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1 Introduction

Gauged supergravities in various dimensions play an important role in both string com-

pactifications and in the AdS/CFT correspondence. In some cases, a consistent truncation

can be made in such a way that a lower dimensional gauged supergravity is obtained via

a dimensional reduction of a (gauged) supergravity in higher dimensions on spheres [1].

Embedding lower dimensional gauged supergravities is now of considerable interest since

this provides a method to uplift lower dimensional solutions to string/M theory.

It is known that sphere reductions of 10 or 11 dimensional supergravities give rise to

gauged supergravity in lower dimensions. Well-known examples of these consistent sphere

reductions include S7 and S4 reductions of eleven-dimensional supergravity and S5 reduc-

tion of type IIB theory giving rise to SO(8), SO(5) and SO(6) gauged supergravities in

four, seven and five dimensions, respectively [2–4]. According to the AdS/CFT correspon-

dence [5], seven-dimensional gauged supergravity is useful in the study of N = (2, 0) and

N = (1, 0) field theories in six dimensions [6–10]. The latter describe the dynamics of M5-

branes worldvolume in M-theory and are less-known on the field theory side. Therefore,

seven-dimensional gauged supergravity is expected to give some insight to six-dimensional

field theories via gauge/gravity correspondence.

In this paper, we are interested in obtaining N = 2 seven-dimensional gauged su-

pergravity with SO(4) gauged group and topological mass term. In seven dimensions, the

theory is obtained by coupling three vector multiplets to the pure SU(2) gauged supergrav-

ity constructed in [11]. This matter-coupled theory has been constructed in [12] and [13].

The SO(4) gauged supergravity has also been constructed in [14] by truncating the max-

imal N = 4 SO(5) gauged supergravity. All of these constructions have not included the
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topological mass term for the three-form field, and the resulting theory does not admit

AdS7 vacuum solutions. It has been shown in [15] that the topological mass term is pos-

sible. The massive gauged theory has been explored in [16] in which new AdS7 vacua and

the corresponding RG flow interpolating between these vacua have been given.

To give an interpretation to this solution in the string/M theory context, it is necessary

to embed this solution to 10 or 11 dimensions. The reduction ansatz of eleven-dimensional

supergravity giving rise to pure SU(2) gauged supergravity has been given in [17]. The

SO(4) gauged theory without topological mass term from a dimensional reduction of eleven-

and ten-dimensional supergravity has been given in [18] using the result of [19]. This result

is clearly not sufficient to uplift the solution in [16]. The dimensionally reduced theory

needs to include the topological mass term in order to admit AdS7 vacua. We will give an

extension to the result of [17, 18] by constructing SO(4) gauged theory including topological

mass term from a truncation of S4 reduction of eleven dimensional supergravity. This

provides an ansatz to uplift the 7-dimensional solutions of massive N = 2 SO(4) gauged

supergravity to eleven dimensions.

The paper is organized as follow. In section 2, we give relevant formulae for N = 2

SO(4) gauged supergravity in seven dimensions. The embedding of this theory in eleven

dimensions is obtained via a consistent truncation of the S4 reduction of eleven-dimensional

supergravity in section 3. We then use the resulting ansatz to uplift RG flow solutions from

the maximally supersymmetric AdS7 vacuum with SO(4) symmetry to non-conformal SYM

in section 4. We end the paper by giving some conclusions and comments in section 5.

2 SO(4) N = 2 gauged supergravity in seven dimensions

In this section, we give a description of SO(4) N = 2 gauged supergravity in seven dimen-

sions with topological mass term. All of the notations are the same as those in [15] to

which the reader is referred for further details.

The SO(4) gauged theory is obtained by coupling three vector multiplets to the N = 2

supergravity multiplet. The field contents are given respectively by

Supergravity multiplet : (eaµ, ψ
A
µ , A

i
µ, χ

A, Bµν , σ)

Vector multiplets : (Aµ, λ
A, φi)r (2.1)

where an index r = 1, 2, 3 labels the three vector multiplets. Curved and flat space-

time indices are denoted by µ, ν, . . . and a, b, . . ., respectively. Bµν and σ are a two-

form and the dilaton fields. The two-form field will be dualized to a three-form field

Cµνρ. Indices i, j = 1, 2, 3 label triplets of SU(2)R. The 9 scalars φir are parametrized

by SO(3, 3)/SO(3) × SO(3) ∼ SL(4,R)/SO(4) coset manifold. The corresponding coset

representative of SO(3, 3)/SO(3)× SO(3) will be denoted by

L = (L i
I , L

r
I ), I = 1, . . . , 6 . (2.2)

whose inverse is given by L−1 = (LI
i, L

I
r) where L

I
i = ηIJLJi and L

I
r = ηIJLJr. Indices

i, j and r, s are raised and lowered by δij and δrs, respectively while the full SO(3, 3) indices

I, J are raised and lowered by ηIJ = diag(−−−+++).
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The SO(4) ∼ SU(2)×SU(2) gauging is implemented by promoting the SU(2)×SU(2) ∼
SO(3)× SO(3) ⊂ SO(3, 3) to a gauge symmetry. The structure constants for the SU(2)×
SU(2) gauge group, which will appear in various quantities, are given by

fIJK = (g1ǫijk, g2ǫrst). (2.3)

