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Via Arnesano, 73100 Lecce, Italy

Istituto Nazionale di Fisica Nucleare (INFN),

Sezione di Lecce, Italy

E-mail: matteo.beccaria@le.infn.it
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The model consists of a pair of bosonic and fermionic bit operators transforming in the

adjoint representation of the color group SU(N). Color confinement is not achieved as a

dynamical effect, but instead is enforced by an explicit singlet projection. At large N and

finite temperature, the model has a non trivial thermodynamics. In particular, there is

a Hagedorn type transition at a finite temperature T = TH where the string degrees of

freedom are liberated and the free energy gets a large contribution ∼ N2 that plays the

role of an order parameter. For T > TH, the low temperature phase becomes unstable.

In the new phase, the thermodynamically favoured configurations are characterized by a

non-trivial gapped density of the SU(N) angles associated with the singlet projection. We

present an accurate algorithm for the determination of the density profile at N = ∞. In

particular, we determine the gap endpoint at generic temperature and analytical expansions

valid near the Hagedorn transition as well as at high temperature. The leading order

corrections are characterized by non-trivial exponents that are determined analytically

and compared with explicit numerical calculations.
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1 Introduction and summary of results

Thorn’s string bits models have been originally proposed as a description of superstrings

where stability and causality are manifest [1–5]. In the framework of ’t Hooft 1/N ex-

pansion and light-cone parametrization of the string, one considers the continuum limit

of very long chains composed of elementary string bits transforming in the adjoint of the

color gauge group SU(N). When the number of bits M gets large, the bit chains behave

approximately like continuous strings with recovered Lorentz invariance.1 The finite tem-

perature thermodynamics of such string bit models is quite rich in the ’t Hooft large N

limit. Stringy low energy states turn out to be color singlets separated from non-singlets

by an infinite gap in units of the characteristic singlet energy ∼ 1/M [4, 5]. This means

that color confinement emerges as a consequence of the dynamics. Besides, the singlet sub-

space exhibits a Hagedorn transition [7] at infinite N [8, 9] signalled by a divergence of the

partition function for temperatures above a certain finite temperature T > TH. As usual,

this behaviour is generically associated with a density of states growing exponentially with

energy as in the original dual resonance models [10] or modern string theory [11]. When

string perturbation theory is identified with the ’t Hooft 1/N expansion of string bit dy-

namics, the N = ∞ Hagedorn transition is consistent the interpretation of TH in the free

string as an artifact of the zero coupling limit [11] with a possible phase transition near TH
to a phase dominated by the fundamental degrees of freedom of the emergent string theory.

Recently and remarkably, the Hagedorn transition of string bit models has been further

clarified [12], and discovered also in simpler reduced systems where the singlet restriction is

imposed from the beginning as a kinematical constraint and not as a dynamical feature [13,

14]. The starting point is the thermal partition function

Z = tr e−β (H+µM), (1.1)

1On general grounds, this requires also the number of colors N to be large. For recent numerical studies

at finite M,N see [6].
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where β is the inverse temperature, H the string bit model Hamiltonian, and M is the bit

number operator associated with the chemical potential µ. The partition function (1.1) is

quite natural and has a simple origin from the light-cone description of the emergent string

where H = P−/
√

2, µM = P+/
√

2, and thus H + µM = P 0 = (P+ + P−)/
√

2 [15]. The

reduced model considered in [13, 14] is the projection of (1.1) on the subspace of singlets

states with H = 0, i.e. for the associated tensionless string, and is described by the simpler

partition function

Z0 = trsinglets x
M , x = e−β µ. (1.2)

Here, we shall focus on the simple model considered in [13] which consists of one pair of

bosonic and fermionic string bits operators a and b, both transforming in the adjoint of

SU(N).2 Extensions to models with more bit species and discussion of 1/N corrections

have been addressed in [14]. The bit number operator is M = tr(a a + b b), where trace

is in color space, and the projected partition function (1.2) can be computed by group

averaging according to the analysis of [13, 14]3

Z0 =
1− x
1 + x

∫
dU(ϑ) tr(xM eiGkϑk) =

1− x
1 + x

∫
dU(ϑ)

