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1 Introduction and review

Indices carry important information about the spectrum of dyons in string theory. In

particular, in four dimensional string theories the helicity trace index, defined by [1, 2]

B2n =
1

(2n)!
Tr
[

(−1)2h (2h)2n
]

(1.1)

receives contributions only from those BPS states in the string theory which break less

than 4n supersymmetries. Here the trace is over all states in the string theory that carry

some specified electric and magnetic charges. This has now been computed exactly for a

wide class of N = 4 and N = 8 string theories [3–15]. In an expansion in large charges it

may be shown that this reproduces the correct semiclassical entropy of an extremal black

hole carrying the same charges as the dyons. In many cases, higher-derivative and quantum

corrections have also been computed on the macroscopic side and the results have been

successfully matched with the corresponding corrections computed from the microscopic

formula. We refer the reader to the reviews [16–19] covering various aspects of this pro-

gram for details and a more complete set of references. The computation of the quantum

corrections is performed using the formalism of the Quantum Entropy Function [20, 21].

This proposal exploits the fact that the near-horizon geometry of extremal black holes al-

ways contains an AdS2 factor [22, 23]. In particular, for spherically symmetric black holes
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in four dimensions, the near-horizon geometry, embedded in 10-dimensional supergravity,

contains an AdS2 ⊗ S2 factor coupled to background U(1) fluxes and scalar fields. The

entire configuration is completely determined by the SO(2, 1)⊗SO(3) isometry of the solu-

tion, along with the electric and magnetic charges carried by the black hole. In Euclidean

signature, this configuration is given by

ds2 = a2
(

dη2 + sinh2 ηdθ2
)

+ a2
(

dψ2 + sin2 ψdφ2
)

, 0 ≤ η <∞, 0 ≤ θ < 2π,

F
(i)
ηθ = ei, F

(i)
ψφ =

pi
4π

sinψ, Φw = uw, 1 ≤ i ≤ r, 1 ≤ w ≤ s.
(1.2)

where the background has r U(1) fluxes and s scalar fields, and a is a function of the

electric and magnetic charges of the black hole, determined in terms of the
(

ei, pi
)

.

Using this fact it has been argued that the quantum degeneracy dhor (~q) associated

with the horizon of an extremal black hole carrying charges ~q ≡ qi is given by the unnor-

malized string path integral, with a Wilson line insertion, over all field configurations that

asymptote to the attractor geometry of the black hole. In particular, [20, 21]

dhor (~q) ≡
〈

exp

[

i

∮

qidθAi
θ

]〉finite

AdS2

. (1.3)

The subscript ‘finite’ reminds us that the path integral naively contains a volume diver-

gence due to the presence of the AdS2 factor. Regulating this divergence is carried out

in accordance with the AdS/CFT correspondence. Though (1.3) computes a degeneracy

rather than an index, it may be shown that one may use this expression to compute the

helicity trace index as well, which can then be compared with the microscopic results [24].

Since its proposal, the conjecture of [20, 21] has been put to a variety of tests. Firstly,

the leading saddle-point of the path integral is the attractor configuration (1.2) itself, and it

may be shown that the value of the path integral (1.3) at this saddle-point is the exponential

of the Wald entropy associated with the black hole. Further, by expanding the massless

fields of four-dimensional supergravity in quadratic fluctuations about this saddle-point,

the logarithmic correction to the Wald entropy may be extracted from (1.3) and matched

with the microscopic answer [25]. This has been successfully carried out for the 1
4 -BPS

black holes in N = 4 supergravity and 1
8 -BPS black holes in N = 8 supergravity [26, 27]

and for rotating extremal black holes in [28]. The corresponding expressions for 1
2 -BPS

black holes in N = 2 supergravity have also now been obtained [29], however in this case

the microscopic results are so far not available. Recently, [30] presented a new approach to

the computation of logarithmic terms from (1.3) which greatly simplifies the intermediate

steps encountered in the calculations of [27–29]. We also note here that (1.3) has been

exactly evaluated for N = 4 and N = 8 string theories using localisation in [31–35] and

the answer obtained precisely reproduces the microscopic expressions computed from the

indices Bn.

Further, if we restrict ourselves to special subspaces of the moduli space which admit

discrete symmetry transformations generated by an element g and also require that the

charges of the dyons be g-invariant, then we may define twisted indices as

Bg
2n ≡ 1

(2n)!
Tr
[

g (−1)2h (2h)2n
]

. (1.4)
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The group generated by g is taken to be isomorphic to ZN . These indices were computed

in [36, 37], and a proposal for their macroscopic interpretation was also presented in [36].

In particular, [36] considered Type II string theory compactified on M ⊗ T 2, where M
could be either T 4 or K3, and g was the generator of a geometric ZN symmetry that acts

on M and preserves 16 supercharges. The twisted index Bg
6 , which receives contributions

from dyonic states which preserve 4 supersymmetries all of which are g-invariant, was then

computed. It was found that the answer in the large-charge limit takes the form [17]

Bg
6 (Q,P ) = e

π

√
Q2P2

−(Q·P )2

N (O (1) + . . .) . (1.5)

Therefore, if we assign an ‘entropy’ to the index by taking its logarithm then we find that

ln |Bg
6 (Q,P ) | =

SBH

N
+O (1) , (1.6)

i.e. the logarithmic correction to the entropy vanishes. Here

SBH = π

√

Q2P 2 − (Q · P )2, (1.7)

the Wald entropy of an extremal black hole carrying electric and magnetic charges (Q,P ).

This is also the asymptotic expansion arrived at from Type IIB string theory on the CHL

orbifold [37]. In this paper we shall show how this result arises from a macroscopic com-

putation of the kind performed in [26, 27, 38, 39] for the entropy of the black hole.

