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1 Introduction

Gauged supergravities in various dimensions play an important role in both string com-
pactifications and in the AdS/CFT correspondence. In some cases, a consistent truncation
can be made in such a way that a lower dimensional gauged supergravity is obtained via
a dimensional reduction of a (gauged) supergravity in higher dimensions on spheres [1].
Embedding lower dimensional gauged supergravities is now of considerable interest since
this provides a method to uplift lower dimensional solutions to string/M theory.

It is known that sphere reductions of 10 or 11 dimensional supergravities give rise to
gauged supergravity in lower dimensions. Well-known examples of these consistent sphere
reductions include S7 and S* reductions of eleven-dimensional supergravity and S° reduc-
tion of type IIB theory giving rise to SO(8), SO(5) and SO(6) gauged supergravities in
four, seven and five dimensions, respectively [2-4]. According to the AdS/CFT correspon-
dence [5], seven-dimensional gauged supergravity is useful in the study of N = (2,0) and
N = (1,0) field theories in six dimensions [6-10]. The latter describe the dynamics of M5-
branes worldvolume in M-theory and are less-known on the field theory side. Therefore,
seven-dimensional gauged supergravity is expected to give some insight to six-dimensional
field theories via gauge/gravity correspondence.

In this paper, we are interested in obtaining N = 2 seven-dimensional gauged su-
pergravity with SO(4) gauged group and topological mass term. In seven dimensions, the
theory is obtained by coupling three vector multiplets to the pure SU(2) gauged supergrav-
ity constructed in [11]. This matter-coupled theory has been constructed in [12] and [13].
The SO(4) gauged supergravity has also been constructed in [14] by truncating the max-
imal N = 4 SO(5) gauged supergravity. All of these constructions have not included the



topological mass term for the three-form field, and the resulting theory does not admit
AdS; vacuum solutions. It has been shown in [15] that the topological mass term is pos-
sible. The massive gauged theory has been explored in [16] in which new AdS; vacua and
the corresponding RG flow interpolating between these vacua have been given.

To give an interpretation to this solution in the string/M theory context, it is necessary
to embed this solution to 10 or 11 dimensions. The reduction ansatz of eleven-dimensional
supergravity giving rise to pure SU(2) gauged supergravity has been given in [17]. The
SO(4) gauged theory without topological mass term from a dimensional reduction of eleven-
and ten-dimensional supergravity has been given in [18] using the result of [19]. This result
is clearly not sufficient to uplift the solution in [16]. The dimensionally reduced theory
needs to include the topological mass term in order to admit AdS7 vacua. We will give an
extension to the result of [17, 18] by constructing SO(4) gauged theory including topological
mass term from a truncation of S* reduction of eleven dimensional supergravity. This
provides an ansatz to uplift the 7-dimensional solutions of massive N = 2 SO(4) gauged
supergravity to eleven dimensions.

The paper is organized as follow. In section 2, we give relevant formulae for N = 2
SO(4) gauged supergravity in seven dimensions. The embedding of this theory in eleven
dimensions is obtained via a consistent truncation of the S* reduction of eleven-dimensional
supergravity in section 3. We then use the resulting ansatz to uplift RG flow solutions from
the maximally supersymmetric AdS7 vacuum with SO(4) symmetry to non-conformal SYM
in section 4. We end the paper by giving some conclusions and comments in section 5.

2 SO(4) N = 2 gauged supergravity in seven dimensions

In this section, we give a description of SO(4) N = 2 gauged supergravity in seven dimen-
sions with topological mass term. All of the notations are the same as those in [15] to
which the reader is referred for further details.

The SO(4) gauged theory is obtained by coupling three vector multiplets to the N = 2
supergravity multiplet. The field contents are given respectively by

Supergravity multiplet : (6;371/};?, AL, Y4, By, o)
Vector multiplets : (A, A, )" (2.1)
where an index r = 1,2,3 labels the three vector multiplets. Curved and flat space-
time indices are denoted by p,v,... and a,b,..., respectively. B,, and o are a two-

form and the dilaton fields. The two-form field will be dualized to a three-form field
Cuvp- Indices 4,7 = 1,2,3 label triplets of SU(2)g. The 9 scalars ¢ are parametrized
by SO(3,3)/SO(3) x SO(3) ~ SL(4,R)/SO(4) coset manifold. The corresponding coset
representative of SO(3,3)/SO(3) x SO(3) will be denoted by

L=(L/ L), I=1,...,6. (2.2)

whose inverse is given by L~! = (L1, L1) where L!, = n!/L;; and L', = n'/L,. Indices
i, j and r, s are raised and lowered by d;; and d,, respectively while the full SO(3, 3) indices
I,J are raised and lowered by n;; = diag(— — — + ++).