∏
1≤k<`≤N

1 + x ei (ϑk−ϑ`)

1− x ei (ϑk−ϑ`)

=

(
1 + x

1− x

)N−1 ∫
dU(ϑ)

∏
1≤k<`≤N

1 + x2 + 2x cos(ϑk − ϑ`)
1 + x2 − 2x cos(ϑk − ϑ`)

, (1.3)

where Gk span the Cartan subalgebra of U(N). The group integration in (1.3) is with

respect to the normalized Haar measure

dU(ϑ) =
1

N ! (2π)N

∫ π

−π
dNϑ

∏
1≤k<`≤N

4 sin2

(
ϑk − ϑ`

2

)
. (1.4)

In the ’t Hooft large N limit, the partition function (1.3) may be evaluated by saddle point

methods. The dominant saddle contribution is characterized by a continuous density of

phases ρ(ϑ;x). The analysis of [13, 14] shows that there exists, for N = ∞, a critical

point xH = 1/2. For low temperatures x < xH, the stable solution of the saddle point

condition is associated with a uniform constant density ρ(ϑ;x) = 1/(2π) and a partition

function that has a finite N → ∞ limit. Instead, above the Hagedorn temperature, i.e.

for x > xH, the density ρ(ϑ;x) is a non trivial function which is non zero on a finite

subinterval |ϑ| ≤ ϑ0(x) < π. In this gapped phase, the partition function has the leading

large N behaviour logZ0 = N2 F2(x) + O(N logN) where F2(x) is a function of the

temperature growing monotonically from F2(1/2) = 0 up to F2(1) = log 2. This function

2Before singlet projection, the large N limit of the string bit model describes a non-covariant subcritical

light-cone string with no transverse coordinates and one Grassmann world-sheet field. In general, an

important feature of string bit models is that they can be formulated in a space-less fashion with emerging

spatial transverse and longitudinal coordinates [5]. Thus, they may be regarded as a realization of ’t Hooft

holography [16].
3The prefactor (1 − x)/(1 + x) in (1.3) takes into account that the bit operators a, b are traceless and

hence are adjoints under SU(N).
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may be regarded as an order parameter that measures the smooth activation of the string

bit degrees of freedom above the Hagedorn temperature.

This change of behaviour at x = xH is similar to what happens in the unitary matrix

model transition [17] with the coupling constant of the latter being traded here by the

temperature parameter x. Similar results have also been obtained in [18] for free adjoint

U(N) SYM on S3 × R, see also [19]. More generally, in the context of AdS/CFT duality,

it is an important issue to understand the thermodynamics of specific conformal theories

with singlet constraint, see for instance [18, 20–23] and the recent M-theory motivated

study [24].

At temperatures above the Hagedorn transition, the precise form of the phase density

profile ρ(ϑ;x) is not known in analytic form, not even in the strict N =∞ limit. The aim of

this paper is to provide more information about this quantity and the related width ϑ0(x).

To this aim, following the strategy of [18], we reconsider the solution of the partition

function for U(N) gauge theory on a 2d lattice at large N for a broad class of single-

plaquette actions found in [25]. We exploit it in order to cast the homogenous integral

equation governing ρ(ϑ;x) into an infinite dimensional linear system involving the higher

(trigonometric) momenta of ρ. Truncation to a finite number of modes provides an accurate

algorithm for the determination of the density. As we shall discuss, the outcome is not only

numerical because some analytical information can be extracted from the above mentioned

linear system. Besides, analysis of the numerical data produced by the algorithm suggests

how to extract precise analytical information from the integral equation in certain limits.

A summary of our results follows:

1. For x → xH = 1/2 the distribution gap closes, i.e. ϑ0(x) → π, with a correction

vanishing as∼ (T−TH)1/4, Near xH, the phase density approaches a Wigner semicircle

law (in the variable sin(ϑ/2)).

