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1 Introduction

Asymptotically free theories, such as gauge theories coupled to fermionic matter fields,1

are characterized by having a coupling which becomes small at short distances. This prop-

erty enables reliable perturbative calculations of physical quantities at large energies. A

dimensionful scale is dynamically generated through the process of dimensional transmu-

tation. Typically, this scale is associated in perturbation theory with the Λ parameter, i.e.

a multiplicative constant of the integrated beta function.

The non-perturbative evolution of the running coupling in different gauge field theories

from the low energy sector to the high energy regime has been the central goal of many

studies. The standard approach is the use of a finite size scaling technique based on the

Schrödinger functional (SF), in which the size of the system is associated to the renormal-

ization scale [1]. This method was successfully used to calculate the scale evolution of the

coupling in the SU(2) [2] and SU(3) [3] Yang-Mills theories and in QCD [4]. Motivated

by ideas of physics beyond the standard model (BSM), in the last decade this method has

1For a small enough number of fermionic degrees of freedom.
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also been applied to study the SU(4) pure gauge theory [5] and several theories containing

matter transforming under higher dimensional representations of the gauge group or a large

number of fermions in the fundamental representation [6–14].

However, for lattices accessible in typical numerical simulations SF schemes are affected

by lattice artifacts arising from the bulk and from the boundaries of the lattice. These can

be removed, following Symanzik’s improvement program, by adding the corresponding

counterterms to the action at the bulk and the boundaries. Symanzik’s program was

successfully carried out in [1, 15–18], where the improvement coefficients necessary to

remove O(a) effects from the coupling were calculated in perturbation theory.

For theories beyond QCD the situation is still inconclusive. A program for the non-

perturbative study of SU(N) gauge theories in the large N limit [19] started in the last

decade driven by interest from string theory. As part of that program, in [5] the ratio

ΛMS/
√
σ between the lambda parameter in the MS scheme and the string tension σ was

calculated for the SU(4) theory aiming to obtain extrapolations of the N dependence of

the ΛMS/
√
σ in the large N limit. There, the dominant systematic errors are due to the

lattice artifacts present by using an unimproved action. For the case of theories with

non-fundamental fermions, although the O(a) improvement coefficients are known, the

remaining higher order cutoff effects have been reported to be very large if the standard

setups, which work fine for QCD, are naively exported.

In the last few years a new renormalized coupling based on the gradient flow (GF)

has been proposed for step scaling studies [20–24]. Compared to the original SF coupling

based on a background field (see bellow), the gradient flow coupling has the advantage that

considerably smaller statistics are required for obtaining a similar accuracy.

However, there are some situations where the original SF coupling is superior com-

pared to the gradient flow. First of all, it has been observed that while the GF coupling

works better at large physical volumes, at small volumes the SF coupling fares better than

the gradient flow [25]. Also, in the pure gauge theory, relevant for the large N limit, the

generation of configurations is so fast compared to the measurement of the gradient flow

that the reduced accuracy can be overcome with increased statistics. In addition, in BSM

lattice studies one is often interested in the existence of a nontrivial infra-red fixed point.

The value of the coupling constant g at the fixed point is a renormalization scheme de-

pendent quantity and it differs between Schrödinger functional and gradient flow schemes.

Therefore, it is possible that in a specific scheme the coupling is too strong at the fixed

point or it is on the wrong side of a bulk phase transition. This is true even if the fixed

point is visible in other schemes. The only study, we are aware of, that compares these

two methods with the same action found the gradient flow coupling to be about twice the

Schrödinger functional coupling [26]. Moreover, due to the property of continuum reduc-

tion [27], at large N it is possible to do simulations at small lattice volumes where the SF

coupling is known to perform well.

This work completes the Schrödiger functional framework to study the phase diagram

of strongly interacting gauge theories [28] with any N or representation. In the paper

we generalize the boundary conditions for the gauge fields in the SF to obtain a family

of schemes useful for arbitrary N with a good signal to noise ratio in lattice simulations.
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Moreover, the O(a) improvement coefficients are obtained to one loop order in perturbation

theory. For this, we calculate the one loop running coupling in our family of SF schemes

following closely the discussions in [1, 15] and adapting them to arbitrary N . The values

obtained for the boundary improvement coefficients are valid for any choice of Dirichlet

boundary conditions at the temporal boundaries. With this knowledge we relate the Λ

parameters between our SF schemes and the more widely used MS scheme. Another

appealing property of the present family of schemes is that, together with an appropriate

choice of spatial boundary conditions for the fermions, they lead to a setup for which higher

order cutoff effects due to fermions are very small even for non-fundamental representations.

Preliminary results of this work have been published in [29].

The paper is organized as follows: in section 2 we recall some concepts concerning the

Schrödinger functional and collect a set of formulas useful for the remaining discussion.

In section 3 the generalized boundary conditions are provided. The calculation of the

improvement coefficients is presented in section 4, where we also discuss the effect that

the fermionic spatial boundary conditions have on the residual higher order cutoff effects.

The matching of the Λ parameters to the MS scheme is done in section 5. We conclude in

section 6.

2 Schrödinger functional

In this section we briefly recall the ideas introduced in [1, 15, 30] and collect the expressions

necessary for the subsequent discussion. We refer the interested reader to the original

articles for further detail.

The Schrödinger functional is the euclidean propagation amplitude between a field

configuration C at time 0 and another field configuration C ′ at time T , which has a path

integral representation given by

Z[C,C ′] =

∫
D[U, ψ̄, ψ]eS[U,ψ,ψ], (2.1)

with Dirichlet boundary conditions specified for the gauge fields U and the fermion fields

ψ and ψ̄.

In the present work, we are interested in the O(a) improved Wilson action

S[U, ψ̄, ψ] = SG[U ] + SF [U,ψ, ψ̄]. (2.2)

The pure gauge part is the standard SU(N) Wilson gauge action

SG[U ] =
1

g20

∑
P

w(P )Tr[1−U(P)]. (2.3)

The spatial components of the gauge fields at the temporal boundaries (t = 0 and t = T )

satisfy nonhomogeneous Dirichlet boundary conditions

Uk(t = 0,x) = Wk(x), Uk(t = T,x) = W ′k(x), k = 1, 2, 3. (2.4)

– 3 –



J
H
E
P
1
1
(
2
0
1
4
)
0
7
4

The boundary gauge fields Wk and W ′k can be parametrized as

Wk(x) = exp(aCk(η)), W ′k(x) = exp(aC ′k(η)), (2.5)

where Ck(η) and C ′k(η) are taken to be homogeneous, abelian and spatially constant [1],

and they depend on a dimensionless parameter η. A specific form for these boundary

matrices is derived in section 3 for gauge group SU(N) with arbitrary N . In the spatial

directions the gauge fields are taken to be periodic Uµ(t,x) = Uµ(t,x+ Lk̂).

