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Introduction. Many interesting strongly interacting Quantum Field Theories (QFTs)

are not amenable to analytical treatment. Such theories are often studied via Lattice

Monte Carlo (LMC) numerical simulations, starting from the discretized Euclidean ac-

tion. However, LMC has some drawbacks, for example it cannot easily compute real-time

observables, it is rather computationally expensive, and it cannot directly describe renor-

malization group (RG) flows starting from interacting fixed points. Therefore, it is worth

exploring other numerical approaches to strongly interacting QFTs. One promising al-

ternative is provided by the Hamiltonian methods, which look for the eigenstates of the

quantum Hamiltonian. These methods use various finite-dimensional approximations to

the full infinite-dimensional QFT Hilbert space. Notable examples are the methods using

Matrix Product States [1, 2] and more general Tensor Networks [3] such as MERA [4] or

PEPS [5]. In this paper we will be concerned with another representative of this group

of methods — Hamiltonian Truncation (HT), also known as the Truncated Spectrum (or

Space) Approach, which is a direct generalization of the variational Rayleigh-Ritz (RR)

method from quantum mechanics. This method goes back to the seminal work of Yurov

and Al. Zamolodchikov [6, 7] and has since been applied in many contexts. See [8] for a

recent extensive review and the bibliography.

The idea of HT is simple. The QFT Hamiltonian operator H is split as H0 + V where

H0 is an exactly solvable Hamiltonian whose eigenstates form the basis of the Hilbert space.

One quantizes at surfaces of constant time and works in finite volume so that the spectrum

is discrete.1 The Hilbert space is then truncated to the low-lying eigenvectors of H0. The

matrix of H in this truncated Hilbert space is diagonalized exactly on a computer, to find

the low-energy spectrum of interacting eigenstates.

As was understood early on [16], the numerical convergence of the HT depends crucially

on the scaling dimension ∆V of the interaction V . If the interaction is strongly relevant,

in the RG sense, then HT converges fast, but convergence rate worsens as ∆V increases.

This is a limitation of the method. For interaction dimensions larger that d/2, naive HT

actually diverges [16]. To ensure the convergence, we will assume here that

∆V < d/2 . (1)

Another limitation of HT, as of many variational methods in general, is that the

Hilbert space grows exponentially with the cutoff. Specifically, the dimension grows as

exp(CEα
T ), where C > 0 is a theory-dependent constant and ET is the energy cutoff on the

H0 spectrum. The exponent typically depends on the spacetime dimension as α = 1−1/d,

so this problem becomes more severe in higher d. These two limitations are the main reason

why the HT has been so far applied mainly in d = 2.

Motivated by the need to mitigate the above limitations, the recent works [17–20]

(following notably [21]; see also [22–24]) started developing the theory of renormalized HT,

1In relativistic QFTs one can also quantize on surfaces of constant light-cone coordinate. This light front

quantization [9] is also used in numerical solutions of strongly coupled QFTs via a version of HT; some

recent work is [10–15]. The structure of the unperturbed Hilbert space is different from the equal time case,

which leads to important differences in the numerical procedure. All technical claims in this work will refer

exclusively to the equal time quantization.
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in which high-energy modes are not simply truncated away, but integrated out to produce

an effective low energy Hamiltonian. As a result the convergence is improved. Renormalized

HT has been applied in several strongly coupled QFT studies in d = 2 [18–21, 24] and in

one study in d = 2.5 [17]. We hope that in the future Hamiltonian Truncation will develop

into an accurate numerical method, applicable also in d > 3. Here we will take another step

towards this goal by proposing a novel and still more accurate approach to renormalization.

A more detailed technical account of our work will appear elsewhere [25].

