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1 Introduction

The Golem project [1] initially aimed at automatically computing one loop corrections to

QCD processes using Feynman diagrams techniques whereby 1) each diagram was written

as form factors times Lorentz structures 2) each form factor was decomposed on a particular

redundant set of basic integrals. Indeed when the form factors are reduced down to a basis

of scalar integrals only, negative powers of Gram determinants, generically noted det(G)

below, show up in separate coefficients of the decomposition. These det(G), albeit spurious,

are sources of troublesome numerical instabilities whenever they become small. The set of

basic integrals used in the Golem approach is such that all coefficients of the decomposition

of any form factor on this set are free of negative powers of det(G). Let aside trivial one- and

two-point functions, the Golem library of basic functions is instead made of a redundant

set involving the functions In3 (j1, · · · , j3), In+2
3 (j1), I

n+2
4 (j1, · · · , j3) and In+4

4 (j1). Here the

lower indices indicate the number of external legs, the upper indices stand for the dimension

of space-time, and the arguments j1, · · · , ji labels i Feynman parameters in the numerator

of the corresponding integrand. The strategy is the following. In the phase space regions

where det(G) are not troublesome, the extra elements of the Golem set are decomposed

on a scalar basis and computed “analytically” in terms of logarithms and dilogarithms.

In the phase space region where det(G) vanishes these extra Golem elements are instead

used as irreducible building blocks explicitly free of Gram determinant and provided as

one-dimensional integral representations computed “numerically”.

Much faster and more efficient methods than those relying on Feynman diagrams tech-

niques have been developed, e.g. based on unitarity cuts of transition amplitudes and not

individual Feynman diagrams, and/or processing the decompositions at the level of the

integrands [2–8]. Yet these methods still amount to a decomposition onto a set of basic

integrals. In this respect the stand-alone relevance of the Golem library of basic functions,

initially developed as a part of the Golem approach, remains. Furthermore the decompo-

sitions obtained by these new methods project onto a basis of scalar integrals and thus are

still submitted to numerical instabilities caused by det(G). The issue of numerical instabil-

ity is then addressed in various ways ranging from smoothing numerical interpolations over

the regions of instabilities [9] to more involved rescue solutions [10, 11]. In [12] the solution

adopted is to provide a rescue alternative relying on the Golem decomposition to compute

the amplitude in the troublesome kinematic configurations. The Golem library [13], ini-

tially designed for QCD, did not include basic functions with internal masses yet provided

a convenient way of handling infrared and collinear singularities inherent in the massless

case. Its completion with the cases involving internal masses, possibly complex, extends

its range of use [14]. This completion shall supply the functions In3 (j1, · · · , j3), In+2
3 (j1),

In+2
4 (j1, · · · , j3) and In+4

4 (j1) in the massive cases in a numerically stable with respect

to det(G) issues.

To handle det(G) issues, we advocate the use of one-dimensional integral representa-

tions rather than relying on Taylor expansions in powers of det(G). The latter may be

thought a priori better both in terms of CPU time and accuracy, however the order up to

which the expansion shall be pushed may happen to be rather large. Furthermore, unless
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Figure 1. The triangle picturing the one-loop three point function.

a fixed large number of terms, hopefully large enough in all practical cases, be computed,

it is not easy to assess a priori the optimal order required to reach a given accuracy. Actu-

ally this assessment would demand a quantitative estimate of the remainder as a function

of the order of truncation, which, as with the Taylor expansion with Laplace remainder,

namely requires the computation of an integral! Originally, we proposed the antipodal

option of computing numerically the two- or three-dimensional Feynman integral defining

respectively the three- and four point functions, more precisely hypercontour deformations

thereof [1] that would be numerically more stable. Yet the computation of these multiple

integrals was both slow and not very precise. It is far more efficient both in terms of CPU

time and accuracy to evaluate a one-dimensional integral representation, insofar as one is

able to find such a representation. In the case without internal masses, we indeed found

such a representation.

The issue which we address here is the extension of this approach of one-dimensional

integral representations for our set of basic integrals in the most general case, i.e. with

internal complex masses. In this article we treat the case of the three point function. The

case of four point functions is more involved therefore it will be elaborated separately in a

companion article. We follow the approach developed by t’Hooft and Veltman in ref. [15].

In a subsequent third article, we will present an alternative approach providing integral

representations for both three and four point functions equivalent to the one presented

here yet with a number of new features and advantages. The present article is organized as

follows. Section 2 sketches the derivation of the three point function leading to our integral

representation. Section 3 treats the case when det(G) vanishes whereas the determinant

of the kinematic matrix S remains non vanishing. Section 4 elaborates on the more tricky

case when both det(G) and the det(S) vanish. The main body of the text presents the

general arguments whereas the various technical details supporting the latter are gathered

in appendices, to make the reading of this article more fluent.

2 Outline of the derivation

A generic three point function can be represented by the diagram of figure 1.

Each internal line with momentum qi stands for the propagator of a particle of mass

mi. We define the kinematic matrix S, which encodes all the information on the kinematics

– 3 –
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associated to this diagram by:

Si j = (qi − qj)
2 −m2

i −m2
j (2.1)

The squares of differences of two internal momenta can be written in terms of the internal

masses mi and the external invariants si = p2i so that S reads:

S =




−2m2
1 s2 −m2

1 −m2
2 s1 −m2

1 −m2
3

s2 −m2
1 −m2

2 −2m2
2 s3 −m2

2 −m2
3

s1 −m2
1 −m2

3 s3 −m2
2 −m2

3 −2m2
3


 (2.2)

In this section, we will sketch the computation of I43 and I63 using the method of

ref. [15]. These two integrals are defined1 by:

I43 = −
∫ 1

0

3∏

i=1

dzi δ

(
1−

3∑

i=1

zi

)(
−1

2
z T S z − i λ

)−1

(2.3)

In+2
3 = − Γ(1 + ǫ)

ǫ

∫ 1

0

3∏

i=1

dzi δ

(
1−

3∑

i=1

zi

)(
− 1

2
z T S z − i λ

)−ǫ

= − Γ(1 + ǫ)

ǫ

∫ 1

0

3∏

i=1

dzi δ

(
1−

3∑

i=1

zi

)[
1− ǫ ln

(
−1

2
z T S z − i λ

)]

= Idiv3 + I63 (2.4)

where Idiv3 isolates the MS ultra violet pole in ǫ, and I63 is the finite part which we will

focus on. We may single out any index a in S = {1, 2, 3} and write

za = 1−
∑

i 6=a

zi (2.5)

The quadratic form z T S z becomes:

z T S z = −
∑

i,j 6=a

G
(a)
i j zi zj + 2

∑

j 6=a

V
(a)
j zj + Sa a (2.6)

with

G
(a)
i j = −(Si j − Sa j − Si a + Sa a), i, j 6= a (2.7)

V
(a)
j = Sa j − Sa a j 6= a (2.8)

The matrix G(a) is the 2 × 2 Gram matrix built from the four-vectors ∆i a = qi − qa:

G
(a)
ij = 2(∆i a.∆j a). Its determinant does not depend on the choice of a, and it is also

the determinant of the similar Gram matrix built with any subset of two external mo-

menta. We note it simply det(G) without referring to a and unambiguously call it the

1The Feynman contour prescription in the propagators is noted iλ in order to avoid any confusion with

the parameter ǫ = (4− n)/2 involved in dimensional regularization.
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Gram determinant associated with the kinematic matrix S. Specifying for example a = 3,

I43 reads:

I43 = −
∫ 1

0
dz1

∫ 1−z1

0
dz2


1
2

2∑

i,j=1

G
(3)
ij zi zj −

2∑

j=1

V
(3)
j zj − 1

2
Sa a − i λ



−1

(2.9)

The 2× 2 Gram matrix G(3) and the column two-vector V (3) are explicitly given by:

G(3) =

[
2 s1 s3 − s2 + s1

s3 − s2 + s1 2 s3

]
(2.10)

V (3) =

[
s1 −m2

1 +m2
3

s3 −m2
2 +m2

3

]
(2.11)

We then define

z1 = 1− x

z2 = y

and we get:2

I43 = −
∫ 1

0
dx

∫ x

0
dy
[
a x2 + b y2 + c x y + d x+ e y + f − i λ

]−1
(2.12)

I63 =

∫ 1

0
dx

∫ x

0
dy ln

[
a x2 + b y2 + c x y + d x+ e y + f − i λ

]
(2.13)

with:
a = s1
b = s3
c = −s3 + s2 − s1
d = m2

3 −m2
1 − s1

e = s1 − s2 +m2
2 −m2

3

f = m2
1

(2.14)

Eq. (2.12) is the starting point of the computation of the three point integral in ref. [15], cf.

their eq (5.2). We keep the same notations as those of ref. [15] for the different quantities,

and we closely follow the strategy of ref. [15] for the first integration. We only sketch these

stages. An alternative strategy may be proposed which leads to the sought integral repre-

sentations in a faster, more straightforward and more transparent way for three point func-

tions, and which can be elaborated for four point functions as well thereby providing a num-

ber of interesting features. This alternative will be presented in a subsequent publication.

2The argument of the logarithm appearing in eq. (2.13) shall be understood to contain an implicit

arbitrary factor 1/M2 with dimension -2 in order to make the argument of this logarithm dimensionless.

This arbitrary M2 dependence is cancelled by the corresponding one in the ln(M2/µ2) involved in the term

Idiv3 , where µ2 is the dimension two parameter introduced by the dimensional regularization of the ultra

violet divergence subtracted in Idiv3 . In practice the kinematic matrix S is rescaled from the start by its

entry of largest absolute value, and so is the Gram matrix G(a), which thereby become both dimensionless.

This amounts to specifying M2 to be this normalization parameter.
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The integration variable y is first shifted according to y = y′ +αx, the parameter α is

being chosen such that

b α2 + c α+ a = 0 (2.15)

in order that the quadratic form of x, y in the integrands of eqs. (2.12), (2.13) become linear

in x. Note that the discriminant ∆α of eq. (2.15) is minus the Gram determinant det(G).