The SO(4) ~ SU(2) x SU(2) gauging is implemented by promoting the SU(2) x SU(2) ~
SO(3) x SO(3) € SO(3,3) to a gauge symmetry. The structure constants for the SU(2) x
SU(2) gauge group, which will appear in various quantities, are given by

frir = (91€ijk, ga€rst)- (2.3)

To obtain SO(4) gauge group, we will later set go = g1. The bosonic Lagrangian can be

written in a form language as

1 1, 1 5
L= 5R>|<]I—§e aU*F(IQ)/\Fé)—i*HM)/\HM)—é*da/\da

1 » 1
——xP" APy + —Hy ANwy—4hHy AN Cigy —V ox1 2.4
> 3w N @ N Ce) (2.4)
where the scalar potential is given by
1 - 1 42 30
Vi=ge’ (C’"C’ir - 902> + 16h2e7 — theﬁc. (2.5)

The constant h describes the topological mass term for the three-form C3) with Hy) =
dC3). The quantities appearing in the above Lagrangian are defined by

pir = v (5{< Oy + fr) KA,{) Ly, Croi = f1, KL LY Ly,
1 Kyl 7J ijk 1 Kyl vJ ijk
Cor = ﬁfu L5 L7 Lrere™, ©= _ﬁfIJ L L% Lrcre”,
ary = LiILZ'J + L' Ly. (2.6)

The Chern-Simons three-form satisfying dwz) = F (12) AN F (12) is given by

1
w) = Figy Ay = ¢ frs Ay A ALy A Ak (2.7)
with Flyy = dA{)) + 55" Al A Af,

It is also useful to give the corresponding field equations

d (e« Hy)) + 16hH ) — \}EF{Q) NFly =0, (2.8)
Zd x do — %e"au * F(IQ) A Fé) +e % Hyy N Hy)
- [i (C“"CZ-T = ;02> +2/2he?7C — 64h264"] en =0 (2.9)
D(e%ary * Fjy) + \}iH(4) NFppy +#P" fr; KL Lig = 0 (2.10)
Dx P —e"L' Ly % Fly A Fh
I [\/ﬁe—"cﬁcm’“eijk + 4\/5]163760”} ~0. (2.11)

The Yang-Mills equation (2.10) can be written in terms of C* and C* by using the
relation 1
frg KL Lig = —ﬁeijkcﬂﬁj —C"5L;. (2.12)



In obtaining the scalar equation (2.11), we have used the projections in the variations of
scalars as in [12]

0L'y = X' L")+ X', 17,

SL'y = X" Lyr + X" Ly (2.13)
which lead to

5C? = 6V20C7 X,
2v2
3

We finally give supersymmetry transformations for fermions with all fermionic fields

3(C"Cyr) = 4V2C;,CT XK, IF — 220 CX (2.14)

r-

vanishing. These are given by

2 o 1
0ty = 2Dye — ie_ac’hﬁ — We_aHpo')\T (’Y;L’YWM + 57’)‘7)‘77“) €

30 2
—%G%Fggai By =577 y,) € — %he%'yuﬁ, (2.15)
ox = —%7"8”06 — %e%Fﬁyai'y“”e — 601\/56_01{/114)07“”/)06
—I—\?)/(?G_ZCE — ?egahe, (2.16)
oA = —i’y”Pffaie — %e%F/jvae — \jiegC’"aie (2.17)
where SU(2)g doublet indices A, B, ... on spinors are suppressed. ¢ are the usual Pauli

matrices.

3 Seven dimensional N = 2 gauged supergravity from eleven dimensions

We now construct a reduction ansatz for embedding SO(4) N = 2 gauged supergravity
mentioned in the previous section in eleven dimensions. The ansatz will be obtained from
a consistent truncation of the S* reduction of eleven-dimensional supergravity giving rise
to the maximal N = 4 SO(5) gauged supergravity in seven dimensions. To obtain the
topological mass term, we will impose the so-called odd-dimensional self-duality as in [17].