The weight w(P ) = 1 except for the spatial plaquettes at the boundaries for which

w(P ) = 1
2 . Due to the particular choice of boundary conditions for the gauge fields,

the spatial boundary plaquettes give only a constant contribution to the action and can be

ignored. It is well known that within SF schemes, the mere presence of temporal boundaries

constitutes an extra source of lattice artifacts. Removal of these effects has first been

studied in [1, 16, 17], where it was shown that the O(a) lattice artifacts coming from the

boundaries can be canceled by tuning the weight w(p) = ct(g0) for the temporal plaquettes

attached to the boundaries, where ct is the coefficient of a dimension 4 counterterm localized

at the boundaries [1]. The perturbative expansion of ct is

ct = 1 +
(
c
(1,0)
t + c

(1,1)
t Nf

)
g20 +O(g40), (2.6)

where c
(1,0)
t is the gauge and c

(1,1)
t the fermionic contribution.

The fermionic part of eq. (2.2) is the standard Wilson fermion action with the clo-

ver term

SF [U,ψ, ψ̄] = a4
∑
x

ψ̄(x)(DWD +m0)ψ(x), (2.7)

where DWD is the improved Wilson-Dirac operator

DWD =
1

2
[γµ(D∗µ +Dµ)− aD∗µDµ] + csw

ia

4
σµνFµν(x). (2.8)

The operator Fµν(x) is the symmetrized lattice field strength tensor, σµν = i
2 [γµ, γν ] and

the operators Dµ and D∗µ are the covariant forward and backward derivatives which are

defined in eq. (A.8). The improvement coefficient csw can be determined perturbatively [16,

31] and non-perturbatively [32, 33]. To the lowest order in perturbation theory csw =

1 [18]. The removal of O(a) effects arising from the interplay between fermions and the SF

boundaries requires the addition of another dimension 4 counterterm at the boundaries.

Since this does not contribute to the observables studied further in this work at the present

order in perturbation theory, we ignore it from now on and refer the reader to the original

literature [17] for further details.

The fermionic fields satisfy the following boundary conditions

P+ψ|t=0 = P−ψ|t=T = 0, (2.9)

ψ̄P−
∣∣
t=0

= ψ̄P+

∣∣
t=T

= 0, (2.10)

where P± = 1
2(1 ± γ0). The boundary conditions in the spatial directions are periodic up

to a phase [30]:

ψ(x+ Lk̂) = eiθkψ(x), ψ̄(x+ Lk̂) = ψ̄(x)e−iθk . (2.11)

– 4 –
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The phase is usually chosen so that the smallest eigenvalue of the squared Dirac operator

is large [30]. In this situation, the condition number (i.e. the ratio between the highest an

lowest eigenvalues) is small, which improves the speed of the known inversion algorithms.

However, the value of θ also has an effect on the convergence of the 1-loop perturbative

coupling to its continuum limit. This is discussed in subsection 4.3.

The boundary conditions for the gauge fields in eqs. (2.4) and (2.5) induce a constant

chromo-electric background field Vµ(x) in the space-time. The variable η in the boundary

fields eq. (2.5) parametrizes a curve of background fields. A renormalized coupling can be

defined [1] as a response of the system to a deformation of the background field

∂Γ

∂η

∣∣∣∣
η=0

=
κ

g2
, (2.12)

with the effective action Γ = − lnZ. The normalization constant

κ =
∂Γ0

∂η

∣∣∣∣
η=0

, (2.13)

is defined so that g2 = g20 to the lowest order of perturbation theory.

One of the central quantities in numerical simulations is the step scaling function

σ(u) = g2(2L)
∣∣
u=g2(L)

. (2.14)

This is required for reconstructing non-perturbatively the scale evolution of the running

coupling. In presence of a lattice regulator, the deviations of the lattice counterpart of the

step scaling function Σ(u, L/a) from the continuum σ(u) can be used to monitor the size

of cutoff effects (see subsection 4.3).

2.1 1-loop expansion

The renormalized coupling eq. (2.12) is suitable for both perturbative and non-perturbative

evaluation. The 1-loop calculation of eq. (2.12) was done in [1, 3] for the pure gauge theory

in SU(2), and extended to accommodate fermions in [30].2 Non fundamental fermions have

been considered in [34–36]. In the present work we extend the previous calculations to

arbitrary N . Although the main strategy of the calculation follows closely previous works,

some care has to be taken to generalize those ideas without complicating the calculation.

In the present subsection we collect some formulas necessary for the subsequent discussion

and leave all technical details on the calculation to appendices A and B.

After going through the gauge fixing procedure [1], the effective action is expanded to

1-loop as

Γ = g−20 Γ0 + Γ1 +O(g20). (2.15)

Here Γ0 is the classical action. The 1-loop term Γ1 in the effective action can be written as

Γ1 = − ln det ∆0 + 1/2 ln det ∆1 − 1/2 ln det ∆2, (2.16)

2The evaluation of eq. (2.12) to 2 loops was done in [37, 38].
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where ∆0, ∆1 and ∆2 are the quadratic ghost, gluonic and fermionic operators respectively.

The explicit forms of the operators ∆i are given in appendix A.

The renormalized coupling eq. (2.12) is also expanded in perturbation theory

g2(L/a) = g20 + p1(L/a)g40 +O(g60). (2.17)

According to eq. (2.15), the 1-loop coefficient

p1(L/a) = −∂Γ1/∂η

∂Γ0/∂η
, (2.18)

receives an independent contribution from ghost, gauge, and fermionic fields

p1(L/a) = h0(L/a)− 1

2
h1(L/a) +

1

2
h2(L/a) = p1,0(L/a) +Nfp1,1(L/a), (2.19)

with

hs =
1

κ

∂

∂η
ln(det∆s), s = 0, 1, 2. (2.20)

The gauge and fermionic contributions to eq. (2.19) can be calculated independently.

The gauge part is given by

p1,0(L/a) = h0(L/a)− 1

2
h1(L/a). (2.21)

The calculation of h0(L/a) and h1(L/a) has been described in great detail for SU(2) in [1]

and the calculation has been done for N = 3 in [3]. In appendix A we give the generalization

of the calculations to N ≥ 3.

The calculation of the fermionic part p1,1(L/a) is straight forward to generalize to any

boundary fields and to any representation of the gauge group. One just needs to replace

the link variables in the Wilson Dirac operator eq. (2.8) with their counterparts in the

desired representation. Thus we will refer the interested reader to the original paper [15].