To obtain SO(4) gauge group, we will later set g2 = g1. The bosonic Lagrangian can be

written in a form language as

L =
1

2
R ∗ I− 1

2
eσaIJ ∗ F I

(2) ∧ F J
(2) −

1

2
∗H(4) ∧H(4) −

5

8
∗ dσ ∧ dσ

−1

2
∗ P ir ∧ Pir +

1√
2
H(4) ∧ ω(3) − 4hH(4) ∧ C(3) − V ∗ I (2.4)

where the scalar potential is given by

V =
1

4
e−σ

(

CirCir −
1

9
C2

)

+ 16h2e4σ − 4
√
2

3
he

3σ
2 C . (2.5)

The constant h describes the topological mass term for the three-form C(3) with H(4) =

dC(3). The quantities appearing in the above Lagrangian are defined by

P ir
µ = LIr

(

δKI ∂µ + f K
IJ AJ

µ

)

Li
K , Crsi = f K

IJ LI
rL

J
sLKi,

Cir =
1√
2
f K
IJ LI

jL
J
kLKrǫ

ijk, C = − 1√
2
f K
IJ LI

iL
J
jLKkǫ

ijk,

aIJ = Li
ILiJ + Lr

ILrJ . (2.6)

The Chern-Simons three-form satisfying dω(3) = F I
(2) ∧ F I

(2) is given by

ω(3) = F I
(2) ∧AI

(1) −
1

6
f K
IJ AI

(1) ∧AJ
(1) ∧A(1)K (2.7)

with F I
(2) = dAI

(1) +
1
2f

I
JK AJ

(1) ∧AK
(1)

It is also useful to give the corresponding field equations

d
(

e−2σ ∗H(4)

)

+ 16hH(4) −
1√
2
F I
(2) ∧ F I

(2) = 0, (2.8)

5

4
d ∗ dσ − 1

2
eσaIJ ∗ F I

(2) ∧ F J
(2) + e−2σ ∗H(4) ∧H(4)

+

[

1

4

(

CirCir −
1

2
C2

)

+ 2
√
2he

3

2
σC − 64h2e4σ

]

ǫ(7) = 0 (2.9)

D(eσaIJ ∗ F I
(2)) +

1√
2
H(4) ∧ F J

(2) + ∗P irf K
IJ LI

rLiK = 0 (2.10)

D ∗ P ir − eσLi
IL

r
J ∗ F I

(2) ∧ F J
(2)

− ∗ I
[√

2e−σCjrC
rskǫijk + 4

√
2he

3σ
2 Cir

]

= 0 . (2.11)

The Yang-Mills equation (2.10) can be written in terms of Cir and Cirs by using the

relation

f K
IJ LI

rLiK = − 1

2
√
2
ǫijkCjrLk

J − CirsLsJ . (2.12)
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In obtaining the scalar equation (2.11), we have used the projections in the variations of

scalars as in [12]

δLi
I = Xi

rL
r
I +Xi

jL
j
I ,

δLr
I = XrsLsI +XriLiI (2.13)

which lead to

δC2 = 6
√
2CCirXir,

δ(CirCir) = 4
√
2CirC

rsjXk
sǫ

ijk − 2
√
2

3
CirCX

i
r . (2.14)

We finally give supersymmetry transformations for fermions with all fermionic fields

vanishing. These are given by

δψµ = 2Dµǫ−
√
2

30
e−

σ
2Cγµǫ−

1

240
√
2
e−σHρσλτ

(

γµγ
ρσλτ + 5γρσλτγµ

)

ǫ

− i

20
e

σ
2 F i

ρσσ
i (3γµγ

ρσ − 5γρσγµ) ǫ−
4

5
he2σγµǫ, (2.15)

δχ = −1

2
γµ∂µσǫ−

i

10
e

σ
2 F i

µνσ
iγµνǫ− 1

60
√
2
e−σHµνρσγ

µνρσǫ

+

√
2

30
e−

σ
2Cǫ− 16

5
e2σhǫ, (2.16)

δλr = −iγµP ir
µ σ

iǫ− 1

2
e

σ
2 F r

µνγ
µνǫ− i√

2
e−

σ
2Cirσiǫ (2.17)

where SU(2)R doublet indices A,B, . . . on spinors are suppressed. σi are the usual Pauli

matrices.

3 Seven dimensional N = 2 gauged supergravity from eleven dimensions

We now construct a reduction ansatz for embedding SO(4) N = 2 gauged supergravity

mentioned in the previous section in eleven dimensions. The ansatz will be obtained from

a consistent truncation of the S4 reduction of eleven-dimensional supergravity giving rise

to the maximal N = 4 SO(5) gauged supergravity in seven dimensions. To obtain the

topological mass term, we will impose the so-called odd-dimensional self-duality as in [17].

3.1 N = 4 SO(5) gauged supergravity from seven dimensions

To set up the notations and make the paper self-contained, we briefly repeat the S4 re-

duction of eleven-dimensional supergravity [3, 20]. We will work in the notations of [19]

and deal mainly with bosonic fields. The field content of eleven-dimensional supergravity

consists of the graviton ĝMN , gravitino ψ̂M and a four-form field F̂(4). Eleven-dimensional

space-time indices are denoted by M,N = 0, 1, . . . , 10.

