1) with

x = n and y = n− 1.

4.2 The subleading order part

Now let us study the subleading order of stripped gravity amplitudes under the soft limit.

We will do it in three steps. In the first step, we act the S
(1)
GR defined in (3.1) on the
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KLT expressions (2.6) of (n− 1)-point gravity amplitudes directly. In the second step, we

collect contributions of the subleading part from color ordered Yang-Mills amplitudes and

momentum kernel in (4.2). Finally, we compare the two expressions from first two steps to

prove (check) the subleading order soft factor S
(1)
GR of gravity amplitude.

4.2.1 The sub-leading part from direct acting of S
(1)
GR

We use the subleading soft factor given by (3.1)

S
(1)
GR,(n−1)n = −

n∑
i=2

[1|i]
〈1|i〉

〈n− 1|i〉
〈n− 1|1〉

λ̃1
d

dλ̃i
= −

n−2∑
i=2

[1|i]
〈1|i〉

〈n− 1|i〉
〈n− 1|1〉

λ̃1
d

dλ̃i
(4.7)

where we have taken the gauge choice x = y = n− 1, thus d

dλ̃n−1
= d

dλ̃n
= 0. When acting

it with the form (4.7) on Mn−1, for each i, we take different representation of Mn−1,
7 i.e.,

S
(1)
GR,(n−1)nMn−1(2, . . . , n) = −

n−2∑
i=2

[1|i]
〈1|i〉

〈n− 1|i〉
〈n− 1|1〉

λ̃1
d

dλ̃i
Mn−1(2, . . . , n)

= −
n−2∑
i=2

[1|i]
〈1|i〉

〈n− 1|i〉
〈n− 1|1〉

λ̃1
d

dλ̃i

(−1)n
∑

σ,β∈Sn−4

An−1(i, σ, n− 1, n)S[σ|β]pn−1
Ãn−1(i, n− 1, β, n)


= (−)n+1

n−2∑
i=2

∑
σ,β∈Sn−4

[1|i]
〈1|i〉

〈n− 1|i〉
〈n− 1|1〉

An−1(i, σ, n− 1, n)

(
λ̃1

d

dλ̃i
S[σ|β]pn−1

)
Ãn−1(i, n− 1, β, n)

+(−)n+1
n−2∑
i=2

∑
σ,β∈Sn−4

[1|i]
〈1|i〉

〈n− 1|i〉
〈n− 1|1〉

(
λ̃1

d

dλ̃i
An−1(i, σ, n− 1, n)

)
S[σ|β]pn−1

Ãn−1(i, n− 1, β, n)

+(−)n+1
n−2∑
i=2

∑
σ,β∈Sn−4

[1|i]
〈1|i〉

〈n− 1|i〉
〈n− 1|1〉

An−1(i, σ, n− 1, n)S[σ|β]pn−1

(
λ̃1

d

dλ̃i
Ãn−1(i, n− 1, β, n)

)
.

(4.8)

4.2.2 The sub-leading order part from KLT relation

Now we collect the contributions of the subleading part from the KLT relation (4.2). There
are three contributions at this order. The first term is to take kernel to second order of ε,
while A, Ã are the first order (see (4.4) and (4.5)). This part is given by

T1 = (−1)n+1
n−2∑
t=2

∑
σ,β∈Sn−4

[1|t]
〈1|t〉

〈n|t〉 〈n− 1|t〉
〈n|1〉 〈n− 1|1〉

An−1(t, σ, n− 1, n)

(
〈n|1〉
〈n|t〉

λ̃1
d

dλ̃t
S[σ|β]pn−1

)
×

Ãn−1(t, n− 1, β, n)

= (−1)n+1
n−2∑
t=2

∑
σ,β∈Sn−4

[1|t]
〈1|t〉

〈n− 1|t〉
〈n− 1|1〉

An−1(t, σ, n− 1, n)

(
λ̃1

d

dλ̃t
S[σ|β]pn−1

)
Ãn−1(t, n− 1, β, n)

(4.9)

7It is worth to notice that although as a whole, we have the freedom to chose x, y for S
(1)

GR,(n−1)n, when

we act it for different i and different part A, Ã in (4.8), we need to stick to a particular gauge choice.
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For the second term, we keep the leading order of kernel and Ã while taking the
subleading order of A, thus we have

T2 = (−1)n+1
n−2∑
t=2

∑
σ,β∈Sn−4

[1|t]
〈1|t〉

〈n|t〉 〈n− 1|t〉
〈n|1〉 〈n− 1|1〉

×
[(
〈n|1〉
〈n|t〉

λ̃1
d

dλ̃t
+
〈t|1〉
〈t|n〉

λ̃1
d

dλ̃n

)
An−1(t, σ, n− 1, n)

]
S[σ|β]pn−1

Ãn(t, n− 1, β, n)

= (−1)n+1
n−2∑
t=2

∑
σ,β∈Sn−4

[1|t]
〈1|t〉

〈n− 1|t〉
〈n− 1|1〉

(
λ̃1

d

dλ̃t
An−1(t, σ, n− 1, n)

)
S[σ|β]pn−1 ×(

Ãn(t, n− 1, β, n)
)
,

(4.10)

where we have used the fact that d

dλ̃n
An−1(t, σ, n− 1, n) = 0

For the third term, we keep the leading order of kernel and A while take the subleading
order of Ã, thus we have

T3 = (−1)n+1
n−2∑
t=2

∑
σ,β∈Sn−4

[1|t]
〈1|t〉

〈n|t〉 〈n− 1|t〉
〈n|1〉 〈n− 1|1〉

An−1(t, σ, n− 1, n)S[σ|β]pn−1({
〈t|1〉
〈t|n− 1〉

λ̃1
d

dλ̃n−1
+
〈n− 1|1〉
〈n− 1|t〉

λ̃1
d

dλ̃t

}
Ã(n−1,n)
n (t, n− 1, β, n)

)

= (−1)n+1
n−2∑
t=2

∑
σ,β∈Sn−4

[1|t]
〈1|t〉

〈n|t〉
〈n|1〉

An−1(t, σ, n− 1, n)S[σ|β]pn−1

(
λ̃1

d

dλ̃t
Ã(n−1,n)
n (t, n− 1, β, n)

)
(4.11)

where again we have used the fact λ̃1
d

dλ̃n−1
Ã

(n−1,n)
n (t, n− 1, β, n) = 0.