ϑ0(x) = π − 2
√

2

(
x− xH

2

)1/4

− 2
√

2

3

(
x− xH

2

)3/4

+ · · · ,

ρ(ϑ;x→ xH) ∼ 1

π sin2(ϑ0/2)

(
sin2 ϑ0

2
− sin2 ϑ

2

)1/2

cos
ϑ

2
. (1.5)

2. At high temperature, x→ 1, the phase distribution collapses with ϑ0(x) ∼ T−1/3. A

non uniform quadratic distribution is achieved inside [−ϑ0, ϑ0]

ϑ0(x→ 1) = [6π (1− x)]1/3 + · · · ,

ρ(ϑ;x→ 1) ∼ 3

4ϑ30

(
ϑ20 − ϑ2

)
. (1.6)

3. The order parameter, i.e. the function F2(x) appearing in the expansion logZ0 =

N2 F2(x) + · · · , admits the following expansions around x = xH and x = 1

F2(x→ xH) =
1

2
(x− xH) + · · · , F2(x→ 1) = log 2− 3 (6π)2/3

20
(1− x)2/3 + · · · .

(1.7)
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The first expansion shows that F2(x) is linear just above xH as originally suggested

in [12]. The second expansion shows the leading correction to the known infinite

temperature limit log 2.

The plan of the paper is the following. In section 2 we present the integral equation

for the phase density ρ(ϑ;x) discussing first some of its features at finite N . Then, our

proposed N = ∞ self-consistent algorithm and its predictions are presented. Section 3

is devoted to the derivation of various analytical expansions. In particular, in section 3.1

and 3.2 we discuss the expansion of the phase density near the Hagedorn temperature and

at high temperature x → 1. The behaviour of the partition function near x = xH and

x = 1 is considered in section 3.3. Conclusions and open directions are briefly discussed in

a final section.

2 Self-consistent determination of the density at N = ∞

As discussed in [13], the determination of the saddle point ϑ of (1.3) for finite N amounts

to finding the solution of the set of equations

∑
6̀=k

cot

(
ϑk − ϑ`

2

)
− 4x (1 + x2) sin(ϑk − ϑ`)

1 + x4 − 2x2 cos(2 (ϑk − ϑ`))
= 0. (2.1)

The numerical solution of (2.1) for N = 100 and x > xH is shown in the left panel of

figure 1 where one appreciates the opening of a gap whose width increases as x→ 1. The

distribution of the roots ϑ is non trivial, i.e. it is not uniform. Precisely at the N = ∞
Hagedorn transition point, x = xH, the gap closes as N → ∞ according to the finite

size scaling π − ϑ0 = O
(
N−δ

)
with δ ' 1/4, as shown in the right panel. This slow

convergence of observables at increasing N means that a reliable characterization of the

model for N =∞ is difficult by extrapolation from finite N data. Besides, we are interested

in analytical expansions near Hagedorn transition as well as at high temperature. For these

reasons, we present in the next section a self-consistent accurate treatment of the N =∞
limit that will prove itself to be more effective than finite N extrapolation.

At N → ∞, the roots of (2.1) are described by a smooth density ρ(ϑ;x) which is

positive for |ϑ| < ϑ0(x) and vanishes at ϑ = ±ϑ0. Taking the continuum limit of (2.1), the

function ρ(ϑ;x) obeys the homogeneous integral equation∫ ϑ0(x)

−ϑ0(x)
dϑG(ϑ′ − ϑ;x) ρ(ϑ;x) = 0,

G(ϑ;x) = cot

(
ϑ

2

)
− 4x (1 + x2) sinϑ

x4 + 1− 2x2 cos(2ϑ)
. (2.2)

To solve it, we exploit the remarkably simple identity

x (1 + x2) sinϑ

x4 + 1− 2x2 cos(2ϑ)
=
∞∑
n=0

x2n+1 sin((2n+ 1)ϑ), (2.3)
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Figure 1. Finite N solution of the discrete phase equation (2.1). Left: roots of (2.1) for N = 100

drawn as phases on circles of different radii. The outmost circle has x = 0.5, while the inner circles

have x increased in steps 0.05 up to x = 0.9. Right: gap half-width π − ϑ0 evaluated at x = xH
with increasing N up to 450. The dashed line is a power law fit providing an exponent very close

to 1/4, i.e. ϑ0(xH) = π +O(N−1/4).