Setup. Consider the Hamiltonian H of a QFT in finite volume, which we assume can

be split into a solvable part H0, whose eigenfunction and eigenvectors are known, plus an

interaction V , whose matrix elements are computable in the basis of eigenstates of H0:

H = H0 + V , H0|i〉 = Ei|i〉 , Vij = 〈i|V |j〉 . (2)

TheH0 can represent a free or an integrable Hamiltonian, or the Hamiltonian of a conformal

field theory (CFT) on the cylinder Sd−1 × R. We assume that its finite volume spectrum

is discrete, which is the case for most H0’s of interest. Notice that although numerical

HT calculations are performed in finite volume, infinite volume observables can then be

extracted via controlled extrapolation.

The spectrum of the interacting theory is found by solving the eigenvalue equation:

H.c = Ec, c ∈ H , (3)

where E is the energy of a given state, and c the corresponding eigenvector living in the

Hilbert space H spanned by the eigenstates of H0. Eq. (3) is infinite-dimensional and

cannot be solved on a computer. So we split H into a finite-dimensional “low-energy” part

Hl and a “high-energy” part Hh. Motivated by effective field theory, a natural choice is

to include into Hl all the states with energy below a given cutoff Ei 6 ET , which plays

the role of a UV cutoff. This should provide a good approximation for the interacting

eigenstates with energy well below the cutoff. Different types of cutoff are possible but will

not be considered here. We then project the eigenvalue equation onto those subspaces:

Hll.cl + Vlh.ch = Ecl , (4)

Vhl.cl +Hhh.ch = Ech , (5)

where c = (cl, ch) is the low/high energy split of c, i.e. cl = Plc, ch = Phc, where Pl, Ph are

the projectors on Hl, Hh. Similarly, Hll = PlHPl, and so on.

The raw HT consists in throwing out all the states in Hh and solving the eigenvalue

equation,

Hll.cl = Erawcl . (6)

By the min-max theorem, as the cutoff ET is increased, the eigenvalues Eraw approach

the exact eigenvalues E from above. As shown in [17], the raw HT numerical spectrum is

expected to converge with polynomial rate 1/Eρ
T , with ρ = d − 2∆V > 0 by our assump-

tion (1). This polynomial convergence must compete with the exponential growth of states

in the Hilbert space.
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It is possible to do better than in (6). Instead of simply truncating (4), we use (5) to

express the high-energy part ch of the eigenvector in terms of the low-energy part cl:

ch = (E −Hhh)
−1.Vhl.cl . (7)

Plugging this back in (4) gives the equation

Heff .cl = Ecl , (8)

where Heff is the effective Hamiltonian operator acting on Hl. It is given by

Heff = Hll +∆H(E) , (9)

∆H(E) = Vlh.(E −Hhh)
−1.Vhl . (10)

The solutions of (8) are equivalent to the solutions of the original eigenvalue problem (3).

Eqs. (9), (10) are the starting point of renormalized HT.2 Integrating out the high-

energy part of ch we correct or, as we say, renormalize Hll by ∆H. While in general ∆H

cannot be computed exactly, the goal is to approximate it sufficiently well so that solutions

of (8) become close to the exact eigenenergies. The hope is that this can be done keeping the

cutoff ET , and therefore the dimension of Hl, relatively low and manageable on a computer.

One natural way to approximate ∆H(E) would be via an expansion in powers of V :

∆H(E) =
∞∑

n=2

∆Hn(E) , (11)

∆Hn = Vlh
1

E −H0hh

(
Vhh

1

E −H0hh

)n−2

Vhl , (12)

truncating it to a fixed order. This is what was done in the previous works [17–19],

where (11) was truncated to the leading order (LO) n = 2, and ∆H2 was computed in an

analytic local approximation

∆H ≈ ∆H local
2 , (13)

which will be briefly reviewed after eq. (29) below. This was shown to improve significantly

the numerical convergence of the spectrum in ET . However, in ref. [20] it was shown that,

first of all, this method is not easily generalizable to higher orders and second, increasing the

accuracy of the approximation of ∆H2 alone does not necessarily improve the convergence.

