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1 Introduction

An extension of the standard model (SM) is necessary due to the observed massive neutri-

nos. If the origin of neutrino masses arises from a similar Brout-Englert-Higgs mechanism

in the SM [1–3], where the W± and Z gauge bosons, the quarks, and the charged leptons

obtain their masses through a Higgs doublet (H), it is natural to introduce a Higgs triplet

(∆) to the SM as a neutrino mass source. Hereafter, we call the Higgs triplet model the

type-II seesaw model [4–8]. Since only the left-handed leptons couple to the Higgs triplet,

neutrinos are the Majorana particles.

In addition to the Yukawa couplings, the neutrino masses are associated with the

vacuum expectation value (VEV) of the Higgs triplet. In the minimal type-II seesaw model,
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it is known that the ∆ VEV indeed is dictated by the lepton-number softly breaking term

µ∆H
T iτ2∆†H, which appears in the scalar potential. Thus, a fine-tuning issue on µ∆ is

caused when the condition of µD � O(mW ) is required to explain the neutrino mass [9–11].

From the astrophysical observation, dark matter (DM) is introduced to explain more

than 80% of non-baryonic matter. If DM is a kind of weakly interacting massive particle

(WIMP), a radiatively scotogenic mechanism for generating the neutrino masses can be

applied [12, 13], where the particles in the dark sector are the mediators in the loop

Feynman diagrams. Various applications of scotogentic models can be found in [14–38].

In order to naturally obtain a small µD parameter in the type-II seesaw model, in this

study, we consider that µ∆H
T iτ2∆†H is suppressed at the tree level due to the lepton-

number symmetry; then, the necessary µ∆ term is radiatively induced through the scoto-

genic mechanism [39–41]. Since the minimal type-II seesaw model does not include any

particles that belong to the invisible side, we inevitably have to add new dark represen-

tations to the type-II seesaw model. Because the Higgs triplet cannot couple to singlet

fermions, the minimum representation that directly couples to the Higgs triplet is the

SU(2)L doublet fermion (X). Due to H and X being the SU(2)L doublets, in order to form

a gauge invariant interaction, we can add one more singlet fermion (N) into the model

such that the H, X, and N coupling can generate the µ∆ term through the one-loop level.

If the new representation set is assumed to be a minimal choice, due to the gauge

anomaly free condition, the new doublet fermion can be a vector-like lepton doublet, and

the singlet fermion can be a right-handed Majorana lepton without carrying any SM gauge

quantum numbers. In addition, to have a stable DM candidate, we impose a Z2-symmetry

to the vector-like lepton doublet and right-handed singlet; that is, X and N belong to

the dark representations. Thus, the loop-induced µ∆ term indeed arises from the lepton-

number soft breaking effects in the invisible sector.

The main characteristics in the simple extension of the type-II seesaw model can be

summarized as follows: (a) The Dirac-type neutral component of X, denoted by X0,

becomes a Majorana-type lepton when the mixing with N from the XHN coupling occurs

after electroweak symmetry breaking (EWSB); (b) the spin-independent (SI) and the spin-

dependent (SD) DM-nucleon scatterings arise from the mediation of the Z boson and

the SM Higgs, respectively; (c) although the X0- and N -DM candidates can produce

the observed DM relic density, the X0 candidate is excluded by the constraints of the

DM direct detection experiments; therefore, the DM candidate in this study is dominated

by the Majorana particle N ; (d) the loop-induced VEV of ∆ can be in the range of

10−5− 10−4 GeV, whereas the Higgs triplet Yukawa couplings constrained by the neutrino

oscillation data are in the range of 10−8 − 10−7, and (e) the doubly charged Higgs (H±±)

favors decaying to the same sign W -boson and lepton pairs when H±± is as heavy as

mH±± ∼ 400 and 800 GeV, respectively. In addition, we analyze the constraints from the

Higgs diphoton decay and the oblique T parameter [42]; as a result, |mH±± − mH± | .
50 GeV is allowed and the new physics influence on the h→ Zγ decay is not significant.

In addition to the DM candidate and the origin of the neutrino masses, similar to the

conventional type-II seesaw model, it is of interest to explore and probe the new scalars of

the Higgs triplet at the LHC, especially the search for H±±. With an integrated luminosity

– 2 –



J
H
E
P
1
0
(
2
0
1
9
)
0
0
5

of 12.9 fb−1 at
√
s = 13 TeV, CMS reports that the bounds on mH±± through the `±`± (` =

e, µ), `±τ±, and τ±τ± channels are between 800 and 820 GeV, between 643 and 714 GeV,

and 535 GeV, respectively, where BR(H++ → `+`′+) = 100% (`′ = e, µ, τ ) for each lepton

pair is used [43]. Using 36 fb−1 of the integrated luminosity at
√
s = 13 TeV and the same

sign dilepton channels, ATLAS obtains the mH±± lower bound from 770 to 870 GeV with

BR(H++ → `+`+) = 100%. Moreover, the mH±± lower bound via the H++ → W+W+

channel measured by ATLAS is given to be between 200 and 220 GeV [45, 46].

Based on the lower bound measurements of mH±± , since the preferred X mass in this

study is close to 1 TeV, H±± decaying to the same sign charged heavy X± lepton pair is

kinematically suppressed. Thus, the possible decay channels of the Higgs triplet are similar

to the those of the conventional type-II seesaw model. Nevertheless, since the µ∆ parameter

is dynamically generated in the model and mainly depends on the XHN coupling, which

is determined by the observed DM relic density and the DM direct detection experiments,

the allowed ∆ VEV is limited in the narrow region of 10−5 − 10−4 GeV, so, the Higgs

triplet decay patterns are strongly correlated with the scalar couplings λ1H
†HTr(∆†∆)

and λ4H
†∆∆†H, where the λ4 sign determines the mass ordering of the Higgs triplet

scalars. Because the doubly charged Higgs search in the LHC has been broadly studied in

the literature [47–68], we thus focus the analysis on the decays of each Higgs triplet scalar

in detail.

The paper is organized as follows: in section 2, we discuss the extension of the SM,

including the derivations of heavy Z2-odd particle mixing and their gauge couplings. In

addition to the loop-induced µ∆ term, we show all scalar mass spectra and the associated

scalar mixings, the Higgs-triplet Yukawa couplings, and neutrino mass in section 3. In

section 3, we study the possible constraints, such as neutrino data, DM relic density and

DM direct detections, the oblique T parameter, and h→ γγ. We discuss the influence on

h → Zγ and show the decays of each Higgs triplet in section 5. A conclusion is given in

section 6.

2 The model

In addition to the SM particles, we add one Higgs triplet ∆, one vector-like lepton doublet

XR,L, and one SU(2) singlet heavy neutrino into the SM, where their representations in

SU(2)L × U(1)Y are given in table 1. In order to avoid the Dirac neutrino mass term,

we require that X and N are Z2-odd states and that the others are Z2-even; therefore,

the lightest neutral particles of X and N could be the DM candidate. In addition, in

order to dynamically generate the finite dimension-3 lepton-number violating term in the

scalar potential, we assign that XL(R), N and ∆ carry the lepton numbers as 0(1), 0 and

2, respectively, where the lepton number symmetry is softly broken by the X Dirac mass

term. The detailed charge assignments of the introduced particles are shown in table 1.

Based on the chosen representations and charge assignments, the gauge invariant

Yukawa couplings can be written as:

−LY = L̄y`H`R + LTCiτ2 ∆y`∆ L+ yRX
T
RCiτ2 ∆XR

+ yXX̄LH̃N +
mN

2
NTCN +mXX̄LXR +H.c. , (2.1)
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Particle SU(2)L ×U(1)Y Z2 Lepton #

XL (2, −1) −1 0

XR (2, −1) −1 1

N (1, 0) −1 0

∆ (3, 2) +1 −2

Table 1. Representations and charge assignments of the introduced particles.

where the flavor indices are suppressed; C = iγ2γ0 is charge conjugation matrix; H is the

SM Higgs doublet, H̃ = iτ2H
∗, τ2 is the Pauli matrix, and LT = (ν, `) is the SM lepton

doublet. It can be seen that the lepton number symmetry is explicitly broken by the mX

dimension-3 terms. The Higgs doublet, vector-like lepton doublet, and Higgs triplet are

respectively expressed as:

H =

(
G+

Φ0

)
, X =

(
X0

X−

)
,

∆ =

(
δ+/
√

2 δ++

∆0 −δ+/
√

2

)
, (2.2)

with Φ0 = (vh + Re(Φ0) + iIm(Φ0))/
√

2 and ∆0 = (v∆ + Re(∆0) + iIm(∆0))/
√

2, in which

vh and v∆ are the VEVs of the Φ0 and ∆0 fields, respectively. The VEVs and scalar masses

are determined by the scalar potential.