For all kinematical configurations p1, p2, p3 = −p1 − p2 involved in one-loop calculations of

elementary processes of interest for collider physics, det(G) is non-positive.3 The roots α±
of the polynomial (2.15) are thus real in all relevant cases. We split the integral over y′

and reverse the order of integrations:

∫ 1

0
dx

∫ 1−α

−α
dy′ =

∫ 1

0
dx

∫ (1−α)x

0
dy′ −

∫ 1

0
dx

∫ −αx

0
dy′

=

∫ 1−α

0
dy′
∫ 1

y′/(1−α)
dx−

∫ −α

0
dy′
∫ 1

y′/(−α)
dx (2.16)

Since the integrand seen as a function of x and y′ in eq. (2.16) is now linear in x the

integration on x is made straightforward. For I43 eq. (2.16) involves two integrals of the form

∫ 1

xmin(y′)
dx [Ax+ B]−1 =

1

A ln

( A+ B
Axmin + B

)
(2.17)

where A and B are functions of y′ and xmin(y
′) = y′/(1 − α) and xmin(y

′) = y′/(−α)

respectively. As can be traced back to eqs. (2.3), (2.4) the polynomial [a x2 + b y2 + c x y+

d x+ e y+ f − i λ] in eqs. (2.12), (2.13) has a negative imaginary part, this holds true also

for complex internal masses. Therefore the numerator and denominator in the argument

of the logarithm in eq. (2.17) both have a negative imaginary part, thus the logarithm in

eq. (2.17) can be harmlessly split in two terms:

ln

( A+ B
Axmin + B

)
= ln (A+ B)− ln

(
Axmin(y

′) + B
)

(2.18)

It is convenient to add and subtract a term ln(C) in the right hand side (r.h.s.) of eq. (2.18),

and split the latter into a sum of two terms

∫ 1

xmin

dx [Ax+ B]−1

=
1

A [ln (A+ B)− ln (C)] − 1

A [ln (Axmin + B)− ln (C)] (2.19)

such that the residue of the fake pole 1/A vanishes in each combination [ln(A+B)−ln(C)]/A
and ln(Axmin + B) − ln(C)]/A separately. The two terms in the r.h.s. of eq. (2.19) thus

3As seen by exhaustion, the only configurations leading to a positive Gram determinant would require

that all three external four-momenta p1, p2, p3 = −p1 − p2 of the three point function be spacelike. At

the one-loop order which is our present concern, each of the three points, through which p1, p2 and p3
respectively flow, shall be connected to an independent tree. In order for p1, p2 and p3 to be all space-like,

each of these trees should involve one leg in the initial state: this would correspond neither to a decay nor

to a collision of two incoming bodies.
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lead to integrals over y′ which are individually well defined and may be safely handled on

their own. A similar treatment may be done for I63 adding and subtracting a term C ln(C).
We note that

B|A=0 = − 1

2B
− iλ

with

B ≡ det(G)

det(S) (2.20)

thus we choose

C = − 1

2B
− iλ (2.21)

In this way the integration over x yields four terms. By means of an appropriate change

of variable, two of them may be further recombined so that each of the integrals I43 and I63
can be written as the sum of three terms. We call these terms “sector integrals” labelled

I(j), j = 1, 2, 3, they may be put in the following form. For I43 we get:

I43 =
3∑

j=1

I4
3 (j) (2.22)

with the sector integrals I4
3 (j)of the form

I4
3 (j) = −

∫ 1

0
dz

K(j)(α)

D(j)z + E(j)

[
ln
(
F(j)z

2 +G(j) z +H(j) − iλ
)
− ln

(
− 1

2B
− iλ

)]
(2.23)

The coefficients D(j), · · · ,K(j)(α) being provided by the following table; the dependence of

the K(j)(α) on α is made explicit for further convenience.

sector (1) sector (2) sector (3)

D(1) = (2b α+ c) D(2) = (2b α+ c)(−α) D(3) = (2b α+ c)(1− α)

E(1) = (d+ e α) + (2a+ c α) E(2) = (d+ e α) E(3) = (d+ e α)

F(1) = b F(2) = a F(3) = (a+ b+ c)

G(1) = (c+ e) G(2) = d G(3) = (d+ e)

H(1) = f + d+ e H(2) = f H(3) = f

K(1)(α) = 1 K(2)(α) = −α K(3)(α) = − (1− α)

(2.24)

where a, b, · · · , f have been listed above in eq. (2.14).

Similarly, for I6
3 (j) we have:

I63 = − 1

2
+

3∑

j=1

I6
3 (j) (2.25)

with I6
3 (j) of the form

I6
3 (j) =

∫ 1

0
dz

K(j)(α)

D(j)z + E(j)

[(
F(j)z

2 +G(j) z +H(j)

)
ln
(
F(j)z

2 +G(j) z +H(j) − i λ
)

+
1

2B
ln

(
− 1

2B
− iλ

)]
(2.26)

with D(j), · · · ,K(j)(α) given in table (2.24) above.
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The values of the integrals I43 and I63 do not depend on the particular root α = α±
of eq. (2.15) chosen to perform the first integration leading to eqs. (2.23), (2.26). As in

ref. [15], either of the two α roots, say α+, may be used to further compute the remaining

single integrals in closed form in terms of logarithms and dilogarithms. A symmetrization

over α± would generate an unnecessary doubling of dilogarithms in the closed form that

would be prejudicial regarding CPU time in practice. However the discussion of the be-

haviours of these integrals when det(G) → 0 is made somewhat obscure once one particular

choice is made, and for this purpose it is on the contrary more enlightening to symmetrize

expressions (2.23) and (2.26) over α±, especially in the perspective of providing one di-

mensional integral representations free of det(G) instabilities. The α dependence comes

only from the factors K(j)(α)/(D(j)z +E(j)), not from the arguments of the logarithms in

numerators. Each of the sector integrals in the decomposition of I43 , respectively I63 , has

an explicit α dependence of the type:

I =

∫ 1

0
dy

K(α)

αA+ C
L

where L stands for the α-independent numerators in the integrands of the sector integrals

I4,6
3 (j), and we omit the superscript (j) labelling the sector for simplicity. Symmetrizing

over α± we get:

I =
1

2

∫ 1

0
dy

[
(K(α+)α− +K(α−)α+)A+ (K(α+) +K(α−))C

α+ α−A2 +AC (α− + α+) + C2

]
L

Let us introduce the following quantities:

Q = α+ α−A2 +AC (α− + α+) + C2

=
1

b
(aA2 − cAC + bC2)

N = (K(α+)α− +K(α−)α+)A+ (K(α+) +K(α−))C

Here are the explicit forms corresponding to the different sector integrals.

For sector (1), K(α) = 1, A = 2 b z + e+ c, C = c z + d+ 2 a, and we get:

Q =
1

b

[
−∆α b z

2 −∆α (c+ e) z + a e2 − c e d+ b d2 −∆α (d+ a)
]

=
1

b

[
det(G) g(1)(z) +

1

2
det(S)

]
(2.27)

N =
1

b
[2 b d− c e−∆α]

=
1

b
b1 det(S) (2.28)
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For sector (2), similarly, K(α) = −α, A = c z + e and C = 2 a z + d, so that:

Q =
1

b

[
−∆α a z

2 −∆α d z + a e2 − c e d+ b d2
]

=
1

b

[
det(G) g(3)(z) +

1

2
det(S)

]
(2.29)

N = − 1

b
[2 a e− c d]

=
1

b
b2 det(S) (2.30)

For sector (3), K(α) = − (1− α), A = (2 b+ c) z + e and C = (c+ 2 a) z + d, so that:

Q =
1

b

[
−∆α (a+ b+ c) z2 −∆α (e+ d) z + a e2 − c e d+ b d2

]

=
1

b

[
det(G) g(2)(z) +

1

2
det(S)

]
(2.31)

N = − 1

b
[2 b d+ c d− 2 a e− c e]

=
1

b
b3 det(S) (2.32)

where the coefficients bj are defined by

bj =
3∑

k=1

S−1
j k (2.33)

They are such that
3∑

j=1

bj = B =
det(G)

det(S) (2.34)

They were introduced in the GOLEM reduction algorithm [1], and the second degree polyno-

mials g(j)(z) are given by

g(1)(z) = b z2 + (c+ e) z + (a+ d+ f)

g(2)(z) = a z2 + d z + f

g(3)(z) = (a+ b+ c) z2 + (d+ e) z + f

(2.35)

The polynomials g(j)(z) are namely those appearing in the integral representations of the

two-point functions corresponding to the three possible pinchings of one propagator in the

triangle diagram of figure 1. In what follows we parametrize the g(j)(z) generically as

g(j)(z) = γ′′(j) z
2 + γ′(j) z + γ(j) (2.36)

in order to formally handle them all at once when concerned with the zeroes of g(j)(z) +

1/(2B) further below. Let us note that the discriminant ∆j of the second degree polynomial

g(j)(z), defined by

∆j ≡ γ′ 2(j) − 4 γ′′(j) γ(j) (2.37)

– 9 –
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turns out to be equal to minus the determinant of the reduced kinematic matrix S{j}.
This reduced kinematic matrix corresponds to the pinching of the propagator j in the

triangle of figure 1, and is obtained from the matrix S by suppressing line and column j.

Correlatively γ′′(j) can be seen as half the reduced Gram determinant associated with the

reduced kinematic matrix S{j}.
Equation (2.23) can thus be written:

I43 = −
3∑

j=1

bj

∫ 1

0
dz

ln
(
g(j)(z)

)
− ln (−1/(2B))

2B g(j)(z) + 1
(2.38)

Likewise for eq. (2.26):

I63 = − 1

2
+

3∑

j=1

bj

∫ 1

0
dz

g(j)(z) ln
(
g(j)(z)

)
+ 1/(2B) ln (−1/(2B))

2B g(j)(z) + 1
(2.39)

In eqs. (2.38), (2.39), the contour prescription inherited from (− zTSz − iλ) in

eqs. (2.3), (2.4) is implicit: the logarithmic terms ln
(
g(j)(z)

)
in the numerators stand

for ln
(
g(j)(z)− iλ

)
. Let us remind that the terms ln(−1/(2B)) in the numerators have

been introduced in order that the zeroes z±(j) of the denominators (2B g(j)(z) + 1) be fic-

titious poles in each of the sector integrals in any case i.e. the residues vanish: hence

ln(−1/(2B)) stands for ln(−1/(2B) − iλ) as well, furthermore no contour prescription

around the z±(j) is needed.
Equations (2.38) and (2.39) are appealing candidates for the integral representations

which we seek. Let us examine them more closely when det(G) → 0. We shall distinguish

two cases: the generic case when det(G) → 0 whereas det(S) remains non vanishing, and

the specific case det(G) → 0 and det(S) → 0 simultaneously which deserves a dedicated

treatment. Let us subsequently examine these two cases.

3 det(G) → 0 whereas det(S) non vanishing

Let us first consider the polynomials g(j)(z)+1/(2B) appearing in the denominators of the

integrals I4,6
3 (j) in eqs. (2.38), (2.39). Let us first consider γ′′(j) 6= 0, so that g(j)(z) + 1/(2B)

is of degree two. Using the identity

b̄2j = 2 γ′′(j) det(S)− det(G)∆j (3.1)

where ∆j has been defined in eq. (2.37), and the rescaled coefficients

b̄j ≡ bj det(S), j = 1, 2, 3 (3.2)

it is insightful to write the corresponding discriminant of g(j)(z) + 1/(2B) as

∆̃j = −
b̄2j

det(G)
(3.3)
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Identity (3.1) is derived in appendix A. It is an example of the so-called Jacobi identities

for determinant ratios, relating the determinant of a matrix and related cofactors i.e.

determinants of reduced matrices4 [16–18]. Similar identities may be met in the treatment

of the four-point function. The zeroes z±(j) of g(j)(z) + 1/(2B) are given by

z±(j) = −
γ′(j)
2 γ′′(j)

∓ b̄j

2 γ′′(j)
√

− det(G)
(3.4)

(as commented earlier, det(G) ≤ 0). When det(G) → 0, both zeroes z±j of 2Bg(j)(z)+1 are

dragged away from [0, 1] towards +∞ and −∞ respectively. If γ′′(j) = 0, g(j)(z) + 1/(2B)

is only of degree one, and its unique root z0(j) given by

z0(j) = − 1

γ′(j)

(
γ(j) +

1

2

det(S)
det(G)

)
(3.5)

is again dragged away from [0, 1] towards ∞ when det(G) → 0. In either case, as soon as

det(G) becomes small enough each of the integrals

Jj =

∫ 1

0

dz

2Bg(j)(z) + 1

is analytically well defined and numerically safe, and furthermore the following iden-

tity holds:
3∑

j=1

bjJj = 0 (3.6)

so that the contributions ∝ ln(−1/(2B)− iλ) sum up to zero in I43 as well as in I63 . In this

respect, let us stress that the contributions ∝ ln(−1/(2B)−iλ) are fictitious from the start.