Furthermore, the naive expansion (12) is not convergent and there will appear unbounded

matrix elements as the power of V is increased.3

2This has to be distinguished from the Numerical Renormalization Group (NRG) improvement of the

HT [26] à la Wilson’s NRG [27]. This method raises the cutoff by adding new chunks of the Hilbert space

and tossing away the states which have low overlaps with the interacting eigenstates. Other ideas to extend

the reach of HT include sweeping and reordering (see [8]). We have not used any of these interesting tricks

in our work.
3That can be intuitively understood as follows. For each n > 2, there will be states below the cutoff

for which the matrix elements of ∆Hn grow as ∼ (cN)nET in absolute value, where N is the occupation

number of the state and c is a constant. For N big enough, the expansion is therefore not convergent, as

the truncated matrix element will outgrow the leading order contribution of H0 growing as ∼ ET . For a

detailed discussion of this point see [25], appendix B.
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We will now introduce the main novelty of the present paper — an approach to renor-

malize the truncated Hamiltonian that neatly avoids the problems pointed out by [20], and

leads to a more accurate spectrum than any previous approach.

NLO-HT as integrating out tails. Let us rethink eqs. (6)–(10). Eq. (6) can be viewed

as an instance of the RR approach, where the full Hamiltonian has been projected on the

finite-dimensional subspace Hl ⊂ Hl ⊕ Hh. The high-energy Hilbert space Hh is infinite-

dimensional, but eq. (7) implies that we don’t need all of it. Indeed, this equation says

that one could retrieve the exact result by truncating Hh to a finite dimensional subspace

Ht spanned by the vectors

(E −Hhh)
−1.Vhl|i〉 , |i〉 ∈ Hl . (14)

Of course, these states are impossible to compute exactly, so let us approximate them by

setting Hhh ≈ H0hh, i.e.

|Ψi〉 ≡ (E∗ −H0)
−1.Vhl|i〉 , (15)

with E∗ a parameter that will be set close to E . We call these |Ψi〉’s tail states, as their linear
combination approximate the high-energy “tail” of the eigenvectors. We next consider the

eigenvalue equation for the Hamiltonian (3) projected on the space spanned by {|i〉, |Ψi〉}:

Hll.cl +Hlt.ct = ERRcl , (16)

Htl.cl +Htt.ct = ERRG.ct , (17)

where Gij = 〈Ψi|Ψj〉 is the Gram matrix of the tail states, which are not orthonormal, and

(Hlt)ij = 〈i|H|Ψj〉 = [∆H2]ij , (18)

(Htt)ij = 〈Ψi|H|Ψj〉 = [∆H3 −∆H2 + E∗G]ij . (19)

Here ∆H2 and ∆H3 are the same as above with E → E∗.
Assuming that the operators (18), (19) can be evaluated to high accuracy, one can diag-

onalize (16), (17) numerically on a computer and obtain the Rayleigh-Ritz eigenvalues ERR.

By construction, these eigenvalues have variational interpretation with an ansatz enlarged

with respect to the raw HT, implying via the min-max theorem that E 6 ERR 6 Eraw.4
Let us transform equations (16), (17) further by integrating out the tail states. Sub-

stituting ct from (17) into (16) we get an equivalent equation for the RR spectrum:

[Hll +∆H̃].cl = ERRcl , (20)

where ∆H̃ is given by

∆H2

1

∆H2 −∆H3 + (ERR − E∗)G
∆H2 . (21)

4In this work, we introduce a tail state for each |i〉 ∈ Hl. This limits the number of states we include

in the basis, as the full matrix (∆H2 − ∆H3) needs to be inverted over the space of tail states. On the

contrary, the low-energy diagonalization of Hll+∆H̃ is performed efficiently via the Lanczos method. This

suggests that more efficient numerics could be achieved by reducing the number of tails states |Ψi〉; see [25]

for a discussion.
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In our calculations we will have E∗ ≈ ERR.
5 So we will neglect the last term in the

denominator and will use

∆H̃ = ∆H2

1

∆H2 −∆H3

∆H2 . (22)