2.1 Heavy Majorana masses

Because of the XLHN and XR∆XR couplings, it is found that the Dirac-type X0 not

only mixes with Majorana particle N but also has a Majorana mass, which is related to

v∆X
T
RCXR when ∆0 obtains a VEV. Thus, using the basis of (XR, X

C
L , N), the Majorana-

type heavy fermion mass matrix is written as:

MM =

 m0 mX 0

mX 0 yXvh/
√

2

0 yXvh/
√

2 mN

 , (2.3)

with m0 =
√

2yRv∆. Since v∆ is induced from one-loop in this study, it is expected that

m0 � mN,X . It is found that the MM eigenvalues can be approximately expressed as

follows: for mN > mX ,

mN1 ≈ mX − eX ,−mN2 ≈ (mX + eδ) ,mN3 ≈ mN + eN , (2.4)

where we use Ni as the Majorana particle eigenstates, and eN,X and eδ are obtained as:

eN =
y2
Xv

2
h

2mN
,

eX = mX +
eN
2
−
√

(mX + eN/2)2 −mXeN ,

eδ = eN − eX . (2.5)
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For mN < mX , they are:

mN1 ≈ mX + eX ,−mN2 ≈ (mX + eδ) ,mN3 ≈ mN − eN , (2.6)

where the corresponding eN,X and eδ are given as:

eN =
2m2

X

mN +mX

−(1−
m2
N

m2
X

)
+

√(
1−

m2
N

m2
X

)2

+

(
1 +

mN

mX

)
y2
Xv

2
h

m2
X

 ,

eX =
1

2

(
1 +

mN

mX

)
eN , eδ =

1

2

(
1− mN

mX

)
eN . (2.7)

Based on the obtained eigenvalues, the 3 × 3 orthogonal matrix elements (Oij), which

transform the (XR, X
C
L , N) state to the (N1, N2, N3) state, can be formulated as:

O11 = N−1
1

mX

mN1 −m0
, O12 =

1

N1
, O13 = −N−1

1

yXv√
2(mN −mN1)

,

O21 = −N−1
2

mX

m0 −mN2

, O22 =
1

N2
, O23 = −N−1

2

yXv√
2(mN −mN2)

,

O31 = N−1
3

mX

mN3 −m0
, O32 =

1

N3
, O33 = −N−1

3

yXvh√
2(mN −mN3)

, (2.8)

where N 2
i =

∑
k O

2
ik are the normalization factors.

2.2 Gauge couplings of Z2-odd particles

If we define the Majorana states χi as χi = Ni + NC
i = χCi , which satisfy PRχi = Ni and

PLχi = NC
i , the charged current interactions of the heavy fermions can be expressed as:

LCC = − g√
2
Oi1χ̄iγ

µPRX
−
RW

+
µ −

g√
2
Oi2χ̄iγ

µPLX
−
LW

+
µ + H.c. , (2.9)

where the mixing matrix elements Oij for the neutral Z2-odd particles are included. The

neutral current interactions of the Z-gauge boson and the photon with the Z2-odd particles

can be obtained as:

LNC = −
gcZij
2cW

χ̄iγ
µ γ5

2
χjZµ +

gc2W

2cW
X−γµX−Zµ

− eQXX−γµX−Aµ , (2.10)

where cW = cos θW and c2W = cos 2θW with Weinberg angle θW ; X− includes X−R and

X−L , QX = −1 is the X− electric charge, and cZij show the FCNC effects and are defined as:

cZij =
(
Odiag(1, −1, 0)OT

)
ij

= Oi1Oj1 −Oi2Oj2 . (2.11)

From eq. (2.10), it can be seen that the Z-boson coupling to the Z2-odd particle is through

axial-vector currents; therefore, it will lead to the SD DM-nucleon elastic scattering.

When N1(χ1) is the DM candidate, in order to satisfy the DM direct detection con-

straints, we must require cZ11 to be small enough. From eq. (2.8), if we drop the m0 and

– 5 –
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yXvh/
√

2 effects, it can be seen that cZ11 = 0. However, the case leads to mN1 = mN2

and cZ12 = 1, where the DM-nucleon scattering occurs through χ1Rχ2RZ coupling (or

X0X0Z coupling). Hence, in addition to the cZ11 magnitude, we have to take proper m0

and yXvh/
√

2 in such a way that the mass splitting between N1 and N2(3) is large enough,

so that the DM scattering off the nucleon through N1N2,3Z coupling can be kinematically

suppressed. If we take mN > mX , the mass splitting between N1 and N2 can be found to

be ∆m12 = eX + eδ ≈ eN , and the cZ11 coefficient can be expressed as:

cZ11 ≈
2

N 2
1

eX +m0

mX
. (2.12)

If N3(χ3) is the DM candidate, because cZ33 is small, we will show that the SD DM-nucleon

scattering cross section is under the current PICO-60 [70] and Xenon1T [71] upper limits.

3 Scalar potential and Yukawa sector

According to the convention in [68, 72], we write the gauge invariant scalar potential as:

V (H,∆) = − µ2H†H +
λ

4
(H†H)2 +M2

∆ Tr(∆†∆) + λ1(H†H)Tr(∆†∆)

+ λ2

(
Tr(∆†∆)

)2
+ λ3Tr(∆†∆)2 + λ4H

†∆∆†H , (3.1)

where we take µ2, λ > 0 for the purpose of spontaneously breaking the electroweak gauge

symmetry. It can be seen that due to the lepton-number conservation, the dimension-3

HT iτ2∆†H term is suppressed at the tree level. Without this term, the Higgs triplet cannot

obtain a VEV and the SM neutrinos are still massless. In order to generate the finite

dimension-3 term, we require that the right-handed Z2-odd lepton doublet only couples to

the Higgs triplet by assigning proper lepton numbers to XR and XL, which are shown in

table. 1. Thus, the finite HT iτ2∆†H term can be dynamically generated through a fermion

loop, in which the mX lepton number violating effect is involved. The associated Feynman

diagram is shown in figure 1, where the cross symbols denote the mass insertions of the N

and X leptons. Thus, the resulting dimension-3 term can be expressed as:

V (H,∆)dim−3 = µ∆H
T iτ2∆†H +H.c. , (3.2)

where the µ∆ coefficient is obtained as:

µ∆ =
y2
XyRmN

8π2
I∆

(
m2
X

m2
N

)
, (3.3)

I∆(x) = − x

1− x
− x lnx

(1− x)2
.

For clarity, we show the contours of µ∆ as a function of yX and yR in figure 2(a), where

mX = 80 GeV and mN = 400 GeV are used. Clearly, we can easily obtain µ∆ < 10−2 GeV

without extremely fine-tuning the yR and yX parameters. For comparison, we make a

contour plot with mX = 800 GeV and mN = 700 GeV in figure 2(b). We will show that the

– 6 –
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∆

X X
H H

N N

Figure 1. One-loop Feynman diagram for producing the HT iτ2∆†H term, where the cross symbols

denote the mass insertions of the N and X leptons.

Figure 2. Contours of µ∆ as a function of yX and yR for (a) (mX ,mN ) = (80, 400) GeV and (b)

(mX ,mN ) = (800, 700) GeV.

former and latter plots correspond to the cases for which χ1 and χ3 are the DM candidates,

respectively.

Combining eqs. (3.1) and (3.2), the minimum of the scalar potential can be obtained

through ∂V/∂vh = 0 and ∂V/∂v∆ = 0, and the minimum conditions can be written as:

−µ2 +
λ

4
v2
h +

λ1 + λ4

2
v2

∆ =
√

2µ∆v∆ ,(
M2

∆ +
λ1 + λ4

2
v2
h + (λ2 + λ3)v2

∆

)
v∆ =

µ∆v
2
h√

2
. (3.4)

Because we focus on the case of µ∆ < 10−2 GeV, i.e., v∆ � 1 GeV, when we neglect

the small µ∆v∆ and v2
∆ effects, the VEVs of Φ0 and ∆0 can be respectively obtained as

vh ≈
√

4µ2/λ and

v∆ ≈
µ∆v

2
h√

2[M2
∆ + v2

h(λ1 + λ4)/2]
. (3.5)

To obtain v∆ > 0, we require µ∆ > 0, which is equivalent to yR > 0. Because of

v∆ �1 GeV, the influence on the electroweak ρ-parameter can be neglected. We note that

in addition to µ∆ and M∆, v∆ also depends on the λ1,4 parameters. We will discuss the

correlation between v∆ and λ1,4 when the constraints on the λ1,4 parameters are studied.
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The vacuum stability of scalar potential has been studied in the literature [72, 77, 78].

