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1 Introduction

The absence of supersymmetry (SUSY) at the LHC see e.g., ref. [1] and the discovery of a

125 GeV Standard Model-like Higgs boson [2, 3] raise the spectre of fine-tuning in super-

symmetric models [4, 5]. This appears to undermine the raison d’etre for weak-scale su-

persymmetry: eliminating fine-tuning in the Standard Model (SM) by cancelling quadratic

divergences [6], thus solving the infamous hierarchy problem [7–10]. A 125 GeV Higgs is

particularly problematic for minimal supersymmetric models see e.g., refs. [11–16] because

it can only be achieved by large quantum corrections from massive sparticles [17–23].

In singlet extensions of minimal supersymmetry [24–32] the tree-level Higgs mass can

be raised beyond that of the Z-boson. The simplest singlet extension is the Next-to-

Minimal Supersymmetric SM (NMSSM), reviewed in refs. [33, 34]. It is argued that the

NMSSM is more natural, that is less fine-tuned, than minimal supersymmetric models [35–

44]. Furthermore, there have been many supersymmetric models, built in light of LHC
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results, that are claimed to be more natural because they raise the Higgs mass at tree-level

see e.g., refs. [45–73].

Checking such claims by calculating fine-tuning in various supersymmetric models,

however, is somewhat futile, as the results would completely depend upon the definition

of fine-tuning itself. This subjectivity is a common criticism of naturalness arguments.

Rather than abandoning naturalness or relying on heuristic judgments, we instead advo-

cate for an approach that is based on Bayesian statistics. In this approach, one has a

well-defined means of quantifying both how plausible a particular parameter space point

is in the context of a given model and which model in a given set is the most plausible in

light of experimental data. Apart from these being the most germane questions to pose,

we argue that they also capture the essence of ordinary naturalness arguments whilst evad-

ing arbitrary aspects of naturalness by utilizing a unique logical framework in Bayesian

inference see e.g., refs. [74–76].

Such calculations automatically incorporate so-called naturalness priors that contain

factors strongly resembling some traditional measures of fine-tuning, but which have a rig-

orous probabilistic interpretation. In addition to being a well-founded fine-tuning measure,

the appearance of these naturalness priors also leads to posterior probability densities that

tend to favor regions of parameter space that would be considered as having low fine-tuning

according to the näıve tuning measures, as we show below. Thus Bayesian plausibility

analyses automatically take into account fine-tuning in a model and the effects of new

experimental data on this tuning. Moreover, through comparing the Bayesian evidence for

different models it is possible to make statistically meaningful comparisons between mod-

els. The role of the naturalness priors in these comparisons is to ensure that the outcome

of such a comparison is reflective of whether one model is more natural than another for a

given set of experimental data.

The Bayesian interpretation of naturalness was advocated numerous times over the last

decade [77–85]. However, since it remains much less common than traditional fine-tuning

measures, we recapitulate the essential points in section 2. We illustrate this methodology

with a warm-up example of the hierarchy problem in the SM in section 3, define our semi-

constrained NMSSM and the CMSSM models in section 4, and describe results from our

fully-fledged Bayesian analysis in section 5. This completes our previous study [86] and

complements previous Bayesian analyses of the semi-constrained NMSSM [82, 87, 88] and

CMSSM [13, 89–130]. We close by summarizing our findings in section 6.

2 Bayesian inference

Bayesian statistics is a framework for quantifying the plausibility of a hypothesis, such as a

scientific theory see e.g., ref. [74]. The central equation for our analysis is Bayes’ theorem

for continuous variables,

p(x, y, . . . |M,D) ∝ p(D |M,x, y, . . .) · p(x, y, . . . |M). (2.1)

The theorem expresses that the prior probability density p(x, y, . . . |M) for parameters

x, y, . . . in a model M is updated by experimental data D, resulting in the posterior
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p(x, y, . . . |M,D). The updating factor p(D |M,x, y, . . .) is known as a likelihood function

when interpreted as a function of x, y, . . . . The posterior is often insensitive to the diffuse-

ness of the prior, i.e., whether one permits broad or narrow ranges for the parameters, but

may be sensitive to the shape of the prior, though this sensitivity may be counterbalanced

by sufficient data.

We may find the probability density for a subset of parameters by marginalization, i.e.,

integration. For example, the marginal posterior density for x would be

p(x |M,D) =

∫
p(x, y, . . . |M,D) dy d . . . . (2.2)

As simple as it seems, marginalization captures the traditional idea in physics that fine-

tuned parameters are relatively implausible. We may rewrite eq. (2.2) as

p(x |M,D) =

∫
p(x | y, . . . ,M,D) · p(y, . . . |M,D) dy d . . . , (2.3)

which states that the posterior density for x is the average conditional density

p(x | y, . . . ,M,D). For a given x, it may be possible to fine-tune the value of y, . . . such that

the conditional density is substantial. The average conditional density and thus the pos-

terior, though, may be negligible. As we shall see in section 3, in this way marginalization

automatically penalizes fine-tuning related to the hierarchy problem.

The second equation for our statistical analysis is Bayes’ theorem for a discrete hy-

pothesis,

P (M |D) ∝ p(D |M) · P (M). (2.4)

We see that the plausibility of a model is updated by a factor known as the evidence, which

may be expressed as

p(D |M) =

∫
p(D |x, y, . . . ,M) · p(x, y, . . . |M) dx dy d . . . . (2.5)

The evidence is a functional of the priors for the model’s parameters. Model selection

by evidences is somewhat controversial, partly since evidences may be sensitive to the

diffuseness of prior densities and this sensitivity cannot be compensated by sufficient data.