Now observe that the power expansion of this expression agrees, up to third order in V ,

with (11):

∆H̃ = ∆H2 +∆H3 + . . . . (23)

This key observation reveals the connection of the discussed method with the renormaliza-

tion idea from the previous section. Although this was not obvious from the start, eq. (23)

means that ∆H̃ implements a next-to-leading (NLO) renormalization correction. The pres-

ence of ∆H3 in the denominator of (23) is crucial to address the problems originating from

the naive truncation of the expansion (12).6 We will refer to the spectrum obtained via

this method as NLO-HT.

Testing NLO-HT in the (φ4)2 theory. In the rest of the paper we will apply NLO-HT

to one particular strongly coupled relativistic QFT — the φ4 theory in 1+1 dimensions.

We stress however that the basic ideas of NLO-HT and of its implementation described

below are general and can be used for many other theories.

We introduce here the (φ4)2 theory very briefly; see [18, 25] for details. The theory is

defined by the normal-ordered Euclidean action

S =
1

2

∫
dτ dx [: (∂φ)2 +m2φ2 : + g :φ4 :] . (24)

We quantize it canonically with periodic boundary conditions, expanding the field into

creation and annihilation operators:

φ(x, τ = 0) =
∑

k

1√
2Lωk

(
ake

ikx + a†ke
−ikx

)
, (25)

where k = 2πn/L (n ∈ Z), ωk =
√
m2 + k2, [ak, ak′ ] = 0 and [ak, a

†
k′ ] = δkk′ . Here x is the

coordinate along the spacial circle of length L, while τ ∈ R is the Euclidean time. From

now on, we will use the units m = 1.

In terms of normal-ordered operators, the Hamiltonian is a sum of the free piece and

the quartic interaction:

H = H0 + gV4 + . . . , H0 =
∑

k

ωka
†
kak , (26)

V4 = L
∑

∑
ki=0

1∏√
2Lωi

[
ak1ak2ak3ak4 + . . .

]
. (27)

5In practice we fix E∗ to the value given by the local approximation mentioned below eq. (12). Further

iterative improvements are possible, but their effect is negligible.
6By applying the power counting arguments mentioned in footonote 21, one can estimate ∆H̃ ∼ NET ,

as opposed to ∆H2 ∼ N2ET , therefore taming the growth of the matrix elements.
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The ellipsis in H in (26) refer to the Casimir energy and other exponentially suppressed

corrections needed to correctly put the theory in finite volume. They are discussed in

detail in [18] and defined in eqs. (2.10, 2.18) of that paper. The Hamiltonian H acts in the

free theory Fock space. There are three conserved quantum numbers: total momentum P ,

spatial parity P (x → −x), and field parity Z2 (φ → −φ). We will focus on the invariant

subspaces H± consisting of states with P = 0, P = +, Z2 = ±. The states in H+ (resp. H−)

contain even (resp. odd) number of free quanta. The basic problem is to find eigenstates

of H belonging to H±. The two subspaces do not mix, and the diagonalization can be

done separately.

Let’s describe briefly how the matrices entering the NLO-HT eigenvalue equation (20)

are computed in practice. The matrix elements of Hll are known in closed form and are

straightforward to evaluate, taking advantage of the sparsity for efficiency. The matrices

∆H2,3 in (22) involve infinite sums over states in Hh. We approximate ∆H2 to high

accuracy by splitting it as [20]

∆H2 = ∆H<
2 +∆H>

2 . (28)

Here the matrix ∆H<
2 involves a finite sum over the states in Hh of energies ET < Ei 6 EL

which is evaluated exactly. On the other hand, the matrix ∆H>
2 involves an infinite sum

over the states with Ei > EL, for which we use a local approximation [17, 18]:

∆H>
2 ≈

∑

i

κi(EL)

∫ L

0

dxOi(x) . (29)

Here the Oi are a finite number of local Lorentz-invariant operators; for the (φ4)2 theory

these are 1, :φ2 :, :φ4 :. The coefficients κi(EL) are known analytically. This approximation

is most accurate for matrix elements (∆H2)ij such that Ei, Ej ≪ EL. Its validity is justified

by the operator product expansion.