3.1 N =4 SO(5) gauged supergravity from seven dimensions

To set up the notations and make the paper self-contained, we briefly repeat the S* re-
duction of eleven-dimensional supergravity [3, 20]. We will work in the notations of [19]
and deal mainly with bosonic fields. The field content of eleven-dimensional supergravity
consists of the graviton §sy, gravitino @ZA) m and a four-form field F(4). Eleven-dimensional
space-time indices are denoted by M, N =0,1,...,10.

The S* reduction is characterized by the following ansatz

1 o
g2, = Asds2 + ?A%Tlglpwpm, (3.1)



. 1 4 : . A : .
Flay = péiis | g AW T DI A Dy \ D A D'

+£A_1Ti5jqui1i2 A Du'® A D't — iA_2U;ﬁ‘1D,ul‘2 A...A\NDu®
g2 (2) g°
1 .

where the quantities appearing in the above equations are defined by

U=2TTyu'n’ — ATy, A =Tyu's, Pt =1,
Fg) = dAZ(]l) + gA[) A A(f), Dy’ = du' + gAE]l),u],
DT; = dTy; + gAf Tiy + g AL} T (3.3)
The symmetric matrix T;;, 4,7 = 1,...,5 with unit determinant parametrize the

SL(5,R)/SO(5) coset manifold.

The bosonic field content of N = 4 gauged supergravity is given by the metric g,
ten vectors Aé{) = A%lj)] gauging the SO(5) gauge group, five three-form fields SZS) and
four-teen scalars Tj;. The corresponding field equations are given by

D(Tyj % Sl3)) = F3) A Sly), (3.4)
Hiyy = gy Sy + et s, Pl A I (3.5)
DT F)) = —20T5) « DTy = 5oy Fiy A HE
+2?;5§;gj,g‘;j4 Figiz p B3\ Fjst — Sty A Sty (3.6)
D(Ty' « DTyy) = 29° (2T Thy — TeeTig) €y + Tt Tyt 5 F3) A F(3)
T Sty A Sty = 505 [26 (2TiaTia = (Tia?)
AT T % Fl3) A FlY 4 Tra + Sfgy A Ség)} (3.7)
where
H{yy = DSy = dS(s) + A}, A Sy . (3.8)
All of these equation can be obtained from the Lagrangian
Lr= Rel— ST« DTy AT DTy — ~T T 5 F9 A FY — 270 w5 A S
47 J ki 4 ik Tl (2) (2 479" (3)
+21gsg'3) NHip — ;g%ﬂ Say N2 AFRI + ;9(7) — Vsl (3.9)

where €)(7) is the Chern-Simens three-form whose explicit form can be found in [22]. The
scalar potential for Tj; is given by

1

V=g (TT - 2(E-)2)- (3.10)



We have not given Einstein equation since we will not consider Einstein equation in
this paper. The consistency of the full truncation, including the Einstein equation, to
N =2 SO(4) gauged supergravity is guaranteed from the consistency of the S* reduction.

For completeness, we also repeat supersymmetry transformations of fermionic fields 1,
and A;. Indices i,7 =1,...,5 are vector indices of the composite SO(5). symmetry. Addi-
tionally, both ¢, and X; transform as a spinor under SO(5). with the condition F%)\% =0,
but we have omitted the SO(5), spinor indices to make the following expressions more com-
pact. The SO(5), gamma matrices will be denoted by T%. The associated supersymmetry
transformations are given by [22]

1 1 14 v 7,
dthy = Dye— %gTﬁ’yue — m (’Vu P _ 85 ) F,ji,l“we
1 vVpo 9 v lo}
. (’m L > ST (3.11)
L il ’
5)\; = 16\/5’}/“ <FIQZAF 5F2Fkl> F €+ ’Yl FJP
! WP( 453) S 4t T _Lp s )i (3.12)
20"\ jup® T 99 5 kRO ‘
where
R =0, T = () 1) /80,
1 1 ioie) .. . - il
De = de + Zwawabe + ZQ%JT”E, TY = (H_l)%’(H_l)j,J&”,
-1y i [si j k -1y i
Py + Qpz = (7Y, (5gd + gA(l)Z.]> 146, Sy = (7)), Sy, (3.13)

with Hi% being the SL(5,R)/SO(5) coset representative.