The continuum and lattice step scaling functions are given to first order in perturbation

theory by

σ(u) = u+ σ1u
2 +O(u3), Σ(L/a, u) = u+ Σ1(L/a)u2 +O(u3), (2.22)

with σ1 = 2b0 ln(2). The 1-loop coefficient b0 of the beta function is given in an arbitrary

representation by

b0 = b0,0 +Nfb0,1, b0,0 =
1

(4π)2
11

3
C2(F ), b0,1 = − 1

(4π)2
4

3
TR, (2.23)

where the color group invariants are defined as

C2(A)δAB = fACDfBCD, TRδ
AB = Tr[tAtB], C2(R) = tAtA, (2.24)

in the representation R of SU(N).3

3The values of the invariants are given by TF = 1/2, C2(F ) = N , TA = N , C2(A) = (N2 − 1)/(2N),

TS = (N + 2)/2, C2(S) = (N − 1)(N + 2)/N , TAS = (N − 2)/2 and C2(AS) = (N + 1)(N − 2)/N for the

fundamental, adjoint, symmetric and antisymmetric representations respectively.

– 6 –
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Similarly as in eq. (2.19), the step scaling functions can be separated into a gauge and

a fermionic part,

σ1 = σ1,0 +Nfσ1,1, Σ1(L/a) = Σ1,0(L/a) +NfΣ1,1(L/a). (2.25)

This allows us to study separately cutoff effects due to gauge and fermion fields indepen-

dently.

3 Boundary fields for N > 2

In this section we present a generalization of the boundary fields for N > 2. The selection

of the boundary fields is only limited by the requirement that there is a unique and stable

classical solution to system. In practice, this limits us to Abelian boundary fields Wk and

W ′k which can be written as in eq. (2.5), where

Ck =
i

L


φ1 0 . . . 0

0 φ2 . . . 0
...

...
. . .

...

0 0 . . . φN

 and C ′k =
i

L


φ′1 0 . . . 0

0 φ′2 . . . 0
...

...
. . .

...

0 0 . . . φ′N

 . (3.1)

SinceWk has to be an SU(N)-matrix the vectors φ = (φ1, φ2, . . . , φN ) and φ′ = (φ′1, φ
′
2, . . . , φ

′
N )

must satisfy
N∑
k=1

φk = 0. (3.2)

Now the classical solution, i.e. the background field, can be written as

Vµ(x) = exp(aBµ(x)), (3.3)

where

B0(x) = 0, (3.4)

Bk(x) = [x0C ′k + (L− x0)Ck]/L. (3.5)

It is shown in [1] that the solution Vµ(x) is absolutely stable if the vectors φ and φ′ satisfy

eq. (3.2) and

φ1 < φ2 < . . . < φN , (3.6)

φN − φ1 < 2π. (3.7)

These conditions define a fundamental domain, which is an irregular (N − 1)-simplex and

has vertices at points

X1 =
2π

N
(−N + 1, 1, 1, . . . , 1) , (3.8)

X2 =
2π

N
(−N + 2,−N + 2, 2, . . . , 2) , (3.9)

– 7 –



J
H
E
P
1
1
(
2
0
1
4
)
0
7
4

X3 =
2π

N
(−N + 3,−N + 3,−N + 3, 3, . . . , 3, ) , (3.10)

... (3.11)

XN−1 =
2π

N
(−1,−1, . . . ,−1, N − 1) , (3.12)

XN = (0, 0, . . . , 0). (3.13)

To define a renormalized coupling we can choose any two different points inside the

fundamental domain to set up the boundary fields. A different choice leads to a different

renormalization scheme, which can be matched to each other using perturbation theory

(see section 5). However, there are practical considerations in selecting the boundary

fields, namely the signal to noise ratio in the Monte Carlo simulations and the size of

higher order lattice artifacts. Our choice is based on the attempt to maximize the signal to

noise ratio as in practice the minimization of the higher order lattice artifacts often leads

to a low signal, which neglects the gains of a better continuum extrapolation.

To obtain a maximal signal strength we have two competing requirements. We need

to twist the gauge fields as much as possible while staying away from the boundaries of

the fundamental domain. This is because the coupling is proportional to the twist and

because closeness of the instability of the classical solution increases noise. According to

these considerations we choose φ to be in the middle of a line connecting X1 and the

centeroid of the fundamental domain

φ =
1

2
X1 +

1

2N

N∑
k=1

Xk

=
π

2N
(3− 3N, 5−N, 7−N, . . . , N + 1) . (3.14)

To determine φ′ we find a transformation which is a map from the fundamental domain

to itself and mirrors the vertices. First we define a simple map Ri,j(φ) that reflects the

points in the fundamental domain with respect to a (N − 2) dimensional hyperplane. The

hyperplane Ri,j(φ) goes through vertices Xk, k 6= i, j and intersects the line connecting

Xi and Xj at the middle. For N > 3 the function Ri,j(φ) is not in general a mapping

from the fundamental domain to itself, but we can define a composite mapping

M(φ) =
(
R1,N−1 ◦R2,N−2 ◦ . . . ◦R[N/2],N−[N/2]

)
(φ), (3.15)

where Ri,i(φ) is the identity mapping and [x] denotes the integer part of x. Now M(φ)

is a mapping from the fundamental domain to itself and written in components it has a

simple form

φ′i = [M(φ)]i = −φN−i+1. (3.16)

To define the coupling we choose a one parameter curve of background fields φ+ t(η).

We select it in a way that the results are equivalent to those of the SU(3) theory given

in [3],4 i.e. we select t(η) so that it changes sign under the mapping M(φ) and points

4Note that the boundaries are trivially rotated compared to the ones in [3].

– 8 –
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Figure 1. Fundamental domain of SU(4).

towards the boundaries of the fundamental domain

t(η) =
ηN

2π(N − 2)
(X1 −XN−1)

=

(
−η, 2η

N − 2
, . . . ,

2η

N − 2
,−η

)
. (3.17)

See figure 1 for illustration of the fundamental domain and boundary conditions for

SU(4) and table 1 for the boundary values for N = 3, 4, 5.

In the lattice computations it is advisable not to set t(η) beforehand, but to measure

a complete N − 1 dimensional basis which can be used to construct a generic curve. Each

curve corresponds to a different renormalization scheme.

4 Boundary effects and improvements

4.1 Fermionic spatial boundary conditions

Recalling the spatial boundary conditions for the fermion fields eq. (2.11), we still have to

choose a particular value for the angles θk. For simplicity, we consider the same angle in

all spatial directions θ = θk, k = 1, 2, 3.

We then fix θ, following the criteria introduced in [15], so that the minimum eigenvalue

λmin of the fermion operator ∆2 is as large as possible. This leads to a small condition

number which optimizes the speed of the numerical inversion of the operator.

The values of θ leading to a maximum λmin depend on the background field and also

on the fermion representation being considered. For the fundamental representation, the

profile of smallest eigenvalues λmin as a function of θ is shown in figure 2 for the different

gauge groups considered in this work excluding the case of SU(2).