They were introduced through eq. (2.19) with the custodial concern of separately handling

integrals - the sector integrals - with integrands free of poles within the integration domain

namely when either of z±j is inside [0, 1]. When z±j are both outside [0, 1] the introduction

of the ln(−1/(2B) − iλ) terms is irrelevant and indeed identity (3.6) allows to drop them

explicitly from eqs. (2.38), (2.39). The following integrals

I43 = −
3∑

j=1

bj

∫ 1

0
dz

ln
(
g(j)(z)− iλ

)

2B g(j)(z) + 1
(3.7)

I63 = − 1

2
+

3∑

j=1

bj

∫ 1

0
dz

g(j)(z) ln
(
g(j)(z)− i λ

)

2B g(j)(z) + 1
(3.8)

thus provide suitable integral representations in the case at hand. From a numerical point

of view the explicit suppression of the ln(−1/(2B) − iλ) terms from integrals (3.7), (3.8)

is preferable since ln(−1/(2B)− iλ) → ∞ when det(G) → 0 thus implementing a numeri-

cal cancellation of the sum
∑3

j=1 bjJj ln(−1/(2B) − iλ) after each term would have been

4In ref. [16], see: entry “107 (III.3) Determinants” p. 348-351, in particular paragraph “F. Theorems

on Determinants”, Theorem(3).
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separately calculated would be submitted to numerical instabilities. Besides, if case some

g(j)(z) vanishes at some ẑ(j) inside [0, 1], a possible numerical improvement of the integral

representation consists in deforming the integration contour in the complex z plane, to skirt

the vicinity of the integrable singularity at ẑ(j), so as to prevent the integrand from be-

coming large and avoid cancellation of large contributions, according to a one-dimensional

version5 of the multidimensional deformation described in section 7 of ref. [1].

4 det(G) → 0 and det(S) → 0 simultaneously

This case is more tricky and deserves further discussion. Indeed, when det(S) = 0 and

det(G) = 0, eq. (2.33) defining the parameters bj as
∑3

k=1 S−1
jk is no longer valid as S−1

is not defined, and the parameter B = det(S)/ det(G) is an indeterminate quantity of the

type 0/0, likewise the z±(j) are indeterminate quantities not manifestly driven away from

the interval [0, 1].

In this subsection we will first characterize the specific kinematics which leads to such

a case. Then we will consider kinematic configurations close to the so-called specific ones

above, such that det(G) and det(S) are simultaneously small but non vanishing and we

will study how I43 and I63 behave when det(S) and det(G) both go to zero. Anticipating

on the result, we rewrite both for I43 and I63 the corresponding sums

3∑

j=1

bj I3 (j) = b3 I3 (3) +
1

2
(b1 + b2)

(
I3 (1) + I3 (2)

)
+

1

2
(b1 − b2)

(
I3 (1) − I3 (2)

)
(4.1)

One of the coefficients bj , say b3 will be shown to have a finite limit whereas b1 and b2
diverge towards infinity in a concomitant way such that their sum b1+ b2 has a finite limit.

Furthermore, the difference I3 (1) −I3 (2) will be shown to tend to zero so that the product

(b1 − b2)(I3 (1) − I3 (2)) has a finite limit. A well-defined expression is thus achieved in

the double limit det(S) → 0, det(G) → 0 although some of the ingredients are separately

ill-defined in the limit considered. We will conclude this subsection with a comment in

relation with the behaviour of the GOLEM reduction formalism in this case.

4.1 Characterization of the specific kinematics det(G) = 0, det(S) = 0

The quantities det(S) and det(G) are polynomials in the kinematical invariants. Hereafter

we propose a presentation which partly linearizes the resolution of the non linear system

det(G) = 0, det(S) = 0. This approach, applied here to N = 3, extends to other N , e.g.

N = 4. The determinant det(S) can be written (see appendix A):

det(S) = Saa det(G) + V (a)T · G̃(a) · V (a) (4.2)

5In broad outline, the contour deformation is contained inside the band 0 ≤ Re(z) ≤ 1. It departs from

the real axis at 0 with an acute angle and likewise ends at 1 in such a way that Im(g(j)(z)) is kept negative

along the deformed contour so that the latter does not cross any cut of ln(g(j)(z)− i λ). In the case at hand

this type of contour never embraces any of z±j as soon as the latter are outside [0, 1], thus no subtraction

of illegitimate pole residue contribution at z±j has to be cared about.
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where G̃(a) is the matrix of cofactors6 of G(a); the superscript “T ” refers to matrix trans-

position. The system det(G) = 0, det(S) = 0 is thus equivalent to the system det(G) = 0,

V (a)T · G̃(a) · V (a) = 0. Since

G(a) G̃(a) = G̃(a)G(a) = det(G) 1IN (4.3)

the matrices G(a) and G̃(a) are simultaneously diagonalizable. When det(G) = 0 and G(a)

has rank7 (N − 2) - namely 1 in the N = 3 case at hand - the only eigendirection n̂(a)

of G(a) associated to the eigenvalue zero is concomitantly the only eigendirection of G̃(a)

associated to the only non vanishing eigenvalue g̃ of G̃(a). For n̂(a) properly normalized,

G̃(a) = g̃ n̂(a) ⊗ n̂(a)T . The condition V (a)T · G̃(a) · V (a) = 0 quadratic in V (a) is thus

equivalent to the following linear one:

(n̂(a)T · V (a)) = 0 (4.4)

Let us now consider the condition det(G) = 0. A detailed discussion is provided in ap-

pendix B, we only summarize it here for the N = 3 case at hand. A vanishing det(G)

happens (i) either when the external momenta p1,2,3 are proportional to each other (ii)

or when there exists a non vanishing linear combination of the external momenta which

is lightlike and orthogonal to all of them [19]. Possibility (i) corresponds to degenerate

kinematic configurations irrelevant for next-to-leading order (NLO) calculations of collider

processes. Let us focus on possibility (ii) further assuming any subset of two of the three

external momenta to be linearly independent. To fix the ideas, let us consider8 p1 and p3.

If one of them say p1 is lightlike it is namely (proportional to) the lightlike combination

sought, whereas p3 shall be spacelike, p2 = −p1 − p3 is spacelike as well and s2 = s3. If

neither p1 nor p3 are lightlike, both shall be spacelike with s1 = s3, and p2 is (proportional

to) the lightlike combination of p1 and p3. Actually, configurations of type (ii) with p3, p1
and p2 linearly independent and all spacelike can also lead to a vanishing det(G), yet such

configurations are not relevant for collider processes at NLO,9 we thus discard them.

Let us assume p2 lightlike and orthogonal to p3 and p1 both spacelike: s1 = s3 ≡ s+ <

0, s2 = (p2 · p3,1) = 0, so that (p1 · p3) = − s+. We single out line and column 3 of S whose

corresponding G(3) reads:

G(3) = 2 s+

[
1 1

1 1

]
(4.5)

6This matrix is sometimes also called ‘adjoint matrix’ of G(a).
7See comment at the beginning of appendix E regarding (N − 1) × (N − 1) Gram matrices of lower

ranks. In the present N = 3 case we discard the degenerate possibility that the 2× 2 matrix G(a) has two

vanishing eigenvalues which not only makes the cofactor matrix G̃(a) vanish identically but also G(a) itself.

This would correspond to a very peculiar kinematics of three lightlike external four-momenta collinear to

each other.
8This particular choice corresponds to singling out and erasing line and column 3 in the matrix S and

considering the Gram matrix G(3).
9Indeed, at NLO, each of the external legs of the one loop three point function considered has to be

connected to separate tree, and all the external legs of at least one of these three trees have to be final state

legs. Therefore the external momentum flowing through the corresponding leg of the one loop three point

function cannot be spacelike. Such configurations with three spacelike legs could appear only in higher loop

diagrams, of which the one loop three point function would be seen as a subdiagram.
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The normalized eigenvector n̂(3) associated with the eigenvalue zero is (up to a sign):

n̂(3) =
1√
2

[
1

− 1

]
(4.6)

With eqs. (2.11) and (4.6), condition (4.4) imposes the following restriction on the inter-

nal masses:

m2
1 = m2

2 ≡ m2 (4.7)

4.2 Behaviour of I43 and I63 when det(G) → 0, det(S) → 0

Let us assume condition (4.7) and parametrize the departure from the ‘critical kinematics’

using s2, s− ≡ (s1 − s3)/2 and s+ ≡ (s1 + s3)/2. The determinants read:

det(G) = 4

(
s+ s2 − s2− − 1

4
s22

)
(4.8)

det(S) = 2
(
λ̃ s2 + 4m2 s2− + m2

3 s
2
2 − s2 s

2
−
)

(4.9)

where λ̃ is the Källen symmetric function of s+,m
2,m2

3 given by:

λ̃ = s2+ + (m2)2 + (m2
3)

2 − 2m2 s+ − 2m2
3 s+ − 2m2m2

3 > 0 (4.10)

The region where det(G) and det(S) are concomitantly small corresponds to |s2|, |s−| both
small compared with the other kinematical invariants, with |s2/s+| and (s−/s+)2 of the

same order, so that det(G) and det(S) can be approximated by:

det(G) = 4
(
s+ s2 − s2−

)
+ · · · (4.11)

det(S) = 2
(
λ̃ s2 + 4m2 s2−

)
+ · · · (4.12)

In order to understand in more detail the origin of the diverging contributions to the

coefficients bj , the matrix S may be decomposed as follows:

S =
3∑

j=1

σj v(j) ⊗ vT(j) (4.13)

Let us address the real mass case first; we will briefly comment at the end of this subsubsec-

tion on how the study shall be - only slightly - modified in the complex mass case. Decom-

position (4.13) corresponds to the usual diagonalization of S: the v(j) and σj , j = 1, 2, 3

are real eigenvectors orthonormalized in the euclidean sense (vT(j) · v(k)) = δjk and the cor-

responding real eigenvalues respectively. The labelling of eigenvectors and values is chosen

such that σi=3 explicitly given by

σ3 = −
(
s2 +

4m2

λ̃
s2−

)
+ · · · (4.14)
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is the eigenvalue which vanishes when s2 and s− both vanish, whereas the two others

remain finite in this limit. Introducing

e ≡



1

1

1


 (4.15)

the column vector b = S−1 · e and the quantity B =
∑3

j=1 bj = (eT .b) take the form:

b =
3∑

i=1

σ−1
i

(
vT(i) · e

)
v(i) (4.16)

B =
3∑

i=1

σ−1
i

(
vT(i) · e

)2
(4.17)

More explicit algebraic expressions of the various ingredients in the relevant regime are

gathered in appendices C and D for convenience. They show that (vT(i) · e) ∼ O(s−) so

that the components of b = S−1 · e are individually wild-behaved when det(S) → 0 due to

the O(s2−/σ3) contribution along v(3) being O(|σ3|−1/2), although B ∼ O(s2−/σ3) remains

O(1). A closer look reveals that both b3 ∼ O(s2/σ3) and the combination (b1 + b2) ∼
O(s2/σ3, s

2
−/σ3) separately remain O(1) whereas (b1 − b2) ∼ O(s−/σ3) is O(|σ3|−1/2).