The S4 reduction is characterized by the following ansatz

dŝ211 = ∆
1

3ds27 +
1

g2
∆− 2

3T−1
ij DµiDµj , (3.1)
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F̂(4) =
1

4!
ǫi1...i5

[

4

g3
∆−2µmµnT i1mDT i2n ∧Dµi3 ∧Dµi4 ∧Dµi5

+
6

g2
∆−1T i5jµjF i1i2

(2) ∧Dµi3 ∧Dµi4 − 1

g3
∆−2Uµi1Dµi2 ∧ . . . ∧Dµi5

]

−Tij ∗ Si
(3)µ

j +
1

g
Si
(3) ∧Dµi (3.2)

where the quantities appearing in the above equations are defined by

U = 2TijTjkµ
iµk −∆Tii, ∆ = Tijµ

iµj , µiµi = 1,

F ij

(2) = dAij

(1) + gAik
(1) ∧A

kj

(1), Dµi = dµi + gAij

(1)µ
j ,

DTij = dTij + gAik
(1)Tkj + gAjk

(1)Tik . (3.3)

The symmetric matrix Tij , i, j = 1, . . . , 5 with unit determinant parametrize the

SL(5,R)/SO(5) coset manifold.

The bosonic field content of N = 4 gauged supergravity is given by the metric gµν ,

ten vectors Aij

(1) = A
[ij]
(1) gauging the SO(5) gauge group, five three-form fields Si

(3) and

four-teen scalars Tij . The corresponding field equations are given by

D(Tij ∗ Sj

(3)) = F ij

(2) ∧ S
j

(3), (3.4)

H i
(4) = gTij ∗ Sj

(3) +
1

8
ǫij1...j4F

j1j2
(2) ∧ F j3j4

(2) , (3.5)

D(T−1
ik T−1

jl ∗ F ij

(2)) = −2gT−1
i[k ∗DTl]i −

1

2g
ǫi1i2i3klF

i1i2
(2) ∧H i3

(4)

+
3

2g
δj1j2j3j4i1i2kl

F i1i2
(2) ∧ F j1j2

(2) ∧ F j3j4
(2) − Sk

(3) ∧ Sl
(3), (3.6)

D(T−1
ik ∗DTkj) = 2g2 (2TikTkj − TkkTij) ǫ(7) + T−1

im T−1
kl ∗ Fml

(2) ∧ F
kj

(2)

+Tjk ∗ Sk
(3) ∧ Si

(3) −
1

5
δij

[

2g2
(

2TklTkl − (Tkk)
2
)

ǫ(7)

+T−1
nmT

−1
kl ∗ Fml

(2) ∧ F kn
(2) + Tkl ∗ Sk

(3) ∧ Sl
(3)

]

(3.7)

where

H i
(4) = DSi

(3) = dSi
(3) + gAij

(1) ∧ S
j

(3) . (3.8)

All of these equation can be obtained from the Lagrangian

L7 = R ∗ I− 1

4
T−1
ij ∗DTjk ∧ T−1

kl DTli −
1

4
T−1
ik T−1

jl ∗ F ij

(2) ∧ F
kl
(2) −

1

4
Tij ∗ Si

(3) ∧ S
j

(3)

+
1

2g
Si
(3) ∧H i

(4) −
1

8g
ǫij1...j4S

i
(3) ∧ F

j1j2
(2) ∧ F j3j4

(2) +
1

g
Ω(7) − V ∗ I (3.9)

where Ω(7) is the Chern-Simens three-form whose explicit form can be found in [22]. The

scalar potential for Tij is given by

V = g2
(

TijTij −
1

2
(Tii)

2

)

. (3.10)

– 5 –



J
H
E
P
1
1
(
2
0
1
4
)
0
6
3

We have not given Einstein equation since we will not consider Einstein equation in

this paper. The consistency of the full truncation, including the Einstein equation, to

N = 2 SO(4) gauged supergravity is guaranteed from the consistency of the S4 reduction.

For completeness, we also repeat supersymmetry transformations of fermionic fields ψµ

and λî. Indices î, ĵ = 1, . . . , 5 are vector indices of the composite SO(5)c symmetry. Addi-

tionally, both ψµ and λî transform as a spinor under SO(5)c with the condition Γîλî = 0,

but we have omitted the SO(5)c spinor indices to make the following expressions more com-

pact. The SO(5)c gamma matrices will be denoted by Γî. The associated supersymmetry

transformations are given by [22]

δψµ = Dµǫ−
1

20
gTî̂iγµǫ−

1

40
√
2

(

γ νρ
µ − 8δνµγ

ρ
)

F îĵ
νρΓîĵǫ

− 1

60

(

γ νρσ
µ − 9

2
δνµγ

ρσ

)

SîνρσΓ
îǫ, (3.11)

δλî =
1

16
√
2
γµν

(

Γ
k̂l̂
Γî −

1

5
ΓîΓk̂l̂

)

F k̂l̂
µνǫ+

1

2
γµΓĵPµîĵǫ

− 1

120
γµνρ

(

Γ ĵ

î
− 4δĵ

î

)

Sĵµνρǫ+
1

2
g

(

Tîĵ −
1

5
T
k̂k̂
δîĵ

)

Γĵǫ (3.12)

where

F îĵ

(2) = Π î
i Π

ĵ
j F

ij

(2), Tîĵ = (Π−1) i
î
(Π−1) j

ĵ
δij ,

Dǫ = dǫ+
1

4
ωabγ

abǫ+
1

4
QîĵΓ

îĵǫ, T ij = (Π−1) i
î
(Π−1) j

ĵ
δîĵ ,

P(̂iĵ) +Q[̂iĵ] = (Π−1) i
î

(

δji d+ gA j

(1)i

)

Π k̂
j δĵk̂, S(3)̂i = (Π−1) i

î
S(3)i (3.13)

with Π î
i being the SL(5,R)/SO(5) coset representative.