For that reason, we focus upon posterior distributions, though briefly compare models with

evidences, which are a byproduct of our analysis.

Computationally, the evidence is the average likelihood. As such, it penalizes fine-

tuning automatically, since if, for a particular model, agreement with data is found in only

a small region of the prior volume, the average likelihood will be small relative to a model

in which agreement is found everywhere or more readily.

3 Fine-tuning in the Standard Model

We now consider fine-tuning of the weak scale in the Standard Model (SM) interpreted as

an effective field theory with quadratic corrections from new physics. Our toy-model of the

effective SM is defined by a cut-off Λ2 and parameters µ2 and λ in the Higgs potential,

V = µ2h2 + λh4. (3.1)
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This toy model predicts that

M2
Z =

ḡ2v2

4
= − ḡ

2

8λ

(
µ2 + Λ2

)
, (3.2)

where ḡ2 = g2 + g′2, g and g′ being the SU(2)L and (non-GUT normalized) U(1)Y gauge

couplings, respectively. We assume, as happens in many specific cases, that new physics

at the cut-off scale results in quadratic corrections to µ2. To keep the toy model as simple

as possible, we do not consider any coefficient from a loop-factor in front of the quadratic

correction and neglect the new physics corrections to λ.

The most common measure of fine-tuning in particle physics is the Barbieri-Giudice-

Ellis-Nanopoulos (BGEN) measure [4, 5], which is based upon measuring the sensitivity

of some observable quantity to variations in the underlying, assumed to be fundamental,

model parameters. In discussions of the hierarchy problem, the measure is conventionally

formulated in terms of the predicted Z-boson mass, leading to the tuning sensitivities

defined by

∆p ≡
∣∣∣∣∂ lnM2

Z

∂ ln p

∣∣∣∣ , (3.3)

for each model parameter p. This traditional measure leaves many questions. Are fine-

tuned theories implausible? And if so, why? How much fine-tuning is too much and why?

How should we adjust our conclusion in light of new experimental evidence? There are

no answers to these questions because the measure is only intuitively connected to physics

and lacks rigorous mathematical roots. In contrast, it is well known that in Bayesian

statistics fine-tuning is intimately connected to model plausibility by a fine-tuning penalty

automatically incorporated in the evidence [78, 81, 126].

Applying the traditional BGEN measure to the cut-off Λ2 in our toy model of the SM

we find1

∆Λ2 =
ḡ2

8λ

Λ2

M2
Z

, (3.4)

which indicates that fine-tuning mounts as the cut-off exceeds the weak scale, that is if

Λ�MZ . This is the SM hierarchy problem.

To illustrate that Bayesian statistics captures essential aspects of the hierarchy prob-

lem and fine-tuning, we consider the posterior for the SM cut-off, conditioned upon

the measured Z-boson and Higgs mass, M exp
Z and mexp

h . If Bayesian statistics quanti-

fies the hierarchy problem, the posterior should favor an SM cut-off close to the weak

scale. We begin by applying Bayes’ theorem to calculate the posterior for Λ2 given our

toy version of the SM and the experimental measurement of the mass of the Z boson,

1The sensitivities ∆p are more commonly calculated with respect to the Lagrangian parameters in a

model. In a realistic model, one might consider applying the measure to a heavy mass parameter charac-

terizing the scale of new physics; we use the generic cut-off here simply to illustrate the effects of these

(unspecified) parameters.
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M exp
Z = 91.1876± 0.0021 GeV [131],

p(Λ2 |M exp
Z , SM) =

∫
p(Λ2, µ2, λ |M exp

Z , SM) dµ2 dλ (3.5)

=
1

Z

∫
p(M exp

Z |Λ2, µ2, λ, SM) · p(Λ2, µ2, λ | SM) dµ2 dλ, (3.6)

where Z ≡ p(M exp
Z | SM) is the evidence. We continue by replacing the likelihood function

p(M exp
Z |Λ2, µ2, λ, SM) with a Dirac δ-function, because MZ is measured with such high

precision,2 and change the variable in the Dirac δ-function from MZ to µ2,

=
1

Z

∫
δ(µ2 − µ2

Z)∣∣∣∂MZ
∂µ2

∣∣∣ · p(Λ2, µ2, λ | SM) dµ2 dλ, (3.8)

where µ2
Z reproduces the measured MZ ,

µ2
Z = −8λ

ḡ2
(M exp

Z )2 − Λ2. (3.9)

We identify the integral over µ2 as an effective prior for the SM quartic and cut-off scale,

peff.(Λ
2, λ) ≡ p(Λ2, λ | SM,MZ) =

1

Z

∫
δ(µ2 − µ2

Z)∣∣∣∂MZ
∂µ2

∣∣∣ · p(Λ2, µ2, λ | SM) dµ2 (3.10)

=
1

Z

∣∣∣∣∣ 1
∂MZ
∂µ2

∣∣∣∣∣
µ2Z

· p(Λ2, µ2
Z , λ | SM). (3.11)

In section 4.2.1 we identify similar effective priors in supersymmetric models. The effective

prior is conditioned upon measurement of MZ . By using an effective prior with one La-

grangian parameter fixed such that the measured MZ is obtained, one obtains a prior which

is logically identical to the case in which no parameters are fixed and MZ is simply input as

a constraint in the likelihood. However, the effective prior allows for vastly more efficient

scanning, since one can scan only the hypersurface of parameter space in which the correct

MZ is predicted. In the SM, the fixed parameter was the Higgs Lagrangian mass, µ2, and

the specific form of the effective prior obtained contains the same derivative that would

appear when the traditional fine-tuning measure, eq. (3.3), is applied to the parameter µ2.