Following the results in [72], the conditions for the scalar potential bounded from below in

our notations can be written as:

λ > 0 , λ2 + λ3 > 0 , 2λ2 + λ3 > 0 ,

λ1 +
√
λ(λ2 + λ3) > 0 , λ1 + λ4 +

√
λ(λ2 + λ3) > 0 , (3.6)

and

|λ4|
√
λ2 + λ3 − λ3

√
2 > 0 ,

or 2λ1 + λ4 +
√(

2λλ3 − λ2
4

)
(2λ2/λ3 + 1) > 0 . (3.7)

For the sake of satisfying perturbativity, we take λ, |λi| ≤ 4π before we find the stricter

constraints.

3.1 Scalar mass spectra and scalar couplings

In addition to the SM-like Higgs boson, the type-II seesaw model has two doubly and two

singly charged Higgs, and one CP-even and one CP-odd scalar. The scalar mass spectra

and the scalar-scalar couplings can be obtained from the scalar potential. Since the doubly

charged Higgs does not mix with the other scalars, its mass can be easily obtained as:

m2
H±± = M2

∆ +
λ2

2
v2
h + (λ2 + λ3)v2

∆

=
µ∆v

2
h√

2v∆

− λ4

2
v2
h , (3.8)

where the minimal conditions in eq. (3.4) have been applied in the second line. The

mass-square matrices for (G−,∆−), (G0, Im∆0), and (ReΦ0,Re∆0) can be respectively

derived as:

(G−,∆−)

√2v∆

(
−λ4v∆

2
√

2
+ µ∆

)
−vh

(
−λ4v∆

2
√

2
+ µ∆

)
−vh

(
−λ4v∆

2
√

2
+ µ∆

)
v2
h√

2v∆

(
−λ4v∆

2
√

2
+ µ∆

)(G+

∆+

)
, (3.9)

1

2
(G0, Im∆0)

(
2
√

2µ∆v∆ −
√

2µ∆vh
−
√

2µ∆vh µ∆v
2
h/(
√

2v∆)

)(
G0

Im∆0

)
, (3.10)

1

2
(ReΦ0,Re∆0)

(
λv2

h/2 (λ1 + λ4)vhv∆ −
√

2vhµ∆

(λ1 + λ4)vhv∆ −
√

2vhµ∆
µ∆v

2
h√

2v∆
+ 2v2

∆(λ2 + λ3)

)(
ReΦ0

Re∆0

)
.

(3.11)

It can be easily verified that the determinants of the mass-square matrices in eqs. (3.9)

and (3.10) vanish; that is, there exists a massless boson, which corresponds to the Goldstone

boson, in each matrix. The detailed eigenvalues of the mass-square matrices and the

associated mixing angles are shown in appendix A.

Because the off-diagonal elements in eq. (3.11) are much smaller than v2
hµ∆/(

√
2v∆),

the mixing effect between ReΦ0 and Re∆0 can be approximately neglected if we only
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concentrate on the scalar spectrum. Thus, from the mass-square matrices, the mass squares

for the physical bosons, such as the charged scalar H±, the CP-odd pseudoscalar A0, and

the two CP-even H0 and h, can be written as:

m2
H± =

(
v2
h√

2v∆

+
√

2v∆

)(
−λ4v∆

2
√

2
+ µ∆

)
,

m2
A0 = µ∆

(
v2
h√

2v∆

+ 2
√

2v∆

)
,

m2
H0 ≈ m2

A0 − 2
√

2v∆µ∆ + 2v2
∆(λ2 + λ3) , (3.12)

and m2
h ≈ λv2

h/2, respectively, where h is the SM-like Higgs boson. If we ignore the small

v∆ and µ∆ effects, it can be found that:

mH0 ≈ mA0 ≈
v2
hµ∆√
2v∆

,

m2
H±± −m2

H± ≈ −
λ4v

2
h

4
,

m2
H± −m2

H0(A0) ≈ −
λ4v

2
h

4
, (3.13)

where the mass splittings in the Higgs triplet components can be constrained by the elec-

troweak oblique parameters [42]. From eq. (3.13), we have the mass ordering mH0(A0) >

mH± > mH±± when λ4 > 0; however, the order is reversed when λ4 < 0.

In order to study the Higgs precision measurement constraint, we write the Higgs

trilinear couplings to the triplet scalars as:

−LV ⊃λ1vhhH
−−H++ +

(
λ1 +

λ4

2

)
vhhH

−H+

+
1

2
(λ1 + λ4) vhh

(
H0H0 +A0A0

)
+

1

2

(
(λ1 + λ4)v∆ −

√
2µ∆

)
hhH0 . (3.14)

The Higgs triplet couplings to the gauge bosons can be obtained from the kinetic terms,

written as:

Lkin = Tr[(Dµ∆)†(Dµ∆)] , (3.15)

where the covariant derivative of the Higgs triplet is given as:

Dµ∆ = ∂µ∆ + i g

[
τ

2
·Wµ, ∆

]
+ i g′Bµ∆ . (3.16)

The detailed trilinear couplings to gauge bosons can be found in appendix B.

3.2 Yukawa couplings and neutrino masses

Using the heavy Majorana flavor mixing matrix in eq. (2.8), the scalar Yukawa couplings

to the heavy Z2-odd fermions can be straightforwardly obtained as:

−Lodd
Y ⊃ 1

2

(√
2yROi1Oj1

) (
χ̄iχjH

0 + i χ̄iγ5χjA
0
)

+
1

2

yXc
h
ij√

2
χ̄iχj h

−
[√

2yROi1χ̄iX
−
RH

+ +
1

2
(2yR)X−TR CX−RH

++ +H.c.

]
, (3.17)

with chij = Oi2Oj3 +Oi3Oj2.
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In addition to the SM lepton coupling to the Higgs doublet, the SM left-handed leptons

also couple to the Higgs triplet. When we derive the lepton couplings to the Higgs triplet

in physical states, we have to simultaneously consider the y` and y`∆ terms in eq. (2.1). In

terms of the components of the Higgs doublet and triplet, the relevant Yukawa couplings

of Z2-even leptons are written as:

−Leven
Y ⊃ ¯̀

Ly
``R

v + h√
2

+ νTLCy
`
∆νL

v∆ +H0 + iA0

√
2

−
√

2νTy`∆`LH
+ − `TLCy`∆`LH++ +H.c. , (3.18)

where we have neglected the small µ∆ and v∆ effects. To diagonalize the charged lepton

and Majorana neutrino mass matrices, we introduce the unitary matrices for which the

transformations are defined as: νL → Uν` νL and `L(R) → U `L(R)`L(R). If we define h` ≡
U `∗L y`∆U

`†
L and the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix as U †PMNS = UνLU

`†
L ,

eq. (3.18) with respect to the lepton physical states can be written as:

−Leven
Y ⊃ ¯̀

Lm
dia
` `R + ¯̀

L

(
mdia
`

v

)
`Rh+

1

2
νTLCm

dia
ν νL +

1

2
νTLC

(
mdia
ν

v∆

)
νL
(
H0 + iA0

)
−
√

2νTCUTPMNSh
``LH

+ − 1

2
`TLC(2h`)`LH

++ +H.c. , (3.19)

where the diagonal mass matrices are given as:

mdia
` = diag(me,mµ,mτ ) = U `L

y`vh√
2
U `†R ,

mdia
ν = diag(m1,m2,m3) = UTPMNS(

√
2v∆h`)UPMNS . (3.20)

In order to explain the neutrino data, it is necessary to have v∆h` ∼ 10−2 eV. It will be

shown that the partial decay widths of the Higgs triplet scalars decaying to leptons are

sensitive to v∆, which is dictated by the parameters, such as M∆, λ1, λ4, and µ∆.

4 The constraints

In this section, we discuss the constraints, such as the neutrino mass data, the observed

DM relic density, the DM direct detections, the T-parameter, and the Higgs to diphoton

precision measurement. It will be found that the χ1-DM candidate will be excluded by

the upper limits of the DM-nucleon scattering cross sections. Since the cross section upper

limit of the SD DM-neutron scattering in Xenon1T [71] is smaller than that of the SD

DM-proton scattering in PICO-60 [70], we take the Xenon1T data as the upper limit of

the SD DM-nucleon scattering cross section and use it to bound the parameters.