3.2 SO(4) N = 2 gauged supergravity from S* reduction

We now truncate the N = 4 gauged supergravity to N = 2 theory with topological mass
term for the three-form field and SO(4) gauge group. In this process, the gauge group SO(5)
is broken to SO(4). We will split the index i as («,5) with aw = 1,...,4. Furthermore,
we will set Tsq, S and F®* to zero. The S* coordinates p' will be chosen to be p’ =
(cos £, sin &) in which pu® satisfy p®p® = 1. Similar to p!, u® are coordinates on S3. The
scalar truncation is given by T;; = (Thg, T55) = (Xfag, X—4) with Taﬁ being unimodular.
The scalar field X will be related to the N = 2 dilaton.
With these truncations, the three-form field equations (3.4) and (3.5) become

D(X 4% S0y) =0 (3.14)

1
dSlyy = gX xSy + eaMF( 5 NE

7 - (3.15)

We have used €508y5 = €apys- From (3.14), we see that the four-form X4« 5(53) is closed.
We will denote it by
X4y SE)S) = —F(4) = —dC(3) (3.16)



or

Sy = X' x Flyy . (3.17)

To satisfy equation (3.15), we impose the odd-dimensional self-duality condition
5(53) = —gC(g) + w(3) (3.18)

or
X% Fyy = —gC3) + w) (3.19)

where w(3), satisfying dw(s) = g€agrsF, (02"? A F&‘;, is the Chern-Simons term given by

1 B a4 _ Lo qaB \ qvm A gn
W(3) = gCaps (Fg) NAL) — ggAE"l) NAL A A(l)) : (3.20)

Equations for S(Dé) are trivially satisfied.
For the Yang-Mills equations, it can be verified that setting F(E’Zo)‘ = 0 satisfies their

field equations. For F(Oé’gj , we find

% 0 A Flay (3.21)

—2F—1—1 5 .| - 1
D (XTI 15« ) = =297 « DTy, + Seapns B
where we have used the odd-dimensional self-duality condition.
We then consider scalar equations. Equations for T5, are trivially satisfied while the

Ts5 equation gives rise to the dilaton eqiation

1 1 .
-1 4 —2—1p—1 5o «
dX 5 dX) = =X s Fay A Flyy — 5o X 2T 0T« B A FG)

| ) o L

For T;; = Ti,3, we find
D(T) % DTyp) + dapd(X ™" % dX) = X 2T 5!« Fly A Fpy)
+292 [X2 <2Ta7j—'75 — T’y'yfaﬂ) — X_gfaﬁ] €(7)

1 4 1 —2p—1p—1 oA
+dag [5X * Flay NFay = g XTI T+ Figy A EG)

2 S - -
—gg2 [2){2 (TA,(;TW; - 2(Tw)2> + X8 —2X 3Tw] 6(7)] . (3.23)
We can now use the X equation (3.22) and end up with
DTt DTg) = 262 |2X2 (T Tys — S0 Tos ) — X 3T
oy B 9 ayfyB T 5yt af | €(7)
—2F—1G—1 , vk A 0B 5 9vo (s 7 L= 2
+X Ta'y T(s,g * F(g) A F(g) + 5046 59 X2\ ThsThs — i(T’W)

1

1 . L
+292X_3T,w} € 4X—2T;51TK;1 x Fiy A F""Y] (3.24)

(2)



With all of the above truncations, we find the following ansatz for the metric and the
four-form field

2
3%, = A3ds2 + g—ZA—%X3 Xcos2 €+ X tsin2 €T ;m,ﬂ dg?
1 ~ 1 ~
_?AigxilTa_ﬁl sin {ud¢ Dy’ + @AngflTa_ﬂl cos? EDp Dy, (3.25)
. 1 1
Fy = Fu Sin§+*X4COSf>I<F4 AdE + —=AT2U cos® EdE N €3
(4) (4) (4) 7 (3)

1 - -
CaprsA2X P sin € cos € [STC“’”X‘IdX n DTC“‘} A D A DY A Dy

+3v 3

1 . . -
2 5 3€apys A 2 cos® et pt [cos2 EXATr DTPY — sin? X —36PA DT "