4.2.3 Comparing sub-leading parts

Now we compare (4.8) with T1, T2, T3. It is easy to see when we identify i = t, we have

∆ = S
(1)
GR,(n−1)nMn−1(2, . . . , n)− T1 − T2 − T3

= (−1)n+1
n−2∑
t=2

∑
σ,β∈Sn−4

[1|t]
〈1|t〉

(
〈n− 1|t〉
〈n− 1|1〉

− 〈n|t〉
〈n|1〉

)
An−1(t, σ, n− 1, n)S[σ|β]pn−1

×

(
λ̃1

d

dλ̃t
Ã(n−1,n)
n (t, n− 1, β, n)

)
= (−1)n+1

n−2∑
t=2

∑
σ,β∈Sn−4

[1|t] 〈n|n− 1〉
〈n− 1|1〉 〈n|1〉

An−1(t, σ, n− 1, n)S[σ|β]pn−1 ×(
λ̃1

d

dλ̃t
Ã(n−1,n)
n (t, n− 1, β, n)

)
= (−1)n+1

n−2∑
t=2

∑
σ,β∈Sn−4

λ̃α̇1 λ̃
β̇
1 〈n|n− 1〉

〈n− 1|1〉 〈n|1〉
An−1(t, σ, n− 1, n)S[σ|β]pn−1

×

(
λ̃t,α̇

d

dλ̃β̇t

Ã(n−1,n)
n (t, n− 1, β, n)

)
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= (−1)n+1
n−2∑
t=2

∑
σ,β∈Sn−4

λ̃α̇1 λ̃
β̇
1 〈n|n− 1〉

〈n− 1|1〉 〈n|1〉
An−1(t, σ, n− 1, n)S[σ|β]pn−1(−i)×

(
Jt,α̇β̇Ãn(t, n− 1, β, n)

)
(4.12)

It is obviously that to prove (or check) the subleading soft factor S
(1)
GR,(n−1)n, we need to

prove (or check) ∆ = 0. Before going to the detail, let us notice that in (4.12) only the

anti-spinor part of angular momentum Jt,α̇β̇ appears.

Now we present the idea of proof. In (4.12), for each t, we have used different BCJ-

basis for color ordered partial amplitudes. Thus the first step is to translate various basis

into a standard basis. In other words, we should do following transformation

An−1(t, σt, n− 1, n) =
∑

σt̃∈Sn−4

An−1(t̃, σt̃, n− 1, n)D[t̃, σt̃, n− 1, n|t, σt, n− 1, n]

Ãn−1(t, n− 1, βt, n) =
∑

βt̃∈Sn−4

C[t, n− 1, βt, n|t̃, n− 1, βt̃, n]Ãn−1(t̃, n− 1, βt̃, n). (4.13)

where we have used the σt to denote the permutations of n − 4-elements after deleting
particles 1, n, n− 1, t. Inserting above transformation into the extra term (4.12), when we
choose e.g., t̃ = 2 in above equations, we obtain

(−1)n+1∆

= (−i)
∑

σ2,β2∈Sn−4

λ̃α̇1 λ̃
β̇
1 〈n|n− 1〉

〈n− 1|1〉 〈n|1〉
An−1(2, σ2, n− 1, n)×

n−2∑
t̃=2

∑
σt̃,βt̃∈Sn−4

D[2, σ2, n− 1, n|t̃, σt̃, n− 1, n]S[σt̃|βt̃]pn−1

Jt̃,α̇β̇

{
C[t̃, n− 1, βt̃, n|2, n− 1, β2, n]Ãn−1(2, n− 1, β2, n)

}
= (−i)

∑
σ2,β2∈Sn−4

λ̃α̇1 λ̃
β̇
1 〈n|n− 1〉

〈n− 1|1〉 〈n|1〉
An−1(2, σ2, n− 1, n)×

n−2∑
t̃=2

∑
σt̃,βt̃∈Sn−4

D[2, σ2, n− 1, n|t̃, σt̃, n− 1, n]S[σt̃|βt̃]pn−1

C[t̃, n− 1, βt̃, n|2, n− 1, β2, n]
{
J̃t̃,α̇β̇An−1(2, n− 1, β2, n)

}
+(−i)

∑
σ2,β2∈Sn−4

λ̃α̇1 λ̃
β̇
1 〈n|n− 1〉

〈n− 1|1〉 〈n|1〉
An−1(2, σ2, n− 1, n)×

n−2∑
t̃=2

∑
σt̃,βt̃∈Sn−4

D[2, σ2, n− 1, n|t̃, σt̃, n− 1, n]S[σt̃|βt̃]pn−1{
Jt̃,α̇β̇C[t̃, n− 1, βt̃, n|2, n− 1, β2, n]

}
Ãn−1(2, n− 1, β2, n). (4.14)

For the first term in (4.14), if we have the following identity∑
σt̃,βt̃∈Sn−4

D[t, σt, n− 1, n|t̃, σt̃, n− 1, n]S[σt̃|βt̃]pn−1C[t̃, n− 1, βt̃, n|t, n− 1, βt, n] = S[σt|βt]pn−1 ,

(4.15)
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the first term can be simplified as

∑
σ2,β2∈Sn−4

λ̃α̇1 λ̃
β̇
1 〈n|n− 1〉

〈n− 1|1〉 〈n|1〉
An−1(2, σ2, n− 1, n)

n−2∑
t̃=2

S[σ2|β2]pn−1

{
Jt̃,α̇β̇Ãn−1(2, n− 1, β2, n)

}

=
∑

σ2,β2∈Sn−4

λ̃α̇1 λ̃
β̇
1 〈n|n− 1〉

〈n− 1|1〉 〈n|1〉
An−1(2, σ2, n− 1, n)S[σ2|β2]pn−1


n−2∑
t̃=2

Jt̃,α̇β̇

 Ãn−1(2, n− 1, β2, n)


= 0, (4.16)

where we have used angular momentum conservation

λ̃α̇1 λ̃
β̇
1


n−2∑
t̃=2

Jt̃,α̇β̇

{Ãn−1(2, n− 1, β2, n)
}

= λ̃α̇1 λ̃
β̇
1


n∑
t̃=2

Jt̃,α̇β̇

{Ãn−1(2, n− 1, β2, n)
}

= (−λ̃α̇1 λ̃
β̇
1Jt̃=1,α̇β̇)

{
Ãn−1(2, n− 1, β2, n)

}
= 0 . (4.17)

For the second term in (4.14), if we have the following identity

0 =

n−2∑
t̃=2

∑
σt̃,βt̃∈Sn−4

D[t, σt, n− 1, n|t̃, σt̃, n− 1, n]S[σt̃|βt̃]pn−1Jt̃,α̇β̇
{
C[t̃, n− 1, βt̃, n|t, n− 1, βt, n]

}
,

(4.18)

for arbitrary t ∈ {2, 3, . . . , n− 2} and related {σt, βt}, the contribution vanishes also.