Performing the µ2 integration to obtain the marginal density for Λ2 in eq. (3.8) we find

p(Λ2 |M exp
Z , SM) =

1

Z

∫ ∣∣∣∣16M exp
Z λ

ḡ2

∣∣∣∣ · p(Λ2, µ2
Z , λ | SM) dλ. (3.12)

We pick logarithmic priors for the SM parameters, such that

p(Λ2, µ2
Z , λ | SM) =


N

Λ2|µ2Z |λ
inside prior ranges R,

0 otherwise.
(3.13)

2We approximate the likelihood function by a Dirac δ-function under integration, i.e.,∫
p(Mexp

Z |Λ2, µ2, λ, SM) · p(Λ2, µ2, λ | SM) dµ2 dλ ≈
∫
δ(MZ −Mexp

Z ) · p(Λ2, µ2, λ | SM) dµ2 dλ. (3.7)
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Posterior of SM cut-off in light of Z- and Higgs-boson masses

Posterior p(log10 Λ | SM,MZ,mh)

Posterior p(log10 Λ | SM,MZ)

Prior p(log10 Λ | SM)

TeV-scale

Figure 1. Distribution of log10 Λ, the log of the SM cut-off. The prior distribution (blue line)

was flat in log Λ. Once conditioned upon the weak scale (M exp
Z ), the posterior distribution (green

dashed line, filled) favors a small SM cut-off. This is the gist of the SM hierarchy problem caused

by quadratic corrections, Λ2. Further conditioning upon mh makes little difference (red line, filled).

A cut-off of Λ = 1 TeV is shown for reference by the vertical (yellow) line.

The prior for e.g., the SM cut-off favors no particular scale — logarithmic priors equally

weight every order of magnitude, i.e. p(ln Λ | SM) = const. The normalization factor N is

defined such that the integral of the prior over the chosen prior ranges is unity. We take

the prior ranges to be 10−4 < λ < 10 and 10−10 GeV2 < |µ2| < 1040 GeV2. The prior

range for the cut-off affects only the overall normalization of the posterior and the ranges

outside of which it is zero.

Thus with our priors the posterior is,

p(Λ2 |M exp
Z , SM) =

N

Z

∫
R

∣∣∣∣16M exp
Z λ

ḡ2

∣∣∣∣ · 1

Λ2|µ2
Z |λ

dλ (3.14)

=
16N

Z
M exp
Z

Λ2

∫
R

1

|8λ(M exp
Z )2 + ḡ2Λ2| dλ. (3.15)

The prior distribution is substantially updated by the data because we have taken µ to

have a logarithmic prior instead of fixing it at the outset to reproduce the measured MZ

and then treating the latter as a nuisance parameter. As a result, after the µ integration

a factor of 1
|µ2Z |

appears in the remaining integrand which is approximately (ḡ2Λ2)−1 when

Λ�M exp
Z . The impact of this is to update the prior distribution such that large values of

Λ are strongly disfavored.

This is illustrated in figure 1 where this posterior distribution and a similar one from a

calculation that includes the Higgs boson mass mexp
h ' 125 GeV in the likelihood are plotted

as functions of log Λ. We find, as expected, that the application of Bayes’ theorem captures

the gist of the hierarchy problem: quadratic corrections in the SM Higgs mass mean that

we ought to expect new physics close to the measured weak scale. The prior distribution

– 6 –
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for the magnitude of the cut-off was flat, but once conditioned upon the weak scale (i.e.,

measurements of the Z-boson mass and the Higgs mass), a sub-TeV SM cut-off was favored.

Finally, we calculate Z, the evidence of the SM in light of the measurement of MZ , by

integrating eq. (3.14) with respect to the SM cut-off and rearranging to find the evidence,

Z. We find that if the lower limit on the prior for Λ is ΛSM and ΛSM �M exp
Z , then

p(logM exp
Z | SM) ≈ p(logM exp

Z , logmexp
h | SM) ≈ c

(
M exp
Z

ΛSM

)2

, (3.16)

where c is a coefficient determined by factors from integration and priors, which we calcu-

lated to be O(1) for our choices. For comparison with dimensionless fine-tuning ratios, we

expressed the evidences as e.g., p(logM exp
Z | SM) = M exp

Z p(M exp
Z | SM).

This tells us that if the cut-off is of the order of the Planck scale, MPl, then the evidence

is very small, O(10−34). But if the model allows the cut-off to be of order MZ then the

evidence isO(1). Therefore the evidence strongly prefers an SM effective theory that is valid

only up to the electroweak or TeV scale (with new physics such as supersymmetry appearing

at that scale) to an SM effective theory with no new physics below MPl. This is the essence

of the well-known hierarchy problem, but expressed in a statistically rigorous manner.

Besides its coherency and connection to statistics, an advantage of this formulation

over ad-hoc fine-tuning measures is that the evidence calculation can be repeated in any

new extension of the SM, and consistently compared to the evidence computed in other

models. If there is no cancellation of the quadratic divergences within that model then

one should obtain a similar result as obtained in the toy example. In supersymmetry the

quadratic divergences are cancelled; however, soft-breaking introduces corrections of order

m2
SUSY, which may result in fine-tuning if mSUSY �MZ .