Concomitantly, since

g(1)(z) = g(z) + s− z (1− z) (4.18)

g(2)(z) = g(1− z)− s− z (1− z) (4.19)

where

g(z) = − s+ z (1− z) +m2 z +m2
3 (1− z) (4.20)

the quadratic forms g(1)(z) and g(2)(1 − z) become both equal to g(z) when s− = 0.

The difference of the two integrals I3 (1) and I3 (2) in factor of b1 and b2 respectively, in

eqs. (2.38) for I43 and likewise in (2.39) for I63 , is (I3 (1)−I3 (2)) ∼ O(s−). The combination

(b1 − b2) (I3 (1) − I3 (2)) is thus ∼ (O(s2−/σ3) i.e O(1) as well. In the summary, rewriting∑3
j=1 bjI3 (j) according to eq. (4.1), each of the three terms b3 I3 (j), (b1+ b2) (I3 (1)+I3 (2))

and (b1 − b2) (I3 (1) − I3 (2)) remains bounded and has a finite limit when s− → 0, s2 → 0.

Let us however notice that we are taking a double limit. Properly speaking, the limits of

each of these three terms in eq. (4.1) which are separately well-defined are directional limits

s− → 0, s2 → 0 in the {s2−, s2} plane keeping the ratio t = s2/s
2
− fixed, i.e. these directional

limits are functions of t. However, the limit of the sum of these three terms in eq. (4.1) is

indeed independent of t. This can be easily checked numerically, this can also be proven

analytically although this is somewhat cumbersome; a proof is presented in appendix F. The

ground reason why this property holds is further understood as follows: were the limit of

the sum a directional one, it would imply that the three-point function would be a singular

i.e. non analytical function of the kinematical invariants at such configurations. However
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the kinematic singularities are characterized by the so-called Landau conditions10 [19, 20]

(see also [17]). For one loop diagrams, these conditions require not only that det(S) = 0,

but also that the eigenvectors associated with the vanishing eigenvalue of S shall have only

non negative components and that their sum be strictly positive. By contrast, in the case

at hand, the eigenvector v(3) in the limit where σ3 = 0 is, cf. appendix C:

v(3)|σ3=0 ∝




1

− 1

0


 (4.21)

such that (eT · v(3)|σ3=0) = 0. The vanishing det(S) in the present case is therefore not

related to a kinematic singularity: the three-point function is regular in the limit considered,

in particular this limit shall be uniform i.e. not directional.

4.3 Extension to the complex mass case

The above study was stressed to hold, strictly speaking, for real masses. Actually, it can

be extended to the complex mass case with only slight modifications. Indeed in the com-

plex mass case, the symmetric matrix S albeit complex admits a decomposition formally

identical eq. (4.13):

S =
3∑

j=1

σ′
i u(j) ⊗ uT(j) (4.22)

which now reflects the so-called Takagi factorization S = U · Σ · UT in terms of a real non

negative diagonal matrix Σ and a unitary matrix U , instead of a standard diagonalization.

The diagonal elements σ′
j of Σ are the square roots of the eigenvalues of the hermician

matrix S S†, whereas the columns u(i) of U are corresponding eigenvectors11 of S S†. The
corresponding Takagi factorization of S−1 for S invertible reads S−1 = U∗ ·Σ−1 ·U † i.e. in
the tensor product notation:

S−1 =
3∑

i=1

σ′ −1
j u∗(j) ⊗ u†(j) (4.23)

Identity (4.23) provides the equations for b and B which modify eqs. (4.16), (4.17) in the

complex mass case. A study quite similar to the real mass case then follows12 and the same

10For general parametric integrals the Landau conditions provide only necessary conditions to face sin-

gularities, either of pinched or end-point type. However for Feynman integrals, Coleman and Norton [21]

proved these conditions to be sufficient.
11Let us note by passing that, unlike with standard diagonalization, the phases of the vectors u(i) involved

in the Takagi factorization shall be adjusted modulo π in order to fulfill the condition (uT
(j) · S · u∗

(k)) =

σ′
j (u

T
(j) · u(k)), because the decomposition involves the transpose of U not its hermician conjugate.

12Technically speaking, the determination of the singular values σ′
j and corresponding vectors u(j) may

seem somewhat awkward given the algebraically more complicated form of the matrix elements of S S†.

Actually we are interested in a practical case where the imaginary parts of the masses - i.e widths of unstable

particles in internal lines - are much smaller than the real parts. Therefore, splitting S in real and imaginary

parts S = SR− iSI , and writing S S† = S2
R+∆, with ∆ = i[SR,SI ]+ S2

I , the square roots σ
′
j of eigenvalues

of S S† and the corresponding eigenvectors u(j) can be expanded in integer powers of matrix elements of

SI , as perturbative deformations of the eigenvalues σk and eigenvectors v(k) of SR i.e. the spectral features

of the real mass case, by a straightforward application of the formalism of time-independent perturbation

theory in Quantum Mechanics.
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conclusions hold.

4.4 A comment on the GOLEM reduction formalism when det(S) = 0

Let us end this subsection with a comment on the applicability of the GOLEM reduction

formalism [1] to configurations such that det(S) = 0. The equation S · b = e with S
not invertible can still be solved e.g. introducing the so-called Moore-Penrose Pseudo-

Inverse [22] T0 of S(σ3 = 0) given in the real mass case13 by:

Sσ3=0 =
∑

i=1,2

σi v(i) ⊗ vT(i) (4.24)

T0 =
∑

i=1,2

σ−1
i v(i) ⊗ vT(i) (4.25)

provided the following compatibility condition to be satisfied:

[1I− S|σ3=0 · T0] · e = 0 (4.26)

Still noting v(3) the eigenvector of S with vanishing eigenvalue, the compatibility condi-

tion (4.26) reads
(
eT · v(3)

)
= 0 (4.27)

Condition (4.27) is incompatible with the Landau conditions mentioned earlier which char-

acterizes a kinematic singularity, namely the non negativity of all the components of v(3):

thus the formalism breaks down for singular kinematics.

On the other hand, the “peculiar” configurations such that det(G) = 0, det(S) = 0

examined in the present subsection are non singular and do fulfill condition (4.27), and

the (non unique)14 solution b reads b = b0 + Ker (S) = b0 + x v(3)|σ3=0 with x arbitrary

scalar and b0 ≡ T0 · e, leading to B0 = eT · T0 · e. The GOLEM formalism thus applies

also, using b = b0 and B = B0, when standing precisely at the peculiar configurations.

Yet slightly away from these peculiar configurations the GOLEM ingredients defined by b =

S−1 · e separately show discontinuities15 w.r.t. those given by b = b0 precisely at the

peculiar configurations; this discontinuity comes from the contribution to b coming from the

(divergent) component along v(3), which have no counterpart in b0. Notwithstanding, these

individual discontinuities are artefacts in the sense that they cancel out in the reduction

formula when put altogether, as discussed above.

13A similar discussion holds in the complex mass case as well with similar expressions cf. the previous

paragraph.
14The arbitrary component of b along v(3)|σ3=0 is irrelevant for any practical purpose. Indeed, the

condition (4.27) makes the contribution to b3, hence to B, coming from this component vanish, whereas

the finite contribution to b1 − b2 from this component is weighted by the vanishing I3 (1) − I3 (2) in the

decomposition (4.1).
15More precisely b0 is equal to the directional limit s2 → 0 of b along the direction s− = 0 i.e. t = ∞.

The discontinuities are meant for all other, finite t directions.
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5 Summary and outlook

In this article, we provided a representation of one-loop, 3-point functions in 4 and 6

dimensions in the form of one dimensional representations in the general case with com-

plex masses. These one-dimensional integral representation have the virtue to avoid the

appearance of factitious negative powers of Gram determinants, and are therefore numer-

ically stable and remain rather/relatively fast to compute numerically. We addressed the

two cases at hand separately: the generic case when det(G) becomes small whereas det(S)
remains finite, and the trickier specific case when both det(G) and det(S) become concomi-

tantly small. Here we presented the “existence proof” for scalar integrals, but the method

applies to tensor integrals as well, i.e. loop integrals involving integer powers of Feynman

parameters in the denominators of their integrands.

A forthcoming article will continue the present one by the similar treatment of one-

loop 4-point functions. The latter proved to be quite more involved than the 3-point case,

we thus preferred to split it from the present article. These two will be supplemented by a

dedicated treatment of the specific mixed case involving both finite (complex) masses, and

some zero masses triggering infrared issues. In the meantime we also found an alternative

approach leading to a derivation of integral representation which is perhaps simpler and

also makes the algebraic nature of the ingredients involved more transparently related to

the GOLEM reduction algorithm both for 3-point and 4-point functions, this approach will

be presented in a separate article. Last, this approach will be fully implemented in the

next version of the GOLEM95 library in Fortran 95. We will provide various numerical tests

of numerical stability at this occasion.

A Useful algebraic identities among determinants

Equation (3.1) used in section 3 relates various ingredients of the reduction formula in-

volving the one loop three point function. Similar identities can be found and used in the

case of four point functions. These properties can be traced back to general algebraic iden-

tities between the determinant of a square matrix and minors of this matrix, referred to

as “Jacobi identities for determinant ratios” [16–18]. This appendix reminds these general

identities and specifies them to the case useful for the present work. Beforehand we remind

a few properties useful in this respect.

A.1 Preliminaries

Let us first recall a few useful properties which we state in general for arbitrary N not

just N = 3. Consider the kinematic N × N matrix S associated with a given one-loop

N -point diagram generalizing eq. (2.2) for any N . We single out the line and column

a, and consider the corresponding (N − 1) × (N − 1) Gram matrix G(a) associated to

S, generalizing (2.7) and the (N − 1)-column vector V
(a)
i generalizing eq. (2.8). Let us

choose a = N to fix the ideas and make formulas simpler; the results obtained can be

straightforwardly generalized to any a.
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1. Let us subtract the last column of S from every column j, then subtract the last line

from every line i in the intermediate matrix thus obtained, with 1 ≤ i, j ≤ N − 1.