Although the maximum of λmin is achieved at different values of θ for every gauge

group considered, the choice θ = π/2 is always close to the maximum and hence leads to

– 9 –
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θ/π

0

1

2

3

4

5

λ
 m

in
(θ

)

SU(3)

SU(4)

SU(5)

SU(6)

SU(7)

SU(8)

SU(9)

SU(10)

SU(11)

SU(12)

Figure 2. Lowest eigenvalue λmin (in units of L−2 ) as a function of θ for the fundamental

representation of SU(N), with N ⊂ [3, 12]. The vertical discontinuous line marks the chosen value

θ = π/2.

N = 3

φ φ′

−η − π η − 2π
3

2η + π
3 −2η − π

3

−η + 2π
3 η + π

N = 4

φ φ′

−η − 9
8π η − 5

8π

η + 1
8π −η − 3

8π

η + 3
8π −η − 1

8π

−η + 5
8π η + 9

8π

N = 5

φ φ′

−η − 6
5π η − 3

5π
2
3η −2

3η −
2
5π

2
3η + 1

5π −2
3η −

1
5π

2
3η + 2

5π −2
3η

−η + 3
5π η + 6

5π

Table 1. The values of the boundary fields for N = 3, 4, 5.

a small condition number. For homogeneity in the definition of a renormalization scheme

in the subsequent calculations, we will fix θ = π/2 for all values of N . As we will show in

subsection 4.3, this choice of θ together with the family of background fields defined in this

work will lead to a setup for which higher order cutoff effects are highly suppressed even for

non-fundamental representations. Although the choice of θ = π/2 is taken considering the

fundamental representation, this value also leads to reasonably small condition numbers

for the symmetric and antisymmetric representations. For the adjoint representation the

smallest condition number is obtained for θ = 0. However, we decide to stick to the choice

θ = π/2 also in this case since it leads to a situation were higher order lattice artifacts are

highly reduced.5

For the case of SU(2), we choose θ = 0 for the fundamental representation but leave

θ = π/2 for the symmetric/adjoint.

5We consider the reduction of higher order cutoff effects, which have been shown to be very large [34–36],

to be of higher importance.
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4.2 Gauge boundary improvement

4.2.1 Expansion

The variables p1,i(L/a) are expected to have an asymptotic expansion in L/a [1]

p1,i(L/a) ∼
∞∑
n=0

(rn,i + sn,i ln(L/a))
( a
L

)n
, (4.1)

where s0,i = 2b0,i and s1,i = 0 after setting csw to its tree level value. The boundary

improvement coefficients c
(1,i)
t are determined by demanding linear cutoff effects to be

absent in eq. (4.1), which is achieved by fixing c
(1,i)
t = r1,i/2. The continuum coefficients

r0,i are needed when matching the Λ parameter to other schemes.

In order to extract the coefficients rn,i as accurately as possible we first evaluate

p1,0(L/a) and p1,1(L/a) adapting the strategies in [1, 15] to general N (see appendices A

and B for details on the calculation). Once the series of data for p1,i(L/a) is produced, the

coefficients rn,i can be extracted using a suitable fitting procedure.

In the pure gauge case, we calculated p1,0(L/a) for values of L/a ∈ {6, 8, . . . , 100} and

then used the “Blocking” method described in [39] to obtain the values of the asymptotic

coefficients. The calculation was done using floating point precision with 50 decimal places

for 2 ≤ N ≤ 8 and with quadruple precision for N > 8. To control the error we compared

the results and errors obtained with different level of accuracy. Since the asymptotic form

eq. (4.1) is expected to be valid as a/L → 0, we consider only values of L/a ⊂ [28, 100]

when extracting the coefficients r0,0 and r0,1. This choice produced the most reliable values

for the coefficients and their relative errors. As a check we also reproduced the known value

of s0,0 = 2b1,0 to a similar degree of accuracy.

Concerning the fermionic part, values for p1,1(L/a) were produced at quadruple pre-

cision in the range L/a ⊂ [4, 64] (for even and odd values) for all gauge groups and repre-

sentations considered in this work. This was enough to obtain the asymptotic coefficients

in eq. (4.1) to very high precision (see tables 2 and 3).

4.2.2 Results

In table 2 we give the values for the coefficients r0,0 and r1,0. From r1,0 we can extract

the gauge contribution to the boundary improvement coefficient c
(1,0)
t = 1

2r1,0. According

to continuum perturbation theory we expect c
(1,0)
t to depend on group theoretical factors

with the functional form

c
(1,0)
t = AC2(F ) +BC2(A) ≡ aN +

b

N
, (4.2)

where C2(R) is the quadratic Casimir operator in the representation R. A fit to the data

gives b = 0.017852(13) and a = −0.0316483(4) with an excellent χ2/d.o.f. ≈ 2.2/9 ≈ 0.24.

The data and the fit are shown in figure 3. To check the consistency of our results, we have

also performed fits adding additional terms to eq. (4.2). The coefficients of the additional

terms are zero within statistical errors as shown in table 4.
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N r0,0 r1,0

2 0.202349528(3) -0.108735(17)

3 0.368282146(3) -0.177987(14)

4 0.520970830(2) -0.244261(14)

5 0.673474985(2) -0.309345(13)

6 0.826895868(3) -0.373834(13)

7 0.981591358(3) -0.437984(13)

8 1.137655320(3) -0.501921(12)

9 1.295080018(5) -0.565696(18)

10 1.45381790(5) -0.629390(18)

11 1.61380703(5) -0.693011(14)

12 1.77498215(5) -0.756579(14)

Table 2. Values of the pure gauge coefficients r0,0 and r1,0 for N = 2, . . . , 12.

N Fundamental Adjoint Symmetric Antisymmetric

2 -0.00342666(1) -0.13787329(4) -0.13787329(4) -

3 -0.00343842(1) -0.20761772(4) -0.17327682(5) -0.00343842(1)

4 -0.00344138(2) -0.27682313(6) -0.20788611(5) -0.06893677(2)

5 -0.00344277(1) -0.34620010(5) -0.24257541(4) -0.10364831(4)

6 -0.00344355(1) -0.41563817(4) -0.27729937(5) -0.13840671(4)

7 -0.00344406(1) -0.48510052(4) -0.31204105(4) -0.17317365(5)

8 -0.00344441(1) -0.55457355(5) -0.34679040(5) -0.20793990(4)

9 -0.00344468(1) -0.62405117(5) -0.38154235(4) -0.24270438(2)

10 -0.00344489(1) -0.69353094(5) -0.41629290(6) -0.27746570(5)

11 -0.00344506(1) -0.76295832(5) -0.45104376(5) -0.31122243(3)

12 -0.00344520(1) -0.83249201(5) -0.48579212(5) -0.34698044(4)

Table 3. Values of the fermionic coefficient r0,1 for the fundamental, adjoint, symmetric and

antisymmetric representations of N = 2, . . . , 12.