The original local approximation in eq. (13) was given by the same formula (29) but

with EL = ET . So it was not accurate for states close to the cutoff. Instead, the error in

evaluating ∆H2 via (28) can be made arbitrarily small throughout the low-energy Hilbert

space Hl by raising EL above ET . In our calculations we find that EL = 3ET provides a

sufficient approximation. The error can also be further reduced by including subleading

(higher derivative) operators in (29).

The strategy for computing ∆H3 is analogous. We break down the matrix into various

contributions. Some of those involve a finite sum over elements inHh close to the cutoff and

are computed exactly. The remaining pieces contain the contributions of the states much

above the cutoff. Those are approximated by a sum of local operators, with analytically

known coefficients [25].

Numerical results. The basic features of the low-lying φ4 spectrum are as follows. The

lowest eigenstate E0 belongs to H+ and is the ground state in finite volume (the interacting

vacuum). The second-lowest eigenstate belongs toH− and is interpreted as the one-particle

excitation at zero momentum. The excitation energy over the ground state E1 − E0 mea-

sures the physical particle mass mph. The above is true for moderate quartic coupling

– 6 –
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Figure 1. Convergence of NLO-HT vs other HT methods.

g < gc ≈ 2.8, when the vacuum preserves the Z2 invariance. At g = gc the particle mass

goes to zero and the theory undergoes a second order phase transition to the phase of spon-

taneously broken Z2 symmetry, with critical exponents given by the 2d critical Ising model.

We will now use the NLO-HT method to provide accurate non-perturbative predictions

for E0 and mph as functions of the coupling g. Notice that perturbation theory ceases to

be accurate for g & 0.2 ([18], appendix B). We will only study here the Z2-invariant phase.

The Z2-broken phase at g > gc was studied previously in [19, 28, 29].

While here we will focus on the vacuum and the first excited state, we stress that higher

excited states and other observables are both possible and interesting to study using the

HT. E.g. one can extract the S-matrix from the volume dependence of the two-particle

state energies [7].

The first step is to compute the spectrum as a function of ET for fixed g and L

and to extrapolate ET → ∞. Our NLO-HT calculations explored the couplings g 6 3

and the volumes L 6 10, while ET was fixed for each L to have about 104 states in Hl.

For comparison, we will also report raw and local LO renormalized HT calculations, which

were pushed to much higher ET , corresponding to about 106 states. As an indication of the

needed computer resources, our most expensive NLO-HT data points (L = 10, ET = 20)

required 40 CPU hours and 80 Gb RAM per coupling value.

Empirically, the NLO-HT spectrum was observed to converge with cutoff as 1/E3
T .

A representative plot, for the vacuum energy at g = 2, is in figure 1(left). This is much

faster than the raw and the local LO renormalized HT predictions for the same observ-

able, which show ∼ 1/E2
T convergence, although LO renormalization reduces the prefactor

significantly, figure 1(right). The smooth behavior of the NLO-HT data with ET allows

us to extrapolate to ET = ∞. For this we fit the NLO-HT data points with the function

F (ET ) = α+ β/E3
T + γ/E4

T , with α, β and γ free parameters, and use F (∞) = α.7

Next we discuss how the spectrum depends on L. There are precise theoretical expec-

tations for this dependence, which allows us to perform interesting consistency checks, and

7To estimate extrapolation errors, we fitted subsamples of the full data set, obtained by removing points

at low ET in different combinations.
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Figure 2. The mass gap E1(L)− E0(L) as a function of L.

