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Abstract: We study the question of whether coherent neutrino scattering can occur on

macroscopic scales, leading to a significant increase of the detection cross section. We

concentrate on radiative neutrino scattering on atomic electrons (or on free electrons in a

conductor). Such processes can be coherent provided that the net electron recoil momen-

tum, i.e. the momentum transfer from the neutrino minus the momentum of the emitted

photon, is sufficiently small. The radiative processes is an attractive possibility as the

energy of the emitted photons can be as large as the momentum transfer to the electron

system and therefore the problem of detecting extremely low energy recoils can be avoided.

The requirement of macroscopic coherence severely constrains the phase space available

for the scattered particle and the emitted photon. We show that in the case of the scat-

tering mediated by the usual weak neutral current and charged current interactions this

leads to a strong suppression of the elementary cross sections and therefore the require-

ment of macroscopic coherence results in a reduction rather than an increase of the total

detection cross section. However, for the νe scattering mediated by neutrino magnetic or

electric dipole moments coherence effects can actually increase the detection rates. Effects

of macroscopic coherence can also allow detection of neutrinos in 100 eV — a few keV

energy range, which is currently not accessible to the experiment. A similar coherent en-

hancement mechanism can work for relativistic particles in the dark sector, but not for the

conventionally considered non-relativistic dark matter.
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1 Introduction

Recently, the COHERENT collaboration has reported the first observation of coherent

elastic neutrino-nucleus scattering [1, 2], a process predicted over forty years ago [3, 4].

This observation completed the standard-model picture of neutrino interactions with nu-

cleons and nuclei and opened up a new window to probe physics beyond the standard

model and nuclear structure; it also has important implications for astrophysics. Very re-

cently, the CONUS collaboration has reported the first experimental indication of coherent

elastic neutrino-nucleus scattering with reactor antineutrinos [5]. Coherence of the process

implies that the total cross section is proportional to the squared number of the target

particles rather than to their number; as a result, for the first time it became possible to
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observe neutrinos with a hand-held detector rather than with ton- or kiloton-scale ones —

a spectacular achievement indeed. One then naturally wonders if it is possible to achieve

coherence of neutrino detection on scales that are larger than the nuclear scale, such as

atomic or even macroscopic scales, leading to a further significant increase of the detec-

tion cross sections. This would also be of great interest for detecting Dark Matter (DM)

particles which are currently being actively looked for.

Coherent neutrino scattering on atoms [6–8] has a two-fold advantage. First, the scat-

tering would occur not just on nucleons inside the nucleus but also on atomic electrons,

and the increased number of scatterers would mean additional enhancement of the detec-

tion cross section. Second, within the standard model, νee scattering proceeds through

both charged-current (CC) and neutral-current (NC) weak interactions, whereas the νµ,τe

scattering is mediated only by neutral currents. Therefore, coherent neutrino-atom scat-

tering would be sensitive to neutrino flavour and thus could potentially be used for study-

ing neutrino oscillations. This is in contrast with the already observed coherent elastic

neutrino-nucleus scattering proceeding only through neutral-current interactions which are

flavour blind.

The problem with coherent neutrino-atom scattering is that the atomic recoil energies

would be very small and extremely difficult to measure. Indeed, coherence requires the

momentum transfer to the scatterer |~q | to be smaller than or at most of the order of the

inverse radius of the scatterer. It is only under this condition that it will be impossible

to find out on which constituent of the target particle has the neutrino scattered, and the

neutrino waves scattered from the different constituents will be in phase with each other,

which are the necessary conditions for coherent scattering. For neutrino-atom scattering,

this would imply

|~q | . (a few aB)
−1 ∼ 1 keV , (1.1)

where aB ≃ 0.53 Å is the Bohr radius. For an atom with the atomic number A ∼ 100 the

recoil energy would then be

Erec ≃
~q 2

2mA
∼ 10−5 eV , (1.2)

about eight orders of magnitude below the currently achieved sensitivity. Measuring such

small recoil energies presents a formidable experimental challenge and, if possible at all,

would probably require new technologies.

1.1 Macroscopic coherence?

How about scattering with coherence on macroscopic scales? Clearly, this would require

measuring even much smaller recoil energies and so does not look practical. It is interesting,

however, to inquire what could be the increase of the detection cross sections if such

measurements were possible, leaving for the moment the detection problem aside. For an

estimate, we will be assuming coherence on the target length scale of ∼ 1 cm and the target

mass mt ∼ 1 g. The total cross section of the elementary neutrino elastic scattering process

(i.e. of the scattering on a single target particle) with non-relativistic target particle recoil

is σ0 ≃ (G2
F /π)ω

2, where GF is the Fermi constant and ω is the energy of the incident
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neutrino. To achieve macroscopic coherence, we need momentum transfers satisfying |~q | ≤
q0 ∼ (1 cm)−1.1 However, the energies of neutrinos we normally deal with are many orders

of magnitude larger than this value, and so are the typical momentum transfers. From the

kinematics of elastic scattering it follows that ~q 2 ≃ 2ω2(1− cos θ), where θ is the neutrino

scattering angle; therefore, to achieve macroscopic coherence one has to restrict neutrino

scattering to nearly forward directions:

1− cos θ ≤ ~q0
2

2ω2
≪ 1 . (1.3)

This means a severe restriction of the phase space accessible to the final-state neutrino,

which, in turn, leads to a strong suppression of the corresponding elementary cross section:

σ0 ≃
G2

F

π
ω2 −→ G2

F

2π
q20 . (1.4)

However, in order to find the cross section per one target particle one has to multiply the

elementary cross section (1.4) by the number of particles that contribute coherently to the

scattering process, i.e. by the number of particles in the coherent volume L3
0 ∼ 1/q30. As a

result, the cross section per target particle will be proportional to 1/q0 ∝ N1/3, where N

is the number of scatterers in the target and we have assumed that the coherent volume

is comparable with the total volume of the target. Thus, by going to smaller q0 one could

increase the detection cross section.2 The total cross section obtained by summing over all

the scatterers in the target will then scale as N4/3, i.e. the cross section increase due to

the coherence effects is ∼ N1/3. While this is much smaller than an extra factor of ∼ N

one could naively expect, it still would mean a very strong enhancement of the detection

cross section.

The problem is, of course, that the recoil energies are too small to be detected. For

q0 ∼ (1 cm)−1 ≃ 2×10−5 eV and the total mass of particles in the coherent volumemt ∼ 1 g,

one finds Erec ∼ ~q0
2/2mt ∼ 10−43 eV, the quantity which is not going to be ever measured.

To give just one reason for that, in order to measure recoil energy of this magnitude,

one needs an energy resolution of at least the same order of magnitude, δE ∼ Erec. By

time-energy uncertainty relation, the duration of the measurement process δt should then

exceed ∼ 1027 s, which is about 10 orders of magnitude larger than the age of the Universe.

To summarize, macroscopic coherence holds and the cross section becomes very large only

for neutrino scattering in a very narrow forward cone, which corresponds to unmeasurably

small recoil energies of the target particles.

As is seen from the above discussion, one reason why it is difficult to achieve macro-

scopic coherence in neutrino scattering processes is that one usually measures the recoil

energy of the target particles, which for small recoils is suppressed compared to the recoil

1Note that by q0 we mean the maximum allowed value of |~q | and not the time component of the 4-

vector q.
2Obviously, one cannot go to the limit q0 → 0, as the above estimates are only valid for coherence

volumes 1/q30 not exceeding the total volume of the detector.
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momentum by a very small factor ∼ q0/2mt. The same applies, of course, to experiments

on direct DM detection.3

Is it possible to overcome this obstacle by somehow making use of the recoil momentum

rather than the recoil energy? In that case no extra suppression factor q0/2mt would be

there. One such possibility was suggested in the 1980s by Joseph Weber [9–11].

1.2 Weber’s approach and structure factors

Weber suggested to detect neutrinos through their coherent scattering on crystals in torsion

balance experiments. This approach combines two interesting ideas. First, as the force

coincides with momentum transfer per unit time, the force neutrinos impinge on a crystal

is directly related to the momentum transfer to the target rather than to the recoil energy.

As discussed above, this is a very desirable feature. Second, when the expected recoil

energy of the individual atoms Erec = ~q 2/2mA is below the Debye temperature of the

crystal TD, the recoil momentum is with high probability given to the crystal as a whole

rather than to the individual atoms, similarly to what happens in the Mössbauer effect.

Indeed, the recoil-free fraction is approximately given by [12]

f ≃ exp

{

−Erec

TD

(

3

2
+

π2T 2

T 2
D

)}

(1.5)

where T is the crystal temperature.4 For Erec ≪ TD the quantity f ≃ 1, i.e. the momentum

is transferred to the crystal as a whole with probability close to 1. For typical Mössbauer

crystals TD ∼ 10 keV, and the condition Erec ≪ TD is easily satisfied even for neutrinos

in the 10MeV energy range. Weber asserted that, since in this case it is impossible to

find out on exactly which atom the neutrino had scattered, the contributions of different

scatterers should add up coherently, leading to macroscopic coherence and a very strong

enhancement of the detection cross section.

He developed a theoretical approach to describe neutrino coherent scattering on crys-

tals and obtained encouraging results. He then performed experiments with solar neutri-

nos, reactor antineutrinos and a radioactive neutrino source and in all three cases reported

positive results, in reasonable agreement with his theoretical expectations.

These results were met with scepticism, and were strongly criticized by a number of

authors. It was pointed out that the same ideas applied to the X-ray [13] and neutron [14]

scattering on crystals would lead to unrealistically large cross sections in direct contra-

diction with experiment. In refs. [15–20] the theoretical approach of [9–11] was criticized.

It was concluded that the effect had been overestimated by about 24 orders of magni-

tude. Finally, subsequent torsion balance experiments on neutrino-crystal scattering with

sensitivities much higher than the sensitivity of the Weber’s device have reported null

result [21, 22].