This defines the N ×N matrix ̂S(N) given by:

̂S(N) =



− G

(N)
ij | V

(N)
i

−−− +−−−
V

(N)
j | SNN


 (A.1)

generalizing eqs. (2.7) and (2.8). The determinants det(S) and det(̂S(N)) are equal.

det(̂S(N)) is Laplace-expanded according to its N th line as:

det(̂S(N)) = SNN det
(
−G(N)

)
+

N−1∑

j=1

(−1)N+j V
(N)
j det

(
̂S(N)

{N}
{j}

)
(A.2)

where ̂S(N)
{N}
{j} is the (N − 1) × (N − 1) matrix obtained from ̂S(N) by suppressing

its line N and column j. Using this notation we have in particular:

− G(N) = ̂S(N)
{N}
{N} (A.3)

The determinant det

(
̂S(N)

{N}
{j}

)
may in turn be Laplace-expanded with respect to

its last column:

det

(
̂S(N)

{N}
{j}

)
=

N−1∑

i=1

(−1)i+(N−1)V
(N)
i (−1)N−2

{
(−1)i+j

(
G̃(N)

)

ij

}
(A.4)

In the r.h.s. of eq. (A.4), the factor (−1)N−2 comes from the explicit minus sign in

−G(N); (−1)i+j (G̃(N))ij is the minor of the Gram matrix element G
(N)
ij . Substituting

into eq. (A.2) we get:

det(S) = (−1)N−1
[
SNN det

(
G(N)

)
+ V (N)T · G̃(N) · V (N)

]
(A.5)

hence eq. (4.2).

2. The coefficients bi in the GOLEM N -point reduction algorithm are defined by

N∑

j=1

Sijbj = 1, i = 1, · · · , N (A.6)

Singling out bN in eq. (A.6) corresponding to i = N , and subtracting eq. (A.6) for

i = N from eq. (A.6) for every i = 1, · · · , N − 1, eq. (A.6) may alternatively be
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rewritten in terms of G(N) and V
(N)
i as:

N−1∑

j=1

bj + bN = B (A.7)

N−1∑

j=1

G
(N)
ij bj = B V

(N)
i , i = 1, · · · , N − 1 (A.8)

N−1∑

j=1

V
(N)
j bj = 1−B SNN (A.9)

When G(N) is invertible, eq. (A.8) is solved as:

bj = B
N−1∑

k=1

[
G(N)

]−1

jk
V

(N)
k = B

[
det
(
G(N)

)]−1
N−1∑

k=1

(
G̃(N)

)

jk
V

(N)
k (A.10)

where the matrix G̃(N) is the matrix of cofactors. Thus, using eq. (A.5):

N−1∑

j=1

V
(N)
j bj = B

[
det
(
G(N)

)]−1
V (N)T · G̃(N) · V (N)

= B (−1)N−1 det(S)
det(G(N))

−B SNN (A.11)

Comparing eqs. (A.11) and (A.9) yields:

B = (−1)N−1det(G
(N))

det(S) (A.12)

and bN is obtained by solving eq. (A.7). Introducing

bj ≡ bj det(S) (A.13)

and, using eq. (A.4), eq. (A.10) reads:

bj = (−1)N−1
[
G̃(N) · V (N)

]

j
(A.14)

= (−1)j+N−2 det

(
̂S(N)

{N}
{j}

)
, j = 1, · · · , N − 1 (A.15)

A.2 The identity (3.1) and Jacobi identities for determinants ratios

As shown below, identity (3.1) is a special case of the following general property [16]. Let

A be any n×n matrix, and A
{i1,··· ,ir}
{k1,··· ,kr} the matrix obtained from A by suppressing the lines

i1, · · · , ir and columns k1, · · · , kr. Then, for any i1 < i2 and k1 < k2:

det(A ) det
(
A

{i1,i2}
{k1,k2}

)
= det

(
A

{i1}
{k1}

)
det
(
A

{i2}
{k2}

)
− det

(
A

{i1}
{k2}

)
det
(
A

{i2}
{k1}

)
(A.16)
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Indeed, let us specify A = ̂S(N) in the identity (A.16) and give the explicit forms of the other

quantities obtained by suppressing appropriate lines and columns. Let us take any i 6= N .

The (N − 2)× (N − 2) matrix ̂S(N)
{i,N}
{i,N} is nothing but the matrix −Gi, thus

det
(
G{i}

)
det

(
̂S(N)

{i,N}
{i,N}

)
= (−1)N−2 det

(
G{i}

)
(A.17)

Furthermore, , we first notice that, for A symmetric,

A
{i}
{k} =

(
A

{k}
{i}

)T
(A.18)

thus

det
(
A

{i}
{k}

)
= det

(
A

{k}
{i}

)
(A.19)

from eqs. (A.15) and (A.19), we have:

(
bi
)2

=

(
det

(
̂S(N)

{N}
{i}

))2

= det

(
̂S(N)

{N}
{i}

)
det

(
̂S(N)

{i}
{N}

)
(A.20)

Besides,

det

(
̂S(N)

{N}
{N}

)
= (−1)N−1 det(G) (A.21)

In the case at hand, identity (A.16) thus reads:

det

(
̂S(N)

)

︸ ︷︷ ︸
det(S)

det

(
̂S(N)

{i,N}
{i,N}

)

︸ ︷︷ ︸
(−1)N−2 det(G{i})

= det

(
̂S(N)

{i}
{i}

)

︸ ︷︷ ︸
det(S{i})

det

(
̂S(N)

{N}
{N}

)

︸ ︷︷ ︸
(−1)N−1 det(G)

− det

(
̂S(N)

{i}
{N}

)
det

(
̂S(N)

{N}
{i}

)

︸ ︷︷ ︸
(bi)

2

(A.22)

i.e.

b
2
i = (−1)N−1

[
det(S ) det

(
G{i}

)
+ det

(
S{i}

)
det(G)

]
(A.23)

Specifying N = 3 in the present case of interest gives eq. (3.1), with

γ′′j =
1

2
det
(
G{j}

)
∆j = − det

(
S{j}

)
(A.24)

and where G{j} is the (N − 2) × (N − 2) Gram matrix associated to S{j} and obtained

from it via a procedure similar to the one leading to eq. (A.1). q.e.d.

B Kinematics leading to a vanishing det(G)

This appendix supplements the discussion on the kinematics leading to a vanishing det(G)

provided in subsection 4.1.
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B.1 General considerations

Let us consider a set {pi, i = 1 · · · , N − 1} of N − 1 four-momenta in Minkowski space,

their Gram matrix16 Gij = 2 (pi · pj), and the linear system given by

N−1∑

j=1

Gij xj = 0 , i = 1, · · · , N − 1 (B.1)

A vanishing det(G) means the existence of a set of scalars {xj , j = 1, · · · , N − 1} not all

vanishing and solution of the system (B.1). Multiplying eq. (B.1) for each i = 1, · · · , N −1

by xi and summing over i leads to the condition

l2 = 0 , l ≡
N−1∑

j=1

xj pj (B.2)

which means that (i) l vanishes i.e. the {pi} are linearly dependent momenta, or that (ii)

l is lightlike and eq. (B.1) is the orthogonality condition (l · pi) = 0, i = 1, · · · , N − 1 [19].

Let us focus on case (ii) assuming furthermore the {pj} to be linearly independent.17 The

orthogonality condition requires that none of the pj be timelike, and pN ≡ −∑N−1
j=1 pi is

orthogonal to l too, thus cannot be timelike either.

If one of the pj , say p1, is lightlike, l is proportional to p1, and all the pj 6=1 shall

be spacelike. Were pN lightlike it should be ∝ p1, which would contradict the extra

assumption of linear independence of the {pi}, i = 1 · · · , N − 1, thus pN shall be spacelike

too. These requests impose a steric constraint on N w.r.t. the spacetime dimension d = 4.

As seen by decomposing pj as (p0j/p
0
1) p1 + qj for j = 2, · · · , N − 1 in a frame chosen such

that p1 = p01(1;~0⊥; ǫ, ), with ǫ = ± and qj = (0; ~q⊥ j ; 0), the maximal number of possibly

independent qj is d − 2 = 2 i.e. N shall be ≤ 4. Besides, for N ≥ 4, NLO calculations

involve no one-loop N -point function with external momenta all spacelike but one lightlike,

neither in collision nor in decay processes: alternative (ii) only occurs for N = 3 for any

NLO purpose.

If none of the pj j = 1, · · · , N − 1 is lightlike, all of them shall be spacelike. The

momentum pN shall be either lightlike - hence proportional to l: one is driven back to

the previous case; see the N = 3 case below - or spacelike. The latter case is submitted

to a similar steric constraint as above, as seen by trading one of the pj for l; no such

configuration matters at NLO whatever N .

In summary, for any practical purpose at NLO, a vanishing det(G) can happen for

a linearly independent kinematic configuration only in the case N = 3. Otherwise the

configurations with vanishing det(G) correspond to linearly dependent four-momenta.

16The overall factor 2 in the definition of G is actually irrelevant in the present discussion, we keep it

only for notation consistency with the bulk of the article.
17If both properties (i) and (ii) are simultaneously fulfilled, then the rank of the (N − 1) × (N − 1)

matrix G is (at most) (N − 3), corresponding to quite degenerate configurations. For example for N = 3

this corresponds to all four-momenta lightlike and collinear to each other, for which G identically vanishes.

For N = 4 it corresponds to two spacelike and two collinear lightlike external momenta being a linear

combination of the two spacelike ones. None of these cases are involved in NLO calculation of processes

relevant e.g. for collider physics.
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B.2 Focus on N = 3

This appendix elaborates on the case N = 3 involved in subsubsection 4.1, with p1 and

p3 linearly independent and spacelike. We parametrize the lightlike combination l (defined

up to an overall multiplicative constant) as l = p1 − x p3. The orthogonality conditions

(implying that l is lightlike) read:

(l · p1) = s1 − x (p1 · p3) (B.3)

(l · p3) = (p1 · p3)− x s3 (B.4)

The vanishing det(G) = s1 s3 − (p1 · p3)2 ensures the compatibility of eqs. (B.3) and (B.4)

in x and

x =
(p1 · p3)

s3
= − sign(p1 · p3)

√
s1
s3

(B.5)

The condition det(G) = 0 also implies that s2 = s1 + 2 (p1 · p3) + s3 can be written

s2 = −
(√−s1 − sign(p1 · p3)

√−s3
)2 ≤ 0 (B.6)

Therefore s2 = 0 iff sign(p1 · p3) = + and s1 = s3, in which case x = − 1 and p2 = − l.

Otherwise s2 < 0.

C Spectral features of S for N = 3

This appendix gathers the spectral properties of S for N = 3 which are further used in

appendix D.

Accounting for the condition m2
1 = m2

2 ≡ m2 and the parametrization used in subsec-

tion 4.2, the kinematic matrix S reads:

S =




− 2m2 s2 − 2m2 s+ + s− − (m2 +m2
3)

s2 − 2m2 − 2m2 s+ − s− − (m2 +m2
3)

s+ + s− − (m2 +m2
3) s+ − s− − (m2 +m2

3) −2m2
3


 (C.1)

Let us compute the eigenvalues σ1,2,3 of S and the corresponding eigenvectors v(1,2,3) in

the regime det(G) → 0, det(S) → 0 corresponding to s− → 0, s2 → 0. Since σ3 → 0

whereas σ1,2 remain nonvanishing in this regime, in order to correctly get the coefficients

bj and B in eqs. (4.16) and (4.17) respectively in subsection 4.2, we shall keep the leading

dependence on s−, s2 in σ3 and in the components of the corresponding normalized eigen-

vector v(3), whereas s− and s2 can be safely put to zero to first approximation in σ1,2 and

the corresponding normalized eigenvectors v(1,2). This is the approximation to which we

provide the algebraic results below.