Identities (4.15) and (4.18) are the consistency requirement of the new soft graviton

theorem and the old KLT formula. While the first identity can be understood from the

changing of the basis (we will discuss it shortly), the second identity is very nontrivial.

Currently, we do not have an analytic proof for them although in our few examples, we

have checked them explicitly. We believe the knowledge of these two identities will tell us

some important aspects of momentum kernel S[α|β].

Now we present the physical understanding of the first identity (4.15). Noticing that

we have many (n − 3)! symmetry KLT forms. They are equivalent to each other, but it

is hard to see that from the angle of BCJ relation for color-ordered Yang-Mills theory. In

other words, we have

Mn−1 =
∑

σt,βt∈Sn−4

An−1(t, σt, n− 1, n)S[σt|βt]pn−1Ãn−1(t, n− 1, βt, n)

=
∑

σt̃,βt̃∈Sn−4

An−1(t̃, σt̃, n− 1, n)S[σt̃|βt̃]pn−1Ãn−1(t̃, n− 1, βt̃, n) (4.19)

where σt, βt is the set of removing element t from {2, 3, . . . , n− 2}. Plugging the transfor-
mation of basis (4.13) back, we have∑

σt̃,βt̃∈Sn−4

An−1(t̃, σt̃, n− 1, n)S[σt̃|βt̃]pn−1
Ãn−1(t̃, n− 1, βt̃, n)

=
∑

σt̃,βt̃∈Sn−4

 ∑
σt∈Sn−4

An−1(t, σt, n− 1, n)D[t, σt, n− 1, n|t̃, σt̃, n− 1, n]

S[σt̃|βt̃]pn−1

– 11 –
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 ∑
βt∈Sn−4

C[t̃, n− 1, βt̃, n|t, n− 1, βt, n]Ãn−1(t, n− 1, βt, n)


=

∑
σt∈Sn−4

An−1(t, σt, n− 1, n)

 ∑
σt̃,βt̃∈Sn−4

D[t, σt, n− 1, n|t̃, σt̃, n− 1, n]S[σt̃|βt̃]pn−1
×

C[t̃, n− 1, βt̃, n|t, n− 1, βt, n]

×
Ãn−1(t, n− 1, βt, n) (4.20)

Because the independence of the BCJ basis, we should obtain the identity (4.15).

4.3 The sub-sub-leading part from KLT relation

Now we consider the sub-sub-leading order. From the KLT formula, we have

(ε−2AL,0 + ε−1AL,1 + ε0AL,2 + . . .)(εS0 + ε2S1 + ε3S2 + . . .)(ε−2AR,0 + ε−1AR,1 + ε0AR,2 + . . .)

= ε−3AL,0S0AR,0 + ε−2(AL,1S0AR,0 +AL,0S1AR,0 +AL,0S0AR,1)

+ε−1(AL,2S0AR,0 +AL,0S2AR,0 +AL,0S0AR,2 +AL,1S1AR,0 +AL,0S1AR,1+AL,1S0AR,1) + . . .

(4.21)

Thus we see that to use this formula to study the sub-sub-leading singularity, we need to

get the information of ε0AL,2, which does not have the universal structure and has not

been fully discussed.

5 Examples

Having the general frame in previous section, we will present a few examples to demonstrate

our ideas. In this section, we will give examples of n = 5, 6 while the more complicated

example of n = 7 will be given in the appendix.

5.1 The case n = 5

Following our convention, in the stripped amplitude, λ̃4 and λ̃5 should be replaced by

λ̃4 = −
∑
k=2,3

〈5|k〉
〈5|4〉

λ̃k − ε
〈5|1〉
〈5|4〉

λ̃1, λ̃5 = −
∑
k=2,3

〈4|k〉
〈4|5〉

λ̃k − ε
〈4|1〉
〈4|5〉

λ̃1. (5.1)

In particular that d

dλ̃β̇4

Ã = d

dλ̃β̇5

Ã = 0, and therefore J4α̇β̇Ã = J5α̇β̇Ã = 0. At 5-points it is

relatively straightforward to write down all of the terms in ∆ as

∆n=5 =
λ̃α̇1 λ̃

β̇
1 〈5|4〉

〈4|1〉 〈5|1〉

{
A4(2, 3, 4, 5)S[3|3]p4

(
J2,α̇β̇Ã4(2, 4, 3, 5)

)
+A4(3, 2, 4, 5)S[2|2]p4

(
J3,α̇β̇Ã4(3, 4, 2, 5)

)}
=
λ̃α̇1 λ̃

β̇
1 〈5|4〉

〈4|1〉 〈5|1〉

{
A4(2, 3, 4, 5)s34

(
J2,α̇β̇Ã4(2, 4, 3, 5)

)
+A4(3, 2, 4, 5)s24

(
J3,α̇β̇Ã4(3, 4, 2, 5)

)}
(5.2)
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For simplicity, we suppress overall factors (−i) from the ∆ here and in the following dis-

cussions. Now we do the changing of basis, i.e., using the BCJ relation to write

A4(3, 2, 4, 5) =
s34
s24

A4(2, 3, 4, 5)

Ã4(3, 4, 2, 5) = (−)4Ã4(5, 2, 4, 3) = Ã4(2, 4, 3, 5) (5.3)

Plugging them back we get

∆n=5 =
λ̃α̇1 λ̃

β̇
1 〈5|4〉

〈4|1〉 〈5|1〉
A4(3, 2, 4, 5)s24̂

{(
J3,α̇β̇ + J2,α̇β̇

)
Ã4(3, 4, 2, 5)

}
= 0 (5.4)

by angular momentum conservation
∑5

i=2 JiÃ = 0 (where J4Ã = J5Ã = 0 has been used).