3.2 SO(4) N = 2 gauged supergravity from S4 reduction

We now truncate the N = 4 gauged supergravity to N = 2 theory with topological mass

term for the three-form field and SO(4) gauge group. In this process, the gauge group SO(5)

is broken to SO(4). We will split the index i as (α, 5) with α = 1, . . . , 4. Furthermore,

we will set T5α, S
α and F 5α to zero. The S4 coordinates µi will be chosen to be µi =

(cos ξµα, sin ξ) in which µα satisfy µαµα = 1. Similar to µi, µα are coordinates on S3. The

scalar truncation is given by Tij = (Tαβ , T55) = (XT̃αβ , X
−4) with T̃αβ being unimodular.

The scalar field X will be related to the N = 2 dilaton.

With these truncations, the three-form field equations (3.4) and (3.5) become

D(X−4 ∗ S5
(3)) = 0 (3.14)

dS5
(3) = gX−4 ∗ S5

(3) +
1

8
ǫαβγδF

αβ

(2) ∧ F
γδ

(2) . (3.15)

We have used ǫ5αβγδ = ǫαβγδ. From (3.14), we see that the four-form X−4 ∗ S5
(3) is closed.

We will denote it by

X−4 ∗ S5
(3) = −F(4) = −dC(3) (3.16)
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or

S5
(3) = X4 ∗ F(4) . (3.17)

To satisfy equation (3.15), we impose the odd-dimensional self-duality condition

S5
(3) = −gC(3) + ω(3) (3.18)

or

X4 ∗ F(4) = −gC(3) + ω(3) (3.19)

where ω(3), satisfying dω(3) =
1
8ǫαβγδF

αβ

(2) ∧ F
γδ

(2), is the Chern-Simons term given by

ω(3) =
1

8
ǫαβγδ

(

Fαβ

(2) ∧A
γδ

(1) −
1

3
gAαβ

(1) ∧A
γκ

(1) ∧A
κδ
(1)

)

. (3.20)

Equations for Sα
(3) are trivially satisfied.

For the Yang-Mills equations, it can be verified that setting F 5α
(2) = 0 satisfies their

field equations. For Fαβ

(2) , we find

D
(

X−2T̃−1
αγ T̃

−1
βδ ∗ F γδ

(2)

)

= −2gT̃−1
γ[α ∗DT̃β]γ +

1

2
ǫαβγδF

γδ

(2) ∧ F(4) (3.21)

where we have used the odd-dimensional self-duality condition.

We then consider scalar equations. Equations for T5α are trivially satisfied while the

T55 equation gives rise to the dilaton eqiation

d(X−1 ∗ dX) =
1

5
X4 ∗ F(4) ∧ F(4) −

1

20
X−2T̃−1

αβ T̃
−1
γδ ∗ F βδ

(2) ∧ F
αγ

(2)

− 1

10
g2

[

4X−8 − 3X−3T̃αα − 2X2

(

T̃αβT̃αβ − 1

2
(T̃αα)

2

)]

ǫ(7). (3.22)

For Tij = Tαβ , we find

D(T̃−1
αγ ∗DT̃γβ) + δαβd(X

−1 ∗ dX) = X−2T̃−1
αγ T̃

−1
δκ ∗ F γκ

(2) ∧ F
δβ

(2)

+2g2
[

X2
(

2T̃αγ T̃γβ − T̃γγ T̃αβ

)

−X−3T̃αβ

]

ǫ(7)

+δαβ

[

1

5
X4 ∗ F(4) ∧ F(4) −

1

5
X−2T̃−1

γδ T̃
−1
κλ ∗ F δλ

(2) ∧ F
κγ

(2)

−2

5
g2

[

2X2

(

T̃γδT̃γδ −
1

2
(T̃γγ)

2

)

+X−8 − 2X−3T̃γγ

]

ǫ(7)

]

. (3.23)

We can now use the X equation (3.22) and end up with

D(T̃−1
αγ ∗DT̃γβ) = 2g2

[

2X2

(

T̃αγ T̃γβ − 1

2
T̃γγ T̃αβ

)

−X−3T̃αβ

]

ǫ(7)

+X−2T̃−1
αγ T̃

−1
δκ ∗ F γκ

(2) ∧ F
δβ

(2) + δαβ

[{

5

2
g2X2

(

T̃γδT̃γδ −
1

2
(T̃γγ)

2

)

+
1

2
g2X−3T̃γγ

}

ǫ(7) −
1

4
X−2T̃−1

γδ T̃
−1
κλ ∗ F δλ

(2) ∧ F
κγ

(2)

]

(3.24)
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With all of the above truncations, we find the following ansatz for the metric and the

four-form field

dŝ211 = ∆
1

3ds27 +
2

g2
∆− 2

3X3
[

X cos2 ξ +X−4 sin2 ξT̃−1
αβ µ

αµβ
]

dξ2

− 1

g2
∆− 2

3X−1T̃−1
αβ sin ξµαdξDµβ +

1

2g2
∆− 2

3X−1T̃−1
αβ cos2 ξDµαDµβ, (3.25)

F̂(4) = F(4) sin ξ +
1

g
X4 cos ξ ∗ F(4) ∧ dξ +

1

g3
∆−2U cos5 ξdξ ∧ ǫ(3)

+
1

3!g3
ǫαβγδ∆

−2X−3 sin ξ cos4 ξµκ
[

5T̃ακX−1dX +DT̃ακ
]