) 1
5 sin gTa"X_‘*cSﬁ)‘dX} A D" A Dy’ A d€ + 55 cos Eeasys X
g

1 N
X {2 cosEsinéX 4DpY — (X*4 sin? €7 + X2 cos? fTW,u”) dﬁ} /\f*ﬁ(‘)éf/\Du‘S (3.26)

U = sin®¢ <X_8 — X_3Taa) + cos? ﬁua,uﬂ <2X2TMTW3 — XQTQBTW — X_?’Ta/g)
1
€@) = gicapel “Dup’ AN DY A Dpl . (3.27)

All of the above equations reduce to the pure N = 2 gauged supergravity with SU(2)
gauge group for Tag = 0qp after using various relations given in [21]. Note that for
Tag = 0qp, equation (3.24) gives

1
et B8 _ & &
* F(J A Fé) = 150‘5 * F&) A F(J) (3.28)

which means that the SO(4) gauge fields A?f; must be truncated to those of SU(2) satisfying
Fy

2)
gauged supergravity which only admit SU(2) gauging.

= j:%eag,ygFé(;. This is expected since there are only three vector fields in the pure

The above equations can be obtained from the Lagrangian

1 2 1 B 5 1~—1 - F—1 1y
L7 R*]I—ZX TMTM*F(Q)/\F(”’) 4Taﬂ*DT57/\T75DT5a

1
—5X4 % Flay N Fay + geapysCay A Fy) A Fy) —5X 2% dX ndX

1
—igF(ZL) A 0(3) — VI (3.29)
where the scalar potential is given by
1 - - . 1~
V= 592 X 82X 3T, +2X2 <Ta6Taﬂ — QTO%QH . (3.30)

For Tag = 0q3, we find Toe = Taﬁfa/g = 4. The above potential becomes

1
V= 592 (X% —8X 7% —8X?) (3.31)



which is exactly the same as that given in [17] up to a redefinition of the coupling constant g.
We can also check another truncation namely to U(1) x U(1) gauged supergravity. To
preserve SO(2) x SO(2) symmetry, we take the scalar matrix to be

91
ev2
91
~ ev?2
T = 4y (3.32)
e V2
_9
e V2
_ %2
and define X = e~ vi0. The potential (3.30) becomes
1 ,[ 82 200 80 (@1 &
V:§g evio —8e V10 —4eVi0 (eV2 +e V2 (3.33)

which takes the same form as that given in [23]. Finally, it should be remarked that the
three-form field equation coming from the Lagrangian (3.29) needs to be supplemented
with the odd-dimensional self-duality condition as in the pure SU(2) gauged supergravity
discussed in [17].

The nine scalars, parametrized by T, of in the dimensionally reduced theory are encoded
in the SL(4,R)/SO(4) coset manifold. Therefore, in order to compare the result with
gauged N = 2 SO(4) supergravity given in the previous section, we need to use the relation
between SL(4,R)/SO(4) and SO(3,3)/SO(3) x SO(3) coset manifolds. This is given in [15].
For the details of this mapping, the reader is referred to [15]. We will only give the
SO(3,3)/SO(3) x SO(3) coset representative L4 = (L?,, L";) and that of SL(4,R)/SO(4),

Ve with R=1,...,4,
1 o
LA = Zr,%gsvfgvsﬁ (3.34)

where T'T and 1 are chirally projected SO(3,3) gamma matrices.
It can be shown that the scalar potential can be written as

1 : 1 42 a0
V=2 (C"C; — =C?) + 16h%e* — ihe%C
4 9 3
1 1 -
= ge—" (TaﬁTaﬁ — 2T§a> 4 9Thahe + 16h2e%° (3.35)

This form is similar to the potential (3.30) if Ta[g is identified with T;,5. Note that T;,3 and
C, C' contain the gauge coupling g; and ¢s. In order to compare the Lagrangian of the
two theories, we need to multiply the Lagrangian (2.4) by two and separate the coupling
constants g1 and go from the structure constants fryx = (g1€ijk, g2€rst). With these, the
two scalar potentials are exactly the same if we identify

g2 =g1=—-16h=—2g. (3.36)

We also need to redefine the following fields in the Lagrangian (2.4):

)
Hgy — —2, Cgy) = —2
W= 5 )



1 1
I _ 1 B 8 _ oI 1
Fl = ZFQBF(‘;) or  Fy= —ieaﬁv rlsF
X=¢73. (3.37)
By using (3.34), it can also be checked that
1 )
T T = 4r1 sUs (L' Lig + L' Lyy) - (3.38)

The field equations from the two theories also match.