In supersymmetry the quadratic divergences are cancelled; however, soft-breaking in-

troduces corrections of the order of the squared soft masses, which may result in fine-tuning

if these soft masses are required to be substantially larger than MZ . For this reason one

should expect that in supersymmetric models a similar result approximately holds, i.e.,

p(logM exp
Z | SUSY) ≈ p(logM exp

Z , logmexp
h | SUSY) ≈ c

(
M exp
Z

mSUSY

)2

, (3.17)

where in this expression mSUSY characterizes the minimal size of the soft masses consistent

with the likelihood and chosen priors. We now explicitly repeat our calculations in two

supersymmetric models to see whether this is the case.

4 Supersymmetric models

4.1 Models

We consider two models: a semi-constrained NMSSM and the constrained MSSM

(CMSSM). The models are tractable examples of a minimal supersymmetric model and

a singlet extension that we investigate with Bayesian statistics.
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4.1.1 Semi-constrained NMSSM

The NMSSM solves the µ-problem [132] of the MSSM by replacing the MSSM superpoten-

tial term µĤd ·Ĥu by one of the form λŜĤd ·Ĥu, where Ŝ is a new gauge singlet superfield.3

An effective µ-term, given by

µeff. = λ〈S〉, (4.1)

is then generated when the scalar component S of this singlet superfield develops a vacuum

expectation value (VEV), 〈S〉. The most general renormalizable superpotential of the

NMSSM should also contain additional terms beyond those found in the MSSM involving

the singlet Ŝ. Here we restrict our attention to the Z3-conserving NMSSM see e.g., refs. [33,

34], for which the full superpotential is

ŴNMSSM = yuij û
c
iĤu · Q̂j + ydij d̂

c
iQ̂j · Ĥd + yeij ê

c
i L̂j · Ĥd + λŜĤd · Ĥu +

1

3
κŜ3 (4.2)

= ŴMSSM|µ=0 + λŜĤd · Ĥu +
1

3
κŜ3.

Here the notation ŴMSSM|µ=0 refers to the usual MSSM superpotential, i.e.,

ŴMSSM = yuij û
c
iĤu · Q̂j + ydij d̂

c
iQ̂j · Ĥd + yeij ê

c
i L̂j · Ĥd + µĤd · Ĥu, (4.3)

evaluated with µ = 0. The cubic singlet coupling κ is required to explicitly break a global

U(1) Peccei-Quinn symmetry, which would otherwise give rise to a massless axion when it

is spontaneously broken by the scalar field S acquiring a VEV.

As usual in phenomenological SUSY models, in the NMSSM SUSY is softly broken by

a set of explicit soft terms,

LNMSSM
soft = Lsoft-scalar + Lsoft-gaugino + Lsoft-trilinear, (4.4)

where the soft scalar masses, gaugino masses and soft trilinear terms are taken to be

−Lsoft-scalar = m2
S |S|2 +m2

Hu |Hu|2 +m2
Hd
|Hd|2 +m2

Qij Q̃
†
i Q̃j

+m2
ucij
ũc †i ũ

c
j +m2

dcij
d̃c †i d̃

c
j +m2

Lij L̃
†
i L̃j +m2

ecij
ẽc †i ẽ

c
j , (4.5)

−Lsoft-gaugino =
1

2
(M1B̃B̃ +M2W̃W̃ +M3g̃g̃ + h.c.), (4.6)

−Lsoft-trilinear = auij ũ
c
iHu · Q̃j + adij d̃

c
iQ̃j ·Hd + aeij ẽ

c
i L̃j ·Hd

+ aλSHd ·Hu +
1

3
aκS

3 + h.c., (4.7)

respectively. To construct the semi-constrained NMSSM that we consider here, the above

soft parameters are assumed to satisfy a set of relationships at the grand unification (GUT)

scale MGUT motivated by those found in minimal supergravity (mSUGRA) [133, 134].

These GUT scale boundary conditions are as follows:

3We use the notation Â · B̂ ≡ εαβÂ
αB̂β = Â2B̂1 − Â1B̂2 to denote a contraction between SU(2)L

doublets.
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• The soft-breaking trilinears are parameterized by

auij(MGUT)≡yuij(MGUT)Auij ,a
d
ij(MGUT)≡ydij(MGUT)Adij ,a

e
ij(MGUT)≡yeij(MGUT)Aeij ,

aλ(MGUT)≡λ(MGUT)Aλ, and aκ(MGUT)≡κ(MGUT)Aκ,

(4.8)

where the reduced trilinear couplings are partially unified at the GUT scale, that is,

Auij = Adij = Aeij ≡ A0δij , (4.9)

while Aλ and Aκ are allowed to vary separately.

• The soft-breaking scalar masses are partially unified at MGUT,

m2
Qij (MGUT)=m2

Lij (MGUT)=m2
ucij

(MGUT)=m2
dcij

(MGUT)=m2
ecij

(MGUT)≡m2
0δij ,

m2
Hd

(MGUT)=m2
Hu(MGUT)≡m2

0.

(4.10)

The exception is the soft-breaking scalar mass for the singlet, m2
S(MGUT) ≡ m2

S0
,

which is taken to be free.

• The soft-breaking gaugino masses are unified at the GUT scale,

M1(MGUT) = M2(MGUT) = M3(MGUT) ≡ m1/2. (4.11)

In addition to the GUT scale values of the soft parameters, the values of the Yukawa cou-

plings λ and κ at the GUT scale, λ(MGUT) ≡ λ0 and κ(MGUT) ≡ κ0, must also be specified.

This semi-constrained model is therefore described by the nine GUT scale parameters

{A0, Aλ, Aκ,m0,m
2
S0
,m1/2, λ0, κ0, signµeff.}. (4.12)

In the MSSM, the effects of A terms are absorbed into the RG evolution of the soft terms

such that the VEVs have no explicit dependence on them. On the other hand, the VEVs

depend on A terms directly in the NMSSM. It is, therefore, important to have flexible

constraints on A terms in the semi-constrained NMSSM.