∧Dµβ ∧Dµγ ∧Dµδ

+
1

2g3
ǫαβγδ∆

−2 cos3 ξµκµλ
[

cos2 ξX2T̃ακDT̃ βλ − sin2 ξX−3δβλDT̃ακ

−5 sin2 ξT̃ακX−4δβλdX
]

∧Dµγ ∧Dµδ ∧ dξ + 1

2g2
cos ξǫαβγδ ×

×
[

1

2
cos ξ sin ξX−4Dµγ−

(

X−4 sin2 ξµγ+X2 cos2 ξT̃ γκµκ
)

dξ

]

∧Fαβ

(2) ∧Dµ
δ (3.26)

where

U = sin2 ξ
(

X−8 −X−3T̃αα

)

+ cos2 ξµαµβ
(

2X2T̃αγ T̃γβ −X2T̃αβT̃γγ −X−3T̃αβ

)

ǫ(3) =
1

3!
ǫαβγδµ

αDµβ ∧Dµγ ∧Dµδ . (3.27)

All of the above equations reduce to the pure N = 2 gauged supergravity with SU(2)

gauge group for T̃αβ = δαβ after using various relations given in [21]. Note that for

T̃αβ = δαβ , equation (3.24) gives

∗ Fαγ

(2) ∧ F
γβ

(2) =
1

4
δαβ ∗ F γδ

(2) ∧ F
δγ

(2) (3.28)

which means that the SO(4) gauge fields Aαβ

(1) must be truncated to those of SU(2) satisfying

Fαβ

(2) = ±1
2ǫαβγδF

γδ

(2). This is expected since there are only three vector fields in the pure

gauged supergravity which only admit SU(2) gauging.

The above equations can be obtained from the Lagrangian

L7 = R ∗ I− 1

4
X−2T̃−1

αγ T̃
−1
βδ ∗ Fαβ

(2) ∧ F
γδ

(2) −
1

4
T̃−1
αβ ∗DT̃βγ ∧ T̃−1

γδ DT̃δα

−1

2
X4 ∗ F(4) ∧ F(4) +

1

8
ǫαβγδC(3) ∧ Fαβ

(2) ∧ F
γδ

(2) − 5X−2 ∗ dX ∧ dX

−1

2
gF(4) ∧ C(3) − V ∗ I (3.29)

where the scalar potential is given by

V =
1

2
g2

[

X−8 − 2X−3T̃αα + 2X2

(

T̃αβT̃αβ − 1

2
T̃ 2
αα

)]

. (3.30)

For T̃αβ = δαβ, we find T̃αα = T̃αβT̃αβ = 4. The above potential becomes

V =
1

2
g2

(

X−8 − 8X−3 − 8X2
)

(3.31)
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which is exactly the same as that given in [17] up to a redefinition of the coupling constant g.

We can also check another truncation namely to U(1)×U(1) gauged supergravity. To

preserve SO(2)× SO(2) symmetry, we take the scalar matrix to be

T̃αβ =

















e
φ1
√

2

e
φ1
√

2

e
− φ1

√

2

e
− φ1

√

2

















(3.32)

and define X = e
− φ2

√

10 . The potential (3.30) becomes

V =
1

2
g2

[

e
8φ2
√

10 − 8e
− 2φ2

√

10 − 4e
3φ2
√

10

(

e
φ1
√

2 + e
− φ1

√

2

)]

(3.33)

which takes the same form as that given in [23]. Finally, it should be remarked that the

three-form field equation coming from the Lagrangian (3.29) needs to be supplemented

with the odd-dimensional self-duality condition as in the pure SU(2) gauged supergravity

discussed in [17].

The nine scalars, parametrized by T̃αβ , in the dimensionally reduced theory are encoded

in the SL(4,R)/SO(4) coset manifold. Therefore, in order to compare the result with

gauged N = 2 SO(4) supergravity given in the previous section, we need to use the relation

between SL(4,R)/SO(4) and SO(3, 3)/SO(3)×SO(3) coset manifolds. This is given in [15].

For the details of this mapping, the reader is referred to [15]. We will only give the

SO(3, 3)/SO(3)× SO(3) coset representative LA
I = (Li

I , L
r
I) and that of SL(4,R)/SO(4),

Vα
R with R = 1, . . . , 4,

LA
I =

1

4
Γαβ
I ηARSVR

αVS
β (3.34)

where ΓI and ηA are chirally projected SO(3, 3) gamma matrices.

It can be shown that the scalar potential can be written as

V =
1

4
e−σ

(

CirCir −
1

9
C2

)

+ 16h2e4σ − 4
√
2

3
he

3σ
2 C

=
1

8
e−σ

(

TαβTαβ − 1

2
T 2
αα

)

+ 2Tααhe
3σ
2 + 16h2e4σ (3.35)

This form is similar to the potential (3.30) if T̃αβ is identified with Tαβ . Note that Tαβ and

C, Cir contain the gauge coupling g1 and g2. In order to compare the Lagrangian of the

two theories, we need to multiply the Lagrangian (2.4) by two and separate the coupling

constants g1 and g2 from the structure constants fIJK = (g1ǫijk, g2ǫrst). With these, the

two scalar potentials are exactly the same if we identify

g2 = g1 = −16h = −2g . (3.36)

We also need to redefine the following fields in the Lagrangian (2.4):

H(4) →
F(4)√

2
, C(3) →

C(3)√
2
,
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F I =
1

4
ΓI
αβF

αβ

(2) or Fαβ

(2) = −1

2
ǫαβγδΓI

γδF
I

X = e−
σ
2 . (3.37)

By using (3.34), it can also be checked that

T̃−1
αγ T̃

−1
βδ =

1

4
ΓI
αβΓ

J
γδ

(

Li
ILiJ + Lr

ILrJ

)

. (3.38)

The field equations from the two theories also match.