Before we do so, we briefly review the proposal made in [36] regarding the macroscopic

interpretation of the index Bg
6 . The key ingredient of the proposal is that Bg

6 is indeed

captured by a string path integral of the type (1.3) in AdS2. However, the path integral

must now be carried out over fields which obey twisted boundary conditions along the

θ-circle of the AdS2. In particular, as θ shifts by 2π the fields must transform by g. This

partition function was denoted by Zg in [36]. When we impose these boundary conditions

then the attractor geometry itself is no longer an admissible saddle-point of the path integral

as the θ-circle is contractible in the interior of AdS2, which leads to a singularity. Let us

instead consider the following ZN orbifold of the attractor geometry (1.2), generated by

the identification

g̃ : (θ, φ) 7→
(

θ +
2π

N
, φ− 2π

N

)

. (1.8)

Then it may be shown by an appropriate change of coordinates that the resulting field con-

figuration still asymptotes to the full attractor geometry (1.2). Additionally, this orbifold

preserves enough supersymmetry that its contribution to the path integral (1.3) does not

automatically vanish by integration over the fermionic zero modes associated to broken

supersymmetries. For these reasons, these field configurations are also admissible saddle-

points of the quantum entropy function (1.3).1 Using these inputs, [36] proposed that Zg
would receive contributions from the saddle-point obtained by imposing a ZN orbifold gen-

erated by the action of g̃ on the attractor geometry, with g-twisted boundary conditions

1These orbifolds have fixed points at the origin of the AdS2 times the north or south poles of S2 and a

priori it is not clear whether or not this is a consistent orbifold of string theory in the presence of background

fluxes. If however the 10-dimensional attractor geometry also contains a circle C which is non-contractible
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imposed on the fields. It was further shown that the value of Zfinite
g at the saddle-point was

given by e
SBH
N , in agreement with the asymptotic growth of Bg

6 from the microscopic side.

In this paper we will show that the correspondence between Zg and Bg
6 exists even

at the quantum level. In particular, we will compute the log correction to the ‘entropy’

given by logZg by expanding about the ZN orbifold of the black hole attractor geometry

generated by the action of g̃, where we impose g-twisted boundary conditions on the fields.

We will find that the answer vanishes, in accordance with the microscopic results. In

order to compute log corrections, we shall use the fact that the contributions of the form

log a to the partition function of a theory defined with a length scale a are completely

determined from the one-loop fluctuations about the saddle-point, where we may focus

exclusively on massless fields and further neglect higher-derivative terms [25]. Therefore

the only fields that can contribute to the log term in logZg are the massless fields about

its admissible saddle-points. We shall compute the log correction, focussing on modes

which obey appropriate twisted boundary conditions, and find that the answer vanishes.

While we do this computation explicitly for N = 8 string theory obtained by compactifying

Type II string theory on T 6, this is only for definiteness and we shall see that the results

obtained would carry over to the N = 4 case as well. We now give a brief overview of

the computation, emphasizing the overall strategy and the important differences from the

analyses previously carried out in [38] and [39]. We will decompose the N = 8 supergravity

multiplet into irreducible representations of the N = 4 subalgebra which commutes with

g. These are one N = 4 gravity multiplet, four N = 4 gravitini multiplets and six

N = 4 vector multiplets, each of which are charged under g as enumerated in appendix A.

Importantly for us the N = 4 gravity multiplet is uncharged under g, and therefore obeys

untwisted boundary conditions. Its contribution to the logarithmic term in the large charge

expansion of Zg is therefore identical to that computed in [39]. The contributions of

the gravitini and vector multiplets are however different from [39], and are computed in

this paper.

A brief overview of the paper is as follows. In section 2 we compute the heat ker-

nel for scalars, Dirac fermions and ‘discrete modes’ of the spin-1 and spin–3
2 fields on

(

AdS2 ⊗ S2
)

/ZN with twisted boundary conditions. This is an extension of the analysis

of [38] where the heat kernel over orbifold-invariant modes on these spaces was computed.

We find that the answer again assembles into a global part, which obeys untwisted boundary

conditions, plus conical contributions which are finite in the limit where the heat kernel

time t approaches zero. We put these results together to evaluate the contributions of

N = 4 vector and gravitino multiplets that obey twisted boundary conditions in section 3.

We find that the contribution to the log term vanishes for any non-zero value of the twist.

These results demonstrate explicitly that the log term in Bg
6 vanishes for N = 8 string

at the origin of AdS2, then one way to avoid this potential pitfall is to accompany the orbifold (1.8) by

a translation by 1
N

units along C. The orbifold group then acts freely over the 10-dimensional attractor

geometry. If the radius of the circle C does not scale with the AdS2 and S2 radii a, the precise details

of the shift will not be relevant for us [25]. We do assume tacitly in our analysis that the generator g̃

includes such a shift along the internal directions as well. Such orbifolds have been explicitly defined in the

10-dimensional theory in [24, 40].
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theory and N = 4 string theory. We then discuss how our results also prove that the log

term vanishes even about exponentially suppressed corrections to the leading asymptotic

formula for Bg
6 and conclude.

2 The heat kernel for the laplacian on
(

AdS2 ⊗ S2
)

/ZN with twisted

boundary conditions

The goal of this paper is to compute logarithmic corrections to the partition function Zg
defined as the path integral (1.3) with g-twisted boundary conditions. These corrections

only receive contributions from the one-loop fluctuations of massless fields over the ZN

orbifold of the attractor geometry generated by g̃. The one-loop partition function about

this background is determined in terms of the determinant of the kinetic operator D evalu-

ated over the spectrum of the theory. We shall define this determinant by the means of the

heat kernel method [41]. The discussion below has has also been reviewed in the present

context in [38, 39] so we shall mainly recapitulate the key elements of the method.

We shall focus on operators of Laplace-type defined over fields on a manifold M with

a length scale a. The eigenvalues of such operators scale as 1
a2

and are denoted by κn
a2

and

the corresponding degeneracies are dn. With these inputs we may define the integrated

heat kernel (referred from now on as simply ‘the heat kernel’) as

K (t) =
∑

n

dne
− t

a2
κn . (2.1)

Then the determinant of D may be defined via

− ln detD =

∫ ∞

ǫ

a2

ds̄

s̄
K (s̄) , (2.2)

where ǫ is a UV cutoff and s̄ = t
a2
. Therefore, ln detD contains a term proportional to

ln a, given by

− ln detD = 2K1 ln a+ . . . , (2.3)

where K1 is the O
(

s̄0
)

term in the small s̄ expansion of the heat kernel K(t) and the ‘. . .’

denote terms that are not of the form ln a. From this expression, the term proportional

to ln a in lnZ may be extracted. Logarithmic corrections to black hole entropy have been

computed from the quantum entropy function in this manner in [26–29, 38, 39]. We remind

the reader that the small s̄ expansion of the heat kernel is in general non-trivial and contains
1
s̄n

terms which have to be carefully computed. We will however find useful simplifications

which enable us to analyze the problem efficiently.