For this case, two identities (4.15) and (4.18) are trivial to check.

5.2 The case n = 6

For n = 6 the difference term ∆n=6 splits into three parts: t = 2, 3 and 4,

∆n=6 = ∆t=2
n=6 + ∆t=3

n=6 + ∆t=4
n=6 (5.5)

where we have solved

λ̃5 = −
∑

k=2,3,4

〈6|k〉
〈6|5〉

λ̃k − ε
〈6|1〉
〈6|5〉

λ̃1, λ̃6 = −
∑

k=2,3,4

〈5|k〉
〈5|6〉

λ̃k − ε
〈5|1〉
〈5|6〉

λ̃1. (5.6)

For simplicity in the following discussion we further suppress a common factor

(−)n+1 〈n|n−1〉
〈n−1|1〉〈n|1〉 λ̃

α̇
1 λ̃

β̇
1 from the difference terms, thus we can write

∆t=2
n=6 = A5(2, 3, 4, 5, 6)S[3, 4|3, 4]p5(J2Ã5(2, 5, 3, 4, 6))

+A5(2, 3, 4, 5, 6)S[3, 4|4, 3]p5(J2Ã5(2, 5, 4, 3, 6))

+A5(2, 4, 3, 5, 6)S[4, 3|3, 4]p5(J2Ã5(2, 5, 3, 4, 6))

+A5(2, 4, 3, 5, 6)S[4, 3|4, 3]p5(J2Ã5(2, 5, 4, 3, 6))

∆t=3
n=6 = A5(3, 2, 4, 5, 6)S[2, 4|2, 4]p5(J3Ã5(3, 5, 2, 4, 6))

+A5(3, 2, 4, 5, 6)S[2, 4|4, 2]p5(J3Ã5(3, 5, 4, 2, 6))

+A5(3, 4, 2, 5, 6)S[4, 2|2, 4]p5(J3Ã5(3, 5, 2, 4, 6))

+A5(3, 4, 2, 5, 6)S[4, 2|4, 2]p5(J3Ã5(3, 5, 4, 2, 6))

∆t=4
n=6 = A5(4, 2, 3, 5, 6)S[2, 3|2, 3]p5(J4Ã5(4, 5, 2, 3, 6))

+A5(4, 2, 3, 5, 6)S[2, 3|3, 2]p5(J4Ã5(4, 5, 3, 2, 6))

+A5(4, 3, 2, 5, 6)S[3, 2|2, 3]p5(J4Ã5(4, 5, 2, 3, 6))

+A5(4, 3, 2, 5, 6)S[3, 2|3, 2]p5(J4Ã5(4, 5, 3, 2, 6))

(5.7)

Now we translate all amplitudes A into the basis {A(6, 2, 4, 3, 5), A(6, 2, 3, 4, 5)}

A5(6, 4, 2, 3, 5) =
(s43 + s45)A5(6, 2, 4, 3, 5) + s45A5(6, 2, 3, 4, 5)

s46
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A5(6, 3, 2, 4, 5) =
(s34 + s35)A5(6, 2, 3, 4, 5) + s35A5(6, 2, 4, 3, 5)

s36

A5(6, 4, 3, 2, 5) =
−s24s35A5(6, 2, 4, 3, 5)− s45(s25 + s23)A5(6, 2, 3, 4, 5)

s46s25

A5(6, 3, 4, 2, 5) =
−s23s45A5(6, 2, 3, 4, 5)− s35(s25 + s24)A5(6, 2, 4, 3, 5)

s36s25
(5.8)

and all amplitudes Ã5 into the basis {Ã5(2, 5, 3, 4, 6), Ã5(2, 5, 4, 3, 6)}

Ã5(3, 5, 2, 4, 6) =
−Ã5(2, 5, 3, 4, 6)(s45 + s43)− Ã5(2, 5, 4, 3, 6)s45

s24

Ã5(4, 5, 2, 3, 6) =
−Ã5(2, 5, 4, 3, 6)(s35 + s43)− Ã5(2, 5, 3, 4, 6)s35

s23

Ã5(3, 5, 4, 2, 6)) =
−(s43 + s46)Ã5(2, 5, 4, 3, 6)− s46Ã5(2, 5, 3, 4, 6)

s24

Ã5(4, 5, 3, 2, 6)) =
−(s43 + s36)Ã5(2, 5, 3, 4, 6)− s36Ã5(2, 5, 4, 3, 6)

s23
(5.9)

Putting it back with some calculation we have

∆t=3
n=6 = A5(2, 3, 4, 5, 6)

{
−s45(s23 + s25)(J3,α̇β̇

−Ã5(2, 5, 3, 4, 6)(s45 + s43)− Ã5(2, 5, 4, 3, 6)s45
s24

)

+s45s26(J3,α̇β̇
−(s43 + s46)Ã5(2, 5, 4, 3, 6)− s46Ã5(2, 5, 3, 4, 6)

s24
)

}

+A5(2, 4, 3, 5, 6)

{
−s35s24(J3,α̇β̇

−Ã5(2, 5, 3, 4, 6)(s45 + s43)− Ã5(2, 5, 4, 3, 6)s45
s24

)

}
(5.10)

Further simplification by using ( notice that J3,α̇β̇s24 = 0)

(s23 + s25)(J3,α̇β̇(s45 + s43))− s26(J3,α̇β̇s46) = s24(J3,α̇β̇s46)

(s23 + s25)(J3,α̇β̇s45)− s26(J3,α̇β̇(s43 + s46)) = −s24(J3,α̇β̇s45) (5.11)

leads

∆t=3
n=6 = A5(2, 3, 4, 5, 6)

{
S[3, 4|3, 4]p5(J3,α̇β̇Ã5(2, 5, 3, 4, 6)) + S[3, 4|4, 3]p5(J3,α̇β̇Ã5(2, 5, 4, 3, 6))