C.1 Eigenvalues

The characteristic polynomial PS(s) of S is:

PS(s) ≡ det (S − s 1I3)

= −
{
s3 − (tr(S)) s2 + 1

2

[
(tr(S))2 − tr

(
S2
)]

s− det(S)
}

(C.2)
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The small eigenvalue σ3. The eigenvalue σ3 vanishing as det(S) may be extracted

from eq. (C.2) rewritten

σ3 =
2 det(S)

(tr(S))2 − tr (S2)
+

2 tr(S)
(tr(S))2 − tr (S2)

σ2
3 −

2

(tr(S))2 − tr (S2)
σ3
3 (C.3)

by an iteration generating an expansion in integer powers of det(S). The leading term

of this expansion, itself truncated to keep only the leading dependencies in s2 and s−, is
given by:

σ3 =
2 det(S)|trunc[

(tr(S))2 − tr (S2)
]

s−=s2=0

+ · · · (C.4)

Using

(tr(S))2 = 22
(
2m2

)2
+ 22

(
2m2

) (
2m2

3

)
+
(
2m2

3

)2
(C.5)

tr
(
S2
)
= 22

{[
s+ −

(
m2 +m2

3

)]2
+ (2m2)2

}
+ (2m2

3)
2

+4 (s−)
2 − (8m2) s2 + 2 (s2)

2 (C.6)

we have:

tr (S)2 − tr
(
S2
)
= − 4 λ̃ (1 + ξ) (C.7)

ξ =
1

λ̃

[
s2− − (2m2) s2 +

1

2
s22

]
(C.8)

whereas

det(S) = 2 λ̃

{[
s2 +

4m2

λ̃
s2−

]
+ s2

[
m2

3

λ̃
s2 −

1

λ̃
s2−

]}
(C.9)

We further truncate

[
tr (S)2 − tr

(
S2
)]

s−=s2=0
= − 4 λ̃ (C.10)

det(S)|trunc = 2 λ̃

(
s2 +

4m2

λ̃
s2−

)
+ · · · (C.11)

The eigenvalue σ3 thus has the following approximate expression:

σ3 = −
(
s2 +

4m2

λ̃
s2−

)
+ · · · (C.12)

in which the terms dropped are of order s22, s2 s
2
−, s

4
− and higher.

The two non vanishing eigenvalues σ1,2. The two other eigenvalues σ1,2 are obtained

from the factorization of PS(s) as:

PS(s) = − (s− σ3)
(
s2 −A s+ B

)
(C.13)
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which requires

A+ σ3 = tr(S) (C.14)

B + σ3A =
1

2

[
(tr(S))2 − tr

(
S2
)]

(C.15)

σ3 B = det(S) (C.16)

The approximation corresponding to s− = s2 = 0 in eqs. (C.14)–(C.16) replaces

A → A
∅
= tr(S) = − 2

(
2m2 +m2

3

)
(C.17)

B → B
∅
=

1

2

[
(tr(S))2 − tr

(
S2
)]

s−=s2=0
= − 2 λ̃ (C.18)

and the “zeroth order” approximations of σ1,2 are given by:

σ1
2 ∅ = −

(
2m2 +m2

3

)
±
√(

2m2 +m2
3

)2
+ 2 λ̃ (C.19)

C.2 Eigenvectors

The eigenvector v3 associated with σ3. The components x, y, z of v3 are solutions

of the degenerate system:

−
(
σ3 + 2m2

)
x+

(
s2 − 2m2

)
y +

(
s+ + s− − (m2 +m2

3)
)
z = 0 (C.20)

(
s2 − 2m2

)
x−

(
σ3 + 2m2

)
y +

(
s+ − s− − (m2 +m2

3)
)
z = 0 (C.21)

(
s+ + s− − (m2 +m2

3)
)
x+

(
s+ − s− − (m2 +m2

3)
)
y −

(
σ3 + 2m2

3

)
z = 0 (C.22)

Subtracting (C.20) from eq. (C.21) yields:

(s2 + σ3) (x− y)− 2 s− z = 0 (C.23)

Since

s2 + σ3 ∼ − (4m2)

λ̃
s2−

eq. (C.23) tells that z = O(s−(x − y)): x and y being bounded, z thus vanishes at least

as O(s−) in the limit s− → 0. We shall keep the leading dependence on s− and s2 in the

components of v(3).

Up to an overall normalization, x, y and z are given by:

x = − λ̃ + 2 (m2 +m2
3)σ3 + 2

(
s+ − (m2 +m2

3)
)
s− − s2− + · · · (C.24)

y = λ̃− 2 (m2 +m3)σ3 −
[
1 +

8m2m2
3

λ̃

]
s2− + · · · (C.25)

z =
(
4m2

)
s− −

(
s+ − (m2 +m2

3)
) 4m2

λ̃
s2− + · · · (C.26)

In eqs. (C.24)–(C.26), the dependence on s2 has been traded for s− and σ3 up to terms

neglected at the approximation retained. Introducing18

v(3) ∅ =
1√
2




1

− 1

0


 , l(3) =




(
s+ − (m2 +m2

3)
)

(
s+ − (m2 +m2

3)
)

4m2


 (C.27)

18In what follows it is not necessary to normalize the vector l(3) to 1.
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the unnormalized eigenvector vunnorm(3) given by eqs. (C.24)–(C.26) can be written:

vunnorm(3) = − λ̃
√
2

(
1− 2 (m2 +m2

3)

λ̃
σ3 −

(
s+ − (m2 +m2

3)
)

λ̃
s− − 4m2m2

3

λ̃2
s2−

)
v(3) ∅

+ s−

(
1−

(
s+ − (m2 +m2

3)
)

λ̃
s−

)
l(3) + · · · (C.28)

The vector v(3) ∅ is the normalized eigenvector of S associated with the eigenvalue σ3 = 0

when det(S) = 0. Let us notice that (lT(3) · v(3) ∅) = 0 and (eT · v(3) ∅) = 0 where the

vector e was defined in eq. (4.15) in subsection 4.2. Once normalized by N3 ≡ − (vunnormT
(3) ·

vunnorm

(3) )−1/2, the eigenvector v(3) is given by:

v(3) =
(
1 +O(s2−)

)
v(3) ∅ − s−

λ̃
√
2
(1 +O(s−)) l(3) + · · · (C.29)

The O(s2−) terms are no more explicited in eq. (C.29) as they would contribute in ap-

pendix D beyond the level of approximation retained only. The departure of v(3) from

v(3) ∅ in eq. (C.29) does not depend explicitly on σ3, it only depends on s−.

The eigenvectors v(1)
(2)

associated with σ1
2
. The components x1

2
, y1

2
, z1

2
of the eigenvec-

tors associated with σ1
2
, are solutions of the degenerate system

−(σ1
2
+ 2m2)x1

2
+ (s2 − 2m2) y1

2
+
(
s+ + s− − (m2 +m2

3)
)
z1
2
= 0 (C.30)

(s2 − 2m2)x1
2
− (σ1

2
+ 2m2) y1

2
+
(
s+ − s− − (m2 +m2

3)
)
z1
2
= 0 (C.31)

(
s+ + s− − (m2 +m2

3)
)
x1

2
+
(
s+ − s− − (m2 +m2

3)
)
y1
2
− (σ1

2
+ 2m2

3) z12 = 0 (C.32)

Subtracting eq. (C.30) from eq. (C.31) yields:

(s2 + σ1
2
) (x1

2
− y1

2
)− 2 s− z1

2
= 0 (C.33)

Since |s2| ≪ |σ1
2
| 6= 0 and z1

2
remains bounded, (x1

2
− y1

2
) thus vanishes at least as O(s−)

in the limit s− → 0. In the zeroth order approximation corresponding to s− = s2 = 0,

(x1
2
− y1

2
) vanishes. Substituting this into eq. (C.32) the latter becomes:

2
(
s+ − (m2 +m2

3)
)
x−

(
σ1

2 ∅ + 2m2
3

)
z = 0 (C.34)

which involves

− (σ1
2 ∅ + 2m2

3) =

[
(2m2 −m2

3)∓
√
(2m2 +m2

3)
2 + 2 λ̃

]

Up to an overall normalization factor to be fixed below, x1
2
, y1

2
and z1

2
are given by:

x1
2 ∅ = y1

2 ∅ = ∓(σ1
2 ∅ + 2m2

3) (C.35)

z1
2 ∅ = ∓ 2

(
s+ − (m2 +m2

3)
)

(C.36)
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The condition (vT(1) ∅ · v(2) ∅) = 0 is fulfilled by eqs. (C.35), (C.36) since:

x1 ∅ x2 ∅ + y1 ∅ y2 ∅ + z1 ∅ z2 ∅

= − 2 (σ1 ∅ + 2m2
3)(σ2 ∅ + 2m2

3)− 4
(
s+ − (m2 +m2

3)
)2

= 0 (C.37)

Identity (C.37) will be used in appendix D. The normalization factor N1
2 ∅ required to

normalize ||v1
2 ∅|| to 1 is given by:

N1
2 ∅ =

[
2 (σ1

2 ∅ + 2m2
3)

2 + 4
(
s+ − (m2 +m2

3)
)2]−1/2

=
[
± 2

(
σ1

2 ∅ + 2m2
3

)
(σ1 ∅ − σ2 ∅)

]−1/2
(C.38)

Let us define the angle θ∅ by

cos θ∅ = −
√
2 (σ1 ∅ + 2m2

3)N1 ∅ (C.39)

sin θ∅ = 2
(
s+ − (m2 +m2

3)
)
N1 ∅ (C.40)

The normalized eigenvectors v(1)
(2)

∅ read:

v(1) ∅ =




1√
2
cos θ∅

1√
2
cos θ∅

− sin θ∅


 , v(2) ∅ =




1√
2
sin θ∅

1√
2
sin θ∅
cos θ∅


 (C.41)

Together with v(3) ∅ given by eq. (C.27) above these eigenvectors define an orthonormal

basis — namely the eigenbasis of S when det(S) = 0. The overall signs have been chosen

such that the orientation is direct i.e. det [v(1) ∅, v(2) ∅, v(3) ∅] = +1.