that holds in our case, i.e. for 0 < x < 1 and real ϑ. The expansion (2.3) allows to

write (2.2) in the form

∫ ϑ0(x)

−ϑ0(x)
dϑ cot

(
ϑ′ − ϑ

2

)
ρ(ϑ;x) =

4

∞∑
n=0

x2n+1

∫ ϑ0(x)

−ϑ0(x)
dϑ sin((2n+ 1) (ϑ′ − ϑ)) ρ(ϑ;x). (2.4)

Taking into account that the density is expected to be even, ρ(ϑ;x) = ρ(−ϑ;x), we can

further simplify (2.4) and obtain

∫ ϑ0(x)

−ϑ0(x)
dϑ cot

(
ϑ′ − ϑ

2

)
ρ(ϑ;x) =

4

∞∑
n=0

x2n+1 sin((2n+ 1)ϑ′)

∫ ϑ0(x)

−ϑ0(x)
dϑ cos((2n+ 1)ϑ) ρ(ϑ;x). (2.5)

It is convenient to recast (2.5) in the apparently inhomogeneous form

∫ ϑ0(x)

−ϑ0(x)
dϑ cot

(
ϑ′ − ϑ

2

)
ρ(ϑ) = 4

∞∑
n=0

ρn x
2n+1 sin

(
(2n+ 1)ϑ′

)
, (2.6)

where we have introduced the trigonometric momenta

ρn(x) =

∫ ϑ0(x)

−ϑ0(x)
dϑ cos((2n+ 1)ϑ) ρ(ϑ;x). (2.7)
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K ϑ
(K)
0 (0.6) ϑ

(K)
0 (0.7) ϑ

(K)
0 (0.8) ϑ

(K)
0 (0.9)

10 0.75611798 0.67837211 0.61735541 0.52688066

14 0.75611796 0.67837140 0.61733829 0.52675452

18 0.75611796 0.67837138 0.61733787 0.52672285

22 0.75611796 0.67837137 0.61733775 0.52671194

26 0.75611796 0.67837137 0.61733773 0.52670810

30 0.75611796 0.67837137 0.61733773 0.52670691

34 0.75611796 0.67837137 0.61733773 0.52670659

Table 1. Solution of the condition (2.10) for various x > xH and increasing number of modes K.

As a guide, we write in red the digits that change moving to the next row.

As discussed in [18], the general solution of the problem (2.6) is known and reads4

ρ(ϑ) =
1

π

√
sin2

(
ϑ0
2

)
− sin2

(
ϑ

2

) ∞∑
m=1

Qm cos
[
(m− 1

2)ϑ
]
,

Qm =

∞∑
`=0

m+`−1
2

=0,1,2,...

4xm+`ρm+`−1
2

P`(cosϑ0), (2.8)

where, for brevity, we have omitted the explicit dependence on x. We can now truncate

the expansion (2.8) by keeping only a fixed number of terms ρ(K) = {ρk}k=0,...,K . The

density is thus written in terms of the finite set of quantities ρ(K). Replacing the density

expression into (2.7) we obtain a homogeneous linear system

M(K)(x, ϑ
(K)
0 )ρ(K) = 0. (2.9)

Non trivial solutions exists only if

detM(K)(x, ϑ
(K)
0 ) = 0, (2.10)

which is the condition that determines the approximate gap width ϑ
(K)
0 for each x > xH.