helps to extrapolate the mass gap and the vacuum energy density to their infinite volume

limits (for g not too close to gc). For the mass gap at Lmph ≫ 1 we expect, in a 1+1

dimensional QFT with unbroken Z2 symmetry [30, 31]:

E1(L)− E0(L) = mph +∆m(L) +O(e−σmphL) , (30)

∆m(L) = − 1

8πmph

∫
dθ e−mphL cosh θF (θ + iπ/2) , (31)

F (θ) = −4im2
ph sinh(θ) (S(θ)− 1) , (32)

where σ >
√
3, and S(θ) is the S-matrix for 2 → 2 scattering, with θ the rapidity difference.

We neglect the third term in the r.h.s. of (30), while we approximate the second one as

follows. In this work we will not measure the S-matrix,8 but we will instead parametrize it

by replacing S(θ+ iπ/2) with a series expansion around θ = 0. This is reasonable because

the integral in ∆m(L) is dominated by small θ. Eq. (31) then implies:

∆m(L)/mph ≈ bK1(mphL) +
c

(mphL)3/2
e−Lmph . (33)

The Bessel function comes from the constant term of the S(θ) expansion, while the second

term comes from doing the integral via the steepest descent of the θ2 term (the linear term

vanishes in the integral). Further corrections are suppressed by additional powers of mphL.

In figure 2 the above expectations are compared to the g = 2 NLO-HT data. We

include the NLO-HT data points at the highest ET we could reach for the given L (blue),

and the NLO-HT data extrapolated to ET = ∞ as discussed above (red error bars). We

also include the fit of the extrapolated data using eq. (33) (green curve). The fit has three

parameters (mph, b, c) and works well in the whole range of L. We extract the value of mph

at L → ∞ from the fit, with the uncertainty determined by fitting the upper and lower

ends of the error bars. We have done analogous L → ∞ extrapolations for all couplings

g 6 2.6 in steps of 0.2. These are shown in figure 3 (red error bars), where the L = 10

8As a further check of the method, the S-matrix (extracted via the volume dependence of the spectrum)

could in the future be compared to the perturbative prediction for g ≪ 1. See [28], appendix B.
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Figure 3. mph(g); compare with figure 11 in [18].

g mph Λ

0.2 0.979733(5) −0.0018166(5)

1 0.7494(2) −0.03941(2)

2 0.345(2) −0.1581(1)

Table 1. mph and Λ extracted with NLO-HT.

results extrapolated to ET = ∞ are also shown for comparison (green error bars). A few

L = ∞ results are also reported in table 1. For g > 2.6, close to the critical point, the

described fitting procedure cannot be used, as the physical mass approaches zero, and the

condition Lmph ≫ 1 is not satisfied.

Also in table 1, we report analogous measurements of the infinite volume vacuum

energy density Λ (the cosmological constant). The NLO-HT data for E0(L)/L are extrap-

olated to ET = ∞ and then are fitted with the theoretical expectation at Lmph ≫ 1:

E0(L)
L

= Λ− mph

πL
K1(mphL) + a

√
mph

16πL3
e−2mphL + . . . ,

where a = O(1). This formula is valid in any massive quantum field theory in 1+1 dimen-

sions in absence of bound states [18, 32].

Coming back to figure 3, we see by eye that the mass gap vanishes somewhere close to

gc ≈ 2.8, signaling a quantum critical point. This is in accord with previous theoretical [33]

and numerical [18, 29, 34–37] studies.9 For a better estimate of gc, we fit the L = ∞ data

points in the range g 6 2.6 with the rational function

f(g) =
(1 + g( 1

g1
+ 1

g2
+ 1

g3
+ 1

gc
) + rg2)(1− g

gc
)ν

(1 + g
g1
)(1 + g

g2
)(1 + g

g3
)

, (34)

with fit parameters r, g1, g2, g3, gc, and ν. We have f(gc) = 0 by construction. We impose

g1, g2, g3 > 0 so that f(g) has poles on the negative real axis. The critical coupling estimate