Before proceeding further, we remind the reader that the analysis presented above

has subtleties when the operator D is only positive semi-definite, i.e. has zero modes. In

that case the one-loop partition function contains the determinant of D evaluated only

over non-zero modes. The zero mode contribution needs to be analyzed separately [25–

27, 42]. The kinetic operator for which we compute the heat kernel is the one studied

in [26, 27, 38, 39]. This has zero modes over spin-2, spin–3
2 and spin-1 fields. However, the
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zero modes of the graviton and gravitino arise only within the N = 4 gravity multiplet [27]

which obeys untwisted boundary conditions in the path integral Zg and have therefore

already been accounted in the analysis of [39]. Additionally, it may be shown that the log

term for vectors may as well be extracted out by defining the heat kernel over all eigenvalues

κn, including the zero eigenvalue, and extracting the O
(

s̄0
)

term as before [26]. We will

therefore ignore the presence of zero modes in our present analysis.

We now turn to the main computation of this section, which will provide us with the

essential tools we need to compute logarithmic corrections to the partition function Zg.
These are the heat kernels of the Laplacian over scalar fields and of the Dirac operator over

spin-12 fields on
(

AdS2 ⊗ S2
)

/ZN , where the ZN orbifold is generated by g̃. The heat kernel

over the fluctuations invariant under the g̃-generated ZN orbifold was computed and the

log term extracted in [38, 39]. The analysis of this section is entirely analogous, with the

only difference being that we now focus on modes which obey twisted boundary conditions

under the g̃ orbifold. We find that the essential steps carry over directly from [38, 39] with

only minor modifications. For this reason, we shall focus on the scalar on
(

AdS2 ⊗ S2
)

/ZN
to illustrate the steps and main modifications and then mostly enumerate final expressions

for the spin-12 field. Further, as has been shown in [26, 27], the higher-spin fields in the

supergravity multiplets may be expanded in a basis obtained by acting on the scalar with

the background metric and covariant derivatives and acting on the spin–1
2 field with gamma

matrices and covariant derivatives. It turns out that the heat kernel over all quadratic

fluctuations may be organised into the heat kernel over scalars and spin–1
2 fermions with

appropriate multiplicities and shifts in eigenvalues. This will also be of great utility in

our present analysis. Finally, we note that the heat kernel expression (2.1) contains both

eigenvalues and degeneracies of the kinetic operator D. On manifolds like AdS2 the notion

of degeneracy is subtle and requires a careful definition. It takes the form of the Plancherel

measure [43–45]. On quotients of AdS spaces, it turns out to be useful to exploit the fact

that harmonic analysis on AdS is related to the sphere by an analytic continuation [43–45].

By exploiting this analytic continuation, one may obtain the heat kernel and degeneracies

of the Laplacian on these orbifolded spaces as well [38, 39, 46, 47]. We shall adopt this

approach in this paper as well. In particular, we will consider the geometry given by

ds2 = a21
(

dχ2 + sin2 χdθ2
)

+ a22
(

dψ2 + sin2 ψdφ2
)

, (2.4)

which is related via the analytic continuation

(a1, a2) 7→ (ia, a) , χ 7→ iη, (2.5)

to the
(

AdS2 ⊗ S2
)

/ZN geometry

ds2 = a2
(

dη2 + sinh2 ηdθ2
)

+ a2
(

dψ2 + sin2 ψdφ2
)

. (2.6)

The ZN orbifold generated by g̃ acts on both these spaces via

g̃ : (θ, φ) 7→
(

θ +
2π

N
, φ− 2π

N

)

. (2.7)

– 6 –
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Following the strategy of [38, 39, 46, 47], we will do the computation on
(

S2 ⊗ S2
)

/ZN and

analytically continue the result to
(

AdS2 ⊗ S2
)

/ZN . We will however need to be mindful

of an important subtlety while performing this analytic continutation which arises due to

a class of ‘discrete modes’ of the vector and spin–3
2 fields in AdS2 [43, 44]. These are

normalisable eigenfunctions of the Laplacian over AdS2 which are not related to normalis-

able eigenfunctions of the Laplacian over S2. Their contribution is computed separately in

section 2.3.

2.1 The heat kernel for scalars on
(

AdS2 ⊗ S2
)

/ZN

In order to compute the heat kernel for the scalar Laplacian on
(

AdS2 ⊗ S2
)

/ZN , we will

first enumerate its spectrum [43]. The eigenvalues of the scalar Laplacian are

Eλ,ℓ =
1

a2

(

λ2 +
1

4
+ ℓ (ℓ+ 1)

)

, (2.8)

and the corresponding eigenfunctions are given by [43]

Φλ,ℓ,m,n (η, θ, ψ, φ) = fλ,m (η, θ)Yℓ,n (ρ, φ) , (2.9)

where, omitting normalisation factors,

fλ,m (η, θ) =
(

sinh|m| η
)

2F1

(

iλ+ |m|+ 1

2
,−iλ+ |m|+ 1

2
, |m|+ 1,− sinh2

η

2

)

eimθ,

0 < λ <∞, m ∈ Z, (2.10)

and the Yℓ,ns are the usual spherical harmonics on S2. We will impose the projection (2.7)

generated by g̃ on the modes (2.9) as in [38]. The modes invariant under this orbifold are

those for which m − n = Np, where p is an integer. The heat kernel was computed over

such modes in [38]. We will look at the more general case for which

m− n = Np+ q, p ∈ Z, 0 ≤ q ≤ N − 1, q ∈ Z. (2.11)