Note that, depending on the literature, the semi-constrained NMSSM is defined by

slightly different assumptions. A more strict convention allows only the singlet specific pa-

rameters to be unconstrained such that Aλ = A0 is implied at the GUT scale [37], while the

more flexible version lets non-universal Higgs masses be free parameters as well as Aλ [135].

Hereafter, NMSSM is used to simply denote the semi-constrained NMSSM, if there is

no special reason to distinguish it from the general NMSSM.

4.1.2 CMSSM

For comparison purposes we use the CMSSM [133, 134, 136], one of the most-studied

supersymmetric models. In the parameterization that we consider, the model can be char-

acterized by five parameters at the GUT scale. These are a common scalar mass, m0, a

common gaugino mass, m1/2, a common trilinear, A0, the GUT scale value of the µ param-

eter appearing in eq. (4.3), µ0 ≡ µ(MGUT), and the GUT scale value of the corresponding
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Parameter PDG Theory error Distribution

MZ 91.1876± 0.0021 GeV [1] Dirac

mh 125.09± 0.24 GeV [1] 1 GeV Gaussian

Table 1. Likelihoods in our analysis for the Higgs and Z-boson masses. We added in quadrature

a 1 GeV theory error upon the SOFTSUSY calculation of mh.

soft-breaking bilinear coupling, B0µ0 ≡ Bµ(MGUT), where LMSSM
soft ⊃ Bµ(Hd ·Hu + h.c.).

The unified soft parameters m0, m1/2, and A0 have analogous definitions to those used in

the semi-constrained NMSSM; that is, in the CMSSM the boundary conditions eq. (4.9),

eq. (4.10), and eq. (4.11) are assumed to hold.

4.2 Likelihood and priors

We include Particle Data Group (PDG) world-averages [1] of measurements of the Higgs

and Z-boson masses in table 1 in our likelihood function. Under integration, we approx-

imate the Gaussian likelihood function for the Z-boson mass by a Dirac δ-function, as in

eq. (3.7). We added in quadrature a 1 GeV theoretical uncertainty in the calculation of the

SM-like Higgs boson mass by SOFTSUSY [137, 138].

Our chosen priors for the parameters of the CMSSM and the semi-constrained NMSSM

are shown in table 2. Because we are ignorant of the soft-breaking mass scale, we pick

logarithmic priors, where possible, that equally weight every order of magnitude. Note

that the trilinear couplings in both models, A0, Aλ, and Aκ, are allowed to take both signs,

and we use the piecewise prior

p(A) ∝


1 |A| ≤ 100 GeV,
100 GeV
|A| 100 GeV < |A| ≤ 20 TeV,

0 |A| > 20 TeV.

(4.13)

This choice corresponds to a logarithmic prior with special treatment at |A| ' 0 such that

the prior remains proper.

In addition to the relevant GUT scale parameters, the models share nuisance parame-

ters that are not of particular interest in this analysis, but which could impact our results.

The most important nuisance parameters are the top quark mass, mpole
t , and the strong

coupling, αs(MZ)MS. We pick Gaussian priors for them, with means and standard de-

viations determined by PDG world-averages of experimental measurements [1], as shown

in table 2. We fix other SM nuisance parameters, including the bottom mass and weak

coupling, to their measured values.

4.2.1 Effective naturalness priors

As in the SM in eq. (3.10), from these initial priors we find effective priors in the CMSSM

and NMSSM in which one of the GUT scale parameters is fixed to reproduce the observed

value of M2
Z . This corresponds quite closely to the approach taken in spectrum generators
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Parameter Distribution

CMSSM

m0 Log, 1 GeV, 20 TeV

m1/2 Log, 1 GeV, 15 TeV

A0 Log for 100 GeV < |A| ≤ 20 TeV, Flat for |A| ≤ 100 GeV

|µ0| Log, 100 GeV, 20 TeV

B0µ0 Log, (100 GeV)2, (20 TeV)2

signµ ±1 with equal probability

NMSSM

λ0 Log, 10−6, 1

κ0 Log for 10−10 < |κ| < 1

mS0 Same as m0

Aλ Same as A0

Aκ Same as A0

SM

αs(MZ)MS Gaussian, 0.1185± 0.0006 [1]

mpole
t Gaussian, 173.34± 0.76 GeV [1]

Table 2. Priors for the CMSSM and semi-constrained NMSSM model parameters. In the CMSSM,

|µ0| is marginalized in accordance with MZ , while in the NMSSM mS is marginalized as |µ0| via

〈S〉, as described in section 4.2.1. The full set of parameters in our scan of the CMSSM includes

the SM parameters, and the same priors are used in the NMSSM for those parameters that are

shared with the CMSSM. In the case of the NMSSM, the parameters |µ0| and B0µ0 are absent and

instead we specify priors for λ0 and κ0.

for the MSSM and NMSSM, such as SOFTSUSY, where some of the presumed fundamental

parameters are traded for phenomenological parameters at the weak scale. The models

can then be parameterized in terms of the remaining GUT scale parameters and a set of

precisely known electroweak (EW) parameters. It should be noted, however, that this is

equivalent to working directly in terms of the GUT scale parameters and marginalizing with

the chosen EW observables using a δ-function likelihood. This provides an economic way

to survey the entirety of parameter space, discarding points that lead to hardly justifiable

low-energy spectra.