We now move to supersymmetry transformations of fermions. The maximal N = 4

theory contains the gravitini ψµ and the spin-12 fields λî. The latter is decomposed into

(λR, λ5). The SO(5)c Γî gamma matrices are accordingly decomposed as Γî = (ΓR,Γ5).

Γ5 = Γ1Γ2Γ3Γ4 acts as the chirality matrix of SO(4). Following [18], we make the truncation

ǫ− = ψ−
µ = λ−5 = λ+α = 0 . (3.39)

ǫ± satisfy Γ5ǫ± = ±ǫ± with ǫ = ǫ++ ǫ−. We will now drop ± superscript from ǫ, λ and ψµ.

In accordance with the bosonic truncation T ij = (Tαβ , T 55) = (XT̃αβ , X−4), we trun-

cate the SL(5,R)/SO(5) coset representative as Π î
i = (Π R

α ,Π 5̂
5 ). With the identification

Π R
α = X− 1

2V R
α and Π 5̂

5 = X2, we can write T̃αβ in term of SL(4,R)/SO(4) coset repre-

sentative V R
α as

T̃αβ = (V−1) α
R (V−1) β

S δ
RS and T̃RS = (V−1) α

R (V−1) β
S δαβ . (3.40)

We then find that equations (3.11) and (3.12) become

δψµ = Dµǫ−
1

20
g(XT̃RR +X−4)γµǫ−

1

40
√
2
X−1

(

γ νρ
µ − 8δνµγ

ρ
)

ΓRSF
RS
νρ ǫ

− 1

60
X−2

(

γ νρσ
µ − 9

2
δνµγ

ρσ

)

S5
νρσǫ, (3.41)

δλR =
1

4
γµΓRX

−1∂µXǫ+
1

2
ΓSγµPRSǫ+

1

16
√
2
X−1γµν

(

ΓSTΓR − 1

5
ΓRΓST

)

FST
µν ǫ

− 1

10
gX−4ΓRǫ−

1

2
gX

(

T̃RS − 1

5
T̃TT δRS

)

ΓSǫ− 1

120
X−2γµνρΓRS

5
µνρǫ . (3.42)

The constraint Γîλî = 0 imposes the condition λ+5 = −ΓRλ−R. Therefore, the indepen-

dent fields will be ψµ and λR. This is the reason for excluding δλ5 in the above equations.

We then identify ΓRλR with χ and λ̂R = λR − 1
4ΓRΓ

SλS with λr in (2.17). Note that λ̂R
has only three independent components due to the condition ΓRλ̂R = 0.

With these and the odd-dimensional self-duality, we end up with, after some gamma

matrix algebra,

δψµ = Dµǫ−
1

20
gXT̃γµǫ−

1

40
√
2
X−1

(

γ νρ
µ − 8δνµγ

ρ
)

ΓRSF
RS
νρ ǫ

− 1

20
gX−4γµǫ−

1

480
X2

(

3γ νρστ
µ − 8δνµγ

ρστ
)

Fνρστ ǫ, (3.43)
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δχ = X−1γµ∂µXǫ−
2

5
gX−4ǫ+

1

10
gXT̃RRǫ

− 1

120
X2γµνρσFµνρσǫ−

1

20
√
2
X−1γµνΓRSF

RS
µν ǫ, (3.44)

δλ̂R = −1

2
γµΓSPµRSǫ−

1

8
gXT̃SSΓRǫ+

1

2
gXT̃RSΓ

Sǫ

− 1

8
√
2
X−1γµνΓS

(

FRS
µν +

1

2
ǫRSTUF

TU
µν

)

ǫ . (3.45)

In the above equations, we have used the following definitions

PRS = (V−1)α(R

(

δβαd+ gA β

(1)α

)

V T
β δS)T ,

QRS = (V−1)α[R

(

δβαd+ gA β

(1)α

)

V T
β δS]T ,

Dǫ = dǫ+
1

4
ωabγ

ab +
1

4
QRSΓ

RS . (3.46)

Notice that with our convention for Γ5ǫ = ǫ, ΓRS is anti-self dual. The field strength

FRS
(2) appearing in (3.43) and (3.44) must be accordingly anti-self dual. This should be

identified with the SU(2) field strength F i
(2) in (2.15) and (2.16). On the other hand, the

self dual part of FRS
(2) appears in (3.45) and should be identified with F r

(2) in (2.17).

In more detail, after using gamma matrix identities such as γµγ
νρ = γ νρ

µ +2δ
[ν
µ γρ], we

can rewrite equation (2.15) as

δψµ = 2Dµǫ−
√
2

30
e−

σ
2Cγµǫ−

1

120
√
2
e−σHρσλτ

(

3γ ρσλτ
µ − 8δρµγ

σλτ
)

ǫ

− i

10
e

σ
2 F i

ρσσ
i
(

γ ρσ
µ − 8δρµγ

σ
)

ǫ− 4

5
he2σγµǫ . (3.47)

Using the relation C = − 3
2
√
2
g1T̃ given in [15] with the relation g2 = g1 = −2g and iden-

tifying FRSΓ
RS = 2

√
2iF iσi, we find that equation (3.43) matches with (3.47). Similarly,

equation (3.44) matches with (2.16). Note that in order to match the gravitino variation,

we need to multiply (3.43) by two.