We will refer to these as q-twisted boundary conditions. However, as mentioned above, we

will carry out the computation by imposing the projection (2.7) on eigenfunctions of the

scalar Laplacian on S2 ⊗ S2, which are given by

Ψ
ℓ̃,m,ℓ,n

(χ, θ, a1, ρ, φ, a2) = Y
ℓ̃,m

(χ, θ, a1)Yℓ,n (ρ, φ, a2) . (2.12)

The corresponding eigenvalue is given by

E
ℓ̃,ℓ

=
1

a21
ℓ̃
(

ℓ̃+ 1
)

+
1

a22
ℓ (ℓ+ 1) , (2.13)

which is related to Eλℓ by the analytic continuation

ℓ̃ = iλ− 1

2
, (a1, a2) 7→ (ia, a) . (2.14)
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Using the methods of [38], we find that the heat kernel on q-twisted modes on
(

S2 ⊗ S2
)

/ZN
is given by

Kq
s =

1

N
Ks +

1

N

N−1
∑

s=1

∞
∑

ℓ,ℓ̃=0

χ
ℓ,ℓ̃

(πs

N

)

e
−2πiqs

N e−tEℓℓ̃ , (2.15)

where Ks is the scalar heat kernel on the full unquotiented S2⊗S2 space and the sum from

s = 1 to N − 1 represents the contribution from the conical singularities and is expressed

in terms of χ
ℓ,ℓ̃
, the SU(2)⊗ SU(2) Weyl character

χ
ℓ,ℓ̃

(πs

N

)

≡ χℓ

(πs

N

)

χ
ℓ̃

(πs

N

)

≡ sin (2ℓ+1)πs
N

sin
(

πs
N

)

sin
(2ℓ̃+1)πs

N

sin
(

πs
N

) , (2.16)

where χℓ and χℓ̃ are SU(2) Weyl characters. The analytic continuation proceeds in the same

way as for the untwisted case [38, 39]. Firstly, the heat kernel over the unquotiented S2⊗S2

gets continued to the heat kernel over AdS2 ⊗ S2. Then the eigenvalue E
ℓ̃ℓ

gets continued

to Eλℓ via (2.14), and the Weyl character χ
ℓ̃
gets continued to the Harish-Chandra (global)

character for sl(2, R) [48]

χbλ

(πs

N

)

=
cosh

(

π − 2πs
N

)

λ

cosh (πλ) sin
(

πs
N

) , (2.17)

and the conical terms get multiplied by an overall half [38]. The factor of half accounts for

the fact that under the ZN orbifold (2.7), AdS2⊗S2 has half the number of fixed points as

does S2 ⊗ S2. Finally, the sum over ℓ̃ gets continued to an integral over λ. We then obtain

the heat kernel for the scalar on
(

AdS2 ⊗ S2
)

/ZN with the q-twisted boundary condition

to be

Kq
s =

1

N
Ks +

1

2N

N−1
∑

s=1

∞
∑

ℓ=0

∫ ∞

0
dλχbλ,ℓ

(πs

N

)

e−
2πiqs

N e−tEλℓ , (2.18)

where

χbλ,ℓ

(πs

N

)

= χbλ

(πs

N

)

χℓ

(πs

N

)

. (2.19)

By doing the integral over λ and the sum over ℓ as in [39] we find that (2.18) reduces to

Kq
s =

1

N
Ks +

1

2N

N−1
∑

s=1

1

4 sin4 πs
N

e−
2πiqs

N +O (t) . (2.20)

This is the expression we shall use to compute logarithmic corrections. It contains two

terms. The first is the heat kernel of the untwisted scalar evaluated on the unquotiented

space AdS2 ⊗ S2. The second term is the contribution of the conical singularities. As

observed in [39] for the untwisted modes, this term is finite in the limit where t approaches

zero. Hence the contribution of this term to the O
(

t0
)

term in the heat kernel expansion is

independent of the eigenvalue Eλℓ. This will be of great utility in our further computations.

Finally we note that the expressions (2.18) and (2.20) are divergent due to the infinite vol-

ume of AdS2. However, using the prescription of [20, 21] this divergence may be regulated

and a well-defined finite term extracted even on these quotient spaces [38, 39]. Once this

– 8 –
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is done, we obtain a well-defined expression for the degeneracy dsλℓ of the eigenvalue Eλℓ
in the q-twisted set of modes on

(

AdS2 ⊗ S2
)

/ZN . This is given by

dsλℓ = − 1

N
(λ tanhπλ) (2ℓ+ 1) +

1

2N

N−1
∑

s=1

χbλ,ℓ

(πs

N

)

e−
2πiqs

N . (2.21)

2.2 The heat kernel for fermions on
(

AdS2 ⊗ S2
)

/ZN

We will turn to the heat kernel of the Dirac operator evaluated over Dirac fermions on
(

AdS2 ⊗ S2
)

/ZN with q-twisted boundary conditions. The computations are entirely sim-

ilar to those carried out in [38, 39] once the q-twist has been accounted for as we have for the

scalar in section 2.1, we shall just mention the final result for the degeneracy of eigenvalues

labelled by the quantum numbers λ, ℓ in the q-twisted set of modes on
(

AdS2 ⊗ S2
)

/ZN .

dfλℓ = − 8

N
(λ cothπλ) (ℓ+ 1) +

2

N

N−1
∑

s=1

χf
λ,ℓ+ 1

2

(πs

N

)

e−
2πiqs

N , (2.22)

where we have defined

χf
λ,ℓ+ 1

2

(πs

N

)

= χfλ

(πs

N

)

χℓ+ 1
2

(πs

N

)

, (2.23)

and χfλ is the Harish-Chandra character for sl(2, R) given by [48]

χfλ

(πs

N

)

=
sinh

(

π − 2πs
N

)

λ

sinh (πλ) sin
(

πs
N

) . (2.24)

We may use this degeneracy to obtain the heat kernel for the Dirac operator over the

q-twisted Dirac fermions. We find that2

Kq
f =

1

N
Kf −

2

N

N−1
∑

s=1

∞
∑

ℓ=0

∫ ∞

0
dλχf

λ,ℓ+ 1
2

(πs

N

)

e−
2πiqs

N e−tEλℓ . (2.25)

As for the scalar, we may expand the conical term in a power series in t omitting the O (t)

and higher terms, carry out the λ integral and the sum over ℓ to obtain

Kq
f =

1

N
Kf −

1

2N

N−1
∑

s=1

cos2
(

πs
N

)

sin4
(

πs
N

) e−
2πiqs

N +O (t) . (2.26)

We will use (2.26) in our computations for the log term in section 3.