For completeness, we also include here the value of the fermionic part c
(1,1)
t for an

arbitrary group and representation

c
(1,1)
t (R) = 0.038282(2)TR. (4.3)

This was calculated for the fundamental representation in [15] and later extended to other

represesentations in [35]. In the present work we have been able to reproduce the value

of c
(1,1)
t with similar accuracy, which is a further check on the correctness of the whole

calculation.

4.3 Residual cutoff effects

The determination of the gauge and fermion contributions to c
(1)
t removes O(a) lattice

artifacts coming from the boundaries to 1-loop in perturbation theory. However, cutoff

effects of higher order in a are still present. We quantify these using the relative deviations
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c
t(1
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-0.12214
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8
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Figure 3. A polynomial fit to the c
(1,0)
t data. We have zoomed out two points to illustrate the

accuracy of the fit.

Fit function Parameters χ2/d.o.f.

aN + b/N
a = −0.0316483(4)

2.2/9=0.24
b = 0.017852(13)

aN + b+ c/N

a = −0.0316469(14)

1.0/8=0.13b = −1.7(16)× 10−5

c = 0.01789(4)

aN2 + bN + c+ d/N + e/N2

a = −2(135)× 10−8

0.76/6=0.13

b = −0.03164(4)

c = −5(26)× 10−5

d = 0.0180(9)

e = −2(8)× 10−5

Table 4. Fits with a different functional forms for c
(1,0)
t .

from the pure gauge and pure fermionic lattice step scaling functions to one loop order,

with respect to their universal continuum counterparts

δ1,i(a, L) =
Σ1,i(L/a)− σ1,i

σ1,i
, Σ1,i(L/a) = p1,i(2L/a)− p1,i(L/a). (4.4)

In figure 4 we show the convergence of the gauge part of the 1-loop step scaling function

with and without improvement. It can be seen immediately that the residual cutoff effects
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1

,0
N=2
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N=12

Figure 4. Cutoff effects in the gauge part of the 1-loop step scaling function with c
(1,0)
t = 0 (upper

set of lines) and with c
(1,0)
t set to its perturbative value (lower set of lines).

after improvement are quadratic in (a/L) and small (order of 1%) at L/a = 10. Also the

result depends only mildly on N .

The cutoff effects due to fundamental fermions are displayed in panel (a) of figure 5.

From there, it is clear that in all the gauge groups considered in this work, the residual

higher order cutoff effects are rather small after boundary O(a) improvement is imple-

mented. Residual cutoff effects are of the order of 10% already at the coarsest lattices

considered, and converge to zero very fast.

This is true for the family of background fields defined in section 3 and for the value

of θ chosen in subsection 4.1. A different choice of parameters, however, can lead to very

high residual cutoff effects even after boundary O(a) improvement is implemented.6 In

order to check this, we study the dependence of δ1,1 on the parameter θ for different values

of N in a range θ ⊂ [0.45π, 0.57π]. The cases of N = 3 and 6 are displayed in figure 6.

Other gauge groups show a very similar behavior. The residual cutoff effects δ1,1 depend

strongly on θ. Clearly, a poor choice of θ might lead to situations with very large higher

order cutoff effects.7

It is remarkable that the value θ = π/2, established in subsection 4.1 to obtain a

condition number as small as possible, also leads to a situation where higher order cutoff

effects are highly suppressed.

A very similar picture is observed when considering any of the 2-index representations.

Cutoff effects for the adjoint, symmetric and anti-symmetric representations are shown

6See references [34–36] for this issue in representations other than the fundamental.
7Note that the value θ = π/5 chosen in [15] leads to very reduced cutoff effects for their choice of BF.

This would not be the case if this value was used with our BF.
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Figure 5. Cutoff effects in the fermionic part of the 1-loop step scaling function due to a single

flavor in the fundamental (a), adjoint (b), symmetric (c) and antisymmetric (d) representations for

the gauge groups considered in this work. Cutoff effects are shown before (c
(1,1)
t = 0) and after

(c
(1,1)
t = r1,1/2) implementing O(a) boundary improvement.
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Figure 6. Cutoff effects in the fermionic part of the 1-loop step scaling function for N = 3 and 6.

Cutoff effects are shown before (c
(1,1)
t = 0) and after (c

(1,1)
t = r1,1/2) implementing O(a) boundary

improvement.

respectively in panels (b), (c) and (d) of figure 5. The smallness of the residual lattice

artifacts is at first glance surprising, since they have previously been reported to be very
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large if particular care is not taken in the choice of BF [34–36]. The magnitude of δ1,1 for the

2-index representations strongly depends on the angle θ in a very similar way as it is shown

in figure 6 for the fundamental representation. It is then possible to tune θ to minimize

cutoff effects without the need of modifying the BF [35, 36]. What is remarkable of the

family of background fields proposed in this work is that for the fundamental, symmetric

and antisymmetric representations, values of θ which lead to small condition numbers also

lead to small higher order lattice artifacts in the step scaling function. This is not true

for the adjoint representation since, as discussed in subsection 4.1, the condition number

is minimized for θ = 0. It is also remarkable that cutoff effects for all the representations

considered are minimized for the same value θ = π/2.

5 Matching the Λ parameter to MS

In this section we calculate the relation ΛSF/ΛMS of Λ parameters in our family of SF

schemes and the MS scheme. This relation is essential for obtaining the ratio ΛMS/
√
σ

from SF simulations. We provide numerical values of ΛSF/ΛMS for the pure gauge theories

and for the theories with 2 fundamental fermions. For completeness, we derive an expression

(see eq. (5.12)) for the ratio ΛSF/ΛMS as a function of N , Nf and the representation R,

which might be useful also for future BSM studies using the SF.

The Λ parameter is a renormalization group invariant and scheme dependent quantity

given by (in a generic scheme X)

ΛX = µ
(
b0g

2
X

)− b1
(2b20) e

− 1

(2b0g
2
X

) exp

{
−
∫ gX

0
dx

[
1

βX(x)
+

1

b0x3
− b1
b20x

]}
. (5.1)

It is a dimensionfull scale dynamically generated by the theory.