D Analysis of the reduction coefficients (b0)j, bj, B0 and B when det(G)

and det(S) → 0

This appendix provides a detailed analysis of the reduction coefficients (b0)j , bj , B0 and

B when det(G), det(S) → 0 providing the technical back-up to the discussion in subsec-

tions 4.2 to 4.4. Introducing the vectors

n1 =



1

0

0


 , n2 =



0

1

0


 , n3



0

0

1


 (D.1)

the components of b defined by eq. (4.16) can be expressed in the limit σ3 → 0 in terms of

those of b0 = T · e introduced in subsection 4.4 as:

bj(σ3 → 0) = (b0)j + σ−1
3

(
eT · v(3)

) (
nT
j · v(3)

)
+ · · · (D.2)

(b0)j = σ−1
1 ∅
(
eT · v(1) ∅

) (
nT
j · v(1) ∅

)
+ σ−1

2 ∅
(
eT · v(2) ∅

) (
nT
j · v(2) ∅

)
(D.3)
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where the column vector e has been defined by eq. (4.15), and where “· · · ” in eq. (D.2)

stand for evanescent terms in the limit considered. As the saying goes, ‘a tedious but

straightforward’ algebraic juggling, sketched below, leads to the following expressions for

the sought coefficients.

(i) (b0)3

Using σ1 ∅ σ2 ∅ = −2 λ̃, we get:

(b0)3 = − σ2 ∅
2 λ̃

(
eT · v

(1) ∅

)(
nT
3 · v

(1) ∅

)
− σ1 ∅

2 λ̃

(
eT · v

(2) ∅

)(
nT
3 · v

(2) ∅

)
(D.4)

This involves

(
eT · v

(1) ∅

)(
nT
3 · v

(1) ∅

)
= −

(√
2 cos θ∅ − sin θ∅

)
sin θ∅ (D.5)

(
eT · v

(2) ∅

)(
nT
3 · v

(2) ∅

)
=

(√
2 sin θ∅ + cos θ∅

)
cos θ∅ (D.6)

(b0)3 takes the form:

(b0)3 = − 1

2 λ̃

{
1

2
(σ1 ∅ + σ2 ∅)

+

[
1

2

(
cos2 θ∅ − sin2 θ∅

)
+
√
2 sin θ∅ cos θ∅

]
(σ1 ∅ − σ2 ∅)

}
(D.7)

With cos θ∅, sin θ∅ from eqs. (C.38)–(C.40) and using identity (C.37), we have:

1

2

(
cos2 θ∅ − sin2 θ∅

)
+
√
2 sin θ∅ cos θ∅

= − 1

(σ1 ∅ − σ2 ∅)

[
2
(
s+ − (m2 +m2

3)
)
+ (2m2 −m2

3)
]

(D.8)

whereas σ1 ∅ + σ2 ∅ = −2(2m2 +m2
3). Finally (b0)3 reads:

(b0)3 =
1

λ̃

[(
s+ − (m2 +m2

3)
)
+ (2m2)

]

=
1

2 λ̃

(
eT · l(3)

)
(D.9)

(ii) b3(σ3 → 0)

The extra bit to be added to (b0)3 to get b3(σ3 → 0) is ∝ (eT · v(3)) (nT
3 · v(3)). At the

order of approximation retained, (eT · v(3)) ∼ O(s−), (nT
3 · v(3)) ∼ O(s−) and in both

terms the relevant contribution19 comes from the component − s−/(λ̃
√
2) l(3) of v(3)

in eq. (C.29). Since (nT
3 · l(3)) = 4m2 we have:

σ−1
3

(
eT · v(3)

) (
nT
3 · v(3)

)
=

4m2

λ̃

s2−
σ3

1

2 λ̃

(
eT · l(3)

)
+ · · · (D.10)

19Notice that (nT
3 · v(3) ∅) = (eT · v(3) ∅) = 0.
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The combination of eqs. (D.9) and (D.10) involves:

1 +
4m2

λ̃

s2−
σ3

= − s2
σ3

+ · · · (D.11)

so that

b3(σ3 → 0) = − s2
σ3

1

2 λ̃

(
eT · l(3)

)
+ · · · (D.12)

(iii) (b0)1 + (b0)2

We have:

(b0)1 + (b0)2 = − σ2 ∅
2 λ̃

(
eT · v

(1) ∅

)(
(n1 + n2)

T · v
(1) ∅

)

− σ1 ∅
2 λ̃

(
eT · v

(2) ∅

)(
(n1 + n2)

T · v
(2) ∅

)
(D.13)

It involves
(
eT · v

(1) ∅

)(
(n1 + n2)

T · v
(1) ∅

)
=
(√

2 cos θ∅ − sin θ∅
) √

2 cos θ∅ (D.14)
(
eT · v

(2) ∅

)(
(n1 + n2)

T · v
(2) ∅

)
=
(√

2 sin θ∅ + cos θ∅
) √

2 sin θ∅ (D.15)

(b0)1 + (b0)2 takes the form:

(b0)1 + (b0)2 =− 1

2 λ̃

{
(σ1 ∅ + σ2 ∅)

−
[(
cos2 θ∅ − sin2 θ∅

)
−
√
2 sin θ∅ cos θ∅

]
(σ1 ∅ − σ2 ∅)

}
(D.16)

With cos θ∅, sin θ∅ from eqs. (C.38)–(C.40) and using identity (C.37), we have:

(
cos2 θ∅ − sin2 θ∅

)
−

√
2 sin θ∅ cos θ∅

=
1

(σ1 ∅ − σ2 ∅)

[
2
(
s+ − (m2 +m2

3)
)
+ 2 (2m2

3) + (σ1 ∅ + σ2 ∅)
]

(D.17)

Finally (b0)1 + (b0)2 reads:

(b0)1 + (b0)2 =
1

λ̃

[(
s+ − (m2 +m2

3)
)
+ (2m2

3)
]

(D.18)

(iv) (b1 + b2)(σ3 → 0)

The extra bit added to (b0)1+(b0)2 to obtain (b1+b2)(σ3 → 0) is proportional to (eT ·
v
(3)
) ((n1+n2)

T ·v
(3)
). Here again,20 (eT ·v

(3)
) ∼ O(s−), ((n1+n2)

T ·v(3)) ∼ O(s−) and

in both terms the relevant contribution comes from the component − s−/(λ̃
√
2) l(3) of

v
(3)

in eq. (C.29). The product of these two contributions provides the term sought.

Since ((n1 + n2)
T · l(3)) = 2 (s+ − (m2 +m2

3)), we have:

σ−1
3

(
eT · v(3)

)(
(n1 + n2)

T · v(3)
)
=

1

σ3

s2−
λ̃

(
s+−(m2+m2

3)
)

λ̃

(
eT · l(3)

)
+ · · · (D.19)

20Notice that ((n1 + n2)
T · v

(3)∅
) = 0.
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Rewriting

(
s+ − (m2 +m2

3)
) (

eT · l(3)
)
= 2 λ̃ + (4m2)

[(
s+ − (m2 +m2

3)
)
+ (2m2

3)
]

(D.20)

we get:

σ−1
3

(
eT · v(3)

) (
(n1 + n2)

T · v(3)
)

=
2 s2−
σ3 λ̃

+
s2−
σ3

4m2

(λ̃)2

[(
s+ − (m2 +m2

3)
)
+ (2m2

3)
]
+ · · · (D.21)

The combination of eqs. (D.18) and (D.21) using eq. (D.11) leads to:

(b1 + b2)(σ3 → 0)

=
2 s2−
σ3 λ̃

− s2
σ3

1

λ̃

[(
s+ − (m2 +m2

3)
)
+ (2m2

3)
]
+ · · · (D.22)

(v) B(σ3 → 0)

As a check, let us combine eqs. (D.12) and (D.22). We get:

(b1 + b2 + b3)(σ3 → 0) =
2 s2−
λ̃ σ3

− s2

λ̃ σ3

{ [(
s+ − (m2 +m2

3)
)
+ (2m2)

]

+
[(
s+ − (m2 +m2

3)
)
+ (2m2

3)
] }

+ · · ·

=
22
(
s+s2 − s2−

)

− 2 λ̃ σ3
+ · · · (D.23)

where we recognize the identity

B =
det(G)

det(S)

for σ3 → 0 since the numerator and the denominator of the r.h.s. of eq. (D.23) are

the expressions of det(G) and det(S) respectively, at the approximation retained cf.

eqs. (4.8), (4.9) and (C.12).

(vi) B0

Combining eqs. (D.9) and (D.18) we also get B0 = (b0)1 + (b0)2 + (b0)3:

B0 =
1

λ̃

{[(
s+ − (m2 +m2

3)
)
+ (2m2)

]
+
[(
s+ − (m2 +m2

3)
)
+ (2m2

3)
]}

=
2 s+

λ̃
(D.24)

Notice that B0 happens to coincide with the limit t → ∞ of B seen as a function of

t = s2/s
2
−, as given by eq. (F.2) in appendix F.
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(vii) (b0)1 − (b0)2

Since n1 − n2 =
√
2 v(3) ∅,

(
(n1 − n2)

T · v(j) ∅
)
= 0, j = 1, 2 thus we have:

(b0)1 − (b0)2 = − σ2 ∅
2 λ̃

(
eT · v(1) ∅

) (
(n1 − n2)

T · v(1) ∅
)

− σ1 ∅
2 λ̃

(
eT · v(2) ∅

) (
(n1 − n2)

T · v(2) ∅
)

= 0 (D.25)

(viii) (b1 − b2)(σ3 → 0)

Given eq. (D.25), (b1 − b2)(σ3 → 0) is given by:

(b1 − b2)(σ3 → 0) = σ−1
3

(
eT · v(3)

) (
(n1 − n2)

T · v(3)
)

(D.26)

Whereas (eT · v(3) ∅) = 0, ((n1−n2)
T · v(3) ∅) =

√
2 6= 0. This makes (b1− b2)(σ3 → 0)

diverge. More precisely, since ((n1 − n2)
T · l(3)) = 0, the O(s−) terms in the r.h.s. of

eq. (D.27) cancel and, from eq. (C.29) and we get:

(
(n1 − n2)

T · v(3)
)
=
(
1 +O(s2−)

) √
2 + · · · (D.27)

As (eT · v(3)) = O(s−), the O(s2−) correction in eq. (D.27) leads to a contribution to

(b1 − b2)(σ3 → 0) which is ∼ O(s3−/σ3) i.e. beyond the approximation retained. We

thus keep:

(b1 − b2)(σ3 → 0) = σ−1
3

(
eT · v(3)

) (
(n1 − n2)

T · v(3) ∅
)
+ · · ·

= − s−
λ̃ σ3

(
eT · l(3)

)
+ · · · (D.28)

with (eT · l(3)) given by eq. (D.9). This makes (b1 − b2)(σ3 → 0) diverge as s−/σ3
which is ∼ O(s−1

− ) ∼ O(σ
−1/2
3 ) when both det(G) and det(S) tend to zero.

E A relation between the zero eigenmodes of S and G(N) when

det(G) = 0, det(S) = 0

We specify a = N to fix the ideas. When det(G) = 0, condition (4.4) is equivalent to

the condition det(S) = 0 according to eq. (4.2) only if G(N) has rank (N − 2). On the

other hand when G(N) has a lower rank, its cofactor matrix G̃(N) vanishes identically

thus det(S) = 0 again. However, as already mentioned, Gram matrices G(N) with ranks

≤ (N − 3) for N = 3, 4 correspond to quite peculiar and degenerate kinematics irrelevant

for NLO processes, thus we do not provide any more detail about this case here. We

focus on the generic case for which the Gram matrix has rank (N − 2) i.e. exactly one

vanishing eigenvalue.