Comparing (2.17) and (3.45) is more complicated since various terms are not related

to each other in a simple way. For example, we should write the anti-self dual part of ΓRS

in terms of the anti-self dual t’ Hooft symbols η̄iRS and Pauli matrices σi

Γ
(−)
RS = iσiη̄iRS (3.48)

and similarly for the self dual part

Γ
(+)
RS = iσrηrRS . (3.49)

Accordingly, we should identify

F i =
1

2
η̄iRSF

RS and F r =
1

2
ηrRS

(

FRS
µν +

1

2
ǫRSTUF

TU
µν

)

. (3.50)

Equation (3.45) should then match with (2.17), but we refrain from giving the full detail

here due to the complicated algebra.
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4 Embedding seven-dimensional RG flow to eleven dimensions

In this section, we will use the reduction ansatz obtained in the previous section to uplift

some seven-dimensional solutions. The dimensional reduction gives rise to the condition

g2 = g1. This makes the supersymmetric AdS7 critical point with SO(3)diag symmetry

found in [16] disappears. Accordingly, the flow solution given in [16] cannot be uplifted

to eleven dimensions with the present reduction ansatz. However, to give examples of the

uplifted solutions, we will study other solutions in the case of g2 = g1.

4.1 Uplifting AdS7 solutions

We now further truncate the nine scalars given by T̃αβ to one scalar invariant under

SO(3)diag ⊂ SO(3)×SO(3) ∼ SO(4). This scalar sector has already been studied in [16]. We

will give more solutions in this section. Under SO(3)diag, the nine scalars transform as 1+

3+5. There is only one singlet. It can be checked that the SO(3)diag singlet correspond to

VR
α =















e
φ

2

e
φ

2

e
φ

2

e−
3φ

2















or T̃αβ =















eφ

eφ

eφ

e−3φ















. (4.1)

T̃αβ can be written more compactly as T̃αβ = (δabe
φ, e−3φ) for a, b = 1, 2, 3. By using (3.34)

and the explicit form of ΓI and ηA given in [15], it is easy to verify that this V precisely

gives the SO(3, 3)/SO(3)× SO(3) coset representative L used in [16].

Using this and the relation X = e−
σ
2 , we find the scalar potential

V =
1

2
g2e−σ

[

e5σ+e−6φ − 6e−2φ − 3e2φ − 2e
5

2
σ−3φ

(

1 + 3e4φ
)]

. (4.2)

This potential admits two AdS7 critical points given by

σ = φ = 0, V0 = −480h2 (4.3)

σ = − 1

10
ln 2, φ = −1

4
ln 2, V0 = −160× 2

3

5h2 (4.4)

where we have used g = 8h or equivalently g1 = −16h as given in [16]. By using the BPS

equations given in [16], which are repeated below, we see that the second critical point is

non-supersymmetric. Scalar masses at this critical point can be computed to be

SO(3)diag m2L2

1 −12

1 12

3 0

5 −12

– 12 –



J
H
E
P
1
1
(
2
0
1
4
)
0
6
3

where the AdS7 radius is given by L =
√

− 15
V0
. The three massless scalars are the expected

Goldstone bosons corresponding to the symmetry breaking of SO(4) to SO(3). One of the 1

and 5 scalars have masses below the BF boundm2L2 = −9, so this critical point is unstable.

The first critical point is the trivial point preserving all supersymmetries and the full

SO(4) gauge symmetry. The scalar masses can be found in [16]. We will now uplift this

AdS7 vacuum to eleven dimensions. We begin with the coordinates µα = (cosψµ̂a, sinψ)

in which µ̂aµ̂a = 1. Since σ = φ = 0, we then find ∆ = 1 and

ds211 = e
2r

LUV dx21,5 + dr2 +
1

32h2

[

dξ2 +
1

4
cos2 ξ

(

dψ2 + cos2 ψdΩ2
2

)

]

(4.5)

F̂(4) = − 3

256h3
cos5 ξdξ ∧ ǫ(3) (4.6)

where dΩ2
2 is the metric on the two-sphere. The eleven dimensional geometry is given by

AdS7×S4. Turning on the dilaton σ would deform the four-sphere but leave the S3 inside

invariant. If φ, σ 6= 0, the metric would be further deformed in such a way that the S2 part

described by dΩ2
2 is invariant. The unbroken symmetry in this case is the SO(3) isometry

of this S2 identified with the unbroken SO(3)diag. The SO(3) critical point is however

unstable. Therefore, we will not consider AdS7 solution with SO(3) symmetry.