2.3 The heat kernel over discrete modes

Vectors, gravitini and gravitons on the product space
(

AdS2 ⊗ S2
)

/ZN may be expanded in

a basis contructed from the background metric, Gamma matrices and covariant derivatives,

allowing us to express the heat kernel of the kinetic operator over supergravity fields in

2We use the conventions of [26, 27] in which the fermion heat kernel is defined with an overall minus

sign and is added to the bosonic heat kernels.
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terms of the heat kernel over scalars and spin–1
2 fields [26, 27]. However, this analytic

continuation fails to capture a set of discrete modes, labelled by a quantum number ℓ, on

the AdS space for the spin-1 and higher spin fields [43–45]. The heat kernel over such

modes needs to be computed directly on
(

AdS2 ⊗ S2
)

/ZN . Using the methods of [38, 39],

we find that the degeneracy of an eigenvalue Eℓ of the Laplacian over vector discrete modes

obeying q-twisted boundary conditions is given by3

dvdℓ = −2ℓ+ 1

N
− 1

N

N−1
∑

s=1

χℓ

(πs

N

)

e−
2πiqs

N . (2.27)

The degeneracy over the q-twisted gravitino discrete modes is given by

dfdℓ = 8

(

ℓ+ 1

N

)

− 4

N

N−1
∑

s=1

sin 2πs(ℓ+1)
N

sin πs
N

cos
πs

N
e−

2πiqs

N . (2.28)

Using the degeneracies (2.27) and (2.28), we can write down corresponding expressions for

the heat kernels over these modes, though we do not do so explicitly here.

3 Logarithmic corrections to the twisted index

We now turn to the computation of logarithmic corrections to Zg. We will carry out

this computation for Type II string theory on T 6. This compactification preserves 32

supercharges of which 16 commute with g. Also, as we have previously discussed, the

only fields which can contribute to the log a term are the massless fields in AdS2 ⊗ S2.

These are just the fields of four-dimensional N = 8 supergravity. We will therefore find it

useful to organise the spectrum of N = 8 supergravity in terms of representations of the

N = 4 subalgebra which commutes with g. All the fields in a single N = 4 multiplet are

characterised by a common g-eigenvalue which in turn dictates which twisted modes on
(

AdS2 ⊗ S2
)

/ZN should the heat kernel be computed over. This information is summarised

in table 1. In this section we shall compute the contribution of each multiplet in table 1

to the log term in Zg, which requires us to compute the contribution to Zg from quadratic

fluctuations of massless fields about the ZN orbifold generated by the action (2.7) of g̃ on

the attractor geometry of the black hole. To do so, we shall compute the heat kernel of the

kinetic operator derived in [26, 27] about this orbifolded background, imposing g-twisted

boundary conditions on the fields as we act on the background with g̃. Therefore, the

results of section 2 will be useful for us.

Finally, as in [26, 27, 38, 39], we need to compute the heat kernel over the supergravity

fields taking into account their couplings to the background graviphoton fluxes and scalar

fields. As shown in [26, 27], the heat kernel over the various quadratic fluctuations can be

expressed in terms of the heat kernel over scalars, spin-12 fermions and discrete modes of

3We point out here that the modes with ℓ = 0 correspond to vector zero modes of the kinetic opera-

tor [26] and hence d
vd
ℓ=0 corresponds to the regularised number of vector zero modes of the kinetic operator.

Explicitly evaluating (2.27) with ℓ = 0, so that χℓ

(

πs
N

)

= 1 ∀s, we find that d
vd
ℓ=0 vanishes when q-twisted

boundary conditions are imposed. This is in contrast to the untwisted case, where d
vd
ℓ=0 = −1 [38].
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higher-spin fields. The coupling to the background fields however changes the eigenvalues

of the kinetic operator from those when fields are minimally coupled to background gravity.

The new eigenvalues can in principle be computed by rediagonalising the kinetic operator.

However, the flux does not change the degeneracy of the eigenvalue. Hence, to compute

the heat kernel over the supergravity fields with our choice of background and boundary

conditions, we can use the shifted eigenvalues computed in [26, 27] and the degeneracies

computed in section 2. On doing so, we find two more simplifications that are of great

benefit. Firstly, as observed in [39], the contribution of the conical terms to the heat kernel

is finite in the t 7→ 0 limit. Hence the contribution to the O
(

t0
)

term from the conical terms

is insensitive to the eigenvalues and can be computed from the degeneracies. Secondly, the

other contribution to the O
(

t0
)

term in the heat kernel originates from the O
(

t0
)

term in

the heat kernel computed for the full attractor geometry without imposing any twist on the

boundary conditions. This has already been computed in [26, 27]. Using these results, and

the g-charges computed in table 1, we can now compute the heat kernel over the various

supergravity fields and extract the O
(

t0
)

term in the heat kernel, which will yield the log

term. With these results, we now turn to the main computation of this paper.

We firstly note that the N = 4 gravity multiplet is g-invariant, and hence its heat

kernel should be computed over untwisted modes. It has already been shown in [38] that

the contribution of these modes to the log term vanishes. Additionally, the contribution

of any g-invariant N = 4 vector multiplet to the log term also vanishes [38]. Therefore we

shall concentrate on the gravitino multiplets and the N = 4 vector multiplets which carry

a non-trivial g charge, which corresponds to a non-zero twist in the boundary conditions.

We find below that the contribution of these multiplets also vanishes for any arbitrary

choice of twisting. This is in contrast to the untwisted case where while the contribution

of the vector multiplet did vanish, the gravitino multiplet contribution was non-vanishing

and was responsible for the non-zero log correction the entropy of 1
8 -BPS black holes in

N = 8 supergravity [39].