When det(G) and det(S) vanish simultaneously the eigenvectors v(N) and n̂(N) corre-

sponding to the eigenvalues zero of S and G(N) respectively, happen to be simply related.
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To see this, using eqs. (2.7), (2.8) let us write the components i = 1, · · · , N of S · v for any

N -column vector v as:

(S · v)i =





(∑N−1
j=1 G

(N)
ij vj

)
+
(∑N−1

j=1 V
(N)
j vj

)
+
(
V

(N)
i + SNN

)(∑N

j=1 vj

)
if i 6= N(∑N−1

j=1 V
(N)
j vj

)
+ SNN

(∑N

j=1 vj

)
if i = N

(E.1)

As argued in subsection 4.1, the eigenvector n̂(N) fulfills condition (4.4). Therefore

the ansatz

v(N) j ≡ n̂
(N)
j , j = 1, · · · , N − 1 , v(N)N ≡ −

N−1∑

j=1

n̂
(N)
j (E.2)

is solution of system (E.1). Furthermore it satisfies the property
∑N

j=1 v(N) j = 0 by

construction. If S has rank (N − 1), the eigendirection of S associated to the eigenvalue

zero is thus identified.

Conversely, consider v such that

N∑

j=1

Sij vj = 0 (E.3)

and define

δ ≡
N∑

j=1

vj (E.4)

Using eq. (E.1), eqs. (E.3), (E.4) may be written:

N−1∑

j=1

G
(N)
ij vj = δ V

(N)
i , i = 1, · · · , N − 1 (E.5)

N−1∑

j=1

V
(N)
j vj = − δ SNN (E.6)

If δ = 0, the (N − 1)-column vector n̂i ≡ vi, i = 1, · · · , N − 1 is an eigenvector of G(N)

associated to the eigenvalue zero and fulfilling condition (4.4).

Let us conclude these considerations with the following remarks.

1. We recall that, at the one loop order which we are concerned with, the Landau

conditions [19, 20] characterizing the appearance of kinematic singularities require

vi ≥ 0 for all i = 1, · · · , N and δ > 0. One may hastily infer that, an eigendirection

zero of S associated with a vanishing det(G) is not associated with a kinematic

singularity as characterized by the Landau conditions. This does hold true if S has

rank (N − 1).
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2. Let us however note that if S has two vanishing eigenvalues with corresponding

linearly independent eigenvectors v(1) and v(2) both such that
∑N

j=1 v(i) j 6= 0, their

components can be rescaled in order that
∑N

j=1 v(1) j =
∑N

j=1 v(2) j = δ. The (N −1)-

column vector n̂ defined by n̂i = v(1) i − v(2) i, i = 1, · · · , N−1 then fulfills21 G(N) ·n̂ =

0 and condition (4.4).

In particular, v(1) and v(2) may both fulfill the Landau conditions corresponding

to piled-up singularities. The so-called double parton singularity [23] is one inter-

esting case of this kind. It occurs for the four-point function with opposite light-

like and opposite timelike legs and with internal masses all vanishing, for which

det (S) ∝ det(G)2, when the two lightlike momenta are incoming head-on and the

two timelike external momenta are outgoing back-to-back in the transverse plane

w.r.t. the incoming direction.22

3. In practice we shall however stress that such a degeneracy of the zero eigenvalue of S
is very peculiar. Beside the double parton singularity, this situation happens to occur

for N = 4 with three of the four internal masses equal, for very peculiar degenerate

kinematics involving two spacelike momenta, and two lightlike momenta orthogonal

to the spacelike ones, collinear to each other and being linear combination of the

spacelike ones. . . This quite degenerate kinematics namely corresponds to a Gram

matrix with rank 1 only. As already said, such an odd case is actually irrelevant

regarding NLO processes at colliders, thus do not deserve any further detail here.

F The directional limit det(S) → 0, det(G) → 0 of eq. (4.1) is actually

isotropic

This appendix presents an analytical proof that, whereas each of the three terms involved

in eq. (4.1) are separately functions of t in the directional limit s− → 0, s2 → 0 with

s2/s
2
− = t fixed, the limit of their sum is actually independent of t. For this purpose we

compute the t-derivative of this sum in this limit and prove it to vanish identically in t.

We provide an explicit proof for I43 ; the I63 case, albeit more cumbersome, can be handled

in a completely similar way.

21If S has rank ≤ N − 2, such eigenvectors v(1) and v(2) can always be found even if S is complex. In

the latter case, consider linearly independent eigenvectors u1 and u2 of S S† associated with the eigenvalue

zero: their respective complex conjugates v(1) = u∗
1 and v(2) = u∗

2 are linearly independent eigenvectors of

S associated with the eigenvalue zero. The matrix G(N) being symmetric real, the eigenvector n̂ of G(N)

built as described shall be made real by an overall phase shift.
22The fact that such configuration leads to a vanishing det(G) does not contradict the classification of

the eligible kinematics provided in appendix B. This appendix focused on the kinematical configurations

corresponding to linearly independent sets of four-momenta. On the contrary the double parton scattering

singularity appears for coplanar configurations of linearly dependent four-momenta.
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In the limit s− → 0, s2 → 0, s2/s
2
− = t fixed, eq. (4.1) reads:

3∑

j=1

bj I3 (j) = −
[
t (s+ + (m2 −m2

3))

(t λ̃+ 4m2)

∫ 1

0
dz

ln(m2)− ln(S0)

2Bm2 + 1

+
t (s+ + (m2

3 −m2))− 2

(t λ̃+ 4m2)

∫ 1

0
dz

ln(g(z))− ln(S0)

2B g(z) + 1

+
− s+ + (m2

3 −m2)

(t λ̃+ 4m2)

∫ 1

0
dz

×
{
4B z (1− z)

ln(g(z))− ln(S0)

(2B g(z) + 1)2
− z (1− z)

g(z)

2

2B g(z) + 1

}]
(F.1)

where

B = − 2 (1− t s+)

t λ̃+ 4m2
, S0 = − 1

2B
− i λ (F.2)

λ̃ =
(
s+ − (m2 +m2

3)
)2 − 4m2m2

3 (F.3)

g(z) = s+ z2 +
(
−s+ +m2 −m2

3

)
z +m2

3 (F.4)

The kinematic parameter λ̃ was already defined by eq. (4.10), the equivalent form (F.3)

is given here for convenience, as eq. (F.4) does for the function g(z) previously defined by

eq. (4.20) and fulfilling eqs. (4.18) and (4.19). To keep formulas compact, let us introduce

the following notations: H(z, t) = ln(g(z))− ln(S0), D(z, t) = −4 (1−t s+) g(z)+t λ̃+4m2,

∆m = (m2
3 −m2), T1 = (1− t s+), T2 = ∆m − s+, T3 = ∆m + s+. Differentiating eq. (F.1)

w.r.t. t leads to:
d

dt

3∑

j=1

bj I3 (j) = − [P1 + P2 + P3 + P4 + P5] (F.5)

with

P1 =
1

4

T2

T 2
1 S0

P2 = (1 + T1 − t∆m)

∫ 1

0
dz

(g′(z))2H(z, t)

D(z, t)2

P3 =
1

4S0 T 2
1

∫ 1

0
dz

T 2
2 (1 + T1 − t∆m) + 4H(z, t)T3S0 T

2
1

D(z, t)

P4 =
2T2

T1 S0

∫ 1

0
dz

z (1− z) (g(z)T 2
2 + 4 s+ g(z)S0 T1H(z, t) + (g′(z))2 S0T1)

g(z)D(z, t)2

P5 = 16T1 T2

∫ 1

0
dz

z (1− z) (g′(z))2H(z, t)

D(z, t)3

where g′(z) = dg(z)/dz. To derive eq. (F.5), we have used that:

∂D(z, t)

∂t
= (g′(z))2

We will not compute any of these integrals over z explicitly: we will instead integrate

by parts to iteratively decrease the powers of D(z, t) in denominators, starting with P5
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which involves the highest power, and proceed to a step by step cancellation of terms on

the way. For this purpose we note that the partial z-derivative of D(z, t) is g′(z) times a

z-independent factor:
∂D(z, t)

∂z
= −4T1 g

′(z) (F.6)

Integrating P5 by parts and noticing that the boundary term vanishes due to the z (1− z)

factor, we get:

P5 = 2T2

∫ 1

0
dz

{
H(z, t) g′(z) (2 z − 1)− 2 s+ z (1− z)H(z, t)

− z (1− z) (g′(z))2

g(z)

}
1

D(z, t)2
(F.7)

Accounting for eq. (F.7), let us now collect all the terms with denominator D(z, t)2 in

eq. (F.5). We get:

P2 + P4 + P5 =

∫ 1

0
dz

2 z (1− z)T 3
2 − S0 T1 T3D(z, t)H(z, t)

T1 S0D(z, t)2
(F.8)

Comparing eq. (F.8) and the equation which gives P3 above, we see that the contribution

proportional to H(z, t) cancels out in the sum
∑5

i=2 Pi which reads:

5∑

i=2

Pi =
T 2
2

4S0 T 2
1

∫ 1

0
dz

8T1 T2 z (1− z) +D(z, t) (1 + T1 − t∆m)

D(z, t)2
(F.9)

To further decrease the power of D(z, t)2 in eq. (F.9), we notice that

z (1− z) = − 1

4 s2+ T2

((
2∆m −∆m t s+ − t s2+

)
(g′(z))2

+2∆m T2 g
′(z) + T3 s+D(z, t)

)
(F.10)

Inserting eq. (F.10) in eq. (F.9), we get:

5∑

i=2

Pi = Q1 +Q2 +Q3 (F.11)

with

Q1 =
T 2
2

(
s2+ t+∆m t s+ − 2∆m

)

2T1 S0 s2+

∫ 1

0
dz

(g′(z))2

D(z, t)2

Q2 = − T 3
2 ∆m

T1 S0 s2+

∫ 1

0
dz

g′(z)
D(z, t)2

Q3 = − T 2
2

4T 2
1 S0 s+

∫ 1

0
dz

2T1 T3 − s+ (1 + T1 −∆m t)

D(z, t)

Again, an integration by parts of Q1 and Q2 using eq. (F.6) gives:

Q1 =
T 2
2 (s2+ t+∆m s+ t− 2∆m)

8T 2
1 S0 s2+

(
g′(1)
D(1, t)

− g′(0)
D(0, t)

−
∫ 1

0
dz

2 s+
D(z, t)

)

Q2 = − T 3
2 ∆m

4T 2
1 S0 s2+

(
1

D(1, t)
− 1

D(0, t)

)
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The integrals of terms proportional to 1/D(z, t) in Q1 and Q3 cancel against each other.

Besides, the definitions of D(z, t) and g′(z) lead to

g′(1) = −T2 , g′(0) = −T3 (F.12)

D(1, t) = t T 2
2 , D(0, t) = t T 2

3 − 4∆m (F.13)

Substituting in eq. (F.11), we find:

5∑

i=2

Pi = − T2

4T 2
1 S0

= −P1 (F.14)

Hence
d

dt

3∑

j=1

bj I3 (j) = 0 (F.15)

q.e.d.
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