4.1 Constraint from the neutrino data

From eq. (3.20), the matrix elements of h` can be written as:

h`ij =
1√
2v∆

(U∗PMNS)ikmνk (U∗PMNS)jk , (4.1)
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where the sum in k for all active light neutrinos is indicated. It can be seen that the

h`ij magnitudes strongly depend on the v∆ value. Using the PMNS matrix parametrized

as [79]:

UPMNS =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13


× diag(1, eiα21/2, eiα31/2) ≡ Uν × diag(1, eiα21/2, eiα31/2) , (4.2)

where sij ≡ sin θij , cij ≡ cos θij ; δ is the Dirac CP violating phase, and α21,31 are Ma-

jorana CP violating phases, and the experimental data through the neutrino oscillation

measurements can be given as [79]:

∆m2
21 = (7.53± 0.18)× 10−5 eV2 , sin2 θ12 = 0.307± 0.013 ,

∆m2
32 = (2.51± 0.05, −2.56± 0.04)× 10−3 eV2 (NO, IO) ,

sin2 θ23 = (0.597+0.024
−0.030, 0.592+0.023

−0.030) (NO, IO) ,

sin2 θ13 = (2.12± 0.08)× 10−2 , (4.3)

where ∆m2
ij ≡ m2

i −m2
j , and ∆m2

32 > 0 and ∆m2
32 < 0 denote the normal ordering (NO)

and inverted ordering (IO), respectively. The uncertain sign in m2
32 originates from the

undetermined neutrino mass ordering. Since the neutrino oscillation experiments cannot

detect the Majorana CP phases, for simplicity, we take α31,32 = 0 in the following numeri-

cal estimates.

According to the recent results obtained by a global fit analysis, the central values of

θij , δ, and ∆m2
ij are given as [80]:

NO : θ12 = 34.5◦ , θ23 = 47.7◦ , θ13 = 8.45◦ , δ = 218◦ ,

∆m2
21 = 7.55× 10−5 eV2 , ∆m2

31 = 2.50× 10−3 eV2 ,

IO : θ12 = 34.5◦ , θ23 = 47.9◦ , θ13 = 8.53◦ , δ = 281◦ ,

∆m2
21 = 7.55× 10−5 eV2 , ∆m2

31 = −2.42× 10−3 eV2 , (4.4)

where m1(3) = 0 for NO (IO) is taken. Using these results, the corresponding h`ij Yukawa

matrix element values are shown in table 2, where the values are in units of 10−3eV/(2v∆).

When v∆ is fixed, the h`ij values then can be determined. With v∆ ∼ 10−4 GeV, it can be

seen that the h`ij magnitudes can be in the range of ∼ (0.1, 1) × 10−7. Due to the small

Yukawa couplings, it can be expected that the lepton-flavor violating effects will be small.

4.2 Constraints from the DM relic density and the DM direct detections

In this model, the DM candidate could be an χ1 or χ3 Majorana fermion. Regardless

of which one is the DM candidate, it is necessary to examine that whether the involved

couplings can produce the current correct DM relic abundance (ΩDMh
2), which is observed

as in [86]:

Ωobs
DMh

2 = 0.1199± 0.0022 . (4.5)
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h`11 h`12 h`13 h`22 h`23 h`33

NO (10−3eV/2v∆) 3.17ei0.34 3.73e−i1.93 7.33e−i2.69 29.91e−i0.013 21.38 24.93ei0.014

IO (10−3eV/2v∆) 47.60 5.26e−i1.72 4.84e−i1.81 21.44ei0.008 24.84ei3.13 26.51ei0.009

Table 2. The h`ij Yukawa matrix element values (in units of 10−3eV/2v∆), where the central values

obtained by a global fit analysis in [80] are applied.

Figure 3. Allowed parameter space, which can produce the DM relic density in the region of

0.09 < ΩDMh
2 < 0.15.

Since the DM relic density is inversely proportional to the product of the DM annihilation

cross section and its velocity, i.e. < σv >, in addition to the thermal effects in the early

time of the universe, we have to consider the DM annihilation and co-annihilation to the

SM particles in the final states. In order to deal with the thermal effects and to calculate

the Z2-odd particle annihilation processes, we employ micrOmegas [75] with a choice of a

unitary gauge. For clarity, we separately discuss the situations of χ1- and χ3-DM in the

following analysis. Although DM couples to the Higgs triplet, since we take the associated

yR parameter to be . O(10−2), the effects indeed are small. Thus, we neglect the Higgs

triplet contributions to the DM relic density.

When the DM candidate is the χ1 Majorana particle, because its origin is the SU(2)

lepton doublet, and it has a large coupling to the SM gauge bosons, we require that the DM

mass satisfies mχ1 > 45 GeV due to the invisible Z decay constraint. To avoid obtaining

too large of a DM annihilation rate, the massive gauge boson pair production should be

suppressed; that is, χ1 cannot be too heavy. In order to understand the correlation between

ΩDMh
2 and the mN,X and yX parameters, the scanned parameter regions are chosen as:

mN = [300, 800] GeV , mX = [10, 150] GeV , yX = [0.1, 1.0] , (4.6)

where we require that the resulting ΩDM satisfies 0.09 < ΩDMh
2 < 0.15. We note that, in

order to get more sampling points for illustration, the region of ΩDMh
2 is taken slightly

wider than the observed ΩDMh
2. We show the allowed parameter space as a function of mN

and mX and as a function of yX and mX in figure 3 (a) and (b), respectively. It can be seen

that only mX ∼ 90 GeV and yX > 0.5 can fit the condition of 0.09 < ΩDMh
2 < 0.15. Based
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Figure 4. χ1-DM relic abundance as a function of mχ1
for yX = 0.6 (solid), yX = 0.7 (dashed),

and yX = 0.8 (dotted), where mN = 400 GeV is fixed, and the horizontal lines denote Ωobs
DMh

2 with

3σ errors.

on the results, we show ΩDMh
2 as a function of mχ1 in figure 4, where mN = 400 GeV is

used, and the solid, dashed, and dotted lines denote the results of yX = 0.6, 0.7, and 0.8,

respectively. Two dips denote mχ1 ∼ mZ/2 and mχ1 ∼ mh/2. It can be found that mχ1 ∼
70 GeV with yX ∼ 0.7 can fit the observed ΩDMh

2 and can escape the constraint from

the invisible Z decay. Hence, without considering the DM direct detection constraints, the

neutral component of the Z2-odd lepton doublet could be the DM candidate in this model.

In addition to the DM relic density, we have to examine whether the same parameter

space, which can fit Ωobs
DMh

2, is excluded by the DM direct detection experiments. In

the model, it is found that the SI DM scattering off a nucleon is dictated by the Higgs

mediation, whereas the SD scattering is through the Z-mediated effects. According to the

interactions in eq. (2.10) and eq. (3.17), the relevant four-Fermi effective interactions for

χ1 and the SM particles can be expressed as:

LχN ⊃
yXc

h
11√

2vm2
h

(χ̄1χ1)
∑
q

mq q̄q −
gcZ11

2cWm2
Z

χ̄1γ
µγ5χ1

∑
q

q̄γµ
(
gqV + gqAγ5

)
q , (4.7)

guV =
g

2cW

(
1

2
− 4

3
s2
W

)
, guA =

1

2
,

gdV =
g

2cW

(
−1

2
+

2

3
s2
W

)
, gdA = −1

2
.

Accordingly, the h-mediated SI DM-nucleon scattering cross section can be written as [73]:

σSIh =
y2
X(ch11)2

8π

m2
nµ

2
χ1nf

2
N

v2m4
h

, (4.8)

where fN ≈ 0.3, and µχ1n = mχ1mn/(mχ1 + mn) is the DM-nucleon reduced mass. The
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Figure 5. (a) h-mediated spin-independent and (b) Z-mediated spin-dependent DM-nucleon scat-

tering cross sections as a function of mχ1 , where the solid, dashed, and dotted lines denote yX = 0.6,

yX = 0.7, and yX = 0.8, respectively, and mN = 400 GeV is used. The dot-dashed lines in (a) and

(b) are the Xenon1T results shown in [69, 71].

Z-mediated DM-nucleon scattering cross-section can be expressed as [74]

σSDZ ≈
3µ2

χ1n

π

(
gcZ11

2cWm2
Z

)2 [
guA∆n

u + gdA (∆n
d + ∆n

s )
]
, (4.9)

where the quark spin fractions of the nucleon are taken as ∆n
u = 0.84, ∆n

d = −0.43,

and ∆n
s = −0.08 [75]. Using eq. (4.8) and eq. (4.9), we show σSI

h and σSD
Z as a function

of mχ1 in figure 5(a) and (b), respectively. A comparison with the results in figure 4

clearly shows that the allowed parameter regions, which can fit the observed ΩDMh
2, are

excluded by the current Xenon1T SI and SD measurements [69, 71]. Thus, it can be

concluded that χ1 cannot be the DM candidate due to the strict constraints from the

direct detection experiments.