Once ϑ
(K)
0 is computed, we solve (2.9) for the eigenvector ρ(K) and obtain the density

from (2.8). The eigenvector normalization is fixed by requiring ρ(ϑ) to be normalized with

unit integral. To appreciate the accuracy of the method, we show in table 1 the solution

ϑ
(K)
0 (x) of (2.10) evaluated at various x > xH, and with K growing from 10 to 34. The

convergence appears to be exponential in K although with a decreasing rate as x→ 1. This

is because the effect of the convergence factors x2n+1 in (2.4) is reduced. Nevertheless, still

at x = 0.9, the accuracy is of about 6 digits for K = 34.

Working out the prediction of the above algorithm in the interval xH < x < 1 we

obtain the black curve in figure 2 where we plot sin(ϑ0(x)/2) vs. x. To appreciate the

4A self-consistent interpretation of the solution (2.8) first appeared in [18] in a different context, see also

the recent application [24].
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Figure 2. Temperature dependence of the phase gap ϑ0(x). The black central curve is the result

of the N = ∞ algorithm keeping K = 34 modes. The blue symbols show the finite N results at

N = 20, 50, 100 from the solution of (2.1). The dashed brown and red curves are the analytical

approximations in (2.11).

convergence with N , we also show some sample points obtained at finite N = 20, 50, 100

from the solution of (2.1). The dashed curves are analytical approximations valid around

xH and x = 1 derived in the next section, i.e.5

x→ xH : sin
ϑ0(x)

2
= 1−

√
x− 1

2

2
− 1

4

(
x− 1

2

)
+ · · · ,

x→ 1 : ϑ0(x) = [6π (1− x)]1/3 + · · · . (2.11)

As we shall discuss later, the self-consistent determination of ρ(ϑ) provides also analytical

information near the Hagedorn transition. We shall see that only the first term in (2.8)

survives. This shows that ρ(ϑ) is well described by

x→ xH : ρ(ϑ;x)→ 1

π sin2(ϑ0/2)

(
sin2 ϑ0

2
− sin2 ϑ

2

)1/2

cos
ϑ

2
, (2.12)

which is Wigner semi-circle law in the variable sin(ϑ/2), well known in the theory of random

symmetric matrices. Strictly at x = xH this reduces to ρ(ϑ; 1/2) = 1
π cos2 ϑ2 . For x → 1,

we have found that the phase density is very well described by a quadratic law inside its

support, i.e.

x→ 1 : ρ(ϑ;x)→ 3

4ϑ30

(
ϑ20 − ϑ2

)
, (2.13)

5The expansion of ϑ0(x) in (2.11) is an equivalent form of (1.5).
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Figure 3. Temperature dependence of the phase density ρ(ϑ;x). Left: just above the Hagedorn

transition. The black line is the density obtained by plugging in (2.8) the solution of (2.10). The

orange points are sample evaluations of (2.12) and superimpose quite well. Right: near x = 1.

Again, the black line is the result from the self-consistent algorithm, while the orange points are

samples of (2.13). Apart from the very ends of the distribution, the agreement is very good.

as will also be confirmed analytically in the next section. The limiting forms (2.12)

and (2.13) are tested in figure 3. In the two panels, we show the exact density profile

from the self-consistent algorithm and the predictions (2.12) and (2.13) at x = 0.501 and

x = 0.99 respectively. The horizontal scale in the two panels is quite different due to the

wide variation of ϑ0(x). Up to a rescaling, the gross shape of the two densities is roughly

similar, although the two regimes are clearly associated with different functions (semi-circle

and quadratic).

3 Analytical expansions

In this section, we derive the analytical expansions (2.10) characterizing the phase density

ρ(ϑ;x) and its endpoint ϑ0(x) near the Hagedorn transition and at very high tempera-

ture x→ 1.

3.1 Opening of the gap near the Hagedorn transition

The condition (2.10) may be solved perturbatively around x = xH. It is an algebraic

equation in the variables x and h = sin(ϑ
(K)
0 /2) whose complexity increases rapidly with

K. Just to give an example, for the almost trivial case K = 1 we have the constraint

K = 1 : 1 + 2h2
(
h2 − 2

)
x = 0. (3.1)

The branch starting at (x, h) = (1/2, 1) has the expansion

K = 1 : h = 1−
(
x− xH

2

)1/2

− 1

4
(x− xH) +

3

2

(
x− xH

2

)3/2

+ · · · . (3.2)

For K = 2, the condition (2.10) is much more complicated and reads

K = 2 : 1 + 2h2
(
h2 − 2

)
x+ 2h2

(
100h10 − 312h8 + 366h6 − 200h4 + 51h2 − 6

)
x3

+4h8
(
25h8 − 152h6 + 288h4 − 224h2 + 64

)
x4 = 0.