In the MSSM, the effective priors arise from making the conventional trade

{|µ0|, B0µ0, signµ, . . . } → {M2
Z , tanβ, signµ, . . . }, (4.14)

where as usual tan β ≡ v2/v1 is defined as the ratio of the two Higgs VEVs,

〈H0
d〉 =

v1√
2
, 〈H0

u〉 =
v2√

2
. (4.15)
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In practice, we achieve this trade in two steps. First, the GUT scale parameters are

evolved to mSUSY ≡ √mt̃1
mt̃2

, the scale of EW symmetry breaking (EWSB), using two-

loop renormalization group equations (RGEs). The EWSB conditions,

1

2
M2
Z = −µ2 +

m̄2
Hd
− m̄2

Hu
tan2 β

tan2 β − 1
− 1

2
Re ΠT

ZZ , (4.16)

sin 2β =
2Bµ

m̄2
Hu

+ m̄2
Hd

+ 2µ2
, (4.17)

can then be used to exchange the low-energy values of µ and Bµ for M2
Z and tan β. In these

expressions, the one- and two-loop corrections from the Coleman-Weinberg potential [139]

have been absorbed into the quantities m̄2
Hd,u

, and Re ΠT
ZZ is the transverse part of the

Z-boson self-energy. Since the EWSB conditions cannot fix the phase of the µ-parameter,

signµ is an additional parameter. This trade is convenient, since we may now input the

measured Z-boson and fermion masses, the latter being related to their Yukawa couplings

via tan β.

The priors for the two choices of parameter sets are related by the Jacobian, J CMSSM,

associated with this change of variables,

p(|µ0|, signµ,B0µ0, . . . |CMSSM) ≡ p(µ0, B0µ0, . . . |CMSSM)

= J CMSSM · p(M2
Z , tanβ, . . . |CMSSM), (4.18)

where J CMSSM is given by J CMSSM = | det JCMSSM|, JCMSSM being the appropriate Jaco-

bian matrix. Here we treat the RG evolution from MGUT to mSUSY and the subsequent

solution of the EWSB conditions as two consecutive changes of variables, so that J CMSSM

may be written as a product of the Jacobian determinant associated with each, i.e.,

JM = JMmSUSY
JMMGUT

, (4.19)

where M = CMSSM,NMSSM denotes the particular model under consideration. The

forms of JMmSUSY
and JMMGUT

are given in appendix A.

The effective prior results from conditioning on the measurement of MZ and then

marginalizing over MZ . This yields

peff.(tanβ, . . . ) =

∫
p(M2

Z , tanβ, . . . |CMSSM,M exp
Z ) dM2

Z (4.20)

≡ 1

Z

∫
δ((M exp

Z )2 −M2
Z) · p(M2

Z , tanβ, . . . |CMSSM) dM2
Z

=
1

Z p((M
exp
Z )2, tanβ, . . . |CMSSM)

=
1

Z
1

J CMSSM

∣∣∣∣
Mexp
Z

p(µZ , BZµZ , . . . |CMSSM), (4.21)

where µZ = µ0(MZ = M exp
Z ) and BZµZ = B0µ0(MZ = M exp

Z ) are the values of the high-

scale parameters that result for MZ = M exp
Z , for the given value of tan β and all other model

parameters. The form of the effective prior is identical to that in the SM in eq. (3.10).
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It is worth noting that we do not develop any nontrivial, or misleading, behavior in the

effective prior according to our choice of EW parameters, {M2
Z , tanβ}. This choice is not

unique; for instance, one could choose the VEVs {v1, v2} instead. In this case, the effective

prior would differ only by the additional non-singular Jacobian factor4∣∣∣∣det
∂(v1, v2)

∂(M2
Z , tanβ)

∣∣∣∣ ≈ v2
1

2m2
Z

, (4.22)

where mZ is the tree-level Z-boson mass.

In the NMSSM, the imposed Z3 symmetry forbids an explicit superpotential bilinear

term for Ĥd and Ĥu, along with the corresponding soft-breaking parameter. We instead

make the trade

{λ0, κ0,m
2
S0
} → {λ,M2

Z , tanβ}. (4.23)

After the intermediate step of exchanging GUT scale parameters for their low-energy

counterparts through RG running, we can make use of the three NMSSM EWSB con-

ditions to obtain the new set of input parameters. Note that exchanging λ0 for λ is

achieved solely by integrating the RGEs, so that at the EWSB scale we need only trade

{κ,m2
S} → {M2

Z , tanβ}.
To do so, we first use the MSSM-like EWSB condition

1

2
M2
Z = −µ2

eff. +
m̄2
Hd
− m̄2

Hu
tan2 β

tan2 β − 1
− 1

2
Re ΠT

ZZ , (4.24)

where the effective µ-parameter, µeff., is defined in eq. (4.1), to express the effective µ-

parameter in terms of M2
Z and tanβ. Since in this approach we retain λ as a free input

parameter, this has the effect of determining the singlet VEV, 〈S〉 ≡ s/
√

2, as a function

of M2
Z and tan β.