In subsection 4.2.2 we have performed the computation of the SF coupling8 gSF in

the Schrödinger Functional scheme to one loop order in perturbation theory, i.e. we have

calculated the renormalized coupling as an expansion in terms of the bare coupling g0

g2SF(L) = g20 + p1(L/a)g40 +O(g60), (5.2)

where, after doing a continuum extrapolation,

p1(L/a) = r0 + 2b0 ln(L/a). (5.3)

To be able to compare the results at different values of N , we are interested in a relation

between αSF = g2SF/4π and some scheme where N is only a parameter. For that we choose

the usual MS scheme, defined at infinite volume and at high energies. The relation between

the running coupling in the two schemes can be written as an expansion

αMS(sµ) = αSF(µ) + c1(s)αSF(µ)2 + c2(s)αSF(µ)3 +O(α4
SF), (5.4)

where s is a scale parameter and ci(s) are the coefficients relating the couplings in the two

schemes at each order in perturbation theory.

8In the following we write explicitly a subindex with the coupling to indicate the scheme.
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The relation between the Λ parameter in the SF and MS scheme is given by

ΛSF

ΛMS

= exp

{
− c1(1)

(8πb0)

}
, (5.5)

where c1(1) is the coefficient of the 1-loop relation (5.4). Note that eq. (5.5) is an exact

relation even though it depends on the 1-loop coefficient relating the couplings in two

different schemes.

For determining the coefficient c1(s) in eq. (5.4), we first use the known relation between

αMS in the MS and the bare coupling α0 [17, 30, 33, 40], which at 1-loop is given by

αMS(s/a) = α0 + d1(s)α
2
0 +O(α3

0). (5.6)

The 1-loop coefficient d1(s) is given for generic N and fermionic representation R by

d1(s) = d1,0 +Nfd1,1 − 8πb0 ln(s), (5.7)

where

d1,0 = − π

2N
+ k1N and d1,1 = K̃1TR. (5.8)

The coefficient k1 of the gauge part is taken from [17, 30, 33] and reads

k1 = 2.135730074078457(2). (5.9)

The coefficient K̃1 is a representation independent function of the tree level coefficient c
(0)
sw

given by

K̃1(c
(0)
sw ) = −0.1682888(2) + 0.126838(2)c(0)sw − 0.750048(2)(c(0)sw )2. (5.10)

It was calculated in [41–43] for the fundamental representation and extended to arbitrary

representations in [40].

Combining eqs. (5.2) and (2.17) we obtain the coefficient for the relation (5.4), i.e.

c1(s) = d1,0 +Nfd1,1 − 4π(r0,0 +Nfr0,1)− 8πb0 ln(s), (5.11)

with r0,i being the continuum coefficients in the series (4.1).

Knowing this, the relation between Λ parameters in eq. (5.5) can be given as a function

of the parameters N , Nf and TR and of the coefficients r0,i

ΛSF

ΛMS

= exp

{
3π2/N − 6π(k1N + K̃1TRNf ) + 24π2(r0,0 +Nfr0,1)

11N − 4TRNf

}
. (5.12)

Finally, in table 5 we collect the values of the ratio of Λ parameters for the schemes studied

in this work and for the pure gauge theory (Nf = 0) and for 2 flavors of fundamental

fermions.9 Ratios of lambda parameters for 2 index representations can be recovered using

eq. (5.12) and the corresponding coefficients from table 3.

9Note that different choices of boundary phases or θ parameter correspond to different choices of renor-

malization scheme and will hence lead to different values for the ratio ΛSF/ΛMS.
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N ΛSF/ΛMS

∣∣
Nf=0

ΛSF/ΛMS

∣∣
Nf=2

2 0.44566597(1) 0.779492(3)

3 0.48811256(1) 0.699183(2)

4 0.503112529(5) 0.654811(1)

5 0.521195149(4) 0.6426328(9)

6 0.539386422(6) 0.6422183(8)

7 0.556975178(5) 0.6470850(6)

8 0.573795805(3) 0.6545895(6)

9 0.589843423(7) 0.6634798(5)

10 0.60516382(7) 0.6731035(4)

11 0.61981639(6) 0.6830971(4)

12 0.63385977(6) 0.6932473(3)

Table 5. Ratios between Λ parameters in the SF and MS schemes, for the pure gauge theory and

for 2 flavors of fundamental fermions.

6 Conclusions

We have studied the Schrödinger functional boundary conditions and the perturbative O(a)

improvement for SU(N) gauge theories with general N . The improvement coefficient c
(1,0)
t

is obtained also for all values of N . Additionally we provide the matching between the SF

and MS schemes for a wide range of theories including fermions in various representations.

This enables a precision study of the coupling and the determination of ΛMS in the large

N limit.

The fermionic twisting angle θ is also studied and we found out that the value θ = π/2

is a good compromise between the simulation speed and the minimization of the O(a2)

lattice artifacts in the perturbative 1-loop lattice step scaling function.
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A Details of the perturbative calculations

In this appendix we provide details on the calculation for an arbitrary group SU(N) of the

ghost and gauge contributions h0(L/a) and h1(L/a) to the 1 loop coupling (see eqs. (2.20)

and (2.21)). All the calculations are presented in a general framework. The specific values
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of different variables with our choice of background field and basis for SU(N) generators are

shown in appendix B. In the following we will work in lattice units i.e. the lattice spacing

a = 1. Additionally repeated Latin indices a, b, c, . . . are not summed over and repeated

Greek indices α, β, γ, . . . are always summed over unless otherwise stated in the formula.

Latin indices run from 1, 2, 3 and Greek ones from 0, 1, 2, 3.

The operators we are interested in are defined as

∆0ω(x) = −D∗µDµω(x), (A.1)

∆1qµ(x) = −λ0DµD
∗
νqν(x) +

∑
ν 6=µ

{
cosh(a2Gµν) ? [−D∗νDνqµ(x) +D∗νDµqν(x)]

−a−2 sinh(a2Gµν) ? [2qν(x) + a(D∗ν +Dν)qµ(x) + a2D∗νDµqν(x)]
}
, (A.2)

∆2ψ(x) = [(DWD +m0) γ5]
2 ψ(x). (A.3)

There is no summation over µ in the r.h.s. of the eq. (A.2). The star product in eq. (A.2)

which maps an N×N matrix M and an SU(N) matrix X to an SU(N) matrix is defined as

M ?X =
(
MX +XM †

)
/2− Tr

(
MX +XM †

)
/(2N). (A.4)

In eq. (A.3) the operator DWD is the same as in eq. (2.8) with csw = 1.

The first step is to find a suitable basis for the SU(N) generators. This is a basis

that is invariant under the star product defined in eq. (A.4). In practice we want to find

generators Xa that satisfy

coshG0k ? X
a = χcaX

a,

sinhG0k ? X
a = χsaX

a,
(A.5)

with arbitrary coefficients χca and χsa. The hyperbolic sine and cosine of the non-zero

elements of the field strength tensor are

coshG0k = cos
[
(C ′k − Ck)/L

]
, sinhG0k = i sin

[
(C ′k − Ck)/L

]
. (A.6)

A basis that satisfies eq. (A.5) for the non-diagonal generators are the ladder operators

defined as (
Xa(j,k)

)
nm

= −i/2δjnδkm, (A.7)

where n and m are the matrix indices and a(j, k) is the color index. The properties of

a(j, k) are given in table 6. The generators Xa are normalized as Tr
[
XaXb

]
= −1

2δ
a,b.