+s45(J3,α̇β̇s46)Ã5(2, 5, 3, 4, 6)− s45Ã5(2, 5, 4, 3, 6)(J3,α̇β̇s45)
}

+A5(2, 4, 3, 5, 6)
{
S[4, 3|3, 4]p5(J3,α̇β̇Ã5(2, 5, 3, 4, 6)) + S[4, 3|4, 3]p5(J3,α̇β̇Ã5(2, 5, 4, 3, 6))

−s35Ã5(2, 5, 3, 4, 6)(J3,α̇β̇s46) + s35Ã5(2, 5, 4, 3, 6)(J3,α̇β̇s45)
}

(5.12)

Notice that part of them (i.e., the part with J acting only on Ã) is exactly the same as

∆t=2
n=6 except the J2,α̇β̇ is replaced by J3,α̇β̇. It is nothing, but the explicit checking the

identity (4.15) with t = 2, t̃ = 3.
Doing similar calculation we found

∆t=4
n=6 = A5(2, 3, 4, 5, 6)

{
S[3, 4|3, 4]p5(J4,α̇β̇Ã5(2, 5, 3, 4, 6)) + S[3, 4|4, 3]p5(J4,α̇β̇Ã5(2, 5, 4, 3, 6))
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+s45(J4,α̇β̇s35)Ã5(2, 5, 3, 4, 6) + s45Ã5(2, 5, 4, 3, 6)(J4,α̇β̇(s34 + s35))
}

+A5(2, 4, 3, 5, 6)
{
S[4, 3|3, 4]p5(J4,α̇β̇Ã5(2, 5, 3, 4, 6)) + S[4, 3|4, 3]p5(J4,α̇β̇Ã5(2, 5, 4, 3, 6))

−s35Ã5(2, 5, 3, 4, 6)(J4,α̇β̇s35) + s35Ã5(2, 5, 4, 3, 6)(J4,α̇β̇s36)
}

(5.13)

where again the identity (4.15) with t = 2, t̃ = 4 has been checked. Thus when we sum up

three terms ∆t=2
n=6,∆

t=3
n=6,∆

t=4
n=6, the part with J acting directly on Ã vanishes by angular

momentum conservation and we are left with

R = A5(2, 3, 4, 5, 6)
{

+s45(J3,α̇β̇s46)Ã5(2, 5, 3, 4, 6)− s45Ã5(2, 5, 4, 3, 6)(J3,α̇β̇s45)

+s45(J4,α̇β̇s35)Ã5(2, 5, 3, 4, 6)− s45Ã5(2, 5, 4, 3, 6)(J4,α̇β̇s36)
}

+A5(2, 4, 3, 5, 6)
{
−s35Ã5(2, 5, 3, 4, 6)(J3,α̇β̇s46) + s35Ã5(2, 5, 4, 3, 6)(J3,α̇β̇s45)

−s35Ã5(2, 5, 3, 4, 6)(J4,α̇β̇s35) + s35Ã5(2, 5, 4, 3, 6)(J4,α̇β̇s36)
}

(5.14)

where J acts only on sij . Using

J3,α̇β̇si5 =
−i
2
〈5|i〉 〈6|3〉

〈6|5〉
λ̃3,(α̇λ̃i,β̇), J3,α̇β̇si6 =

−i
2
〈6|i〉 〈5|3〉

〈5|6〉
λ̃3,(α̇λ̃i,β̇),

J3,α̇β̇si3 = +
i

2
〈3|i〉 λ̃3,(α̇λ̃i,β̇), i = 2, 4

J4,α̇β̇si5 =
−i
2
〈5|i〉 〈6|4〉

〈6|5〉
λ̃4,(α̇λ̃i,β̇), J4,α̇β̇si6 =

−i
2
〈6|i〉 〈5|4〉

〈5|6〉
λ̃4,(α̇λ̃i,β̇),

J4,α̇β̇si4 = +
i

2
〈4|i〉 λ̃4,(α̇λ̃i,β̇), i = 2, 3

we see immediately that R = 0. In other words, we have explicitly checked the second

identity (4.18) for the special case.

6 Conclusion

In this paper, we studied the new soft graviton theorem from the angle of KLT relation. We

have demonstrated that how the new soft gluon theorem are glued together by KLT formula

to produce the corresponding soft theorem for gravity. In the process, two important

identities (4.15) and (4.18) has been observed.

There are a lot of open questions deserve to be investigated. First, the two identities

need an analytic proof. Secondly, the sub-sub-leading soft factor in KLT relation should

be understood. Although at this order, contributions from non-universal soft part of color

ordered Yang-Mills amplitudes appear, we guess that their effects will be canceled out by

nice property of momentum kernel S. It will be fascinating to see how it happens. Thirdly,

in this paper, we have focused on the 4D, it will be interesting to discuss it in general

dimension since KLT formula holds in general dimension. Finally, there are also other

general formulas for gravity amplitudes (such as these given in [40–42] ) and it will be nice

to see how the new soft graviton theorem makes its appearance.
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A Example with n = 7

In this appendix we verify that identities (4.15) and (4.18) are holding at n = 7. Our

strategy used in previous examples applies to 7-points, although the complexity involved

increases considerably. As in the previous examples, we choose to work in a convenient

minimum basis Ã(2, 6, β2, 7), A(2, σ2, 6, 7) (Here we use A instead of A6 for short), i.e., do

the following transformation with t = 3, 4, 5:

Ã(t, 6, βt, 7) =
∑
βt∈S3

C [t, 6, βt, 7|2, 6, β2, 7] Ã(2, 6, β2, 7), (A.1)

A(t, σt, 6, 7) =
∑
σt∈S3

A(2, σ2, 6, 7)D [2, σ2, 6, 7|t, σ, 6, 7] .

Our task then amounts to showing that, for both identities, terms associated with each

independent product of basis amplitudes AÃ match accordingly for both sides of the

equations (4.15) and (4.18). In the discussion below we focus on terms containing

Ã(2, 6, 3, 4, 5, 7), namely when β2 = {3, 4, 5}. The rest of the coefficients follow similar

argument up to permutations of {3, 4, 5}. In principle it is straightforward to work out all

translation coefficients C, D and check if the identities are holding. However we can per-

form the calculation in a slightly more organized manner. In particular note that common

factors are quite often shared between different translation coefficients.