3Macroscopic coherence is, however, readily achieved in experiments on light, X-ray or neutron scattering

from macroscopic targets because what is detected are the scattered particles and not the recoil of the target.
4This formula is valid for harmonic crystals in the limit T ≪ TD. For a general T , the second term in

the round brackets in the exponent should be replaced by 6(T/TD)2
∫ TD/T

0
dxx/(ex − 1).
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So, what went wrong with Weber’s ideas? The absence of recoil of the individual atoms,

which was the main ingredient of his approach, is necessary for macroscopic coherence, but

is not sufficient. It is also necessary that the neutrino waves scattered from different centers

be in phase with each other. The amplitudes of particle scattering on a group of scattering

centers rather than on a single center should contain the relevant structure factors, which

describe the relative phases of the amplitudes corresponding to different scatterers. For

elastic neutrino scattering the structure factor is given by

F (~k − ~k′) =
N
∑

i=1

ei(
~k−~k′)~ri , (1.6)

where ~k and ~k′ are the momenta of the incident and scattered neutrinos, ~ri is the coordinate

of the ith scatterer and N is the total number of scatterers in the target. Introducing the

number density of scatterers ρ(~r) =
∑

i δ
3(~r−~ri), one can rewrite the structure factor (1.6)

in the familiar form-factor form

F (~q ) =

∫

d3rei~q ~rρ(~r) , (1.7)

where ~q = ~k − ~k′ is the momentum transfer to the target.

The structure factors are crucial to the issue of coherence of the scattering process, i.e.

to the question of whether the amplitudes of neutrino scattering on different target particles

should be added coherently. While the exact form of these factors depend on the specific

target utilized in the experiment, the fully coherent and completely incoherent regimes

can be studied in a rather general way. Indeed, the squared modulus of the transition

amplitude contains the factor

|F (~q )|2 =
N
∑

i,j=1

ei~q (~ri−~rj) . (1.8)

If the momentum transfer ~q satisfies the condition

max
i,j

{|~q (~ri − ~rj)|} ≃ |~q |L ≪ 1 , (1.9)

(where L is a linear size of the target), one can replace all the phase factors under the

sum in eq. (1.8) by unity, which gives |F (~q)|2 = N2.5 In this case neutrinos scattered

from different constituents of the target are in phase with each other. In the opposite limit

|~q |L ≫ 1 only the diagonal (i = j) terms in the sum survive, and one finds |F (~q )|2 ≃ N ,

i.e. we obtain the usual dependence of the total cross section on the number of the target

particles. This corresponds to incoherent neutrino scattering.

For scattering on crystals, yet another possibility of having macroscopically coherent

effects exists, namely, when the phase differences ~q (~ri−~rj) in eq. (1.8) are integer multiples

of 2π. This leads to the well known Bragg condition for diffraction on crystals,

2d sinϑ = nλ , (1.10)

5As discussed above, in the cross section this dependence reduces to ∼ N4/3 if neutrino scattering has

to be restricted to nearly forward directions in order to achieve sufficiently small momentum transfers.
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where d is the interplanar distance in the crystal, ϑ is the angle between the neutrino

momentum and the atomic plane (the scattering angle being θ = 2ϑ), λ = 2π/|~k| and
n is an integer. Just like for X-ray diffraction on crystals, the intensity of the scattered

neutrino wave in the directions of the Bragg maxima is ∝ N2. It is noticeably different

from zero in narrow cones around the Bragg directions, with the corresponding solid angles

∆Ω ∝ N−2/3, and is practically zero outside these cones. Thus, the intensity of the

scattered neutrino wave around each Bragg maximum is ∝ N4/3 [23]. Since the scattered

neutrinos are not detected, the quantity that is in principle measurable is the crystal recoil

momentum, or the force impinged on the crystal. For a given direction of the momenta of

the incident neutrinos with respect to the crystal atomic planes and n 6= 0, eq. (1.10) selects

the neutrino energy that satisfies the Bragg condition.6 As the Bragg maxima have finite

widths, neutrinos in finite energy intervals ∆ω will actually experience Bragg diffraction;

these intervals are, however, very small and scale as 1/L ∝ N−1/3. As a result, the overall

momentum transfer to the crystal scales as N4/3 ×N−1/3 = N , just like for the scattering

on amorphous bodies [23].

Thus, scattering on crystals unfortunately does not give any advantage for neutrino

detection, and one is back to consider the condition in eq. (1.9). Since it was not satisfied

in Weber’s experiments, macroscopic coherence could not be achieved.7,8

1.3 Our approach: radiative neutrino scattering on electrons

In the present paper we consider a different realization of the idea of employing the momen-

tum transfer to the target rather than the recoil energy of the target particle — radiative

neutrino scattering on atomic electrons or on free electrons in a conductor:

ν + e → ν + e+ γ . (1.11)

In this case the emitted photon rather than the recoil electron is detected, and the photon

energy ωγ can be as large as the neutrino momentum transfer |~k−~k′|. Most importantly, the

momentum transfer itself (and so also ωγ) need not be small in order to ensure macroscopic

coherence of the process. What has to be small (. L−1
0 where L0 is the macroscopic length

scale of the coherent volume) is the net recoil momentum of the target particle, which is the

difference between the momentum transfer from the neutrinos ~k − ~k′ and the momentum
~kγ carried away by the photon. This can happen even when |~k − ~k′| and |~kγ | = ωγ are

both large compared to L−1
0 . The above points directly follow from the expression for the

structure factor in the case of the process (1.11) (cf. eq. (1.6)),

F (~k − ~k′ − ~kγ) =
N
∑

i=1

ei(
~k−~k′−~kγ)~ri . (1.12)

6For n = 0 the Bragg condition is satisfied for all neutrino energies. However, it corresponds to forward

scattering in which there is no momentum transfer from neutrinos to the crystal.
7Note that Weber actually did consider the structure factors, but evaluated them incorrectly [16].
8When the preliminary results of this work were presented at CERN neutrino platform week in January

2018, we were informed by P. Huber that some of the considerations presented in sections 1.1 and 1.2 had

appeared earlier in the unpublished (but not classified) Jason Report by Callan, Dashen and Treiman [24].

We thank Patrick Huber for this comment and for sending us a scanned copy of [24].
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The condition for the scatterers within a volume ∼ L3
0 to contribute coherently is |~k−~k′−

~kγ |L0 . 1.

Note that in both radiative and elastic scattering cases, momentum conservation im-

plies that the argument of the structure factor coincides with the momentum ~p ′ of the

recoil electron. This has a simple physical interpretation. As was discussed above, coher-

ence requires |~p ′|L ≪ 1. Since the uncertainty of the magnitude of momentum cannot

be much larger than the momentum itself, we also have in this case δ|~p ′|L ≪ 1. The

Heisenberg uncertainty relation then means that the coordinate uncertainty of the recoil-

ing electron δx exceeds the size of the target, that is, one cannot identify which electron

the neutrino was scattered off. The requirement |~p ′|L ≪ 1 also ensures that the neutrino

waves scattered from all the electrons within the volume L3 are in phase with each other.

These are precisely the conditions of coherence of the contributions of different individual

electrons to the amplitude of the process.

1.3.1 Previous studies

The radiative neutrino scattering on electrons (1.11) was first considered by Lee and Sirlin

back in 1964 [25] and since then has been studied by many authors (see, e.g., [26–32]).

To the best of our knowledge, only two studies [28, 29] concern the issue of macroscopic

coherence of the process. In [28] it was suggested to use radiative neutrino scattering

on free electrons in a conductor in order to detect cosmic background neutrinos. It was

argued that macroscopic coherence of the process can be achieved, leading to measurable

photon production cross sections. These results have been criticized in [29], where a crucial

flaw of [28] was pointed out. It was demonstrated that, as neutrino impact pushes the

conduction electrons deeper inside the target, the excess positive ion charge on its surface

creates a restoring force which pulls the electrons back. As a result, the cross section

of coherent radiative neutrino scattering gets suppressed by a factor (ω/ωp)
4, where ωp =

(nee
2/me)

1/2 ∼ 10 eV is the plasma frequency. For cosmic background neutrinos (ω/ωp)
4 ∼

10−20, which makes the process completely unobservable.

It is actually not difficult to understand the reason for this drastic suppression of

the photon production cross section. Photon radiation in process (1.11) is due to the

time dependent dipole (and in general higher multipole) moments induced by the neutrino

scattering on the electrons of the target. In the very long wavelength limit, when the

energy transfer to the system (and so also the frequency of the induced radiation) is small

compared to the characteristic frequencies of the system, the induced moments are small

and the photon radiation is strongly suppressed. This situation is very similar to the one

encountered when comparing the cross section of the Rayleigh scattering (photon scattering

on bound electrons in atoms) to that of the Thomson scattering (scattering of photons on

free electrons). In the classical limit the two cross sections are related by [33]9

σR ≃ ω4

(ω2
at − ω2)2

σT , (1.13)

9The accurate quantum mechanical formula is more complicated and depends sensitively on the atomic

structure, see section 5 below. However, the limits of large and small ω are reproduced by the classical

formula (1.13) correctly.
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where ωat is a characteristic atomic frequency. In the limit ω ≫ ωat the two cross sections

coincide, i.e. the photon scattering on atomic electrons proceeds as if the electrons were

free. In the opposite limit ω ≪ ωat one finds σR ≃ (ω/ωat)
4σT ≪ σT . This is the famous

ω4 law which is responsible for the blue color of the sky. The ∼ ω4 suppression of the cross

section of radiative scattering of cosmic background neutrinos on conduction electrons

found in [29] is of exactly the same nature.10

1.3.2 Radiative scattering with ω & ωchar and phase space constraints

In the present paper we shall consider neutrino detection through coherent radiative neu-

trino scattering on atomic electrons or on free electrons in a conductor. We will be assuming

the energies of the incident neutrinos to be higher than the corresponding characteristic

atomic frequencies ωat or plasma frequencies ωp. This will allow the momenta of the emit-

ted photons to exceed ωat and ωp, thus avoiding the ω4 suppression of the cross sections

discussed above. We will concentrate on the situations when the momentum carried away

by the emitted photon nearly compensates the momentum transfer to electrons from neu-

trinos, leading to very small net recoil momenta of the target electrons. As discussed at

the beginning of section 1.3, this will result in macroscopic coherence of the detection pro-

cess, while completely avoiding the problem of measuring extremely small recoil energies

of the target.