(3.3)
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Expanding again around xH we find

K = 2 : h = 1−
(
x− xH

2

)1/2

− 1

4
(x− xH)− 33

2

(
x− xH

2

)3/2

+ · · · . (3.4)

Repeating the procedure for increasing K, one finds that the first two terms of the expansion

of h are independent on K,

h = 1−
(
x− xH

2

)1/2

− 1

4
(x− xH) + c(K)

(
x− xH

2

)3/2

+ · · · . (3.5)

while the values of the third coefficient are

c(K) =
3

2
,−33

2
,−199

6
,−793

18
,−76153

1530
,−2484163

47430
,−5915131

110670
,−32551537891

604368870
, · · · . (3.6)

Increasing K up to 30 and working with exact rational values, this sequence converges

numerically to an asymptotic value that can be estimated by Wynn acceleration algo-

rithm [26]. The results are quite stable and independent on the Wynn algorithm parameter

and give c(∞) = −54.0888227. Such a large value suggests that the expansion (3.6) could

be only asymptotic, as expected near a phase transition.

Plugging the expansion (3.6) in the linear system (2.9) one finds that all ρn>0 vanish

linearly with x−xH. This leaves the semi-circle asymptotic density that we wrote in (2.12).

3.2 Density collapse at high temperature

The expansion in the high temperature regime x → 1 is more complicated and cannot be

obtained from the formalism of section 2 because all ρn have a non trivial limit. Never-

theless, we can check consistency of the quadratic density (2.13) by studying the x → 1

limit of the integral equation (2.2). This is non trivial due to the x dependence of ϑ0(x).

Analysis of the numerical data computed in section 2 suggest that

ϑ0 = κ (1− x)1/3 + · · · . (3.7)

Actually, this Ansatz may be self-consistently checked in the following together with the

determination of the amplitude κ. To this aim, the density can be rescaled

ρ(ϑ) =
1

ϑ0
ρ̃(ϑ/ϑ0),

∫ 1

−1
du ρ̃(u) = 1, (3.8)

and the integral equation (2.2) can be written in the new variables∫ 1

−1
du′
[

cot

(
ϑ0
u− u′

2

)
− 4x (1 + x2) sin(ϑ0(u− u′)
x4 + 1− 2x2 cos(2ϑ0 (u− u′))

]
ρ̃(u′) = 0. (3.9)

Let us denote the kernel in the integral as G(u;x), it is useful to plot it as a function of u

at various x → 1 with the substitution ϑ0 → κ (1 − x)1/3. This is shown in the left panel

of figure 4 where κ = 1 to see what is going on. As x→ 1, the kernel splits into the sum of
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a linear background plus a δ′(u) term which is localized in a region of width ∼ (1− x)2/3.

The background part comes from the naive x→ 1 expansion of

G(u, x) = cot
(
κ(1− x)1/3

u

2

)
− 4x (1 + x2) sin(κ (1− x)1/3 u)

x4 + 1− 2x2 cos(2κ (1− x)1/3 u)
. (3.10)

This gives

G(u, x) = −1

2
κu (1− x)1/3 + · · · , (3.11)

which may be used for |u| � (1 − x)2/3. The second contribution comes from the inte-

gral (3.9) after a zooming associated with u = (1− x)2/3 ξ. At leading order, we get6∫ 1

−1
du′G(u− u′;x) ρ̃(u′) = −2 (1− x)1/3 ρ̃ ′(u)