3.1 The heat kernel for the N = 4 vector multiplet

We will now put the results of section 2 together, using the arguments presented above, to

prove the first of our main results: the log correction in Zg receives vanishing contribution

from any N = 4 vector multiplet with q-twisted boundary conditions. As in [26, 38], the

heat kernel for any N = 4 vector multiplet receives contributions from two Dirac fermions,

6 real scalars and one gauge field, along with two scalar ghosts. We will focus on the

contribution of the conical terms to the O
(

t0
)

term in the heat kernel. We denote this

contribution by Kc (t; 0). Firstly the contribution from the two Dirac fermions is given by

KF
c (t; 0) = − 1

N

N−1
∑

s=1

cos2
(

πs
N

)

sin4
(

πs
N

) e−
2πiqs

N . (3.1)

We now turn to the contribution from the integer-spin fields. These are the 6 real scalars,

the gauge field and two scalar ghosts. Two of the scalars mix with the gauge field due to

the graviphoton flux [26] and we have

KB = 4Ks +K(v+2s) − 2Ks, (3.2)
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where Ks is the scalar heat kernel along
(

AdS2 ⊗ S2
)

/ZN with q-twisted boundary con-

ditions, and K(v+2s) is the heat kernel of the mixed vector-scalar fields due to the back-

ground graviphoton flux. As we have previously argued, to extract the t0 term from the

fixed-point contribution to the heat kernel, we don’t have to take into account the coupling

of the gauge field to the scalars via the graviphoton flux and can just add the various

contributions piecewise. We therefore find that (3.2) reduces to

KB
c = 6Ks

c +Kv
c − 2Ks

c = 4Ks
c +Kv

c . (3.3)

Ks
c can be read off from (2.20), but we need to compute Kv

c . As shown in [26], the heat

kernel Kv of a vector field over AdS2⊗S2 may be decomposed into K(v,s), which is the heat

kernel of a vector field along AdS2 times the heat kernel of a scalar along S2 and K(s,v),

the heat kernel of a vector field along S2 times the heat kernel of a scalar along AdS2.

Further, the modes of the vector field along AdS2 and S2 may be further decomposed into

longitudinal and transverse modes. There is an additional discrete mode contribution from

the vector field on AdS2. These statements carry over to the case of the ZN orbifolds with

twisted boundary conditions as well. Kv therefore receives the following contributions.

Kv = K(vT+vL+vd,s) +K(s,vT+vL). (3.4)

Now the modes of longitudinal and transverse vector fields along AdS2 and S2 are in one-

to-one correspondence with the modes of the scalar with the only subtlety being that along

S2 the ℓ = 0 mode of the scalar does not give rise to a non-trivial gauge field [26]. We

therefore have

K(vT ,s) = K(vL,s) = Ks, K(s,vT ) = K(s,vL) = Ks −K(s,ℓ=0), (3.5)

where, as we have mentioned previously,Ks is the scalar heat kernel along
(

AdS2 ⊗ S2
)

/ZN
with q-twisted boundary conditions, and K(s,ℓ=0) is again the scalar heat kernel along
(

AdS2 ⊗ S2
)

/ZN , however we only sum over the modes with ℓ = 0 along the S2 direction.

We therefore find that the contribution of the conical terms (3.4) reduces to

Kv
c (t; 0) = 4Ks

c (t; 0) +K(vd,s)
c (t; 0)− 2K(s,ℓ=0)

c (t; 0) . (3.6)

Further, using (2.21), we may show that

K(s,ℓ=0)
c (t; 0) =

1

4N

N−1
∑

s=1

1

sin2
(

πs
N

)e−
2πiqs

N , (3.7)

and that Ks
c (t; 0) is given by

Ks
c (t; 0) =

1

2N

N−1
∑

s=1

1

4 sin4 πs
N

e−
2πiqs

N . (3.8)

Finally, using (2.27), K
(vd,s)
c (t; 0) is given by

K(vd,s)
c (t; 0) = − 1

2N

N−1
∑

s=1

1

sin2
(

πs
N

)e−
2πiqs

N . (3.9)
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Using (3.3) and (3.6), and then putting (3.7), (3.8) and (3.9) together, we find that the

total integer-spin contribution is given by

KB
c (t; 0) =

1

N

N−1
∑

s=1

e−
2πiqs

N

(

1− sin2
(

πs
N

)

sin4
(

πs
N

)

)

. (3.10)

Then the total contribution of the conical terms from bosons and fermions is obtained by

adding (3.1) and (3.10) to obtain

Kc (t; 0) = KB
c (t; 0)+KF

c (t; 0) =
1

N

N−1
∑

s=1

e−
2πiqs

N

(

1− sin2
(

πs
N

)

− cos2
(

πs
N

)

sin4
(

πs
N

)

)

= 0. (3.11)

This vanishes for arbitrary values of q. Now, using the arguments at the beginning of the

section, the heat kernel for the N = 4 vector multiplet about the g̃-generated ZN orbifold

of the attractor geometry is given, on imposing q-twisted boundary conditions, by

Kq =
1

N
K +Kc (t; 0) +O (t) , (3.12)

where K is the heat kernel on the unquotiented near-horizon geometry. We therefore have,

for the t0 term in the heat kernel expansion,

Kq (t; 0) =
1

N
K (t; 0) +Kc (t; 0) (3.13)

We have shown in 3.11 that Kc (t; 0) equals zero. In addition, it was shown in [26] that

K (t; 0) also vanishes. This implies that Kq (t; 0) also vanishes, which proves that the

contribution to the log term from the vector multiplet vanishes even for q-twisted bound-

ary conditions.4

3.2 The heat kernel for the N = 4 gravitino multiplets

We now compute the contribution of the N = 4 gravitino multiplets to the log term in

Zg for N = 8 string theory. From table 1, we see that the N = 4 gravitino multiplets

obey q-twisted boundary conditions. There are four such multiplets, where the highest-

weight field is a Majorana spin–3
2 fermion, which we organise into two multiplets where

the highest-weight field is a Dirac spin–3
2 fermion. One multiplet obeys twisted boundary

conditions with q = +1, and the other with q = −1. Further, since we are considering

quadratic fluctuations, the background flux in the attractor geometry does not cause grav-

itino multiplets with different g-charge, and hence different q-twist, to mix with each other.