We now move to supersymmetry transformations of fermions. The maximal N = 4
theory contains the gravitini v, and the spin—% fields A;. The latter is decomposed into
(AR, As5). The SO(5). I gamma matrices are accordingly decomposed as I = (DR, T3).
[ = IIT213T acts as the chirality matrix of SO(4). Following [18], we make the truncation

T=¢, =X =M =0. (3.39)

+ satisfy I'°et = +et with e = e +€¢~. We will now drop + superscript from €, A and Yy
In accordance with the bosonic truncation T% = (T, T55) (XT*8, X—4), we trun-
cate the SL(5 R)/SO(5) coset representative as 11, i = = (TR, 11;°). With the identification
= 2V R and I 5 = X2, we can write To‘ﬁ in term of SL(4,R)/SO(4) coset repre-
sentative VaR

TP =V gV e and  Tre=(VHEV )S0as.  (340)

We then find that equations (3.11) and (3.12) become

1 - _ 1 _
51/}M = DME — %9<XTRR + X 4)')/u6 — mX 1 (")/#Vp — 85Z’)/p) FRSFVRpSE
1 9., 5
—%X < Yo OO — 5% > SVW (3.41)
SAp = lWPRX—la Xe+ 1rsfyﬂPRse + LX—WW TR — 1I‘RFST F3T¢
4 : 16v/2 5 i
- 1~ 1
——gX Tre — —gX (Trs — =Trrdps | e — — X ~24HPT S5 3.42
109 RE 9 < RS 5 TT RS> € 120 Y uvp€ ( )
The constraint F%A% = 0 imposes the condition /\; = —FR)\]}. Therefore, the indepen-

dent fields will be 1), and Ag. This is the reason for excluding 65 in the above equations.
We then identify TEAg with x and \g = A\g — %I‘RFSAS with A" in (2.17). Note that R
has only three independent components due to the condition I'BA\p = 0.

With these and the odd-dimensional self-duality, we end up with, after some gamma
matrix algebra,

1 ~ 1 _
oty = Dye— %gXTVMe — WX ! (’y#”p — 85Zyp) FRSF,ﬁSe
1 — oT oT
—509% Ayue — MX2 (37,7777 — 86%7"") Fypore, (3.43)

,10,



2 1 -
ox = X_lfyuauXe — ZgX *e+ —gXTrpe

5 10
| } 1w
—@XQ’)’M pUF,uz/poe _ mX 1,}//L FRSFlﬁSea (344)
) 1 L= 1
1 B 1
_ﬁX 1’Y'LWFS <F£s + QERSTUFZ/U> €. (345)

In the above equations, we have used the following definitions
PRS = (V_l)?R <(5§d + gA(l)a6> V/@Tés)T,

Qrs = V)i (02d+ 94,7 ) Vi osyr,

1 1
De = de + Zwaw“b +4Q RS (3.46)
Notice that with our convention for I'’¢ = ¢, ['rg is anti-self dual. The field strength

Fg)s appearing in (3.43) and (3.44) must be accordingly anti-self dual. This should be

identified with the SU(2) field strength F(Zé) in (2.15) and (2.16). On the other hand, the

self dual part of I’ (1;59 appears in (3.45) and should be identified with F, (’”2) in (2.17).

In more detail, after using gamma matrix identities such as v,v"? = ~,”” + 2(52’7"}, we
can rewrite equation (2.15) as

V2 . I
(51/1“ = 2D/.L6 — %e 2 C’YMG — me UHPO-)\T (3,7Mp0')\7' — 865’)/0.)\7-) €
o 4
—f—OeEFpZUUZ (’ylf"’ —80077) € — ghe%yue. (3.47)

Using the relation C' = —%glf given in [15] with the relation g2 = g1 = —2¢ and iden-
tifying FprsT'®S = 21/2iFio’, we find that equation (3.43) matches with (3.47). Similarly,
equation (3.44) matches with (2.16). Note that in order to match the gravitino variation,
we need to multiply (3.43) by two.