Next, we discuss χ3 as the DM candidate. Since χ3 originates from an SU(2) singlet

right-handed lepton, without the yX coupling, it can a heavy Z2-odd sterile neutrino and

doesn’t couple to the SM particles. Therefore, the χ3 effects are all related to the yX pa-

rameter and the main interactions are through the Higgs couplings, i.e. the χiχ3h couplings

shown in eq. (3.17). Similar to the χ1 case, to understand the correlation between ΩDMh
2

and the mN,X and yX parameters, we choose the scanned parameter regions to be:

mN = [300, 800] GeV , mX = [400, 900] GeV , yX = [0.05, 2.3] , (4.10)

and the resulting ΩDMh
2 is required to be in the region of 0.09 < ΩDMh

2 < 0.15. As

a result, the correlations between mN and mX and between mN and yX are shown in

figure 6(a) and (b), respectively. From the plots, it can be seen that when χ3 is the DM

candidate, the DM mass prefers to be heavy, and yX is of the order of 0.1. In addition,

according to the result shown in figure 6(a), it can be seen that the allowed maximum

mN follows an approximate relation with mX as mX − mN ∼ 100 GeV. Based on the

results, we show ΩDMh
2 as a function of mχ3 in figure 7, where mX = 800 GeV is fixed,
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Figure 6. Legend is the same as in figure 3, but for the mχ3
case.

Figure 7. χ3-DM relic abundance for yX = 0.06 (solid), yX = 0.08 (dashed), and yX = 0.10

(dotted), where mX = 800 GeV is fixed, and the horizontal lines denote Ωobs
DMh

2 with 3σ errors.

and the solid, dashed, and dotted lines denote the results of yX = 0.06, 0.08, and 0.10,

respectively. It can be seen that mχ3 ∼ (680, 670, 650) GeV with yX ∼ (0.06, 0.08, 0.1)

can fit the observed ΩDMh
2. As mentioned earlier, the maximum of mN is close to 700 GeV

when mX = 800 GeV is taken; therefore, the three lines end at mχ3 ≈ 700 GeV. Due to

mχ3 > mZ,h, we can evade the constraints from the invisible Z and h decays.

Similar to the χ1 case, χ3 can contribute to the SI and SD DM-nucleon scatterings

through the h and Z mediation, respectively. To estimate the elastic scattering cross

sections, we can use the formulas in eqs. (4.8) and (4.9) by replacing ch,Z11 and µχ1n with

ch,Z33 and µχ3n = mχ3mn/(mχ3 + mn). Accordingly, we show the SI and SD χ3-nucleon

scattering cross sections as a function of mχ3 in figure 8(a) and (b), where mX = 800 GeV

is used, and the solid, dashed, and dotted lines denote the results of yX = 0.06, 0.08, and

0.1, respectively. A comparison with the results shown in figure 7 reveals clearly that σSIh
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Figure 8. (a) h-mediated spin-independent and (b) Z-mediated spin-dependent DM-nucleon scat-

tering cross sections, where the solid, dashed, and dotted lines denote yX = 0.06, yX = 0.08, and

yX = 0.1, respectively, and mX = 800 GeV is used. The dot-dashed lines in (a) and (b) are the

Xenon1T results shown in [69, 71].

and σSDZ at the mχ3 value, which is determined by Ωobs
DMh

2, are all under the Xenon1T upper

limits [69, 71]. That is, the DM candidate in the model is the χ3 Z2-odd Majorana lepton.

Note that a steep behavior in figure 8(a) occurs when mχ3 approaches mX = 800 GeV,

which is the upper limit of mN .

4.3 T-parameter and h → γγ constraints

From eq. (3.5), it can be seen that when µ∆ is fixed, v∆ is determined by the M∆ and λ1,4

parameters. According to eq. (3.13), the mass ordering of the Higgs triplet bosons and

their mass splittings are dictated by the λ4 parameter. Moreover, the Higgs couplings to

the doubly and singly charged Higgses also depend on λ1,4. Thus, it can be expected that

the electroweak oblique T parameter [42] and the Higgs to diphoton precision measurement

may give a strict constraint on the λ1,4 parameters, where their values in principle could

be |λ1,4| ≤ 4π. Following the results obtained in [76], the T -parameter, which arises from

the Higgs triplet, can be formulated as [76]:

T =
1

8πc2
W s

2
W

[
G

(
m2
H±±

m2
Z

,
m2
H±

m2
Z

)
+G

(
m2
H±

m2
Z

,
m2
H0

m2
Z

)]
, (4.11)

G(x, y) = x+ y − 2xy

x− y
ln
x

y
. (4.12)

Basically, the mass splitting in the vector-like lepton doublet can also contribute to the

T-parameter, where the mass difference is dictated by eN . Using yX = 0.1, mX = 800 GeV,

and mχ3 = 700 GeV, we obtain eN ≈ 3.2 GeV, where the resulting T can be estimated to

be T ≈ 0.8× 10−3 [38]. Since the influence on T -parameter is not significant, we drop the

vector-like lepton doublet contribution in this study.

Next, we discuss the new physics contributions to pp → h → γγ. As shown in ap-

pendix A, because the h-H0 mixing angle is suppressed, the Higgs couplings to the SM

quarks can be taken as unmodified. Thus, the h production cross section in the pp collisions
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is still from the SM contributions. Since the h→ γγ decay arises from the charged particle

loops, in addition to the top and bottom quarks and the W -boson in the SM, the new

physics effects in this model are from the doubly and singly charged Higgses. We note that

although we have an Z2-odd X− in the model, the h coupling to X− has two suppression

factors, where one is the h-H0 mixing effect, and the other is the small yR parameter.

Thus, we neglect the X− contribution to h→ γγ. Based on the results in [52, 81], we write

the SM and Higgs triplet contributions to the partial decay width of h→ γγ as:

Γ(h→ γγ) =
GFα

2m3
h

128
√

2π3

∣∣ΓSM
γγ + Γ∆

γγ

∣∣2 ,
Γ∆
γγ =

λ1v
2
h

2m2
H±±

Q2
H±±A0

(
4m2

H±±

m2
h

)
+

λ1v
2
h

2m2
H±

Q2
H±A0

(
4m2

H±

m2
h

)
, (4.13)

where ΓSM
γγ ≈ 6.50 − i0.02; QH±± = 2 and QH± = 1; A0(τ) = τ(1 − τf(τ)), and the loop

function is defined as:

f(x) =


(

sin−1 1√
τ

)2

, (τ ≥ 1) ,

−1

4

(
ln

1 +
√

1− τ
1−
√

1− τ
− iπ

)2

, (τ < 1) .

(4.14)

Thus, we can write the signal strength for pp→ h→ γγ as:

µγγ =
σ(pp→ h)

σ(pp→ h)SM

BR(h→ γγ)

BR(h→ γγ)SM
≈ BR(h→ γγ)

BR(h→ γγ)SM
. (4.15)

For numerical estimates, we take the Higgs width in the SM as ΓSM ≈ 4.07 MeV [82]. The

current Higgs to diphoton measurements from ATLAS and CMS at
√
s = 13 TeV are given

as 1.06±0.12 [83] and 1.15±0.15 [84], where the corresponding integrated luminosities are

79.8 fb−1 and 77.4 fb−1, respectively.

From eqs. (3.3) and (3.5), it is known that in addition to the mX,N and yX,R parame-

ters, v∆ also depends on the λ1,4 constraints. Since the DM candidate in this model is χ3,

and its mass is determined to be mχ3 ∼ 680 GeV when mX ∼ 800 GeV is used, in order to

simplify the study on the λ1,4 constraints, we fix mN(X) = 700(800) GeV, yX = 0.1, and

yR = 0.01, where the corresponding µ∆ value is 4.8× 10−4 GeV. Using the introduced for-

mulas for the T -parameter and µγγ , we show T -parameter, µγγ , mH±±−mH± , and v∆ as a

function of λ1 and λ4 in figure 9, where the plots (a) and (b) correspond to M∆ = 400 GeV

and M∆ = 800 GeV, respectively.