There is a price to pay, however. The requirement ~k − ~k′ ≃ ~kγ puts a stringent

constraint on the phase space volume accessible to the final-state particles, and in general

also on the amplitude of the process. This should lead to a suppression of the cross section

of the individual process, just like in the case of elastic neutrino scattering discussed in

section 1.1 (see eq. (1.4)). It has to be seen if the enhancement of the cross section due

to macroscopic coherence can overcome this suppression, as it is the case for the elastic

neutrino scattering (which, however, is unobservable because of the vanishingly small recoil

energies). In the present paper we study this issue in detail.

We find that for radiative neutrino scattering mediated by the standard NC and CC

weak interactions macroscopic coherence can occur, but only at the expense of severe

restriction of the kinematics of the process, resulting in the net suppression rather than

enhancement of the total cross section. In contrast to this, for radiative neutrino scattering

mediated by neutrino magnetic or electric dipole moments the net effect is an enhancement

of the cross section per target electron compared to that for the elastic scattering, though

only for the kinetic energies of electron recoil in the elastic process exceeding ∼ 100 keV.

In addition, coherent radiative νe scattering due to neutrino magnetic or electric dipole

moments could potentially allow detection of neutrinos of very low energies, which are cur-

rently not accessible to the experiment. The mechanism we consider here is, unfortunately,

10In ref. [29] this suppression was incorrectly interpreted as being due to the electric neutrality of the

target. For neutrino scattering on a charged conductor the restoring force on the electrons accelerated by

the neutrino impact would still be there, and would be due to both the pull from the positive ions and push

from the excess electrons. As a result, the ω4 suppression would still be present. This is quite analogous to

the situation with photon scattering on atomic systems, where the scattering on charged ions exhibits at

ω ≪ ωat the same ω4 suppression as the scattering on neutral atoms [34, 35].
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not operative for conventional (non-relativistic) DM particle candidates; however, it could

work for relativistic particles that may exist in the dark sector.

1.4 The structure of this paper

The paper is organized as follows. In section 2 we consider the radiative neutrino scattering

on free non-relativistic electrons, both without any additional kinematic constraints and

assuming that the electron recoil momentum is limited from above by a small value p0,

allowing for macroscopic coherence of the process. In section 2.1 we discuss the radiative

neutrino scattering on free electrons mediated by the usual NC and CC weak interactions,

whereas in section 2.2 we study the case when the νe scattering is mediated by the neutrino

magnetic or electric dipole moments. In section 3 we briefly discuss the question of whether

macroscopic coherence could be realized and the same enhancement mechanism could work

for direct DM detection and conclude that for conventional DM this is not possible (mainly

for kinematic reasons). In section 4 we consider coherent radiative axion-photon conversion

due to scattering of relativistic axions on electrons (radiative inverse Primakoff effect). In

section 5 we discuss atomic binding effects in the case when radiative scattering takes place

on electrons in an atom rather than on free electrons. We demonstrate that these effects

can be neglected in the cases of interest to us. In section 6 we use the cross sections

obtained in sections 2 and 4 to consider the effects of macroscopic coherence on radiative

neutrino scattering and axion-photon conversion processes and the question of whether it

can increase the detection cross sections. We summarize and discuss our results in section 7.

Some technical details of our calculations are given in the appendices. The kinematics of

radiative 2 → 3 scattering is considered in appendix A, whereas appendix B describes

calculations of the integrals over the 3-body phase space. The expressions for the squared

matrix elements for the processes studied in the paper are collected in appendix C.

2 Radiative neutrino scattering on electrons

We shall consider the process

ν(k) + e(p) → ν(k′) + e(p′) + γ(kγ) (2.1)

in the rest frame of the initial electron. Here

k = (ω,~k) , p = (m,~0) , k′ = (ω′,~k′) , p′ = (Ep′ , ~p
′) , kγ = (ωγ ,~kγ) (2.2)

are the 4-momenta of the incident neutrino, initial-state electron, scattered neutrino, final-

state electron and emitted photon, respectively. In this section we consider radiative neu-

trino scattering on free non-relativistic electrons; possible effects of atomic binding will

be discussed in section 5. Eventually, we will be interested in coherent radiative neutrino

scattering on a macroscopic lump of electrons, which we will assume to be unpolarised, i.e.

to have zero total spin. This allows us to simplify the problem by neglecting the electron

spin, i.e. to consider neutrino scattering on a “spinless electron” — a particle with the

electron’s charge and mass but zero spin. Neutrinos are assumed to be ultra-relativistic,

– 9 –
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so that the neutrino mass can be neglected both in the kinematics of the process and in

calculating transition matrix elements.

We shall consider neutrino-electron scattering mediated either by the usual NC and CC

weak interactions or by neutrino magnetic (or electric) dipole moments. In each case we

calculate the cross section first allowing all the final-state momenta to span the full ranges

allowed by 4-momentum conservation,11 and then restricting the net recoil momentum of

the electron to satisfy |~p ′| ≤ p0, where p0 is small compared to the maximum value of |~p ′|
allowed by the kinematics of process. We will need the cross sections with such a kinematic

restriction when considering macroscopic coherence effects in section 6.

2.1 Weak interactions induced radiative process

In calculating the cross section of radiative neutrino scattering (2.1) on “spinless electron”

we take into account only the vector current part of the weak NC and CC interactions of

electrons since the axial-vector current does not contribute to neutrino scattering on zero-

spin targets. The amplitude of the weak interaction induced radiative neutrino scattering

on a “spinless electron” can be written as

Mw = −i
GF√
2
gV eǫ

∗

µ(kγ)Q
µαjα . (2.3)

Here gV is the vector weak coupling constant, e is the electron charge, ǫµ(kγ) is the polar-

ization vector of the produced photon and

jα = ū(k′)γα(1− γ5)u(k) (2.4)

is the matrix element of the neutrino current. To leading order in electroweak interaction

the tensor Qµα is given by

Qµα = Qµα(p, k; p′, k′, kγ)

≡
{

(2p′ + kγ)
µ(2p+ k − k′)α

2p′ · kγ
− (2p− kγ)

µ[2p′ − (k − k′)]α

2p · kγ
− 2gµα

}

. (2.5)

The subscript w at M stands for neutrino-electron scattering due to the weak interactions;

for νµe and ντe scattering the interaction is mediated by the weak neutral current, whereas

for the νee scattering both neutral and charged currents contribute. For NC induced

radiative νe scattering, the leading order amplitude is described by the diagrams of figure 1.

The three terms in Qµα correspond to the three diagrams shown there. For CC induced

radiative scattering of νe on a “spinless electron”, one cannot directly draw diagrams similar

to those in figure 1, as the vertex Weν connecting spin 1, 0 and 1/2 fields does not exist.

Instead, one should consider the scattering on the “standard” spin 1/2 electron described

by the left and middle diagrams of figure 1 with the Z0 boson line replaced by theW± boson

one and the electron and neutrino lines in the final state interchanged. For unpolarised

target electrons, in the limit of non-relativistic electron recoils the electron spin becomes

11Except that for ωγ-integrated cross sections an infrared cutoff ω0 will be introduced for the photon

energies, see below.
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ν(k) ν(k′)

Z, γ(q)

e(p) e(p′)

γ(kγ)

e(p + q)

ν(k) ν(k′)

Z, γ(q)

e(p) e(p′)

γ(kγ)

e(p− kγ)

ν(k) ν(k′)

Z, γ(q)

e(p) e(p′)

γ(kγ)

Figure 1. Leading order Feynman diagrams for radiative neutrino scattering (1.11) on a “spinless

electron”. Shown are the diagrams for νe scattering mediated by Z0 exchange (NC weak interaction)

or photon exchange (for scattering due to the neutrino magnetic or electric dipole moments). The

latter case will be considered in section 2.2. For the CC weak interaction contributions, see the text.

relatively unimportant, and the corresponding CC amplitude again has the form (2.3) with

Qµα given by eq. (2.5).12 Note that Qµα satisfies the gauge invariance conditions

kγµQ
µα = Qµα(k − k′)α = 0 . (2.6)

Thus, expressions (2.3) and (2.5) adequately describe the amplitude of process (1.11)

for non-relativistic electrons, with both NC and CC contributions properly taken into

account. The coupling constant gV is given by

gV =

{

2 sin2 θW + 1
2 , ν = νe

2 sin2 θW − 1
2 , ν = νµ, ντ

. (2.7)

We now proceed to calculate the cross sections, first without constraining |~p ′|. For the
double and single differential cross sections one finds

d2σw
dωγd cos θγ

=
G2

F g
2
V e

2

(2π)3
1

m2
e

· 1
3

(ω − ωγ)
2

ωγ

{

(ω2 − 4ωωγ)(1− cos2 θγ) + 2(ω2 + 2ω2
γ)
}

, (2.8)

dσw
dωγ

=
G2

F g
2
V e

2

(2π)3
1

m2
e

· 8
9

(ω − ωγ)
2

ωγ

{

(ω − ωγ)
2 + ω2 + 2ω2

γ

}

. (2.9)

Here me is the electron mass and θγ is the angle between the momentum of the emitted

photon and that of the incident neutrino. Because of the usual infrared divergence, in

order to calculate the ωγ-integrated cross section one has to introduce a lower cutoff for

the energy of the emitted photon ωγmin ≡ ω0. In our case a natural choice of ω0 follows

from the requirement that the photon energy exceed the characteristic frequency of the

target system, ωat for scattering on atomic electrons or ωp ∼ 10 eV for scattering on free

electrons in a conductor. As discussed in section 1.3, this will allow one to avoid the ∼ ω4

suppression of the cross section.