The diagonal generators can be chosen in any way that satisfies eq. (A.5).

The boundary conditions generate a background field Vµ(x) defined in eqs. (3.3), (3.4)

and (3.5) which enters the covariant derivatives

Dµq(x) =
[
Vµ(x)q(x+ µ̂)V −1µ (x)− q(x)

]
,

D∗µq(x) =
[
q(x)− V −1µ (x− µ̂)q(x− µ̂)Vµ(x− µ̂)

]
,

(A.8)
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a(j, k) Range in a Range in j Range in k

(N − j/2)(j − 1) + (k − j) 1, . . . , N(N − 1)/2 1, . . . , N − 1 j + 1, . . . , N

(j − 1)(j/2− 1) + k +N(N − 1)/2 N(N − 1)/2 + 1, . . . , N2 −N 2, . . . , N 1, . . . , j − 1

Table 6. The values of the color index a(j, k) as a function of the dummy indices j and k.

When 1 ≤ a ≤ (N2 − N)/2 the generators Xa have a non-zero element in the upper and for

(N2 −N)/2 < a ≤ N2 −N in the lower triangle.

and through them to the operators ∆s. The next step is to calculate the covariant deriva-

tives with the background field Vµ(x) when q(x) = qa(x)Xa is proportional to a generator

Xa. The covariant derivatives can then be written in a general form

Dµq(x) =

{
[qa(x+ µ̂)− qa(x)]Xa, if µ = 0,

[exp(ifa)qa(x+ µ̂) + qa(x)]Xa, if µ > 0,
(A.9)

D∗µq(x) =

{
[qa(x)− qa(x− µ̂)]Xa, if µ = 0,

[qa(x)− exp(−ifa)qa(x− µ̂)]Xa, if µ > 0,
(A.10)

where

[Bk(x), Xa] = ifa(t)X
a, (A.11)

and t is the time component of the four vector x = (t,x). The operators ∆0 and ∆1 can

now be decomposed to color subspaces according to the basis selected. The operators are

also invariant under spatial translations and thus the determinants can be written as

det ∆s =
∏
a

∏
p

det ∆s|(p,a), s = 0, 1, (A.12)

where

p = 2πn/L, nk ∈ Z, −L/2 < nk ≤ L/2, (A.13)

is the three momentum.

Next we will show how one can calculate the determinant of operators ∆s. In [1] it

has been shown that for an operator ∆ that satisfies

∆ψ(t) = A(t)ψ(t+ 1) +B(t)ψ(t) + C(t)ψ(t− 1), (A.14)

for matrices A, B and C and an eigenvalue equation{
(∆− ξ)ψ(t) = 0, t > 0,

ψ(0) = ψ(L) = 0,
(A.15)

there exists a matrix M(ξ) such that

ψ(L) = M(ξ)ψ(1) = 0. (A.16)
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The determinant of ∆ is then given by

det ∆ = detM(0)
L−1∏
t=1

det[−A(t)]. (A.17)

We will next use these properties of the ∆s operators.

Since the operator ∆0 is invariant under spatial translations and constant diagonal

gauge transformations its eigenfunctions are of the form

ωa(x) = ψa(t)e
ipxXa. (A.18)

Operating with ∆0 on ωa(x) we get

∆0ωa(x) = [Aψa(t+ 1) +Ba(t)ψa(t) + Cψa(t− 1)] eipxXa, (A.19)

with A = C = −1 and

Ba(t) = 8− 2

3∑
k=1

cos [pk + fa(t)] . (A.20)

Clearly the operator ∆0 is similar to the operator in eq. (A.14) and thus the strategy shown

can be used. Using the eq. (A.15) with ξ = 0 i.e.

∆0ψa(t) = 0, 0 ≤ t < L (A.21)

we get a recursion relation for ψa(t) with initial values ψa(0) = 0, ψa(1) = 1 which is

ψa(2) = Ba(1), (A.22)

ψa(t+ 1) = Ba(t)ψa(t)− ψa(t− 1), t ≥ 2. (A.23)

According to eq. (A.17) the determinant is then

det ∆0|(p,a) = ψa(L). (A.24)

We will then move on to the more challenging case of ∆1. The eigenfunctions of the

operator ∆1 have the general form

qaµ(x) = Raµν(t)ψaν(t)eipxXa, (A.25)

where normalization10 matrix Raµν(t) is a diagonal 4× 4 matrix with

Ra00(t) = −i, Rakk(t) = ei(pk+fa(t))/2, k = 1, 2, 3. (A.26)

Again we can operate with ∆1 on the eigenfunction eq. (A.25) which yields

∆1q
a
µ(x) = Raµν(t)

[
Aaνρ(t)ψ

a
ρ(t+ 1) +Ba

νρ(t)ψ
a
ρ(t) + Caνρ(t)ψ

a
ρ(t− 1)

]
eipxXa, (A.27)

10Adding Raµν ensures that the matrices Aaµν(t), Baµν(t) and Caµν(t) in the recursion relation are real.
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where the matrices Aaµν(t), Ba
µν(t) and Caµν(t) are

Aaµν(t) =



Aa00(t) = −λ0,

Aakl(t) = −Naδk,l,

Aa0k(t) = λ0s
a
k(t+ 1)−Nasak(t),

Aak0(t) = 0,

Ba
µν(t) =



Ba
00(t) = 2λ0 +

∑3
k=1 s

a
k(t) (χcas

a
k(t)− iχsacak(t)) ,

Ba
kl(t) = (λ0 − 1)sak(t)s

a
l (t) + δk,l

(
2χca +

∑3
n=1(s

a
n(t))2

)
,

Ba
0k(t) = χcas

a
k(t)− iχsacak(t)− λ0sak(t),

Ba
k0(t) = Ba

0k(t),

Caµν(t) = Aaνµ(t− 1).