∫ ∞
−∞

dξ
1

κ (1 + κ2 ξ2)
+ · · ·

= −2π

κ2
(1− x)1/3 ρ̃ ′(u) + · · · , (3.12)

which has indeed the form of a δ′(u) contribution in the kernel. Consistency of the power

1/3 in the 1 − x factor in (3.11) and (3.12) is important to get a non trivial result and

checks our scaling hypothesis. In summary, at this order in the x → 1 expansion, the

integral equation becomes simply

− 1

2
κu− 2π

κ2
ρ̃ ′(u) = 0. (3.13)

This gives both the quadratic density and the constant κ in ϑ0(x), see (3.7),

ρ̃(u) =
3

4

(
1− u2

)
, κ = (6π)1/3, (3.14)

in agreement with (2.11) and (2.13).

3.3 The transition order parameter

Further consistency checks of the derived aymptotic densities come from the analysis of the

large N behaviour of logZ0, i.e. the free energy up to trivial factors. The function F2(x)

appearing as the leading term in the large N expansion

logZ0 = N2 F2(x) +O(N logN), (3.15)

can be computed from the density ρ(ϑ;x) as the double integral

F2(x) =
1

2

∫ ϑ0(x)

−ϑ0(x)
dϑ dϑ′ log

[
4 sin2

(
ϑ− ϑ′

2

)
1 + x2 + 2x cos(ϑ− ϑ′)
1 + x2 − 2x cos(ϑ− ϑ′)

]
ρ(ϑ) ρ(ϑ′).

(3.16)

As we mentioned in the introduction, the function F2(x) can be regarded as an order pa-

rameter for the Hagedorn transition. It is zero for 0 < x < xH and increases monotonically

6At leading order, the integration region of ξ is symmetric and we can drop all odd contributions, some

of which requires a principal value definition.
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Figure 4. Detailed structure of some relevant integral kernels. Left: this panel shows the evaluation

of the function G defined in (3.10) and evaluated with κ = 1. The plot shows that the kernel

is composed of a linear background plus a singular part which is localized in a region of width

∼ (1 − x)2/3 and approximates, as a distribution, a δ′ contribution. Right: this panel shows the

evaluation of the function H defined in (3.20). Similar to the left panel, we identify in the x → 1

limit a quadratic background plus a narrow δ like contribution fully discussed in the text.

for x > xH. The maximum value is attained at x = 1 and is F2(1) = log 2. This follows

from the exact relation [14]

Z0(x→ 1) =

(
2

1− x

)N−1 RN
N !

, (3.17)

where RN is the number of labeled Eulerian digraphs with N nodes.7 The asymptotic

behaviour of RN has been recently computed in [14] and reads

RN
N→∞∼

(
2N√
πN

)N−1
e−1/4

√
N

[
1 +

3

16N
+O(N−2)

]
, (3.18)

from which we get the term N2 log 2 in logZ0.

Near the Hagedorn transition, we can evaluate F2(x) using the distribution (2.12).

Direct expansion around x = xH gives a leading linear behaviour

F2(x) = c (x− xH) + · · · , (3.19)

where c is a constant that is obtained from a rather involved finite double integral. It can

be safely extracted from the ratio F2(xH + ε)/ε as ε→ 0. Using ε = 0− 10−3 and a fit of

the form a+ b
√
ε, we reproduce the numerical data very well with c = 1/2 with a precision

of one part in 106. For this reason, we assume that this value of c is exact. A rather small

range of values of ε is needed suggesting again that the expansion around the Hagedorn

temperature is only asymptotic. This is quite reasonable in this case because F2(x) is

certainly not analytic at xH — it is zero below the Hagedorn temperature and non zero

above it. The linear behaviour (3.19) was originally predicted in [12]. It implies a latent

7Basic information about this sequence may be found at the OEIS link http://oeis.org/A007080.
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heat at the transition, i.e. a first order transition.8 A possible physical interpretation is

that, at the transition, as further energy is added to the system most of it is spent in the

process of forming long strings rather than increasing the temperature [27].