For the purpose of demonstration let us consider translating a specific amplitude

Ã(3, 6, 2, 4, 5, 7) into minimum basis. This can be done by first expressing the amplitude

in the Ã(2, . . . , 7) Kleiss-Klein (KK) basis that fixes legs 2 and 7 at both ends, and then

subsequently translating to the Ã(2, 6, . . . , 7) minimum basis of interest where legs 6 and

2 are adjacent:

Ã(3, 6, 2, 4, 5, 7) = Ã(2, 4, 5, 6, 3, 7) + Ã(2, 4, 6, 5, 3, 7) + Ã(2, 4, 6, 3, 5, 7) + Ã(2, 6, 4, 5, 3, 7)

+Ã(2, 6, 4, 3, 5, 7) + Ã(2, 6, 3, 4, 5, 7) (A.2)
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=

(
1− (s42 + s46 + s43)

s42
+ E [45, 3|345]

)
Ã(2, 6, 3, 4, 5, 7)

+ . . .
(

terms not contributing to Ã(2, 6, 3, 4, 5, 7)
)
,

where in the third line we used BCJ relation to remove the ill-favored leg 4 between 2

and 6 in the next to adjacent amplitude Ã(2, 4, 6, 5, 3, 7), and we introduced the shorthand

notation E [45, 3|345] to denote the next-to-next-to adjacent expansion coefficient,

Ã(2, {4, 5}, 6, {3}, 7) =
∑
σ

E [45, 3|σ] Ã(2, 6, σ, 7). (A.3)

The coefficient E [45, 3|345] can be determined from simultaneous equations consisting of
BCJ relations, yielding

E [45, 3|345] =
(−1)

s42s52 − (s42 + s45)(s52 + s54)

[
− (s42 + s45 + s46 + s43)(s52 + s56 + s53 + s54)

+
(s42 + s45)(s52 + s54 + s56 + s53)(s42 + s46 + s43)

s42

]
. (A.4)

All translation coefficients can be determined via similar procedures. Explicitly we have,

for the t = 3 sector,

C [3, 6, 2, 4, 5, 7|2, 6, 3, 4, 5, 7] = 1− (s42 + s46 + s43)

s42
+ E [45, 3] (A.5)

C [3, 6, 2, 5, 4, 7|2, 6, 3, 4, 5, 7] = − (s52 + s56 + s53 + s54)

s52
+ E [54, 3]

C [3, 6, 4, 2, 5, 7|2, 6, 3, 4, 5, 7] =
(s42 + s46 + s43)

s42
− E [45, 3]− E [54, 3]

C [3, 6, 4, 5, 2, 7|2, 6, 3, 4, 5, 7] = E [54, 3]

C [3, 6, 5, 2, 4, 7|2, 6, 3, 4, 5, 7] =
(s52 + s56 + s53 + s54)

s52
− E [45, 3]− E [54, 3]

C [3, 6, 5, 4, 2, 7|2, 6, 3, 4, 5, 7] = E [45, 3] . (A.6)

For t = 4 we have

C [4, 6, 2, 3, 5, 7|2, 6, 3, 4, 5, 7] = 1− (s32 + s36)

s32
+ E [35, 4] (A.7)

C [4, 6, 2, 5, 3, 7|2, 6, 3, 4, 5, 7] = − (s52 + s56 + s53 + s54)

s52
+ E [53, 4]

C [4, 6, 3, 2, 5, 7|2, 6, 3, 4, 5, 7] =
(s32 + s36)

s32
− E [35, 4]− E [53, 4]

C [4, 6, 3, 5, 2, 7|2, 6, 3, 4, 5, 7] = E [53, 4]

C [4, 6, 5, 2, 3, 7|2, 6, 3, 4, 5, 7] =
(s52 + s56 + s53 + s54)

s52
− E [35, 4]− E [53, 4]

C [4, 6, 5, 3, 2, 7|2, 6, 3, 4, 5, 7] = E [35, 4] ,

and similarly for t = 5,

C [5, 6, 2, 3, 4, 7|2, 6, 3, 4, 5, 7] = 1− (s32 + s36)

s32
+ E [34, 5] (A.8)
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C [5, 6, 2, 4, 3, 7|2, 6, 3, 4, 5, 7] = − (s42 + s46 + s43)

s42
+ E [43, 5]

C [5, 6, 3, 2, 4, 7|2, 6, 3, 4, 5, 7] =
(s32 + s36)

s32
− E [34, 5]− E [43, 5] (A.9)

C [5, 6, 3, 4, 2, 7|2, 6, 3, 4, 5, 7] = E [43, 5] (A.10)

C [5, 6, 4, 2, 3, 7|2, 6, 3, 4, 5, 7] =
(s42 + s46 + s43)

s42
− E [34, 5]− E [43, 5] (A.11)

C [5, 6, 4, 3, 2, 7|2, 6, 3, 4, 5, 7] = E [34, 5] , (A.12)

whereas the next-to-next-to adjacent expansion coefficients are given by

E [54, 3] =
(−1)

s52s42 − (s52 + s54)(s42 + s45)

[
− (s52 + s54 + s56 + s53)(s42 + s46 + s43)

+
(s52 + s54)(s42 + s45 + s46 + s43)(s52 + s56 + s53 + s54)

s52

]
(A.13)

E [35, 4] =
(−1)

s32s52 − (s32 + s35)(s52 + s53)

[
− (s32 + s35 + s36)(s52 + s56 + s53 + s54)

+
(s32 + s35)(s52 + s53 + s56 + s54)(s32 + s36)

s32

]
(A.14)

E [53, 4] =
(−1)

s52s32 − (s52 + s53)(s32 + s35)

[
− (s52 + s53 + s56 + s54)(s32 + s36) (A.15)

+
(s52 + s53)(s32 + s35 + s36)(s52 + s56 + s53 + s54)

s52

]
E [34, 5] =

(−1)

s32s42 − (s32 + s34)(s42 + s43)

[
− (s32 + s34 + s36)(s42 + s46 + s43) (A.16)

+
(s32 + s34)(s42 + s43 + s46)(s32 + s36)

s32

]
E [43, 5] =

(−1)

s42s32 − (s42 + s43)(s32 + s34)

[
− (s42 + s43 + s46)(s32 + s36) (A.17)