12To arrive at this result one has to make use of the Fierz transformation and consider unpolarised

electrons in the limit when their recoil energy is non-relativistic in the rest frame of the initial-state electrons.

Note that, as we are interested in coherent effects, the summation over the electron spin states should be

done at the amplitude level.

– 11 –



J
H
E
P
1
0
(
2
0
1
8
)
0
4
5

Integration of (2.9) over ωγ yields

σw(ωγ > ω0) =
G2

F g
2
V e

2

(2π)3
1

m2
e

· 16
9
ω4

{

ln(1/x)− 41

24
+ 3x− 9

4
x2 +

4

3
x3 − 3

8
x4

}

, (2.10)

where

x ≡ ω0/ω . (2.11)

For ω0 ≪ ω eq. (2.10) gives

σw(ωγ > ω0) ≃
G2

F g
2
V e

2

(2π)3
1

m2
e

· 16
9
ω4

[

ln(ω/ω0)−
41

24

]

. (2.12)

Next, we constrain the momentum of the final-state electron by requiring |~p ′| ≤ p0,

where p0 is small compared to |~p ′|max allowed by 4-momentum conservation. The kine-

matics of the process in this case is considered in appendix B. As shown there, for a given

ωγ the photon emission angle θγ is now constrained by

0 ≤ 1− cos θγ ≤ p20 + 2p0(ω − ωγ)

2ωωγ
. (2.13)

The smallness of p0 implies that the photons are emitted in nearly forward direction. From

the kinematics of the process it follows that the same is true for the scattered neutrino. In

the leading order in p0 we obtain

dσw
dωγ

=
G2

F g
2
V e

2

(2π)3
p40
4m2

e

ω2 + (ω − ωγ)
2

ω2ωγ
. (2.14)

Here the integration over cos θγ was performed in its allowed range given in eq. (2.13).

The cross section for the emission of photons with energies ωγ ≥ ωγmin ≡ ω0 reads

σw(ωγ > ω0) =
G2

F g
2
V e

2

(2π)3
p40
2m2

e

{

ln(1/x)− 3

4
+ x− 1

4
x2

}

. (2.15)

For ω0 ≪ ω one can retain only the first two terms in the curly brackets.

The cross sections in eqs. (2.14) and (2.15) scale as the fourth power of p0; a factor p30
is expected from the phase space volume of the process with the electron recoil momentum

constrained by |~p ′| ≤ p0 (see appendix B), and one more power of p0 comes from the

squared modulus of the transition matrix element of the process.

2.2 Radiative scattering and the neutrino magnetic dipole moment

Let us now consider the radiative neutrino scattering process (1.11) in the case when the

neutrino-electron scattering is mediated by the photon exchange due to neutrino magnetic

or electric dipole moments. In what follows we will for definiteness discuss the case of

neutrino magnetic dipole moment µν . We will comment on the general case at the end of

this subsection.
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The amplitude of the process corresponds to the diagrams in figure 1 in which the

intermediate vector boson connecting the neutrino and electron lines is the photon.13 In

this case one can expect some kinematic enhancement compared to the usual weak NC

and CC induced processes considered in the previous subsection. Indeed, we are interested

in the kinematic region in which the momentum ~kγ carried away by the photon nearly

coincides with the momentum transfer from the neutrino, ~q = ~k − ~k′. In the regime of

small net recoil momentum of the electron, the same is true for the corresponding energies:

ωγ ≃ ω − ω′. This means that the 4-momentum of the virtual photon q = k − k′ nearly

coincides with that of the final-state photon, kγ . As the produced photon is on the mass

shell, the virtual photon is nearly on the mass shell, and its propagator should lead to an

enhancement of the amplitude of the process.

The transition matrix element of the neutrino magnetic moment induced radiative

scattering process on a “spinless electron” is

Mm = −ie2
µν

q2
ǫ∗µ(kγ)Q

µαj̃α , q ≡ k − k′ . (2.16)

Here

j̃α = ū(k′)σαβq
βu(k) = (k + k′)αū(k

′)u(k) , (2.17)

where we have used the Gordon identity and took into account that neutrinos are treated

as massless particles. As before, the kinematic regime of non-relativistic electron recoil is

considered. Without constraining |~p ′|, for the double and single differential cross sections

we find

d2σm
dωγd cos θγ

=
µ2
νe

4

(2π)3
1

4m2
e

· (ω − ωγ)
2

ωγ

(

3− cos2 θγ
)

, (2.18)

dσm
dωγ

=
µ2
νe

4

(2π)3
1

m2
e

· 4
3

(ω − ωγ)
2

ωγ
. (2.19)

The cross section for the emission of photons with energies ωγ ≥ ωγmin ≡ ω0 is

σm(ωγ > ω0) =
µ2
νe

4

(2π)3
1

m2
e

· 4
3
ω2

{

ln(1/x)− 3

2
+ 2x− 1

2
x2

}

. (2.20)

For ω0 ≪ ω this equation gives

σm(ωγ > ω0) =
µ2
νe

4

(2π)3
1

m2
e

· 4
3
ω2

{

ln(ω/ω0)−
3

2

}

. (2.21)

Next, we again constrain the momentum of the final-state electron by requiring |~p ′| ≤
p0. Integrating over the θγ in the allowed range given in eq. (2.13), we find, to leading

order in p0,

dσm
dωγ

=
µ2
νe

4

(2π)3
1

m2
e

· 1
6

(ω − ωγ)p
3
0

ωω2
γ

, (2.22)

σm(ωγ > ω0) =
µ2
νe

4

(2π)3
1

m2
e

· 1
6

p30
ω0

{

1− x− x ln(1/x)
}

. (2.23)

13We ignore the possibility that the final-state photon is emitted from the neutrino line, as this would be

a process of higher order in the very small neutrino magnetic moment µν .
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For ω0 ≪ ω this gives

σm(ωγ > ω0) ≃
µ2
νe

4

(2π)3
1

m2
e

· 1
6

p30
ω0

=
µ2
να

2

π

1

m2
e

· 1
3

p30
ω0

. (2.24)

Interestingly, in this approximation the cross section is essentially independent of the inci-

dent neutrino energy ω, except that ω0 should satisfy ω0 < ω.

The cross sections (2.22)–(2.24) increase with decreasing minimum photon energy ω0.

Recall, however, that the photon energy cannot be too small: it should exceed the charac-

teristic frequency (ωat for neutrino scattering and ωp for scattering on free electrons in a

conductor) in order to avoid the ω4 suppression.

As discussed at the beginning of this subsection, the cross section of the neutrino

magnetic moment induced process exhibits for small p0 a kinematic enhancement due to

the propagator of the virtual photon being close to its pole. The enhancement, however,

turns out to be relatively mild: the cross sections (2.22)–(2.24) scale as p30, which is to be

compared with the p40 dependence found in section 2.1.

We have considered here radiative neutrino scattering process (1.11) induced by the

neutrino magnetic dipole moment µν . In general, neutrinos may have both the magnetic

and electric dipole moments, which, in addition, are matrices in flavour space. One can take

this into account by replacing in the expression for the transition amplitude the quantity

µν by µ̃αβ ≡ (µν + iǫν)αβ , where (ǫν)αβ is the matrix of neutrino electric dipole moments.

Such an amplitude will then describe the transition of να to a neutrino νβ which may be

of the same or different flavour. As the final-state neutrino is not detected, in calculating

the cross section of the process one has to sum over β. For the ultra-relativistic neutrinos

we confine ourselves to, this amounts to replacing in the expressions for the cross sections

µ2
ν → ∑

β |µ̃αβ |2.

3 DM detection through radiative coherent scattering?

It would be interesting to extend the above considerations to detection of other particles,

such as DM. Unfortunately, the mechanism of enhancement of the detection cross section

through macroscopic coherence considered here for neutrinos would not work for non-

relativistic projectiles. The reason is actually mostly kinematic. Macroscopic coherence

requires tiny net recoil momenta ~p ′ of the target electrons. It is easy to see that for

non-relativistic projectiles vanishing ~p ′ is excluded by energy-momentum conservation (see

appendix A). Small non-zero values of ~p ′ are allowed, but only for extremely soft emitted

photons, ωγ ≪ |~p ′| (or ωγ . |~p ′| in the case of moderately relativistic projectiles). As

discussed above, the cross sections of radiative scattering on electrons get a very strong

∼ ω4
γ suppression in this case.

As the conventionally discussed DM particles are supposed to be non-relativistic, the

detection enhancement mechanism considered here will not be operative for them.14 It

may, however, work for detection of relativistic particles that may exist in the dark sector.

14In ref. [36] it was suggested to use the radiative coherent scattering on nuclei to detect DM particles,

but the issue of macroscopic coherence has not been addressed there.
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a(k) γ(k1)

γ(q)

e(p) e(p′)

γ(k2)

e(p + q)

a(k) γ(k1)

γ(q)

e(p) e(p′)

γ(k2)

e(p− k2)

a(k) γ(k1)

γ(q)

e(p) e(p′)

γ(k2)

Figure 2. Leading order Feynman diagrams contributing to radiative axion-photon conversion on

electrons (4.1) through the inverse Primakoff mechanism. The diagrams with interchanged photon

4-momenta k1 and k2 should be added.