Second, we trade s for m2
S via the EWSB condition,

m̄2
S = −κ2s2 − 1

2
λ2v2 − aκs√

2
+
v2

2s
sin 2β

(
aλ√

2
+ λκs

)
, (4.25)

where we make the usual definition v2 = v2
1 + v2

2, and have absorbed the loop-corrections

from the Coleman-Weinberg potential into m̄2
S . Finally, we make tan β an input parameter

by trading κ for tan β via the second MSSM-like EWSB condition,

sin 2β =
2Beff.µeff.

m̄2
Hu

+ m̄2
Hd

+ 2µ2
eff. + λ2v2

2

, (4.26)

where we define an effective soft-breaking bilinear

Beff.µeff. ≡
s√
2

(
aλ +

λκs√
2

)
. (4.27)

4In general, additional terms involving derivatives of the Z-boson self-energy are also present, but these

are numerically small and may be neglected here.
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Thus, ultimately, in our analysis m2
S plays the role of µ2 via an effective µ-term and κ

plays the role of Bµ via an effective Bµ-term. The final effective prior is defined in the

same way as in the CMSSM, i.e., it has the form

peff.(tanβ, λ, . . . ) =
1

Z
1

J NMSSM

∣∣∣∣
Mexp
Z

p(λZ , κZ ,m
2
SZ
. . . |NMSSM). (4.28)

The effective priors automatically disfavor fine-tuned regions of parameter space. In-

deed, from their explicit forms in appendix A, we see that the effective priors favor RG

evolution that results in weak-scale parameters similar in magnitude to the weak scale. The

region of parameter space in which this occurs is known as the “focus point” [140–142]. In

these regions of parameter space, the RG evolution of the soft masses is such that, at the

SUSY scale, m2
Hu
∼ M2

Z almost independently of the initial value of m2
Hu

(MGUT) = m2
0.

In the CMSSM, the dependence of m2
Hu

(mSUSY) on the universal soft-breaking masses can

be quantified using semi-analytic solutions to the RGEs, which take the form

m2(mSUSY) = cm
2

m2
0
(mSUSY)m2

0 + cm
2

m2
1/2

(mSUSY)m2
1/2 + cm

2

m1/2A0
(mSUSY)m1/2A0

+ cm
2

A2
0
(mSUSY)A2

0, (4.29)

for m2 = m2
Hu
,m2

Hd
and where the coefficients cij(Q) depend only on the gauge and Yukawa

couplings. In the semi-constrained NMSSM the semi-analytic solutions instead take the

form

m2(mSUSY) = cm
2

m2
0
(mSUSY)m2

0 + cm
2

m2
S0

(mSUSY)m2
S0

+ cm
2

m2
1/2

(mSUSY)m2
1/2

+ cm
2

m1/2A0
(mSUSY)m1/2A0 + cm

2

m1/2Aλ
(mSUSY)m1/2Aλ

+ cm
2

m1/2Aκ
(mSUSY)m1/2Aκ + cm

2

A0Aλ
(mSUSY)A0Aλ + cm

2

A0Aκ(mSUSY)A0Aκ

+ cm
2

AλAκ
(mSUSY)AλAκ + cm

2

A2
0
(mSUSY)A2

0 + cm
2

A2
λ
(mSUSY)A2

λ

+ cm
2

A2
κ
(mSUSY)A2

κ (4.30)

for m2 = m2
Hu
,m2

Hd
,m2

S .

4.3 Comparison to other fine-tuning measures

As discussed in section 2 and section 3, Bayesian methods automatically incorporate some

of the common intuitions relating to fine-tuning. It is therefore useful to compare the results

obtained in the Bayesian approach to other measures of tuning. The traditional sensitivity

measure defined in eq. (3.3) is one example. In addition to the ambiguities related to this

measure discussed in section 3, there is also no agreement as to how a collection of sensitivi-

ties {∆p} should be calculated or combined to produce a tuning measure. For instance, it is

not necessarily clear whether the sensitivities should be summed, profiled, added in quadra-

ture, or combined in some other way, nor is there agreement on the renormalization scale

of the parameters with respect to which we differentiate MZ . For our purposes, we define

∆BG ≡ max
p

∆p

∣∣
MGUT

, (4.31)
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where ∆p is defined as in eq. (3.3) and the notation ∆p

∣∣
Q

indicates that the parameters

to differentiate with respect to are those defined at the scale Q; here, this is taken to be

Q = MGUT, the scale of gauge coupling unification. In the CMSSM, we pick the maximum

from the measures for the parameters {A0,m0,m1/2, µ0, B0µ0}. In the NMSSM, on the

other hand, we consider {A0, Aλ, Aκ,m0,m
2
S0
,m1/2, λ0, κ0}.

The BGEN measure defined in eq. (4.31) identifies fine-tuning with sensitivity to small

parameter variations. Alternative naturalness measures have been proposed that instead

seek to quantify the size of any cancellations that must take place to reproduce the ob-

served EW scale. An example of this class of measures is the so-called electroweak fine-

tuning [143], which is defined as

∆EW ≡ max
i

|Ci|
m2
Z/2

. (4.32)

The Ci are the terms appearing in the expression for m2
Z in the model (see eq. (4.16) and

eq. (4.24)), evaluated at the renormalization scale Q = mSUSY. The expressions for the Ci
appropriate to each of the CMSSM and NMSSM are given in appendix B.

The measures in eq. (4.31) and eq. (4.32) are pointwise measures that can be compared

with the (marginalized) posterior densities obtained in a complete Bayesian analysis. Eval-

uating the latter in general involves calculating non-trivial evidence integrals over the full

model parameter space. However, even without carrying out the full computation, it can

be seen that doing so nevertheless involves a simple pointwise tuning measure involving the

Jacobian for the change of variables from parameters to observables. Regions of parameter

space for which this quantity is large are penalized by a factor of 1/J in evidence integrals;

that is, the effective prior in such regions is suppressed. This motivates the definition of

the tuning measures [86]

∆J
∣∣
MGUT

≡
∣∣∣∣det

∂ lnOi
∂ ln pj(MGUT)

∣∣∣∣ =

∣∣∣∣
∏
j pj(MGUT)∏

iOi

∣∣∣∣JM , (4.33)

∆J
∣∣
mSUSY

≡
∣∣∣∣det

∂ lnOi
∂ ln pj(mSUSY)