9To compare with the critical coupling extractions using the light front quantization [12, 13, 15] one has

to perform nonperturbative mass renormalization [13].
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Figure 4. Energy levels at g = gc vs CFT predictions.

from this fit is10

gc = 2.76(3) . (35)

The ν parameter in the above fit is a critical exponent. Assuming the Ising model uni-

versality class for the phase transition, we expect ν = (2 −∆ǫ)
−1 = 1, using ∆ǫ = 1, the

dimension of the most relevant non-trivial Z2-even operator of the critical Ising model. In

the fit leading to (35) we fixed ν = 1. Relaxing this assumption gives the same central

value with slightly larger error bars.

The rationale behind introducing the poles into the ansatz f(g) is that they are sup-

posed to approximate the branch cut at g < 0 that the analytically continued function

mph(g) is expected to have. We checked that modifying our ansatz, and in particular

increasing the number of poles, does not affect appreciably the confidence interval for gc.

We also checked that the g2 and g3 coefficients of our best fit are roughly consistent with

the perturbation theory prediction mph(g) = 1− 1.5g2 + 2.86460(20)g3 + . . . [18]. With a

more complicated ansatz, we found fits perfectly agreeing with perturbation theory. The

resulting gc values are nearly identical to (35). This is not surprising, since most of fit

power relevant for constraining gc comes from 1 . g . 2, not from the region of small g

where perturbation theory is accurate.

Finally, we compare the NLO-HT results to the expectations for the finite volume

spectra at the critical point. CFT predicts that the energy levels at g = gc should vary

with L as
EI(L)− E0(L) ≈ 2π∆I/L , (36)

where ∆I are operator dimensions in the critical Ising model. This relation should hold at

L ≫ 1, where corrections due to irrelevant couplings die out. In figure 4 we test it for the

first three energy levels above the vacuum, which should correspond to the operators with

dimensions ∆σ = 1/8, ∆ǫ = 1, ∆∂2σ = 2 + 1/8. The error comes from extrapolating to

10The central value corresponds to the smallest χ2(gc) =
∑

N

i=1
(yi − f(xi))

2/erri
2. The uncertainty

interval was conservatively determined from the condition
√

χ2(gc) 6 3
√

χ2(2.76). Our determination is

the best HT measurement of gc. It is compatible with and has accuracy comparable to other available

determinations [25].
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ET = ∞ and (the largest contribution) from varying g in the range (35). We see reasonable

agreement for σ and ǫ, while it looks like the agreement for ∂2σ will be reached at higher

values of L. This figure can be compared to figure 6 of [18] and figures 22, 23 of [29], which

show similar behavior.

Conclusions. In this work we proposed a variant of renormalized Hamiltonian Trunca-

tion called NLO-HT. Its main idea is to integrate out exactly a certain class of high-energy

states, which allows for variational interpretation, and furthermore implements the renor-

malization corrections up to cubic order in the interaction strength.

We tested NLO-HT by computing the low-lying spectra of the strongly coupled two-

dimensional φ4 theory. Numerical spectra in finite volume were found to converge rapidly

with the Hilbert space cutoff ET , faster than for other existing versions of Hamiltonian

Truncation, and allowing controlled extrapolation to the continuum limit ET = ∞. The

finite volume corrections were then removed using the theoretical knowledge of these ef-

fects in QFT. In this way we extracted highly accurate predictions for the vacuum energy

density and the physical mass in the infinite volume limit, for a range of non-perturbative

coupling constants.

In the future NLO-HT will be used to perform accurate studies in other strongly

coupled RG flows in d = 2. In particular, it can be applied to flows starting from an

interacting CFTs. We also believe that our ideas will be useful to extend Hamiltonian

Truncation to weakly relevant interactions, with scaling dimension in the range ∆V > d/2

excluded in this paper, and in particular to flows in higher dimensions d > 3, most of which

fall into this category.
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