We will therefore focus on the contribution of the log term from one q-twisted multiplet

where the highest-weight field is a Dirac spin–3
2 fermion.

4We emphasize here that though the contribution of an N = 4 vector multiplet vanishes for both twisted

and untwisted boundary conditions, the origin of the result is different in both cases. For the untwisted

case, the zero and non-zero modes of the kinetic operator give non-vanishing contributions to the log term

which cancel against each other [38], while for the twisted case these contributions are individually zero as

shown in this section and in footnote 3 of this paper.

– 13 –



J
H
E
P
1
1
(
2
0
1
4
)
0
0
2

Now we shall compute the contribution of the conical terms to the t0 term in the heat

kernel expansion for this multiplet. Firstly, we focus on the integer-spin fields. There are

8 gauge fields and 16 real scalars. Further, gauge fixing introduces two ghost scalars for

every gauge field. Hence the contribution of the integer-spin fields to the O
(

t0
)

term from

the conical terms in the heat kernel is

KB
c (t; 0) = 8Kv

c (t; 0) + 16Ks
c (t; 0)− 16Ks

c (t; 0) = 8Kv
c (t; 0) , (3.14)

which therefore implies that

KB
c (t; 0) =

4

N

N−1
∑

s=1

1

sin4 πs
N

e−
2πiqs

N − 8

N

N−1
∑

s=1

1

sin2 πs
N

e−
2πiqs

N . (3.15)

We have used (3.6) with (3.7), (3.8) and (3.9) to arrive at this expression. We now turn

to the contribution of the half-integer spin fields. We will focus on the contribution of one

Dirac gravitino multiplet, which contains one Dirac gravitino and 7 Dirac spin-12 fields.

The degrees of freedom reorganise themselves into in 4 Dirac fermions with ℓ ≥ 0, 6 Dirac

fermions with only ℓ = 0 modes along the S2, 7 Dirac fermions with only ℓ ≥ 1 modes

along the S2, one discrete Dirac fermion, and 3 ghost Dirac fermions [27, 39]. We can then

show that

KF
c (t; 0) = 8Kf

c (t; 0)−K(f,ℓ=0)
c (t; 0) +Kfd

c (t; 0) , (3.16)

where Kf is the heat kernel for the Dirac fermion, K(f,ℓ=0) is the heat kernel for the Dirac

fermion with only ℓ = 0 modes along the S2 and Kfd is the heat kernel over one discrete

Dirac fermion. Now

Kf
c (t; 0) = − 1

2N

N−1
∑

s=1

cos2 πs
N

sin4 πs
N

e−
2πiqs

N , (3.17)

and

K(f,ℓ=0)
c (t; 0) = − 2

N

N−1
∑

s=1

cos2 πs
N

sin2 πs
N

e−
2πiqs

N . (3.18)

Further, using (2.28), we find that the discrete mode contribution from the conical terms

is given by

Kfd
c (t; 0) = +

2

N

N−1
∑

s=1

cos2 πs
N

sin2 πs
N

e−
2πiqs

N . (3.19)

We finally obtain that the full half-integer spin contribution is given by

KF
c (t; 0) = − 4

N

N−1
∑

s=1

1

sin4 πs
N

e−
2πiqs

N +
8

N

N−1
∑

s=1

1

sin4 πs
N

e−
2πiqs

N − 4

N

N−1
∑

s=1

e−
2πiqs

N . (3.20)

Adding (3.15) and (3.20), we find that the conical contribution to the t0 term in the heat

kernel for a given value of q is

Kc (t; 0) = − 4

N

N−1
∑

s=1

e−
2πiqs

N = +
4

N
, (3.21)
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which is independent of q. Then the contribution of the g-twisted N = 4 gravitino multi-

plets to the log term in Zg is given by

Kg (t; 0) =
1

N
K (t; 0) + 2Kc (t; 0) , (3.22)

where K (t; 0) is the coefficient of the t0 term in the heat kernel expansion of the gravitino

multiplets about the unquotiented near-horizon geometry. This was computed to be −8

in [27]. We therefore find that Kg (t; 0) is given by

Kg (t; 0) = − 8

N
+

8

N
= 0. (3.23)

Hence, the contribution of the N = 4 gravitini multiplets to the logarithmic term in Zg
also vanishes.

3.3 The zero mode analysis

We will now take into account the presence of zero modes of the kinetic operator for N = 8

supergravity fields expanded about the black hole near horizon geometry. The final result,

as mentioned above, is that the zero mode analysis of [39] goes through unchanged, but

since the zero mode analysis is an important part of the computation, we shall present

the result explicitly. The following general result [26, 27], see also [42], will be useful for

us. Consider a theory with a length scale a and fields φi such that the kinetic operator

for quadratic fluctuations about a given background has n0φi ≥ 0 number of zero modes.

Further, let the zero mode contribution to the path integral scale with a as

Z ≃ a
n0
φi
βφiZ0, (3.24)

where Z0 does not scale with a, and the numbers βφi have been explicitly determined in [27]

for the vector field (see also [26]), the gravitino and the graviton. In particular

βv = 1, β 3
2
= 3, βg = 2. (3.25)

In that case, the log term for the partition function is given by

lnZlog =

(

K (0; t) +
∑

φi

n0φi (βφi − 1)

)

ln a, (3.26)

where K (0; t) is the coefficient of the t0 term in the heat kernel expansion of the kinetic

operator over of all fields φi, evaluated on both zero and non-zero modes. Therefore, as

far as the vector field is concerned, we may simply evaluate the heat kernel over all modes,

extract the t0 coefficient from there, and ignore zero modes. Further, for the N = 8

kinetic operator, all the zero modes of the spin–3
2 and spin-2 fields are contained in the

N = 4 gravity multiplet [27]. This is quantised with untwisted boundary conditions and

its contribution has already been evaluated on the orbifold space in [39], where it was

determined that

n 3
2
= 2, ng = −2. (3.27)
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3.4 Logarithmic corrections to the twisted index

Now we are in a position to put together the above results to show that the logarithmic

corrections to the partition function Zg vanish for the N = 8 theory. To do so, we will

need the coefficients K (0; t) from the N = 4 vector, gravitini and gravity multiplets, as

well as the corresponding zero mode contributions. It has already been proven in [38]

that an untwisted N = 4 vector multiplet has a vanishing contribution to the log term

about our background. Further, we have seen in section 3.1 that K (0; t) for the N = 4

vector multiplet with twisted boundary conditions vanishes, and in (3.23) that K (0; t) for

the N = 4 gravitini multiplets with twisted boundary conditions also vanishes. Hence,

the only non-vanishing contributions to ln (Zg)log come from the N = 4 gravity multiplet,

which obeys untwisted boundary conditions. For this multiplet (see eq. 5.46 of [39])

K (0; t) = −2. (3.28)

Putting these results in (3.26) with (3.27), we find that

ln (Zg)log = 0, (3.29)

which completes the proof that the logarithmic term in Zg vanishes, in accordance with

the microscopic results for Bg
6 for N = 8 string theory.