From the resulting plots, we find: (a) Due to the T -parameter constraint, |mH±± −
mH± | . 50 GeV, which is consistent with the results shown in [61, 85]; (b) using the

ATLAS result of µγγ = 1.06 ± 0.12, the λ1 parameter is bounded to be λ1 = (−0.8, 2.63)

and λ1 = (−2.8, 10.2) for M∆ = 400 GeV and M∆ = 800 GeV, respectively, and (d)

the allowed v∆ range, which fits the T -parameter and µγγ constraints, is obtained as:

v∆ ≈ (0.63, 2.6)[(0.185, 0.48)] × 10−4 GeV for M∆ = 400[800] GeV. It can be seen that

the allowed λ1 is mostly in the region of λ1 > 0, and the allowed λ1 can reach a value
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Figure 9. Constraints from the oblique T -parameter (dashed) and the h → γγ (dot-dashed)

precision measurement, where (a) [(b)] corresponds to the case with M∆ = 400[800] GeV and

µ∆ = 4.8× 10−4 GeV. The area enclosed by the solid line denotes mH±± −mH± = (−50, 50) GeV.

The v∆ regions are (0.63, 2.6) × 10−4 GeV and (0.185, 0.48) × 10−4 GeV for M∆ = 400 GeV and

M∆ = 800 GeV, respectively.

of 10 when M∆ approaches to 1 TeV. In addition, the λ4 parameter is bounded in the

region of (1.1, 3.4) and (−2.78,−0.9) for M∆ = 400 GeV and in the region of (2.12, 6.50)

and (−5.9,−2.0) for M∆ = 800 GeV. We note that the constraints cannot determine

the sign of the λ4 parameter; thus, the mass order, i.e. mH0(A0) . mH± . mH±± or

mH±± . mH± . mH0(A0), is still uncertain in the model.

5 Phenomenological analysis

After analyzing the potential constraints, in this section, we study the relevant phenomenol-

ogy in detail, such as the h → Zγ and H±±, H±, and H0(A0) decays. From the earlier

analysis, since mX is taken to be 800 GeV, the processes, in which the Higgs triplet decays

to the vector-like leptons, are kinematically suppressed when we focus on the study with

m∆ < 1 TeV; therefore, we only consider the SM particles in the final states, where the

three-body decays are also included when the kinematic condition is allowed. When the

final states are all leptons, for simplicity, we sum up all possible lepton flavors. In addition,

since the neutrino constraints from the NO and IO are similar in most lepton Yukawa

couplings, hereafter, we only use the NO constraint as the inputs.

5.1 Signal strength for h → Zγ

We have shown that the Higgs to diphoton measurement can bound the Higgs couplings to

H±± and H±, which is dominated by the λ1 parameter. Since the same couplings can also

contribute to the loop-induced h → Zγ, with the constrained parameters, we can predict

the h → Zγ in the model. Thus, similar to the case in h → γγ, the signal strength of

h→ Zγ can be expressed as:

µZγ =
σ(pp→ h)

σ(pp→ h)SM

BR(h→ Zγ)

BR(h→ Zγ)SM
≈ BR(h→ Zγ)

BR(h→ Zγ)SM
, (5.1)
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Figure 10. Contours for signal strength of h→ Zγ as a function of λ1 and λ4 for (a) M∆ = 400 GeV

and (b) M∆ = 800 GeV, where the T -parameter and µγγ constraints are also shown.

where the h production cross section is dominated by the SM effects in the model, and the

current upper limit is µZγ < 6.6 [79].

Based on the results in [57, 81, 87–90], we write the partial decay rate for h→ Zγ as:

Γ(h→ Zγ) =
GFαm

2
Wm

3
h

64π4

(
1−

m2
Z

m2
h

)3

|ASM +A∆|2 , (5.2)

where the SM and Higgs triplet contributions can be expressed as [81, 90]:

ASM = − NC

cW

∑
f

Qf

(
2If3 − 4Qfs

2
W

)
Ah1/2(τ fh , τ

f
Z)− cWAh1(τWh , τWZ ) ,

A∆ = 2sWgZ2H±gh2H±Ah0(τH
±

h , τH
±

Z ) + 4sW gZ2H±±gh2H±±Ah0(τH
±±

h , τH
±±

Z ) . (5.3)

Here, NC = 3 is the color number; τ ih(Z) = 4m2
i /m

2
h(Z), Qf is the electric charge of f

fermion; If3 is the third component of weak isospin of f fermion, and the charged Higgs

couplings to h and Z bosons are given as:

gh2H± =
mW

gm2
H±

(
λ1 +

λ4

2

)
vh , gh2H±± =

mW

gm2
H±±

λ1vh ,

gZ2H± = − tan θW , gZ2H±± = 2 cot 2θW . (5.4)

The detailed loop functions Ah0,1/2,1 can be found in appendix C. Accordingly, we show the

µZγ contours as a function of λ1 and λ4 in figure 10(a) and (b) for M∆ = 400 GeV and

M∆ = 800 GeV, respectively, where the T -parameter and µγγ constraints shown in figure 9

are included. From the plots, it can be seen that the influence from the Higgs-triplet

charged particles is ∆µZγ = |µSM
Zγ − µZγ | . 4% and is not significant.

5.2 Doubly charged Higgs decays

The most peculiar phenomena in a type-II seesaw model should be the doubly charged-

Higgs decays, where the final states in the decays are two singly charged particles. If
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mH± > mH±± , the final states are the same sign charged-lepton pair and W -boson pair;

however, if mH± < mH±± , in addition to the leptons and the W -boson, we also have

the three-body decays through the decay chain H++ → H+W ∗ → H+f̄f ′, where f(f ′)

denotes the possible final states, and for simplicity, we take f(f ′) to be massless. Although

the H++ → H+∗W+ decay is possible in principle, because the off-shell H+ decays are

associated with the small couplings, e.g. v∆ and h`ij , we neglect their contributions.

According to the introduced gauge and Yukawa couplings, the two-body H±± partial

decay rates can be expressed as:

Γ(H++ →W+W+) =
g4v2

∆

16πmH±±

(
2 +

(1− 2yW )2

4y2
W

)
(1− 4yW )1/2 ,

Γ(H++ → `+i `
+
j ) =

Sij
4π

∣∣∣h`ij∣∣∣2mH±± , (5.5)

where yW = m2
W /m

2
H±± , Sii = 1/2, and Sij = 1 for i 6= j. For λ4 < 0, mH±± is the

heaviest Higgs triplet; then, the three-body partial decay rate for H++ → H+W+∗ can be

expressed as:

Γ(H++ → H+W+∗) =
3g4mH±±

28π3
J0(yW , yH±) ,

J0(yW , yH±) =

∫ smax

smin

(
(1− yH± + s)2 − 4s

)3/2

(s− yW )2
, (5.6)

with yH± = m2
H±/m

2
H±± , smin = 0, and smax = (1 − √yH±)2. The phase space integral

can be simplified as:

J0(a, b) =
1

2a
(1− b)

(
9a(1 + b)− 2(1− b)2 − 6a2

)
− 3

(
1− 2a+ (b− a)2

)
ln
√
b

− 3(1− a+ b)
√
−λ(a, b)

(
tan−1 1− a− b√

−λ(a, b)
+ tan−1 1 + a− b√

−λ(a, b)

)
, (5.7)

with λ(a, b) = 1+a2 +b2−2a−2b−2ab. If we assume that the main H++ decay modes are

W+W+, `+i `
+
j , and H+W+∗, the relative BRs as a function of λ4 can be shown in figure 11

(a) and (b), where M∆ = 400 GeV and λ1 = 2.5 are used in plot (a) and M∆ = 800 GeV

and λ1 = 10 are used in plot (b). For clarity, we also show the corresponding v∆ in the

plots (dot-dashed). From the plots, it can be seen that the H++ → H+W+∗ decay is

the dominant channel when λ4 < −0.1(−0.22) and M∆ = 400(800) GeV. When λ4 > 0,

the dominant decay modes are W+W+ and `+i `
+
j , where the result with M∆ = 400 GeV is

BR(H++ →W+W+) > BR(H++ → `+i `
+
j ); however, the BR order with M∆ = 800 GeV is

reversed due to a smaller v∆. We note that the relation between mH±± and M∆(λ1) can be

written as mH±± ≈
√
M2

∆ + v2
hλ1/2, which is independent of the λ4 parameter; therefore,

the corresponding mH±± value can be easily obtained when M∆ and λ1 are fixed.

As we discussed in the introduction section, mH±± lower bound is 770−870 GeV when

H±± dominantly decays into charged leptons. Thus, the scheme with M∆ = 800 GeV and

λ1 = 10 has mH±± ≈ 971 GeV and can be tested at the LHC. When H±± predominantly

decays into W±W±, the lower bound of mH±± is ∼ 220 GeV; therefore, the scheme with

M∆ = 400 GeV and λ1 = 2.5, i.e. MH±± ≈ 485 GeV, is safe from the constraint.
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Figure 11. BR of the H++ decay as a function of λ4, where (a) M∆ = 400 GeV and λ1 = 2.5 are

fixed and (b) M∆ = 800 GeV and λ1 = 10 are used. The dot-dashed line is for v∆.