4 Coherent detection of relativistic axions

The enhancement mechanism considered in the present paper could also work for detection

of relativistic axions (such as e.g. axions from the sun). The detection process is

a(k) + e(p) → e(p′) + γ(k1) + γ(k2) . (4.1)

In this case there are two photons in the final state, with 4-momenta k1 and k2.

The mechanism of the process (4.1) that we consider is the radiative inverse Primakoff

effect. As before, we will be interested in the coherent interaction of the projectile particle

with a group of electrons of zero total spin, which allows us to adopt the approximation of

a “spinless electron”. The leading order diagrams contributing to the process are shown

in figure 2. Note that the non-radiative inverse Primakoff effect on charged particles is

incoherent, as the contributions of scattering on electrons and positively charged nuclei

cancel each other in the case of electrically neutral targets for low momentum transfers [37].

Coherent axion-photon conversion is, however, possible in external magnetic fields [38]. We

do not consider Compton-like photon production (or double photon production) because

the direct axion-electron coupling is spin dependent and so it cannot be coherently enhanced

in the case of unpolarized targets.

We consider the aγγ interaction Lagrangian

L =
1

4
gaγγaFµνF̃

µν . (4.2)

The amplitude of the process corresponding to the diagrams of figure 2 can be written in

the form similar to (2.16):

Ma = −ie2gaγγ

{

1

q21
ǫ∗µ(k1)Q

µα(p, k; p′, k1, k2)ĵ2,α +
1

q22
ǫ∗µ(k2)Q

µα(p, k; p′, k2, k1)ĵ1,α

}

.

(4.3)

Here

ĵi,α = ερβσαk
ρ
i ǫ

∗β(ki)q
σ , qi ≡ k − ki, (4.4)

and the tensor Qµα(p, k; p′, k1, k2) was defined in eq. (2.5). We will neglect the axion mass

ma in all the calculations, except that we will keep the gaγγ coupling constant (which is
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usually assumed to be proportional to ma) finite. As before, we calculate all the cross

sections in the regime of non-relativistic electrons, first without any additional constraints

on |~p ′|. For detection of one of the two emitted photons the double and single differential

cross section are

d2σa
dω1d cos θ1

=
g2aγγe

4

(2π)3
1

96m2
e ωω1(ω − ω1)

{

4ω4 − 16ω3ω1 + 25ω2ω2
1 − 17ωω3

1 + 8ω4
1

+ωω1

[

(3ω2 − 9ωω1 + 10ω2
1) cos θ1 + 3(ω − ω1)

2 cos2 θ1
]

}

, (4.5)

dσa
dω1

=
g2aγγe

4

(2π)3
1

12m2
e ωω1(ω − ω1)

(

ω4 − 15

4
ω3ω1 +

23

4
ω2ω2

1 − 4ωω3
1 + 2ω4

1

)

. (4.6)

To find the total cross section of the process we have to integrate (4.6) over ω1 in the

interval [ω0, ω − ω0]. The upper integration limit is ω − ω0 rather than ω because we now

have two photons in the final state, whose energies are related by the energy conservation

condition ω1 + ω2 = ω and must both be above the infrared cutoff ω0. For the total cross

section we then find

σa =
e4g2aγγ
(2π)3

ω2

6m2
e

{

ln

(

1

x
− 1

)

− 41

24
+

15

4
x− x2 +

2

3
x3

}

(4.7)

with x = ω0/ω. Note that x must satisfy x < 1/2 as otherwise energy conservation would

force one of the photon energies to be below ω0 in violation of our assumption.

Next, we consider the case in which |~p ′| is constrained from above by a small value p0.

For the differential and total cross sections we find

dσa
dω1

=
g2aγγe

4

(2π)3
p30

48m2
eω

2

(

ω1

ω − ω1
+

ω − ω1

ω1

)

(4.8)

and

σa =
g2aγγe

4

(2π)3
p30

24m2
eω

[

ln

(

1

x
− 1

)

− 1 + 2x

]

. (4.9)

5 Effects of atomic binding

In sections 2 and 4 we considered radiative neutrino scattering and radiative axion-photon

conversion on free electrons. This is suitable for conduction electrons in metals; however,

for scattering on atomic electrons in dielectrics the effects of atomic binding should in

general be taken into account. We shall show now that for the kinematic regime of interest

to us, when the net recoil momentum of the electron is small and at same time the neutrino

or axion energy satisfies ω ≫ ωat, the atomic effects can be neglected and the results found

in section 2 apply.

To demonstrate this, let us first note that for radiative scattering on free electrons,

in the regime of small |~p ′| the contribution of the first two terms in the expression for

Qµα (2.5) is small, and the main contribution comes from the third term, corresponding
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to the right diagram of figure 1.15 The same holds true when atomic effects are taken into

account: in the kinematic region of interest to us the analogues of the first two terms in

Qµα are small, and the main contribution comes form the analogue of the third term, which

is largely insensitive to the effects of atomic structure (see below). This is fully analogous

to what happens for elastic scattering of photons on atoms when the photon energy is

much higher than the characteristic atomic frequencies ωat. As discussed in section 1.3,

in this limit the cross section essentially coincides with that of photon scattering on free

electrons. This can be readily seen from the expression for the amplitude of elastic photon-

atom scattering. For non-relativistic electrons, the leading order amplitude in the Coulomb

gauge is proportional to [39, 40]

− 1

m

∑

n







〈i|e−i~kf~r~p~ǫ ∗f |n〉〈n|ei
~ki~r~p~ǫi|i〉

En − Ei − ωi − iε
+

〈i|ei~ki~r~p~ǫi|n〉〈n|e−i~kf~r~p~ǫ ∗f |i〉
En − Ei + ωi − iε







+(~ǫ ∗f · ~ǫi)〈i|ei(
~ki−~kf )~r|i〉. (5.1)

Here ~p = −i~∇ is the 3-momentum operator, ~ki and ~kf are the momenta of the incident

and scattered photons, ~ǫi and ~ǫf are their polarizations vectors, and the sum is over the

intermediate atomic states. In eq. (5.1) we have taken into account that for elastic scat-

tering on a heavy system ωf = |~kf | coincides with ωi = |~ki|. For ωi ≪ ωat all three terms

in (5.1) are of the same order of magnitude and nearly cancel each other, leading to the

∼ ω4
i suppression mentioned in section 1.3; however, in the regime ωi ≫ ωat that is of

interest to us, the first two terms in (5.1) are small compared to the third term and to a

good accuracy can be neglected. Moreover, for spherically symmetric atomic states |i〉 they
tend to cancel each other.16 The remaining term, (~ǫ ∗f ·~ǫi)〈i|ei(

~ki−~kf )~r|i〉, in general depends

on the electron charge distribution in the state |i〉. For |~ki − ~kf | ≪ R−1
at it is actually

independent of the atomic structure, and for photon scattering on a single atom reduces

to Z(~ǫ ∗f · ~ǫi), where Z is the total number of the atomic electrons. This corresponds to

coherent elastic photon-atom scattering. If the more stringent condition |~ki−~kf | ≪ L−1 is

satisfied where L is the linear size of the target, the scattering on all electrons in the target

is coherent. Otherwise, one would need to take into account structure factors describing

electron distribution in the target, as discussed in section 1.2.

15Indeed, for small electron recoil momenta the terms in Qµα proportional to p′
µ
pα and to pµp′

α
nearly

cancel each other, whereas the terms ∝ (k−k′)α are subleading in the case of non-relativistic electrons and

weak NC and CC mediated neutrino-electron scattering (their contributions vanish exactly for neutrino

magnetic moment mediated νe scattering as well as for axion-photon conversion). The terms ∝ kµ
γ do

not contribute by gauge invariance. Note that for calculations in the Coulomb gauge in the rest frame

of the initial-state electron the whole second term in Qµν does not contribute to the amplitude, and the

contribution of the first term is small because of p′ ≈ p.
16Indeed, using the closure property of the atomic states and commuting the factors ei

~ki~r, e−i~kf~r

with the momentum operator, for the sum of the first two terms in (5.1) one finds in this limit

−(1/mωi)ǫ
∗l
f ǫsi e

i(~ki−
~kf )~r〈i|kl

ip
s + ks

fp
l|i〉, which vanishes for spherically symmetric states |i〉. As we are

interested in coherent scattering on a group of atoms, by |i〉 one should actually understand the ground

state of such a system. The cancellation then happens also in the case when this state is spherically sym-

metric (i.e. has zero total angular momentum), even if the ground states of the individual atoms are not.
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Similar arguments apply to radiative neutrino scattering on atoms. Note that in this

case one has to replace in eq. (5.1)

~ki → ~k − ~k′ , ωi → ω − ω′ , ~kf → ~kγ , ωf → ωγ , ~ǫi → ~j and ~p~ǫi → p ·j , (5.2)

where pµ = i∂µ is the 4-momentum operator and jµ = (j0, ~j ) is the relevant matrix

element of the neutrino current. The condition |~ki − ~kf | ≪ R−1
at is then replaced by

|~k − ~k′ − ~kγ | = |~p ′| ≪ R−1
at , which we always assume to be satisfied with a large margin

when discussing macroscopically coherent effects. With minor modifications related to the

presence of two photons in the final state, the same argument applies also to radiative

axion-photon conversion on atoms.

It should be noted that for ω ≫ ωat inelastic scattering with ionization or excitation

of atoms typically dominates, while the processes in which the atom remains in its initial

state are only important for nearly forward scattering. This is, however, exactly the case

we are interested in. The fact that the probability of the radiative scattering without

excitation or ionization of the target atoms is small is already taken into account by the

suppression of the individual cross sections which we found upon constraining the electron

recoil momentum by |~p ′| . p0 ∼ 10−5 eV.

6 Coherent effects and the cross sections

Let us now assess the effects of macroscopic coherence on the cross sections of neutrino

and axion detection processes (2.1) and (4.1).