The computation of the leading correction to F2(x) for x → 1 is more tricky and,

again, it is again important to analyze in details the structure of the rescaled kernel with

the leading order expression for ϑ0, i.e.

H(u;x) =
ϑ20
2

log

[
4 sin2

(
ϑ0
u

2

) 1 + x2 + 2x cos(ϑ0 u)

1 + x2 − 2x cos(ϑ0 u)

]
, ϑ0 = κ (1− x)1/3. (3.20)

A plot of H(u, x) as a function of u with x → 1 is shown in the right panel of figure 4.

There is a naive quadratic contribution that comes from the direct expansion of H,

H(u;x) = log 2− (3π)2/3

4 · 21/3
u2 (1− x)2/3 + · · · . (3.21)

Integrating over ϑ, ϑ′ in (3.16), this gives a first contribution to F2(x)

F
(a)
2 (x) = log 2− (6π)2/3

20
(1− x)2/3. (3.22)

A second contribution comes from zooming in the region u − u′ ∼ (1 − x)2/3 as in the

previous section. This gives a second δ(u− u′)-like contribution leading to

F
(b)
2 (x) =

3

10
(1− x)2/3

∫ ∞
−∞

dξ log

(
κ2ξ2

1 + κ2ξ2

)
= −3π

5κ
(1− x)2/3. (3.23)

Summing (3.22) and (3.23), we obtain the expansion (1.7). In figure 5, we show the

evaluation of (3.16) using the leading order density (2.13) with ϑ0 as in (2.11). We also

show the approximation (1.7) as well as the exact numerical data points obtained in [13].

The agreement is remarkable despite the fact that we used the asymptotic density valid

for x → 1. This shows that F2(x) appears to be little dependent on the fine structure of

the density itself. This is further confirmed by the fact that evaluation of F2(x) with the

x→ xH density or with the x→ 1 one are practically indistinguishable up to x ' 0.9.

4 Conclusions

In this paper we have considered the large N thermodynamics of a simple SU(N) string bit

model devised to capture the tensionless limit of the associated string. The model lives in

the color singlet sector and involves a projection implemented by a suitable group average,

i.e. integration over U ∈ SU(N). Dominant configurations are characterized by a non trivial

density ρ(ϑ;T ) of the U invariant phases ϑ1, . . . , ϑN . We have analyzed the model in the

8It is important to remark that this is in contrast with what happens in the Gross-Witten model [17].

In that case, the coupling constant g plays the role of the temperature with a critical point occurring at

gc = 1. The leading contribution to the free energy is F2(g) = g2/4 for g < gc and F2(g) = g − 1
2

log g − 3
4

for g > gc. The function F2(g) has a discontinuity in its third derivative, i.e. the phase transition is of

third order.
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Figure 5. Evaluation of the order parameter F2(x). The black curve is the result of the evaluation

of (3.16) using the asymptotic quadratic density in (2.13). Blue triangles are exact numerical data

points taken from [13]. Finally, the brown dashed curve is the analytical approximation in (1.7).

gapped phase, i.e. for temperatures above the Hagedorn transition T > TH where ρ(ϑ;T )

is non zero only in the interval |ϑ| ≤ ϑ0(T ) < π. By means of numerical and analytical

tools, we have discussed in some details the temperature dependence of the phase density

ρ(ϑ;T ) including the gap endpoint ϑ0(T ). Our results provide quantitative information

about the crossover from the low to high temperature phases in the considered model.

It remains an open question to understand precisely which changes occur in models with

more bits and if 1/N corrections are taken into account to resolve the phase transition. The

corrections we found at N =∞ contains non trivial power exponents, see (1.5) and (1.6).

In particular, the phase density support [−ϑ0, ϑ0] opens a gap in the ϑ distribution of width

2 (π−ϑ0) ∼ (T −TH)1/4 near the Hagedorn transition. Besides, the support collapses with

ϑ0 ∼ T−1/3 for T � TH. It could be interesting to understand these relations in the context

of a finite but large N double scaling limit as in the Hagedorn transition for IIB string

theory in an anti-de Sitter spacetime [28, 29].

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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