5.3 Singly charged Higgs decays

In addition to the H+ direct couplings to the SM particles, the singly charged Higgs can

also decay through mixing with the SM charged-Goldstone boson (G+), where the relation

between the mixing angle φ+ and the v∆ parameter is shown in appendix A. Thus, if the

direct H+ couplings to the SM particles are proportional to v∆, the mixing effects with G+

become important. We find that with the exception of `+ν mode, the decay channels, such

as tb̄, hW+, ZW+, and γW+, are all related to the mixing angle φ+. Hence, the partial

decay rates for the fermionic H+ decays can be expressed as:

Γ(H+ → `+i ν) =
mH±

8π
(h`†h`)ii ,

Γ(H+ → tb̄) =
mH±

8π

m2
t

v2
h

s2
φ+ (1− yt)2 , (5.8)

with sφ+(cφ+) = sinφ+(cosφ+) and yt = m2
t /m

2
H± . Since the G+ coupling to a quark is

proportional to the quark mass [81], we only consider the tb̄ mode and the mb effect is

neglected due to mb � mt.

It is found that in addition to the G+hW− coupling, H+ can decay to the hW+ final

state through the mixing between ReΦ and Re∆, where the mixing effect is dictated by

the mixing angle α shown in eq. (A.6). Using the gauge couplings in eq. (B.1) and the

φ+ and α mixing effects, the partial decay rates for the H+ diboson decays can then be

formulated as:

Γ(H+ → hW+) =
g2mH±

64π
(
√

2sα + sφ+)2λ(wW , wh)3/2

wW
,

Γ(H+ → ZW+) =
e2s2

WmH±

16π

(
gv∆(1− 3s2

W )√
2mW s2

W

cφ+ + sφ+

)2

× wZ
√
λ(wW , wZ)

(
3 +

λ(wW , wZ)

4wWwZ

)
,

Γ(H+ → γW+) =
3e2mH±

16π

(
− 3gv∆√

2mW

cφ+ + sφ+

)
wW (1− wW ) , (5.9)
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Figure 12. This legend is the same as that shown in figure 11 with the exception of the H+ decays.

with wi = m2
i /m

2
H± . It is known that the λ4 parameter determines the order of the Higgs

triplet masses. Therefore, it is expected that H+ can decay to H++ and H0(A0) through

the three-body decay when λ4 > 0 and λ4 < 0, respectively. Similar to the H++ → H+W+∗

decay, we write the partial decay rates for H+ → (H++W−∗, H0(A0)W+∗) as:

Γ(H+ → H++W−∗) =
3g4mH±

28π3
J0(wW , wH±±) , λ4 > 0 ,

Γ(H+ → SW+∗) =
3g4mH±

29π3
J0(wW , wS) , λ4 < 0 , (5.10)

with S = H0(A0).

Based on the partial decay rate formulations, we show the BR for each decay mode

as a function of λ4 in figure 12(a) and (b), where the plots (a) and (b) correspond to

(M∆ = 400 GeV, λ1 = 2.5) and (M∆ = 800 GeV, λ1 = 10), respectively, and we have

summed all possible charged lepton flavors in the `+ν mode. From the plots, it can be

clearly seen that when |λ4| > 0.1(0.3) for M∆ = 400(800) GeV, the three-body decay

channels are the main decays, where the associated mass differences in scalars are |mH+ −
mH±±,S | > 1.55(2.32) GeV. That is, in the model, the two-body H+ decays can have the

significant signals in the scheme with mH±± ≈ mH± ≈ mS . In such a degenerate scheme,

it is found that for m∆ = 400 GeV, the BRs of the two-body decays follow BR(`ν) ≈
BR(tb̄) � BR(hW+) > BR(γW+) > BR(ZW+), and for M∆ = 800 GeV, the situation

becomes BR(`ν) � BR(tb̄) > BR(hW+) � BR(ZW+) > BR(γW+). For illustration,

we show the numerical values with λ4 = 0 in table 3. In addition, in order to understand

the scalar mixing influence on the BRs, we show the BRs with φ+ = α = 0 in figure 13,

where M∆ = 400 GeV and λ1 = 2.5 are used. It can be seen that without the φ+ and

α mixing effects, the contributions to the tb̄ and hW+ modes vanish, and the BR order

follows BR(H+ → `+ν) > BR(H+ → ZW+) > BR(H+ → γW+).

5.4 H0 and A0 decays

From eq. (3.19), the neutral Higgs triplet scalars do not directly couple to the charged

leptons. Thus, without the scalar mixings, the CP-even H0 decays to the final states, such
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Mode `+ν tb̄ hW+ γW+ ZW+

(M∆ = 400 GeV, BR) 0.34 0.34 0.25 0.06 0.01

(M∆ = 800 GeV, BR) 0.99 0.005 0.003 0.17 · 10−3 0.55 · 10−3

Table 3. BRs of the H+ decays with λ4 = 0, where λ1 = 2.5 for M∆ = 400 GeV and λ1 = 10 for

M∆ = 800 GeV are used.

Figure 13. BRs for H+ decaying to `+ν, γW+, ZW+, H++W−∗, and SW+∗, where φ+ = α = 0,

M∆ = 400 GeV, and λ1 = 2.5 are used.

as νν, hh, W+W−, and ZZ, whereas the CP-odd A0 can only has the invisible A0 → νν

decay. Including the mixings with the SM neutral Goldstone boson G0 and with the SM

Higgs, it can be found that H0 can further decay to tt̄ and that A0 can decay to tt̄ and

hZ. Therefore, according to the introduced Yukawa and gauge couplings, the partial decay

rates of the fermionic H0/A0 decays can be expressed as:

Γ(S → νν) =
mS

8π

∑
j

(
h`†h`

)
jj

Γ(H0 → tt̄) =
mH0

8π

m2
t

v2
h

s2
φ0

(
1− 4m2

t

m2
H0

)3/2

,

Γ(A0 → tt̄) =
mA0

8π

m2
t

v2
h

s2
φ0

(
1− 4m2

t

m2
A0

)1/2

, (5.11)

whereas the H0/A0 diboson decays are given as:

Γ(H0 → hh) =
mH0

32π

[
(λ1 + λ4)

2v∆ − vhsα
2mH0

−
√

2
µ∆

mH0

]2(
1−

4m2
h

m2
H0

)1/2

,

Γ(H0 →W+W−) =
g2mH0

16π

(
g
v∆

mH0

+
mW

mH0

sα

)2(
2 +

(1− 2zW )2

4z2
W

)√
1− 4zW ,

Γ(H0 → ZZ) =
g2mH0

32πc4
W

(
2g

v∆

mH0

+
mW

mH0

sα

)2(
2 +

(1− 2zZ)2

4z2
Z

)√
1− 4zZ ,

Γ(A0 → hZ) =
g2mA0

16π

(
sα +

sφ0

2

)2 λ(zZ , zh)3/2

zW
, (5.12)
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Mode(H0) νν tt̄ hh W+W− ZZ

(M∆ = 400 GeV, BR) 0.097 0.100 0.086 0.045 0.672

(M∆ = 800 GeV, BR) 0.844 0.007 0.015 0.013 0.121

Mode(A0) νν tt̄ hZ

(M∆ = 400 GeV, BR) 0.018 0.034 0.948

(M∆ = 800 GeV, BR) 0.513 0.005 0.482

Table 4. BRs of the H0 and A0 decays with λ4 = 0, where λ1 = 2.5 for M∆ = 400 GeV and

λ1 = 10 for M∆ = 800 GeV are used.

with zi = m2
i /m

2
S . When H0(A0) is the heaviest scalar, i.e. λ4 > 0, similar to the cases

in the H+ and H++ decays, the three-body decays H0(A0)→ H+W−∗, H−W+∗ are open

and the partial decay rates are written as:

Γ(S → H+W−∗) = Γ(S → H−W+∗) =
3g4mS

29π3
J0(zW , zH±) , λ4 > 0 . (5.13)

Using the obtained partial decay rates, we show the BR for each decay channel as a

function of λ4 in figure 14, where plots (a) and (b) denote the H0 decays with (M∆ =

400 GeV, λ1 = 2.5) and (M∆ = 800 GeV, λ1 = 10), and plots (c) and (d) are for the A0

decays with the same parameter values taken in plots (a) and (b), respectively. From the

results, it can be seen that the three-body decays are the dominant decay channels when

λ4 & 0.3. However, for λ4 < 0, the H0(A0) decay properties depend on the parameter

values. For M∆ = 400 GeV and λ1 = 2.5, it can be seen that the BR order in the H0 two-

body decays follows BR(ZZ)� BR(hh) ∼ BR(tt̄) > BR(νν) > BR(W+W−), and that in

the A0 two-body decays is BR(hZ)� BR(tt̄) > BR(νν). For M∆ = 800 GeV and λ1 = 10,

the BR order in the H0 decays is BR(νν̄) � BR(ZZ) > BR(hh) > BR(W+W−) >

BR(tt̄), and that in the A0 decays is BR(hZ) ∼ BR(νν̄) � BR(tt̄). For clarity, we show

the numerical values for the H0 and A0 decays with λ4 = 0 in table 4. In order to illustrate

the φ0 and α mixing angle influence, we show the relative BRs as a function of λ4 with

φ0 = α = 0 in figure 15, where m∆ = 400 GeV and λ1 = 2.5 are fixed. According to the

results, it can be found that BR(H0 → tt̄) vanishes and that BR(H0 → W+W−) ∼ 0.3,

which is close to BR(H0 → ZZ). Accordingly, we see that the BR of H0 → W+W−

obtains a destructive contribution from the α mixing effect. When φ0 = α = 0, A0 only

can decay to νν in the region of λ4 < 0; therefore, we do not explicitly show the situation

for the A0 decay.