As discussed in sections 1.2 and 1.3, in order to take possible macroscopic coherence

effects into account one has to multiply the elementary amplitude of the process by the

relevant structure factor (such as (1.6) or (1.12)). The structure factor depends on the

target used in the experiment, and the calculated cross section will therefore also be target-

dependent. However, simple estimates of the effects of macroscopic coherence can be

obtained in a rather general way as follows.

Assume that all the scatterers contained in some volume of a linear size L0 within the

target contribute to the cross section coherently; for this to occur, the net recoil momentum

of the scatterer ~p ′ must satisfy |~p ′| . p0 ∼ 2πL−1
0 . The coherent volume L3

0 can in principle

range from just the volume per one scatterer (no coherence) to the total volume of the

target L3 (complete coherence). To assess the coherence effects one can first calculate

the elementary cross section of the process with the constraint |~p ′| ≤ p0 imposed. In

calculating such constrained elementary cross sections the corresponding structure factors

can be replaced by unity. To find the cross section per target particle with coherence

effects taken into account one would then have to multiply the constrained elementary

cross section by the number of scatterers in the coherent volume L3
0 ≃ (2π/p0)

3.17 The

17Let the number of scatterers within one coherent volume be N0, and the number of coherent volumes

in the target be k. The total number of scatterers in the target is N = kN0. If σ0 is the elementary cross

section of the process, the cross section corresponding to scattering on all the target particles contained

within one coherent volume is σ0N
2
0 . The total cross section is σ0N

2
0 × k = σ0N0N . The cross section per

one target particle is then σ0N0, as stated. In the fully coherent case (N0 = N) and completely incoherent

case (N0 = 1) the total cross sections are σ0N
2 and σ0N , respectively, and the corresponding cross sections

per target particle are σ0N and σ0.
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choice of the recoil momentum cutoff p0 (i.e. of the linear size of L0 of the coherent volume)

would then have to be optimized, within the range allowed by the kinematics of the process

and the geometry of the experiment, by maximizing the resulting cross section.

In doing this, one should not forget the issue of observability of the process, which may

be fully coherent but completely unobservable. For example, as discussed in section 1.1,

for elastic neutrino scattering the optimization requires to choose for the maximum recoil

momentum (denoted q0 there) the smallest possible value q0 ∼ L−1, but the scattering will

then be unobservable due to the vanishingly small recoil energy of the target particles (see

the discussion around eqs. (1.3) and (1.4)). No such problems arise for radiative processes

discussed in the present paper.

We shall now estimate the effects of possible macroscopic coherence on radiative neu-

trino scattering on electrons. The corresponding cross sections with the net electron recoil

momentum constrained by |~p ′| ≤ p0 with a small cutoff p0 were found in section 2. Consider

first radiative neutrino-electron scattering mediated by the usual NC and CC weak inter-

actions. The constrained differential and integrated elementary cross sections are given

in eqs. (2.14) and (2.15), and are proportional to p40. To find the cross section per one

target electron one has to multipy these cross sections by the number of electrons in the

coherent volume,

N0e ≃ neL
3
0 ≃ ne

(

2π

p0

)3

, (6.1)

where ne is the electron number density in the target. As a result, the cross sections per one

target electron turn out to be proportional to p0 and are maximized for maximal possible

value of p0, which corresponds to the absence of macrosopic coherence. What actually

happens in this case is that macroscopic coherence can be achieved, but it requires such

a stringent constraint on the value of |~p ′| (and so on the phase space available to the

final-state particles) that the resulting cross sections are much smaller than those in the

incoherent case. That is, macroscopic coherence is possible, but it leads to a reduction of

the cross section rather than to its increase.

The situation is different for neutrino magnetic (or electric) dipole moment mediated

radiative neutrino scattering. As discussed in section 2.2, for small ~p ′ the cross sections

get an enhancement due to the propagator of the virtual photon being close to its mass-

shell pole. The enhacement is, however, rather modest: the constrained elementary cross

sections (2.22)–(2.24) are proportional to p30 rather than to p40, as it was in the case of

weak NC and CC mediated radiative process. As before, to obtain the cross sections per

target electron we have to multiply the constrained elementary cross sections by N0e given

by eq. (6.1). The factor p30 in the cross sections (2.22)–(2.24) then gets canceled by 1/p30
from eq. (6.1), i.e. to leading order in the small p0 the resulting cross sections per target

electron are p0-independent.
18 From eqs. (2.22) and (2.24) we then find

dσm

dωγ
≃ µ2

νe
4

6

(ω − ωγ)

ωω2
γ

ne

m2
e

, (6.2)

18As follows from the derivation of eqs. (2.22)–(2.24), this is correct only when p0 satisfies L−1 . p0 ≪

ω, ωγ , ω − ωγ .
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σm(ωγ > ω0) ≃ 1

6
µ2
νe

4 ne

m2
eω0

=
8

3
π2 µ2

να
2

m2
eω0

ne . (6.3)

Here the lines over σm are to denote the cross sections per one target electron with coherence

effects taken into account, and we have assumed ω0 ≪ ω in eq. (6.3).

The simplified approach we have adopted to evaluate the coherence effects, namely, to

introduce the cutoff p0 ∼ 2π/L0 on the electron recoil momentum, replace the structure

factors F (~k−~k′−~kγ) = F (~p ′) within the coherence volume L3
0 by unity and then multiply

the obtained elementary cross sections by the number electrons in the coherent volume,

actually proves to be rather accurate. As we shall see, it just slightly overestimates the

numerical factors in the cross sections (6.2) and (6.3). A more accurate estimate is obtained

if one notes that for a macroscopically large number of electrons of the target contributing

coherently to the cross section of the process, the summation in the expression for the

structure factor in eq. (1.12) can be replaced by integration. This yields

F (~k − ~k′ − ~kγ) ≃
Ne

V
(2π)3δ3(~k − ~k′ − ~kγ) , (6.4)

where Ne = neV is the total electron number in the target and V is the target’s volume.

Mutiplying the squared matrix element of the elementary process by

|F (~k − ~k′ − ~kγ)|2 ≃ Nene(2π)
3δ3(~k − ~k′ − ~kγ) , (6.5)

performing the integration over the momenta of the scattered neutrino and the recoil

electron as well as over the directions of the photon emission and dividing by Ne, for the

differential cross section per one target electron we obtain

dσm

dωγ
=

µ2
νe

4

4π

(ω − ωγ)

ωω2
γ

ne

m2
e

, (6.6)

which has the same structure as (6.2), but is smaller by a factor of 3/2π ≃ 0.5. The

ωγ-integrated cross section in the limit ω0 ≪ ω will be smaller than the expression in

eq. (6.3) by the same factor. Note that the same approach applied to the radiative neutrino-

electron scattering mediated by the NC and CC weak interactions would yield vanishing

cross sections of coherent scattering per target electron. This corresponds to the already

discussed fact that in this case macroscopic coherence, though possible for sufficiently small

electron recoils, would lead to vanishingly small cross sections.

Can the coherent enhancement of the neutrino magnetic moment mediated radiative

neutrino scattering help us to increase the experimental sensitivity to the neutrino magnetic

dipole moments or even to detect them? The best laboratory limits on neutrino magnetic

moments come from the experiments on elastic νe scattering at reactors, where one looks for

possible deviations of the measured differential cross section from the usual one mediated

by the weak CC and NC processes. The cross section due to the µν-induced elastic νe

scattering is
dσel

m

dT
=

µ2
νe

2

4π

(

1

T
− 1

ω

)

≃ µ2
να

T
, (6.7)
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where T is the kinetic energy of the recoil electron and in the last (approximate) equality

it is assumed that T ≪ ω. This can be compared with the differential cross section (6.6) of

the radiative neutrino-electron scattering, where a forward photon rather than the recoil

electron is detected. For a numerical estimate, we set in eq. (6.6)

ne = NAρ(g/cm
3)Ye cm

−3 ≃ (1.33 keV)3 ρ(g/cm3) , (6.8)

where NA is the Avogadro constant, ρ is the density of the target material, Ye is the number

of electrons per nucleon in the target, and in the last (approximate) equality we have set

Ye = 1/2. In the regime ωγ ≪ ω this gives

dσm

dωγ
≃ 4πα2µ2

ν

(1.33 keV)3

m2
eω

2
γ

ρ(g/cm3) . (6.9)

Taking for an estimate ωγ ∼ 10 eV, which is about the smallest value that would allow

to avoid the ω4 suppression of the radiative cross section, ρ ∼ 1 g/cm3, and comparing

eqs. (6.7) and (6.9), we find that even in the most optimistic case the cross section of

coherently enhanced radiative neutrino-electron scattering exceeds that of the incoherent

elastic scattering only for the electron recoil energies satisfying T & 100 keV. At the same

time, reactor experiments are currently probing νe scattering in the sub-keV region of the

recoil energies T , where the cross section of the incoherent elastic scattering dominates.

Still, it should be noted that experimentally detecting ∼ 10–100 eV photons may be easier

than detecting electron recoil energies in the same range.

A potentially important advantage of the coherent radiative µν-mediated νe scattering

is that it could in principle allow detection of very low energy neutrinos. Consider, e.g.,

neutrinos of energy ω ∼ 100 eV. For the elastic νe scattering the electron recoil energies

would then be T ≤ 2ω2/me ≃ 0.04 eV, which is far too small to be measured in a foresee-

able future. At the same time, detection of photons of energy ∼ 100 eV which would be

produced through coherent radiative νe scattering does not pose any problem. However,

the observability of the radiative process would depend crucially on the currently unknown

values of the neutrino magnetic dipole moments (which, of course, applies to the elastic

process as well). To give an idea of the magnitude of the expected cross section we rewrite

below the expression for dσm/dωγ given in eq. (6.9) in convenient units:

dσm

dωγ
≃ 2.06× 10−56

(

µν

10−12µB

)2

ρ(g/cm3)

(

100 eV

ωγ

)2

cm2/eV . (6.10)

Here µB = e/2me is the electron Bohr magneton.