4.2 Uplifting RG flows to non-conformal SO(3) super Yang-Mills

To give more examples, we will study RG flow solutions to non-conformal Super Yang-Mills

theories in the IR. We will work in the theory of section 2. With g2 = g1 and the standard

domain wall metric ansatz ds27 = eA(r)dx21,5+dr
2, the BPS equations taken from [16] become

φ′ = −4e−
σ
2
−3φ

(

e4φ − 1
)

h, (4.7)

σ′ =
8

5
e−

σ
2
−3φ

(

1 + 3e4φ − 4e
5

2
σ+3φ

)

h, (4.8)

A′ =
4

5
e−

σ
2
−3φ

(

1 + 3e4φ + e
5

2
σ+3φ

)

(4.9)

in which d
dr

is denoted by ′. After changing to the new coordinate r̃ given by dr̃
dr

= e−
σ
2 ,

we find the solution

16hr̃ = ln

[

1 + eφ

1− eφ

]

− 2 tan−1 φ+ C1, (4.10)

σ =
2

5

[

φ− ln
[

1 + 12C2 − 12C2e
4φ
]]

, (4.11)

A =
1

4

[

φ− 2 ln(1− e4φ)
]

− 1

8
σ . (4.12)

The solution interpolates between an AdS7 in the UV, r̃ ∼ r → ∞, and a domain wall in

the IR, 4hr̃ → C̃, for a constant C̃.

At the UV, the solution becomes

σ ∼ φ ∼ e−16hr ∼ e
− 4r

LUV , A ∼ 4hr ∼ r

LUV
. (4.13)

The eleven-dimensional metric is given by (4.5).
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In the IR, we find that φ blows up as

φ ∼ − ln(4hr̃ − C̃) (4.14)

for a constant C̃. The behaviour of σ depends on the value of the integration constant C2.

For C2 = 0, we find

σ ∼ −2

5
ln(4hr̃ − C̃) ∼ −1

2
ln(4hr − C) (4.15)

where we have used the relation between r̃ and r in the IR limit with C being another

integration constant. The seven-dimensional metric is given by

ds27 = (4hr − C)2dx21,5 + dr2 . (4.16)

For C2 6= 0, the solution becomes

σ ∼ 6

5
ln(4hr̃ − C̃) ∼ 3

4
ln(4hr − C),

ds27 = (4hr − C)
3

4dx21,5 + dr2 . (4.17)

Both cases give V → −∞, so the solution is physical by the criterion of [24].

We now look at the eleven-dimensional geometry. For C2 = 0 and C2 6= 0, the eleven

dimensional metric is given respectively by

ds211 =
(

1− sin2 ξ cos2 ψ
)− 1

3

[

(

14

3
hρ

)2

dx21,5 + dρ2

]

+
1

32h2
(

1− sin2 ξ cos2 ψ
)− 2

3 ×

×
[

(

14

3
hρ

)− 27

7

sin2 ξ cos2 ψdξ2 +
1

4
sin ξ sin(2ψ)

(

14

3
hρ

)− 1

2

dψdξ

+
1

4

(

14

3
hρ

)− 20

7

dψ2 +
1

4
cos2 ψ

(

14

3
hρ

) 10

7

dΩ2
2

]

, (4.18)

ds211 = (cos ξ cosψ)−
2

3

[

(

14

3
hρ

) 13

14

dx21,5 + dρ2

]

+
1

32h2
(cos ξ cosψ)−

4

3 ×

×
[

(

14

3
hρ

) 17

14
(

1− sin2 ξ cos2 ψ
)

dξ2 − 1

4
sin ξ sin(2ψ)

(

14

3
hρ

) 7

4

dξdψ

+
1

4
cos2 ξ

(

14

3
hρ

) 10

7
(

sin2 ψdψ2 + cos2 ψdΩ2
2

)

]

(4.19)

where
(

14
3 hρ

)
6

7 = 4hr − C.

As expected, when turning on φ and σ, the warped factors involve coordinates (ξ, ψ).

The S4 is then deformed leaving the S2 intact. If only σ 6= 0, the S3 part of the internal

metric would be invariant as pointed in [17]. The deformation with only φ 6= 0 is not

possible since the BPS equation for σ would imply φ = 0 as pointed out in [16].
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5 Conclusions

In this paper, we have constructed N = 2 SO(4) gauged supergravity in seven dimen-

sions with topological mass term. The resulting theory admit AdS7 vacua and could be

useful in the context of the AdS/CFT correspondence. The resulting reduction ansatz

has been found by truncating the S4 reduction leading to N = 4 SO(5) gauged super-

gravity and can be used to uplift seven-dimensional solutions to eleven dimensions. We

have also constructed new seven-dimensional RG flow solutions and uplifted the resulting

solutions to eleven dimensions. The flows can be interpreted as deformations of the UV

N = (1, 0) SCFT in six dimensions with SO(4) symmetry to non-conformal SYM with

SO(3)diag symmetry. These deformations are driven by vacuum expectation values of di-

mension 4 operators. Additionally, the result of this paper can be used to uplift flows to

SO(2) non-conformal gauge theories studied in [16] for g2 = g1.

However, the RG flow between two supersymmetric AdS7 critical points recently found

in [16] cannot be uplifted by using the reduction ansatz constructed here. It would be inter-

esting to find an embedding of this solution in 10 or 11 dimensions. It is also interesting to

extend the reduction ansatz given here to non-compact gauge groups SO(3, 1) and SO(2, 2).

The internal manifold should involve hyperbolic spaces H3,1 and H2,2, respectively. Other

possible non-compact gauge groups are SL(3,R), SO(2, 1) and SO(2, 2)×SO(2, 1). It would

be very interesting to find higher dimensional origins for these gauge groups as well. Finally,

more insight to six-dimensional gauge theories might be gained from studying these seven-

dimensional gauged supergravities via AdS7/CFT6 correspondence. We hope to come back

to these issues in future works.
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[17] H. Lü and C.N. Pope, Exact embedding of N = 1, D = 7 gauged supergravity in D = 11,

Phys. Lett. B 467 (1999) 67 [hep-th/9906168] [INSPIRE].
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