Comparing (2.17) and (3.45) is more complicated since various terms are not related
to each other in a simple way. For example, we should write the anti-self dual part of I'gg
in terms of the anti-self dual t’ Hooft symbols 773%5 and Pauli matrices o

) = io'nins (3.48)
and similarly for the self dual part
Fg:g) = 10" RS - (3.49)
Accordingly, we should identify
1 1 1
F' = 577ZRSFRS and P = Jilgg (F,f;s + QeRSTUF,}{;U> . (3.50)

Equation (3.45) should then match with (2.17), but we refrain from giving the full detail
here due to the complicated algebra.
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4 Embedding seven-dimensional RG flow to eleven dimensions

In this section, we will use the reduction ansatz obtained in the previous section to uplift
some seven-dimensional solutions. The dimensional reduction gives rise to the condition
g2 = g1. This makes the supersymmetric AdS7 critical point with SO(3)giag symmetry
found in [16] disappears. Accordingly, the flow solution given in [16] cannot be uplifted
to eleven dimensions with the present reduction ansatz. However, to give examples of the
uplifted solutions, we will study other solutions in the case of go = ¢;.

4.1 Uplifting AdS7 solutions

We now further truncate the nine scalars given by Taﬁ to one scalar invariant under
SO(3)diag C SO(3)xSO(3) ~ SO(4). This scalar sector has already been studied in [16]. We
will give more solutions in this section. Under SO(3)giag, the nine scalars transform as 1 +
3+ 5. There is only one singlet. It can be checked that the SO(3)giag singlet correspond to

¢
ez e®

)
€2 €¢
or =
® apf
2 e¢

~
|

(4.1)

e 2 e3¢

Tag can be written more compactly as Tag = (dape?, e73?) for a,b = 1,2, 3. By using (3.34)
and the explicit form of T and 74 given in [15], it is easy to verify that this V precisely
gives the SO(3,3)/SO(3) x SO(3) coset representative L used in [16].

Using this and the relation X = e_%, we find the scalar potential

vV = %ng*" e5a+e—6¢ —Ge 29 _ 3e2¢ 2@307% (1 + 364¢>] . (4.2)

This potential admits two AdS7 critical points given by

o=¢=0, Vo = —480h* (4.3)
1 1
oc=——In2, ¢=—-In2, Vo = —160 x 25h2 (4.4)
10 4
where we have used g = 8h or equivalently g = —16h as given in [16]. By using the BPS

equations given in [16], which are repeated below, we see that the second critical point is
non-supersymmetric. Scalar masses at this critical point can be computed to be

SO(3)diag | m*L?
1 —12
1 12
3 0
5 —12
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where the AdS7 radius is given by L = \/i The three massless scalars are the expected
Goldstone bosons corresponding to the symmetry breaking of SO(4) to SO(3). One of the 1
and 5 scalars have masses below the BF bound m?L? = —9, so this critical point is unstable.

The first critical point is the trivial point preserving all supersymmetries and the full
SO(4) gauge symmetry. The scalar masses can be found in [16]. We will now uplift this
AdS7 vacuum to eleven dimensions. We begin with the coordinates pu® = (cos ¥ a®,sin)
in which *4® = 1. Since 0 = ¢ = 0, we then find A =1 and

1
ds?, = eTuv da:l 5t dr? + de? + = 7 608 2¢ (dyp? + cos® d3) (4.5)

32h2

3
F(4) = T cos’ EdEN €(3) (4.6)

where d€)3 is the metric on the two-sphere. The eleven dimensional geometry is given by
AdS7 x S*. Turning on the dilaton o would deform the four-sphere but leave the S inside
invariant. If ¢, o # 0, the metric would be further deformed in such a way that the S? part
described by d3 is invariant. The unbroken symmetry in this case is the SO(3) isometry
of this S? identified with the unbroken SO(3)diag. The SO(3) critical point is however
unstable. Therefore, we will not consider AdS7 solution with SO(3) symmetry.

4.2 Uplifting RG flows to non-conformal SO(3) super Yang-Mills

To give more examples, we will study RG flow solutions to non-conformal Super Yang-Mills
theories in the IR. We will work in the theory of section 2. With g5 = ¢g; and the standard
domain wall metric ansatz ds? = eA(’")d:cig)—i—er, the BPS equations taken from [16] become

¢ = —de"53¢ (e4¢> - 1) h, (4.7)
8 _o

o = 56_5_3¢ (1 + 3¢t — 4egg+3¢> h, (4.8)
4

A = 56 2730 (1 + 3¢9 + 620+3¢> (4.9)

in which % is denoted by ’. After changing to the new coordinate 7 given by % —e 3,
we find the solution