Turning now to radiative coherent axion-photon conversion on electrons considered in

section 4, we note that this process is similar to the neutrino magnetic moment induced

radiative νe scattering in that the interaction with electrons is mediated by the photon

exchange and the constrained elementary cross section of the process scales as p30 at small

p0. The assessment of the effects of possible macroscopic coherence is therefore also similar

to the one for µν-mediated νe scattering. Following the procedure outlined at the beginning
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of this section, for the cross section per target electron with coherence effects taken into

account we find

σ̄a ≃ 2

3
π2

g2aγγα
2

m2
e ω

ne ≃
2

3
g2aγγα

2π2 (1.33 keV)3

m2
e ω

ρ(g/cm3) . (6.11)

If instead one calculates the structure factor by replacing the summation by integration as

in eq. (6.4), the result will differ from (6.11) by a factor of 3/2π.

It is instructive to compare this with other processes for axion detection. The most

relevant process for experimental searches for relativistic axions is axion-photon conver-

sion in an external magnetic field which is used in searches for axions from the sun with

helioscopes. An axion traveling through a transverse magnetic field B over a length L is

converted to photons with a probability P given by [43]

P = 2.4× 10−21
(

gaγγ × 1010GeV
)2

(

B

T

)2(L

m

)2

F , (6.12)

where the form factor

F =

(

2 sin( qL2 )

qL

)2

(6.13)

accounts for the loss of coherence as a function of the momentum transfer q. For practical

purposes F ≈ 1 is a good approximation for the energy transfers of interest here. The

photon production rate is Γa = ja · P · Aeff , where ja is the flux of axions from a given

source and Aeff is the effective area of the detector. Realistic values for recent axion

helioscopes such as CAST [44] are B ≈ 10 T, L ≈ 10 m and Aeff ≈ 1 cm2 and we expect

Γa ≈ 2.4× 10−17cm2 (gaγγ × 1010GeV)2ja . (6.14)

The photon production rate due to the coherent radiative axion-photon conversion mech-

anism considered in section 4 is

Γa = jaσ̄aneV ≃ σ̄a(1.33 keV)3ρ(g/cm3)V ja , (6.15)

where V denotes the volume of the detector, and the cross section per target electron

σ̄a was given in eq. (6.11). We can now compare the photon flux due to conversion in a

magnetic field with the flux from radiative scattering on electrons. Taking for an estimate

ω ≃ 3 keV, the characteristic energy of axions produced in the sun [45], and ρ ≃ 1 g/cm3,

we find that the rate in eq. (6.15) is by far small compared to the magnetic conversion

rate (6.14) for all reasonable detector volumes. Therefore, macroscopic coherence of the

radiative axion conversion on electrons is not competitive with the coherent conversion in

a magnetic field.

7 Summary and discussion

We have considered the possibility of achieving macroscopic coherence in neutrino detec-

tion experiments. For the elastic neutrino scattering processes, coherence at macroscopic
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scales can only be attained at the expense of unmeasurably small recoil energies of the

target particles, Erec∼ 10−43 eV, and so is of no use for neutrino detection. We therefore

concentrated on radiative neutrino scattering on electrons νe → νeγ, which has a number

of attractive features:

• Unlike the elastic neutrino-nucleus scattering, elastic and radiative νe scattering pro-

cesses are sensitive to neutrino flavour and so could serve for studying neutrino flavour

oscillations.

• In the case of radiative scattering the emitted photon rather than the recoil electron

can be detected. As the photon energy ωγ can be as large as the momentum |~q |
transferred to the electron from the neutrino, the process is sensitive to the neutrino

momentum transfer rather than to the (very small) recoil energy of the target electron.

• An important advantage of the radiative νe scattering is that neither the momentum

transfer |~q | nor the photon energy ωγ need to be small in order to ensure macroscopic

coherence of the process. What actually has to be small is the net recoil momentum

of the target electron, which is the difference between the momentum transfer from

the neutrinos ~q = ~k− ~k′ and the momentum ~kγ carried away by the photon. This can

happen even when both |~q | and |~kγ | = ωγ are large compared to the inverse linear

size of the target (or of a macroscopic volume within the target).

The drawback is that the requirement ~k − ~k′ ≃ ~kγ puts a stringent constraint on the

kinematics of the process, reducing the phase space accessible to the final-state particles

and in general also affecting the dynamics of the process. This leads to a suppression

of the cross section of the elementary process of neutrino radiative scattering on a single

target electron. We have found that for the usual NC and CC induced νe interactions,

macroscopic enhancement of the number of electrons contributing coherently to the total

cross section for small electron recoil momenta cannot overcome the suppression of the

elementary cross section, and the net effect is a strong reduction of the total cross section

compared to the incoherent case.

The situation is different for the radiative νe scattering induced by neutrino magnetic

(or electric) dipole moments. In that case the amplitude of the process is dynamically

enhanced for ~k − ~k′ ≃ ~kγ because of the propagator of the virtual photon being close to

its mass-shell pole. The suppression of the elementary cross section due to the decrease

of the phase space volume at small electron recoil momenta is then compensated by the

macroscopically large number of electrons contributing coherently to the photon produc-

tion rate. However, the cross section of the radiative process has some additional small

factors (such as an extra power of α) compared to the non-radiative one. At the same

time, the usual increase of the radiative cross section at small photon energies is limited

by the requirement that ωγ exceed the characteristic atomic frequencies ωat for neutrino

scattering on atomic electrons or plasma frequency ωp for scattering on free electrons in a

conductor. As a consequence, even in the most optimistic case (ωγ close to its lower limit)

for coherently enhanced radiative neutrino scattering the cross section per target electron

exceeds the usual differential cross section of µν-mediated νe scattering only when in the
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latter case the kinetic energies of recoil electrons satisfies T & 100 keV. In any case, no

increase of the experimental detection rates by a huge factor, which could be expected for

a macroscopically coherent process, takes place.

The µν-mediated coherent radiative νe scattering has another advantage, though: it

allows in principle to detect neutrinos in the energy domain ∼100 eV — a few keV, which

is currently not accessible to the experiment. Possible sources of such neutrinos include

nuclear reactors, the sun and relic supernovae, whose neutrino spectrum can be softened by

large redshifts. At the moment, the corresponding expected fluxes are essentially unknown,

except for solar neutrinos, for which only one calculation in the keV energy range exists [41].

To detect keV-range neutrinos through the usual elastic µν-mediated νe scattering, one

would need to measure the electron recoil energies on the order of ∼ 1 eV, whereas the

current sensitivity is at the level of ∼ 0.3 keV. At the same time, detecting a 100 eV — a

few keV photon does not pose any experimental problem. Obviously, whether or not such

a detection of very low energy neutrinos will ever become possible depends crucially on

the (currently unknown) values of the neutrino magnetic or electric dipole moments. This

applies, of course, to both the radiative scattering discussed here and the usual elastic νe

scattering.

To summarize very briefly our findings, the elastic and radiative neutrino scattering

processes that we have considered do not allow strong increase of neutrino detection cross

sections through macroscopic coherence. For elastic scattering, the cross section per target

particle can be increased by a huge factor ∼ N1/3, where N is the total number of scatterers

in the target; however, in this case macroscopic coherence requires neutrino scattering

in practically forward direction with essentially zero momentum transfer and so with no

observable signatures.

In the case of coherent radiative scattering, the emitted photons can in principle be

easily detected, giving a clear experimental signature; however, the constraints on the kine-

matics of the process coming from the requirement of macroscopic coherence lead to very

small cross sections per target particle. The only exception may be radiative scattering me-

diated by neutrino magnetic or electric dipole moments, but the experimental prospects for

such processes are unclear because of the the unknown neutrino electromagnetic moments.

Does all this mean that macroscopically coherent detection of neutrinos is not possible

in principle? We did not prove this as a theorem, but we believe that with our studies the

observability of such a coherent enhancement becomes increasingly less probable.

We have also considered radiative axion photon conversion on electrons. Similarly to

the case of µν-mediated coherent radiative νe scattering, the amplitude receives a dynam-

ical enhancement in the kinematic regime of interest to us since the photon propagator

goes almost on shell. Therefore, the decrease of the phase space volume is again to some

extent compensated by the contribution of a macroscopic number of electrons. However,

in this case the radiative conversion process should be compared with the most relevant

detection process employed by ongoing experiments, i.e. the axion-photon conversion in

an external magnetic field (the inverse Primakoff effect). This process is already macro-

scopically coherent, and it turns out that, despite the coherent enhancement, the radiative

axion photon conversion studied in this paper is not competitive in practice.
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Can macroscopically coherent radiative scattering processes be employed for detecting

dark matter particles? We have shown that for the conventionally discussed non-relativistic

dark matter particle candidates this is not possible. The coherent enhancement mechanism

studied here may, however, work for the detection of relativistic particles which usually exist

in multi-component dark matter models, an example being the “boosted” dark matter [42].