6 Conclusion

Using the scotogenic approach, we studied the radiatively induced lepton-number violation

dimension-3 term µ∆H
T iτ2∆†H in the base of the type-II seesaw model, where the intro-

duced dark vector-like doublet lepton X and dark right-handed singlet Majorana lepton

N are the mediators in the loop. It was found that the dynamically induced Higgs triplet

VEV is limited in the region of 10−5 − 10−4 GeV when the relevant parameters satisfy the

constraints from the DM measurements. Due to the DM direct detection constraints, only
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Figure 14. This legend is the same as that shown in figure 11, where plots (a) and (b) are for H0

decays, and plots (c) and (d) are for A0 decays.

Figure 15. BRs for H0 decay into νν, hh, W+W−, ZZ, and H±W∓∗, where φ+ = α = 0,

M∆ = 400 GeV, and λ1 = 2.5 are used.

– 25 –



J
H
E
P
1
0
(
2
0
1
9
)
0
0
5

the singlet Majorana lepton can be the DM candidate in the model, and the DM mass

depends on and is close to the mX parameter.

In the model, the Higgs triplet VEV, v∆, depends not only on the µ∆ and M∆ pa-

rameters, but also on the λ1,4 parameters in the scalar potential, which dictate the SM

Higgs couplings to the doubly and singly charged Higgses. Moreover, the mass ordering of

the Higgs triplet scalars is dictated by the λ4 sign. We showed that the Higgs diphoton

decay and the oblique T -parameter can further bound the λ1,4 parameters. As a result, we

obtain |mH±± −mH± | . 50 GeV.

We did not explicitly study the collider signatures in this work. Rather, we analyzed

the decay channels of each Higgs triplet scalar and estimated the associated branching

ratios in detail. We found that the scalar mixing effects have an important influence on the

partial decay rates of the singly charged-Higgs, CP-even scalar, and CP-odd pseudoscalar in

the near degenerate masses (i.e. λ4 � 1). In the non-degenerate mass region, the branching

ratios of the Higgs triplet scalar decays are dominated by the three-body decays when they

are kinematically allowed.

A Scalar mass squares and mixing angles

The symmetric mass-square matrices in eqs. (3.9), (3.10), and (3.11) can be generally

expressed as:

A =

(
a11 a12

a12 a22

)
, (A.1)

where the 2 × 2 symmetric matrix can be diagonalized using an orthogonal matrix U

through Adia = UAUT with the parametrization:

U =

(
cosφ − sinφ

sinφ cosφ

)
. (A.2)

It can be found that the two eigenvalues AL and AH and the mixing angle φ can be

expressed as:

AL(H) =
a11 + a22

2
∓ 1

2

√
(a11 − a22)2 + 4a2

12 ,

tan 2φ =
2a12

a22 − a11
. (A.3)

Since the (G+,∆+) and (G0, Im∆0) states have massless Goldstone bosons, their phys-

ical mass squares can be straightforwardly obtained by taking traces of the mass-square

matrices, i.e. m2
H+ = TrAG+∆+ and m2

A0 = TrAG0Im∆0 . From eq. (A.3), the corresponding

mixing angles for diagonalizing AG+∆+ and AG0Im∆0 shown in eqs. (3.9) and (3.10) are

given as:

tan 2φ+ =
−2
√

2v∆vh
v2
h − 2v2

∆

≈ −2
√

2v∆

vh
,

tan 2φ0 =
−4v∆vh
v2
h − 4v2

∆

≈ −4v∆

vh
. (A.4)
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Clearly, if v∆ � vh, the mixing angles are small. In the case of the (ReΦ0,Re∆0) states,

we do not have a simple way to obtain their eigenvalues. If we use h and H0 to denote the

light and heavy scalars, their eigenvalues mh(H0) and mixing angles should follow eq. (A.3),

where the associated matrix elements are:

a11 =
λv2

h

2
,

a12 = (λ1 + λ4)vhv∆ −
√

2vhµ∆ ,

a22 =
µ∆v

2
h√

2v∆

+ 2v2
∆ (λ2 + λ3) . (A.5)

As a result, the mixing between ReΦ0 and Re∆0 can be formulated as:

tan 2α ≈ 2(λ1 + λ4)v∆ − 2
√

2µ∆

µ∆vh/(
√

2v∆)− λv2
h/2

, (A.6)

where we have used α instead of φ, and the v2
∆ effect in the denominator is dropped

due to v2
∆ � 1. In addition to v∆ < µ∆, the numerator in eq. (A.6) is much smaller

than the denominator; hence, the α angle should be of the order of ∼ µ∆vh/M
2
∆. Using

µ∆ = 10−3 GeV, vh = 246 GeV, and M∆ = 400 GeV, the α value can be estimated to be

α ∼ 1.54× 10−6.

B Higgs triplet gauge coupling

The Higgs triplet couplings to the gauge bosons can be obtained from the ∆ kinetic term

shown in eq. (3.15), where the covariant derivation can be found in eq. (3.16). Accordingly,

we can derive the triple couplings of the Higgs triplet scalars and the gauge bosons as:

Lkin = Tr[(Dµ∆)†(Dµ∆)]

⊃
{
ig
(
H−−∂µH

+ −H+∂µH
−−)W+µ +

ig√
2

(
H0∂µH

−1 −H−1∂µH
0
)
W+µ

− g√
2

(
A0∂µH

−1 −H−1∂µA
0
)
W+µ + H.c.

}
− g

cW

(
H0∂µA

0 −A0∂µH
0
)
Zµ

+ i
(
H+∂µH

− −H−∂µH+
)(

eAµ −
gs2
W

cW
Zµ

)
+ i
(
H++∂µH

−− −H−−∂µH++
)(

2eAµ +
g(1− 2s2

W )

cW
Zµ

)
+ g2v∆H

0W+
µ W

−µ +
1

2

(
2g2v∆

c2
W

)
H0ZµZ

µ

− gv∆√
2

[
H−W+µ

(
3eAµ +

g

cW
(1− 3s2

W )Zµ

)
+ H.c.

]
− 1

2

(√
2g2v∆

) (
H−−W+

µ W
+µ + H.c.

)
. (B.1)

We note that although eq. (B.1) does not include the φ+,0 and α mixing effects, we have

used the physical state notations for H+, H0, and A0.
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C Loop integral functions

The loop integral functions Ah0,1/2,1 for h→ Zγ shown in eq. (5.3) are given as:

Ah0(τh, τZ) = I1(τh, τZ) , Ah1/2 = I1(τh, τZ)− I2(τh, τZ) ,

Ah1(τh, τZ) = 4(3− tan2 θW )I2(τh, τZ) +

[(
1 +

2

τh

)
tan2

W −
(

5 +
2

τh

)]
I1(τh, τZ) , (C.1)

with

I1(x, y) =
xy

2(x− y)
+

x2y2

2(x− y)2
(f(x)− f(y)) +

x2y

(x− y)2
(g(x)− g(y)) ,

I2(x, y) = − xy

2(x− y)
(f(x)− f(y)) , (C.2)

where the function f(τ) can be found in eq. (4.14), and the function g(τ) is given as:

g(τ) =


√
τ − 1 sin−1(1/

√
τ) , (τ ≥ 1) ,

√
1− τ
2

(
ln

1 +
√

1− τ
1−
√

1− τ
− iπ

)
, (τ < 1) .

(C.3)
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