+
(s42 + s43)(s32 + s34 + s36)(s42 + s46 + s43)

s42

]
Identity (4.15). Let us first verify identity (4.15) for the case when β2 = {345}, or

equivalently that∑
σt̃,βt̃

A(t̃, σt̃, 67)S [σt̃|βt̃] C
[
t̃, 6, βt̃, 7

]
=

∑
σ2∈perm{345}

A(2, σ2, 67)S [σ2|345]6 (A.18)

for each t̃. To keep the derivation simple we introduce the following shorthand notation

for repeatedly occurring factors

Tt̃(βt̃) =
∑
σt̃

A(t̃, σt̃, 67)S [σt̃|βt̃] . (A.19)

so that for example when t̃ = 5, equation (A.18) reads∑
β5∈perm{234}

T5(β5)C [5, 6, β5, 7] = T2(345). (A.20)
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Substituting the explicit expressions for translation coefficients Cs, the left hand side of the

above equation becomes

T5(234) + (−T5(234) + T5(324))
s32 + s36
s32

(A.21)

+ (−T5(243) + T5(423))
s42 + S46 + s43

s42
+ (T5(234)− T5(324)− T5(423) + T5(432))E[34, 5]

+ (T5(243)− T5(324) + T5(342)− T5(423))E[43, 5].

With a little bit more effort, we find that the left hand side of (A.20) boils down to the

following linear combination of amplitudes.

−s36s46(s56 + s54 + s53 + s52)A(523467) (A.22)

−s36(s34 + s46)(s56 + s54 + s53 + s52)A(524367).

On the other hand the right hand side of (A.20) reads

T2(345) = s36s46s56A(234567) + s36s46(s46 + s56)A(235467)

+s36s46(s53 + s54 + s56)A(253467)

+s36(s43 + s46)s56A(243567) + s36(s43 + s46)(s56 + s53)A(245367)

+s36(s43 + s46)(s53 + s54 + s56)A(254367), (A.23)

We see that the first line of (A.22) matches the sum of the first three terms of equa-

tion (A.23), and similarly the second line of (A.22) matches the sum of the last three terms

of (A.23) because of BCJ relation, thereby proving the identity (A.20). The situations

when t̃ = 3 and 4 can be proved in a likewise manner.

Identity (4.18). At 7-points the difference term ∆n=7 splits into four parts, ∆n=7 =∑
t=2,3,4,5 ∆t

n=7, where

∆t
n=7 =

∑
σ,β∈S3

A(t, σ, 6, 7)S[σ|β]6JtÃ(t, 6, β, 7) (A.24)

Substituting the above expressions into equation (A.24) and collecting terms, we find as in
the previous examples that terms where angular momentum operate on basis amplitudes
Ã add up to zero because of angular momentum conservation

∑
t JtÃ(2, 6, 3, 4, 5, 7) = 0,

leaving us with the collection of terms that Jt operate on expansion coefficients C, which
are functions of kinematic variables. Contributions from the three respective sectors are
given by

∆t=3 = (−T3(245) + T3(425)) J3

(
s42 + s46 + s43

s42

)
+ (−T3(254) + T3(524)) J3

(
s52 + s56 + s53 + s54

s52

)
+ (T3(245)− T3(425)− T3(524) + T3(542)) J3 (E [45, 3])

+ (T3(254)− T3(425) + T3(452)− T3(524)) J3 (E [54, 3]) , (A.25)
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∆t=4 = (−T3(235) + T3(325)) J3

(
s32 + s36
s32

)
+ (−T3(253) + T3(523)) J3

(
s52 + s56 + s53 + s54

s52

)
+ (T3(235)− T3(325)− T3(523) + T3(532)) J3 (E [35, 4])

+ (T3(253)− T3(325) + T3(4352)− T3(523)) J3 (E [53, 4]) , (A.26)

∆t=5 = (−T3(234) + T3(324)) J3

(
s32 + s36
s32

)
+ (−T3(243) + T3(423)) J3

(
s42 + s46 + s43

s42

)
+ (T3(234)− T3(324)− T3(423) + T3(432)) J3 (E [34, 5])

+ (T3(243)− T3(324) + T3(342)− T3(423)) J3 (E [43, 5]) , (A.27)

Generically the operation of Jt on kinematic variables must fall into one of the following

categories:

• t = 3,

J3 α̇β̇si6 =
i

2
λ̃3 (α̇λ̃i β̇)(−)

〈i6〉 〈73〉
〈76〉

, i = 2, 4, 5 (A.28)

J3 α̇β̇si7 =
i

2
λ̃3 (α̇λ̃i β̇)(−)

〈i7〉 〈63〉
〈67〉

J3 α̇β̇si3 =
i

2
λ̃3 (α̇λ̃i β̇) 〈i3〉 (A.29)

J3 α̇β̇si i′ = 0, i, i
′

= 2, 4, 5

• t = 4,

J4 α̇β̇si6 =
i

2
λ̃4 (α̇λ̃i β̇)(−)

〈i6〉 〈74〉
〈76〉

, i = 3, 4, 5 (A.30)

J4 α̇β̇si7 =
i

2
λ̃4 (α̇λ̃i β̇)(−)

〈i7〉 〈64〉
〈67〉

J4 α̇β̇si4 =
i

2
λ̃4 (α̇λ̃i β̇) 〈i4〉

J4 α̇β̇si i′ = 0, i, i
′

= 3, 4, 5

• t = 5,

J5 α̇β̇si6 =
i

2
λ̃5 (α̇λ̃i β̇)(−)

〈i6〉 〈75〉
〈76〉

, i = 2, 4, 5 (A.31)

J5 α̇β̇si7 =
i

2
λ̃5 (α̇λ̃i β̇)(−)

〈i7〉 〈65〉
〈67〉

J5 α̇β̇si3 =
i

2
λ̃5 (α̇λ̃i β̇) 〈i5〉

J5 α̇β̇si i′ = 0, i, i
′

= 2, 4, 5

Suppose if we are interested in checking terms carrying λ̃3 (α̇λ̃4 β̇). Before we commence

an explicit calculation, note that because all of the Cs do not depend explicitly on leg 7,

from the list above such a term can only be produced through J3(s46), J3(s43), J4(s36),
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J4(s34), which allows us to ignore the t = 5 sector entirely. Additionally since s34 happen

to be absent from the t = 4 translation coefficient Cs, this leaves only J3(s46), J3(s43),

J4(s36). Considering the explicit forms given by equations (A.28), (A.29) and (A.30) we

further note that (again) because of the absence of the leg 7 dependence in all Cs, the

contributions from J3(s46), J3(s43), J4(s36) together can only cancel through Jacobi identity

〈43〉+ 〈73〉〈64〉
〈76〉 + 〈74〉〈36〉

〈76〉 = 0. For that to happen, the contribution associated with J3(s46),

J3(s43), J4(s36) must be exactly in the ratio 1 : 1 : −1, in other words they must add up to

J3(s46)X + J3(s43)X + J4(s36)(−X) = 0 (A.32)

for some factor X. In the following discussion we shall see that indeed this is the case.