]
16h7 = In EjLeJ —2tan”" ¢ + C1, (4.10)
— €
. % [0 - [1+120; - 1205 ], (4.11)
_ L _any] 1
A=7 [¢ 20n(1 — e )} S0 (4.12)

The solution interpolates between an AdS7 in the UV, 7 ~ r — oo, and a domain wall in
the IR, 4hi* — C, for a constant C.
At the UV, the solution becomes

__4r
o~ ¢~ e LT Ty A~ dhr ~ —— (4.13)
Lyv

The eleven-dimensional metric is given by (4.5).
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In the IR, we find that ¢ blows up as

¢~ —1In(4dhr — C) (4.14)

for a constant C'. The behaviour of ¢ depends on the value of the integration constant Cs.
For Cy = 0, we find

o~ —§ In(4hi — C) ~ —% In(4hr — C) (4.15)

where we have used the relation between 7 and 7 in the IR limit with C' being another

integration constant. The seven-dimensional metric is given by
ds3 = (4hr — C)?dai 5 + dr”. (4.16)
For Cy # 0, the solution becomes
6 S 3
o~z In(4hi — C) ~ 1 In(4hr — C),
ds? = (4hr — C)3da? 5 + dr? . (4.17)

Both cases give V' — —o0, so the solution is physical by the criterion of [24].
We now look at the eleven-dimensional geometry. For Co = 0 and Cy # 0, the eleven

dimensional metric is given respectively by

_1 /14, \? _2
ds?, = (1 — sin? ¢ cos? w) 3 [(3hp) dxi5 +dp?| + 5972 (1 — sin? € cos? @Z)) 3 x
1
14 T 1 14 o2
X [<3hp> sin? € cos? d€? + 1 sin € sin(2v)) <3hp> dipd§
1/14, \" 7 1 14\ 7
= 24 cos?p | = 03 4.1
+4(3hp> dw+4cosw(3hp) s |, (4.18)
14\
_2 _4
ds?, = (cos&costp) ™3 [<3hp) dx%,5 +dp*| + 397,2 (cos€costh) ™3 X
14\ 1 14 \i
X <3hp> (1 — sin? £ cos? w) de? — 1 sin € sin(2)) <3hp> d&dap
1 14\ 7
+7 cos? & (3hp) (sin® dyp® + cos? T/JdQ%)] (4.19)

where (%hp)% =4hr — C.

As expected, when turning on ¢ and o, the warped factors involve coordinates (£, ).
The S* is then deformed leaving the S? intact. If only o # 0, the S3 part of the internal
metric would be invariant as pointed in [17]. The deformation with only ¢ # 0 is not
possible since the BPS equation for ¢ would imply ¢ = 0 as pointed out in [16].
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5 Conclusions

In this paper, we have constructed N = 2 SO(4) gauged supergravity in seven dimen-
sions with topological mass term. The resulting theory admit AdS7 vacua and could be
useful in the context of the AdS/CFT correspondence. The resulting reduction ansatz
has been found by truncating the S* reduction leading to N = 4 SO(5) gauged super-
gravity and can be used to uplift seven-dimensional solutions to eleven dimensions. We
have also constructed new seven-dimensional RG flow solutions and uplifted the resulting
solutions to eleven dimensions. The flows can be interpreted as deformations of the UV
N = (1,0) SCFT in six dimensions with SO(4) symmetry to non-conformal SYM with
SO(3)diag symmetry. These deformations are driven by vacuum expectation values of di-
mension 4 operators. Additionally, the result of this paper can be used to uplift flows to
SO(2) non-conformal gauge theories studied in [16] for g2 = g;.

However, the RG flow between two supersymmetric AdS7 critical points recently found
in [16] cannot be uplifted by using the reduction ansatz constructed here. It would be inter-
esting to find an embedding of this solution in 10 or 11 dimensions. It is also interesting to
extend the reduction ansatz given here to non-compact gauge groups SO(3, 1) and SO(2, 2).
The internal manifold should involve hyperbolic spaces H*' and H??2, respectively. Other
possible non-compact gauge groups are SL(3,R), SO(2,1) and SO(2,2) xSO(2,1). It would
be very interesting to find higher dimensional origins for these gauge groups as well. Finally,
more insight to six-dimensional gauge theories might be gained from studying these seven-
dimensional gauged supergravities via AdS7/CFTg correspondence. We hope to come back
to these issues in future works.
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