4 Conclusions

In this paper we exploited the heat kernel techniques developed in [38] to compute the

logarithmic terms in the large charge expansion of the twisted index Bg
6 in N = 8 string

theory. These vanish, matching perfectly with the microscopic computation. Further,

the result may be extended to the N = 4 case as follows. Firstly, since g commutes

with all 16 supercharges in this case, we continue to classify fields into multiplets of the

four-dimensional N = 4 supersymmetry algebra. Secondly, we need to focus only on the

massless supergravity fields over the near-horizon geometry as only these can contribute to

the log term. Finally, the g action on the various N = 4 multiplets can be found out using

techniques similar to the ones employed in the N = 8 case. Since g acts geometrically

on the compact directions, the N = 4 gravity multiplet still does not transform, and

its contribution to the log term vanishes as per the analysis of [39]. The N = 4 vector

multiplets would carry non-trivial g-charges, corresponding to non-trivial q-twists for these

fields in the path integral Zg. We have already seen that the contribution to the log term

from N = 4 vector multiplets vanishes for arbitrary twists q. Therefore, the log term

vanishes even for N = 4 string theory.

As a final observation, we note that the microscopic expression for Bg
6 contains expo-

nentially suppressed corrections of the form

Bg
6,p (Q,P ) ≃ e

π

√
Q2P2

−(Q·P )2

Np (O (1) + . . .) , p ∈ Z+, p ≥ 2. (4.1)

Using the arguments of [38] for the untwisted index we find that the logarithmic correction

vanishes about these saddle-points as well. Following through the arguments of [36], a
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natural candidate for the macroscopic origin of these corrections corresponds to a saddle-

point of Zg obtained by taking a ZNp orbifold of the attractor geometry, where again

g-twisted boundary conditions should be imposed on the fields in the path integral. From

the analysis presented in this paper, it follows that the log corrections to Zg vanish about

these saddle-points as well, which matches with the expectation from the microscopic side.
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A The g-charges for the N = 8 supergravity fields

In this appendix we shall review how the g-twist acts on the fields of four-dimensional

N = 8 supergravity. As g commutes with the N = 4 subalgebra of the full N = 8

algebra, we expect that the N = 8 gravity multiplet will decompose into N = 4 multiplets,

each of which carry some charge under g. We shall obtain these charges by working

with Type IIB supergravity compactified on T 4 ⊗ T 2 and studying the action of g on the

supergravity fields, which are the graviton hMN , the two-form BMN , the three-form flux

CMNP and two 16-component Majorana-Weyl spinors.5 This action of the g-twist on the

Type IIB supergravity fields compactified on T 4⊗T 2 can be realised in an appropriate

complex coordinate system(z1, z2) on T 4 and (z3) on T 2 as [16].

dz1 → e
2πi
N dz1 dz2 → e−

2πi
N dz2 dz̄1 → e−

2πi
N dz̄1 dz̄2 → e

2πi
N dz̄2 (A.1)

dz3 → dz3 dz̄3 → dz̄3 (A.2)

These transformations can be thought of as individual rotations along the two cycles of T 4.

The g-action on the ten dimensional fields is realised as a field transformation under the

different representations of the Lorentz group. In the four dimensional theory obtained on

compactification, the g-action may be thought of as an internal symmetry.

The compactification of the N = 2 supergravity fields on T 4⊗T 2 gives one N = 8

gravity multiplet in 4 dimensions. This contains one graviton hµν , 8 spin–3
2 Majorana

fields, 28 spin-1 fields, 56 spin–1
2 Majorana fields and 70 real scalars.

5The indices M,N take values 0, . . . , 9, while µ, ν will take values 0, . . . , 3 which label the non-compact

directions. The indices m,n will take values 4, . . . , 9 and label the compact directions.
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Multiplet Number of Multiplets g-Eigenvalue

Gravity 1 1

Gravitino 2 e−
2πi
N

Gravitino 2 e
2πi
N

Vector 4 1

Vector 1 e−
4πi
N

Vector 1 e
4πi
N

Table 1. g-Charges of the N=4 multiplets. It is natural to expect the gravity multiplet to remain

invariant since the 4D spacetime metric hµν is a spacetime field and is unaffected by coordinate

transformations on the internal directions.

The spin-2 field hµν is just the spacetime metric. The spin-1 fields come from Gµm,

Bµm, Cmnµ and Aµ. The scalars come from Gmn, Bmn, Am, Cmnp, dualizing the com-

ponents Cmµν of the three-form field, and the axion and the dilation. The origin of the

8 spin–3
2 fields and 48 spin–1

2 fields lie in the spin–3
2 ψ

α
µ and spin-1/2 ϕαm multiplets ob-

tained on compactification of the two 16 component Majorana-Weyl spinors over T 6. 8

of the remaining spin–1
2 fields come from the compactification of the two ten-dimensional

ψα[10] spinors.

The g-twist commutes with 16 of the 32 supersymmetries. Hence we split the N = 8

gravity multiplet into oneN = 4 gravity multiplet, four gravitino, and six vector multiplets.

All the members of a given N = 4 multiplet carry the same g-charge since g commutes

with the N = 4 subalgebra. The g-charge of every field has been found to conform with

the g-charge of the multiplet it belongs to. The final results of this computation have been

summarised in table 1.
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