First we note that it is relatively easy to confirm that the ratio between the contribu-

tions from J3(s46) and J3(s43) is1 : 1. This can be seen by observing that the kinematic

factors s46 and s43 always show up together through the combination s46 + s43 in all of

the translation coefficients C in the t = 3 sector (see equations from (A.5) to (A.6) as well

as (A.25)). The only part of the argument that requires explicit calculation is the ratio

between J3(s46) and J4(s36). For the purpose of discussion let us tentatively call them

respectively as X and Y . From equation (A.25) and the definition of E [45, 3] and E [54, 3],

the contribution associated with J3(s46) reads

X =
1

s42s52(s45 + s42 + s52)
[s52(s45 + s42 + s52) (−T3(245) + T3(425))

+s52(s52 + s56 + s53 + s54) (T3(245)− T3(425)− T3(524) + T3(542))

+s42(s52 + s56 + s53 + s54) (T3(254)− T3(425) + T3(452)− T3(524))]

= [s36s56A (4, 2, 3, 5, 6, 7) + s36 (s35 + s56)A (4, 2, 5, 3, 6, 7)

−s56 (s25 + s26 + s56 + s35 + s45)A (4, 3, 2, 5, 6, 7) + s26 (s35 + s45)A (4, 3, 5, 2, 6, 7)

−s36s45A (4, 5, 2, 3, 6, 7) +s26s45A (4, 5, 3, 2, 6, 7)] (A.33)

and similarly,

Y =
1

s32s52(s52 + s32 + s35)
[s52(s52 + s32 + s35) (−T4(235) + T4(325))

+s32(s52 + s53 + s54 + s56) (T4(253)− T4(325) + T4(352)− T4(523))

+s52(s52 + s53 + s54 + s56) (T4(235)− T4(325)− T4(523) + T4(532))]

= [s36s56A (4, 2, 3, 5, 6, 7) + s36 (s35 + s56)A (4, 2, 5, 3, 6, 7)

−s56 (s25 + s26 + s56 + s35 + s45)A (4, 3, 2, 5, 6, 7) + s26 (s35 + s45)A (4, 3, 5, 2, 6, 7)

−s36s45A (4, 5, 2, 3, 6, 7) +s26s45A (4, 5, 3, 2, 6, 7)] (A.34)

Now that we have the explicit formulas of the J3(s46) and J4(s36) term contributions,

it is evident from (A.33) and (A.34) that they are related by an exchange of legs 3 and 4,

Y = X|3↔4. Therefore to prove X = −Y it suffices to show that Y is antisymmetric with

respect to indices 3 and 4. This antisymmetric structure will become manifest after some

nontrivial manipulations, which we perform in the following.
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First of all note that BCJ relation allows us to write

s36s56A (4, 2, 3, 5, 6, 7) + s36 (s35 + s56)A (4, 2, 5, 3, 6, 7)

= −s36 (s52 + s53 + s56)A (4, 5, 2, 3, 6, 7)− s36 (s52 + s53 + s56 + s54)A (4, 2, 3, 6, 7, 5)

(A.35)

and

s26 (s35 + s45)A (4, 3, 5, 2, 6, 7) + s26s45A (4, 5, 3, 2, 6, 7)

= −s26 (s35 + s45 + s25)A (4, 3, 2, 5, 6, 7)− s26 (s35 + s45 + s25 + s65)A (4, 3, 2, 6, 5, 7) .

(A.36)

Plugging the above two identities into the expression for Y , we have

Y = −s36 (s52 + s53 + s56 + s54) [A (4, 5, 2, 3, 6, 7) +A (4, 2, 3, 6, 7, 5)]

− [s26 (s35 + s45 + s25) + s56 (s25 + s26 + s56 + s35 + s45)]A (4, 3, 2, 5, 6, 7)

−s26 (s35 + s45 + s25 + s65)A (4, 3, 2, 6, 5, 7)

= − (s52 + s53 + s56 + s54)

× [s36A (4, 5, 2, 3, 6, 7) + s36A (4, 2, 3, 6, 7, 5) + (s26 + s56)A (4, 3, 2, 5, 6, 7)+s26A (4, 3, 2, 6, 5, 7)]

= s57 [s36A (4, 5, 2, 3, 6, 7)+s36A (4, 2, 3, 6, 7, 5)+(s26 + s56)A (4, 3, 2, 5, 6, 7)+s26A (4, 3, 2, 6, 5, 7)]

(A.37)

Further using BCJ relation identifies the sum of last two terms above with

(s26 + s56)A (4, 3, 2, 5, 6, 7) + s26A (4, 3, 2, 6, 5, 7)

= − (s26 + s56 + s76)A (4, 3, 2, 5, 7, 6)− (s26 + s56 + s76 + s46)A (4, 6, 3, 2, 5, 7)

= (s36 + s46)A (4, 3, 2, 5, 7, 6) + s36A (4, 6, 3, 2, 5, 7) (A.38)

Therefore Y simplifies as

Y = s57s36 [A (4, 5, 2, 3, 6, 7) +A (4, 2, 3, 6, 7, 5) +A (4, 3, 2, 5, 7, 6) +A (4, 6, 3, 2, 5, 7)]

+s57s46A (4, 3, 2, 5, 7, 6)

= s57 [s46A (4, 3, 2, 5, 7, 6)− s36A (3, 4, 2, 5, 7, 6)] (A.39)

where we used U(1) decoupling identity to substitute the summation in the first line with

a single amplitude. The final simplified formula of Y is manifestly antisymmetric under

the exchange of indices 3 and 4, and we conclude that X + Y = 0 as claimed.
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