(A.28)

We have used the following short handed notation

cak(t) = 2 cos [(pk + fa(t))/2] , (A.29)

sak(t) = 2 cos [(pk + fa(t))/2] , (A.30)

Na = (χca − χsa) exp [i(fa(t+ 1)− fa(t))/2] . (A.31)

The operator ∆1 is also similar to the case in eq. (A.14) and the same strategy can again

be exploited. Additionally the boundary conditions of ψaµ(t) in eq. (A.27) are

ψa0(−1) = ∂∗ψa0(L) = ψak(0) = ψak(L) = 0, p = 0
∧
a > N2 −N, (A.32)

∂∗ψa0(0) = ∂∗ψa0(L) = ψak(0) = ψak(L) = 0, else. (A.33)

With this we can first calculate the determinant of ∆1 in the more general case where

the boundary conditions are given by eq. (A.33). Setting ξ = 0 in eq. (A.15) we get

∆1ψ
a
0(t) = 0, 0 ≤ t < L, (A.34)

∆1ψ
a
k(t) = 0, 0 < t < L. (A.35)

With the help of these equations we find F aµν(t) which has the property

ψaµ(t) = F aµν(t)vaν , (A.36)

where

vaν =

(
ψa0(0)

ψak(1)

)
, (A.37)
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are the first nonzero components of ψaµ(t). The matrix F aµν(t) is

F aµν(1) =


− [Ba

00(0) + Ca00(0)] /Aa00(0), µ = ν = 0,

−Aa0k(0)/Aa00(0), µ = 0
∧
ν = k 6= 0,

0, µ 6= 0
∧
ν = 0,

δk,l, µ = k 6= 0
∧
ν = l 6= 0,

F aµν(2) = −
(
Aaµρ(1)

)−1 [
Ba
ρσ(1)F aσν(1) + Caρσ(1)Pσν

]
,

F aµν(t+ 1) = −
(
Aaµρ(t)

)−1 [
Ba
ρσ(t)F aσν(t) + Caρσ(t)F aσν(t− 1)

]
, t ≥ 2,

(A.38)

where the projection operator Pµν is

Pµν =

{
1, µ = ν = 0,

0, else.
(A.39)

With F aµν(t) we will be able to construct a matrix Ma
µν that couples vaµ from eq. (A.37)

and the boundary condition eq. (A.33) at t = L(
∂∗ψa0(L)

ψak(L)

)
= Ma

µνv
a
ν . (A.40)

This matrix Ma
µν turns out to be

Ma
µν = F aµν(L)− PµρF aρν(L− 1), (A.41)

and the determinant of ∆1 in this subspace according to eq. (A.17) is

det ∆1|(p,a) = det
[
Ma
µνλ

L
0 (Na)3(L−1)

]
. (A.42)

We can then move on to the case of ∆1 where a > N2−N i.e. for diagonal generators

Xa and when p = 0. In this case the boundary conditions are given by eq. (A.32) and ψa0(t)

and ψak(t) components decouple since the matrices Aaµν(t), Ba
µν(t) and Caµν(t) are diagonal

Aa00(t) = −λ0, (A.43)

Aakk(t) = −χca, k = 1, 2, 3, (A.44)

Aaµν(t) = Caµν(t) = 1/2Ba
µν(t). (A.45)

Again using the eq. (A.34) and eq. (A.35) with the boundary conditions (A.32) we find that

ψa0(L) = (L+ 1)ψa0(0), ψak(L) = Lψak(1), (A.46)

and then we can write down the matrix M that couples the first nonzero components of

ψaµ(t) and the boundary condition (A.32) at t = L as in eq. (A.40). Now the matrix M is

diagonal with entries

M00 = 1, Mkk = L, k = 1, 2, 3. (A.47)
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According to the eq. (A.17) the contribution to the determinant of ∆1 is then

det ∆1|(p=0,a>N2−N) = λL0L
3(χca)

3(L−1). (A.48)

Now we are ready to present the value of the pure gauge part of the 1-loop coefficient

p1,0(L/a) in the SF coupling which is

p1,0(L/a) = h0(L/a)− 1/2h1(L/a)

=
1

κ

∑
p,a,s

∂

∂η

[
ln det ∆0|(p,a) − 1/2 ln det ∆1|(p,a)

]
=

1

κ


N2−N∑
a=1

∑
p

[
ψ′a(L)

ψa(L)
− 3(L− 1)

2

(Na)′

Na
− 1

2
M (−1)
µν M ′νµ

]

−1

2

N2−1∑
a=N2−N+1

3(L− 1)
(χca)

′

χca
+
∑
p6=0

(
3(L− 1)

(Na)′

Na
+M (−1)

µν M ′νµ

) ,

(A.49)

where prime indicates partial derivative w.r.t. the parameter η, M
(−1)
µν is the inverse matrix

of Mµν and the normalization κ is defined in eq. (2.13).

B Chosen basis for the diagonal generators and the values of the coeffi-

cients which depend on the background field

In appendix A we showed how the 1-loop coupling can be calculated for a generic back-

ground field and basis of generators. In here we will specify the basis that we have selected

as well as the values of the coefficients χca, χ
s
a and fa(t).

We have chosen a basis given by

XN2−N+b
kk =

i√
2b(b+ 1)

−bδb+2,k +
b∑

j=1

δj+1,k

 , (N > 3), (B.1)

XN2−2
kk = i/2(δk,1 − δk,N ), (B.2)

XN2−1
kk =

i√
N(N − 2)

−(N − 2)(δk,1 + δk,N ) +
N−1∑
j=2

δj,k

 , (B.3)

for the diagonal generators of SU(N), and by eq. (A.7) for the non diagonal ones. With

this choice the coefficients χca and χsa from eq. (A.5) are

χca(i,j) =

{
1/2 [cos ζ(i) + cos ζ(j)] , 1 ≤ a(i, j) ≤ N2 −N,
0, a(i, j) > N2 −N,

(B.4)

χsa(i,j) =

{
1/2 [sin ζ(i)− sin ζ(j)] , 1 ≤ a(i, j) ≤ N2 −N
0, a(i, j) > N2 −N.

(B.5)
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where

ζ(i) =
2η

L2

(
δ1,i + δN,i −

2

N − 2

N−1∑
k=2

δk,i

)
+

π

NL2

(
(N − 2)(δ1,i + δN,i)− 2

N−1∑
k=2

δk,i

)
.

(B.6)

The coefficients fa(t) are11

fa(i,j)(t) =
π

2LN

N−3∑
b=2

[
b+1∑
r=2

(δi,r − δj,r)− b (δi,b+2 − δj,b+2)

]

+
(L− 2t)(2ηN + π(N − 2))

L2(N − 2)N

[
N−1∑
r=2

(δr,i − δr,j) +
(N − 2)

2
(δN,j − δ1,i)

]
+

π

2LN
[δi,2 − δi,3 − δj,2 + δj,3 + (2N − 1) (δ1,i + δN,j)] , (B.7)

for a ≤ N2 −N and fa = 0 for a > N2 −N .

Additionally the normalization in eq. (2.13) depends on the chosen background field.

For our choice it is

κ = 24L2

{
sin

[((
1− 2

N

)
π + 2η

)
/L2

]
+ sin

[
2

(
π

N
+

2η

N − 2

)
/L2

]}
. (B.8)
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