We believe that such a possibility deserves a dedicated study.
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A Kinematics of the process

Consider the kinematics of the process

X(k) + e(p) → X(k′) + e(p′) + γ(kγ) , (A.1)

where X is a projectile particle of mass M . In the rest frame of the initial-state electron

the 4-momenta of the incident X-particle, initial-state electron, scattered X-particle, final-

state electron and emitted photon are, respectively,

k =
(

ω,~k
)

, p = (me,~0) , k′ =
(

ω′,~k′
)

, p′ =
(

Ep′ , ~p
′
)

, kγ =
(

ωγ ,~kγ
)

, (A.2)

where

ω =

√

~k 2 +M2, ω′ =

√

~k′2 +M2 , Ep′ =
√

~p ′2 +m2
e , ωγ = |~kγ | . (A.3)

The energy and momentum conservation laws yield

ω = ω′ + (Ep′ −me) + ωγ , (A.4)

~k = ~k′ + ~p ′ + ~kγ . (A.5)

In what follows we will be assuming the recoil electron to be non-relativistic and will neglect

its kinetic energy. The energy conservation condition then simplifies to

ω = ω′ + ωγ . (A.6)

Expressing ~k′ from eq. (A.5) and substituting it into (A.6), we get

(~k − ~kγ − ~p ′)2 = ~k2 − 2ωγ

√

~k 2 +M2 + ω2
γ , (A.7)

or

~p ′2 − 2|~p ′|R cos θ
~p′(~k−~k′)

− 2|~k|ωγ cos θγ = −2ωγ

√

~k2 +M2 . (A.8)

Here θγ is the angle between ~kγ and ~k, θ
~p′(~k−~k′)

is the angle between ~p ′ and ~k − ~kγ , and

R ≡ |~k − ~kγ | =
√

~k2 + ω2
γ − 2ωγ |~k| cos θγ . (A.9)
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We will be interested in the regime of very small |~p ′|. Let us first demonstrate that for

M 6= 0 the quantity |~p ′| cannot be arbitrarily small. Indeed, in the limit ~p ′ → 0 eq. (A.8)

leads to unphysical cos θγ =
√

~k 2 +M2/|~k| > 1. Next, we assume |~p ′| to be non-zero but

small, such that the ~p ′2 term in (A.8) can be neglected. We should then also replace cos θγ in

the factor R by unity, i.e. set R = ||~k|−ωγ |. This is because R enters in eq. (A.8) multiplied

by |~p ′|, and for small |~p ′| the difference 1− cos θγ = O(|~p ′|); thus, keeping 1− cos θγ in R

would lead to terms of higher order of smallness in |~p ′|. Requiring cos θγ ≤ 1, we then find

from eq. (A.8)
√

~k2 +M2 − |~k| ≤ ||~k| − ωγ |
ωγ

· |~p ′| cos θ
~p′(~k−~k′)

. (A.10)

For non-relativistic projectile particles (|~k| ≪ M), eq. (A.10) yields

M − |~k|
ωγ

· |~p ′| cos θ
~p′(~k−~k′)

≤ |~k| , (A.11)

which means that the two terms on the left hand side should nearly cancel each other. This

requires

ωγ ≃ |~k|
M

|~p ′| cos θ
~p′(~k−~k′)

≪ |~p ′| . (A.12)

As discussed in section 1.1, to achieve macroscopic coherence one needs |~p ′| . 10−5 eV;

condition (A.12) then implies that the requirement ωγ & ωat (or ωγ & ωp for scattering on

free electrons in a conductor) is badly violated for non-relativistic projectiles, leading to a

strong suppression of the cross section of process (A.1). Similar estimates apply and the

same conclusion holds for the case of moderately relativistic projectiles.19

In the ultra-relativistic regime |~k| ≫ M eq. (A.10) yields an upper bound on M :

M2 ≤ 2ω
ω − ωγ

ωγ
|~p ′| cos θ

~p′(~k−~k′)
. (A.13)

For ωγ not too close to its upper limit ω and cos θ
~p ′(~k−~k′)

∼ 1 eq. (A.13) yieldsM2 . 2ω|~p ′|.
For |~p ′| ∼ 10−5 eV and ω ∼ 1 keV this gives M . 0.14 eV, which can be readily satisfied

when the projectiles are neutrinos or axions.

B 3-body phase space volume

We shall now consider the regime of relativistic projectiles assuming that condition (A.13)

is satisfied with a large margin. This will allow us to treat the projectile as essentially

massless.

Consider the 3-body phase space volume integral

R3 ≡
∫

d3p′

2Ep′

d3kγ
2ωγ

d3k′

2ω′
δ3(~k − ~k′ − ~p ′ − ~kγ)δ(ω − ω′ − ωγ) . (B.1)

19It is convenient to write in this case
√

~k2 +M2 = |~k|(1 + a), where a = O(1). Noting that the factor

[|~k| − ωγ ]/ωγ is maximised for ωγ ≪ |~k|, we find from (A.10) aωγ ≤ |~p ′| cos θ~p′(~k−~k′) ≪ ωat.
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in the limit of non-relativistic energies of the recoil electrons. We will calculate it in two

cases: (i) without additionally constraining |~p ′| and (ii) assuming that |~p ′| is limited from

above by a small value p0. A similar approach is used in the computations of the cross

sections given in section 2.

We start by finding R3 without additionally constraining the electron recoil momentum

~p ′. It is convenient to first integrate over ~p ′ by making use of the δ3-function enforcing

3-momentum conservation. A straightforward calculation then yields

R3 =
π2ω3

3me
. (B.2)

Next, we will calculate R3 using a different integration order, which will be more

convenient for studying the case of constrained |~p ′|. To this end, we use the δ3-function to

integrate over the momentum ~k′ of the scattered projectile. One then has to substitute

~k′ = ~k − ~p ′ − ~kγ (B.3)

in the integrand of the remaining integral. Using δ(ω − ω′ − ωγ) = 2ω′δ[(ω − ωγ)
2 − ω′2]

and ω′2 = ~k′2 = (~k − ~p ′ − ~kγ)
2, we find

δ[(ω − ωγ)
2 − ω′2] = δ

(

2|~p ′|R cos θ
~p ′(~k−~kγ)

− ~p ′2 − 2ωωγ(1− cos θγ)
)

, (B.4)

where θγ is the angle between ~kγ and ~k and

R ≡ |~k − ~kγ | =
√

(ω − ωγ)2 + 2ωωγxγ , xγ ≡ 1− cos θγ . (B.5)

Requiring cos θ
~p ′(~k−~kγ)

≤ 1, we find that for fixed ω and xγ the quantity |~p ′| must lie in

the interval [p′min , p
′
max], where

p′min = R− (ω − ωγ) , p′max = R+ (ω − ωγ) . (B.6)

We shall now consider the case when |~p ′| is limited from above by a value p0 < p′max.

The integration over |~p ′| is then done in the interval |~p ′| ∈ [p′min, p0]. From the condition

p0 > pmin′ we find that cos θγ must be in the interval given in eq. (2.13). Small p0 therefore

means that the photon is emitted in a nearly forward direction with respect to the incident

projectile. From the energy-momentum conservation relations (A.5) and (A.4) and the

fact that we consider ultra-relativistic projectiles it follows that the same is true for the

scattered projectile particle, i.e. for small p0 its momentum ~k′ is also nearly parallel to ~k.

Note that in general 0 ≤ 1 − cos θγ ≤ 2. Therefore, the condition |~p ′| ≤ p0 puts a

non-trivial constraint on xγ = 1 − cos θγ only when the expression on the right hand side

of eq. (2.13) is smaller than 2. This yields p0/2 < ωγ . On the other hand, the constraint

|~p ′| ≤ p0 is only non-trivial when p0 < p′max for all xγ . Setting xγ = 0 (which minimizes

p′max for a given ωγ) then yields ωγ ≤ ω − p0/2. Thus, in the constrained case under

consideration the allowed range for the photon energy is

p0/2 ≤ ωγ ≤ ω − p0/2 . (B.7)
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Since we are interested in tiny values of p0, for all practical purposes the interval (B.7) can

be replaced by the usual allowed range for the photon energy, 0 ≤ ωγ ≤ ω.

Performing in (B.1) the integration over ~k′ by making use of the δ3 function, then

integrating over the directions of the vector ~p ′ with the help of (B.4), over the modulus

of this vector in the interval [pmin, p0] and finally over ~kγ (taking eq. (B.6) into account),

we find

R3 =
π2p30
6me

. (B.8)

This has to be compared with the unconstrained result (B.2).

C Squared matrix elements

In this appendix we collect the expressions for the squared moduli of the transition matrix

elements |M|2 for the processes considered in sections 2 and 4. Here, as usual, the line

over |M|2 denotes the summation over the polarisations of the final particles and averaging

over the polarisations of the initial-state ones.

For weak NC and CC induced radiative neutrino scattering, the calculations are most

easily done in the Coulomb gauge. From eq. (2.3) one finds

|Mw|2 =
G2

F g
2
V e

2

2
32

{

1

ω2
γ

[

~p ′2 − (~p ′~kγ)
2

ω2
γ

]

(ωω′ + ~k~k ′) + 2

(

ωω′ − (~k~kγ)(~k
′~kγ)

ω2
γ

)

− 2

ωγ

[

ω

(

~p ′~k ′ − (~p ′~kγ)(~k
′~kγ)

ω2
γ

)

+ ω′

(

~p ′~k − (~p ′~kγ)(~k~kγ)

ω2
γ

)]

}

. (C.1)

For neutrino magnetic (or electric) dipole moment induced radiative scattering, Lorentz

gauge proves to be more convenient because it allows one to more easily get rid of angle-

dependent denominators in most terms and thus to simplify the subsequent angular inte-

grations. From eq. (2.16) we obtain

|Mm|2 = µ2
νe

4

(−2kk′)2
8(kk′)

×
{

2

[

[p(k + k ′)][p′(k + k′)]

(pkγ)(p′kγ)
− 1

]

(kk′)−m2
e

[

p(k + k′)

p′kγ
− p′(k + k′)

pkγ

]2
}

. (C.2)

Calcualations for radiative axion-photon conversion are also more easily done in the

Lorentz gauge. Since the complete expression for the squared matrix element is quite

lengthy in that case (mostly due to the interference of the two parts of the amplitudes

corresponding to the interchange of the 4-momenta of the two photons in the final state),

we give here only the expression in the limit of small |~p ′| that is of main interest to us:

|Ma|2 ≃ 4g2aγγe
4

(

ω1

ω2
+

ω2

ω1

)

. (C.3)
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