∣∣∣∣ =

∣∣∣∣
∏
j pj(mSUSY)∏

iOi

∣∣∣∣JMmSUSY
. (4.34)

The set {Oi} contains the observables for which the parameters pj are traded in each

model, i.e., {M2
Z , tanβ} in the CMSSM and {λ,M2

Z , tanβ} in the NMSSM. The measures

in eq. (4.33) and eq. (4.34) differ in the scales at which the parameters pj are defined. The

first involves the parameters pj defined at MGUT, namely {µ0, B0µ0} in the CMSSM and

{λ0, κ0,m
2
S0
} in the NMSSM, and includes the effect of running from the GUT scale to low

energies. Eq. (4.34) only involves the trade from SUSY scale parameters to observables, so

that the set of pj is {µ,Bµ} in the CMSSM and {λ, κ,m2
S} in the NMSSM. It can be seen

from the expressions in appendix A that the Jacobian factors JM and JMmSUSY
resemble

traditional [36, 49, 144–164] and alternative fine-tuning measures [140, 143, 165–177].

In the following, we will compare the results obtained using the framework of Bayesian

statistics with the fine-tuning measures defined above, and illustrate how the former can

encapsulate traditional notions of naturalness. To compare parameter inference with fine-

tuning measures and Bayesian statistics, in section 5 we compare “heat-maps” of fine-tuning
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measures with posterior densities. Because the fine-tuning measures are not densities, we

must compare them in a particular parameterization, and bear in mind that densities

are not invariant under reparameterizations (whereas the transformation of a fine-tuning

measure is ambiguous) and that densities are dimensionful (whereas fine-tuning measures

are dimensionless).

To compare model selection with fine-tuning measures and Bayesian statistics, in sec-

tion 5 we compare Bayes factors with ratios of fine-tuning measures. The fine-tuning

measure in supersymmetric models is roughly

∆ ∼ m2
SUSY

M2
Z

. (4.35)

By comparing with eq. (3.17) we see that the evidence for a supersymmetric model (written

in terms of logMZ) may be crudely written as

p(logMZ | SUSY) ∼ 1

∆
. (4.36)

The parametric behavior for m2
SUSY �M2

Z is identical. Thus, in this case, there is reason

to expect that fine-tuning measures and Bayes factors may result in similar conclusions.

4.4 Numerical methods

We computed statistical quantities — posterior densities and evidences — with MultiNest

v3.10 [178–180] and plotted them with SuperPlot [181]. For the evidence integration, we

modified the convergence criteria by defining the tolerance using the average likelihood of

the live points, instead of the maximum. We performed two scans for each model: one with

only MZ , and one with MZ and mh in the likelihood. We scanned 10 million and 100 million

points for each scan of the CMSSM and NMSSM, respectively. To calculate the likelihoods

and effective priors in each model, we computed the mass spectrum and Jacobian factors

for each parameter point using a modified version of SOFTSUSY-3.6.2. As described in

detail in appendix A, the required Jacobian is written as the product of the Jacobian

determinants for the change of variables from the GUT scale parameters to the low-energy

Lagrangian parameters, and for the transformation from these parameters to the derived

parameters M2
Z and tanβ, so that J may be expressed as in eq. (4.19). The particular

derivatives required for the construction of JMmSUSY
and JMMGUT

are given in appendix A.

We implemented subroutines to evaluate these derivatives numerically in SOFTSUSY. In

the case of JMMGUT
, this is achieved by varying the high-scale model parameters at MGUT

and calculating the resulting values of the low-energy Lagrangian parameters using the

two-loop RGEs. In a similar fashion, to determine the derivatives appearing in JMmSUSY
, we

vary the low-energy Lagrangian parameters and recalculate the predicted values of M2
Z and

tanβ. The underlying changes in the VEVs are found by numerically solving the EWSB

conditions for v1, v2 and s after perturbing the model parameters. Two-loop RG evolution

of all the model parameters such as the soft-breaking gaugino masses, scalar masses and

trilinear terms is applied for the entire calculation. One-loop threshold corrections for the

gauge and Yukawa couplings are included.
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For each point in our scan, we also computed the measures of fine-tuning given in

eq. (4.31), eq. (4.32), eq. (4.33) and eq. (4.34). In the MSSM, we make use of the existing

implementation of the BGEN measure provided by SOFTSUSY to find ∆BG. As analogous

routines are not yet provided for the NMSSM in SOFTSUSY, we also implemented the neces-

sary numerical calculation of ∆BG in the NMSSM in our modified code. Derivatives of M2
Z

are obtained numerically by perturbing the GUT scale model parameters and calculating

the predicted Z-boson pole mass, after running to the SUSY scale and solving the EWSB

conditions for the VEVs at two-loop order.

5 Results and discussion

In figure 2, we compare credible regions of the marginalized posterior probability density

conditioned upon MZ (left frames) with the profiled BGEN fine-tuning measure (right

frames) on the (m0, m1/2) planes of the CMSSM (top frames) and NMSSM (bottom

frames). On the posterior density plots we show the smallest 1σ (red) and 2σ (blue)

credible regions, containing 68% and 95% of the posterior mass respectively. On the right

frames different colors trace constant contours of the profiled BGEN measure. According to

the posterior plots, most probability density (that is, most of the low tuned area) lies in the

weak scale valued m0 and m1/2 region. This not only confirms our qualitative expectations

in eq. (3.17), but also coincides with expectations for the scale of supersymmetry before

the LHC operation. As anticipated, the BGEN measure reflects the same expectations,

agreeing fairly well with the trend shown by the posterior probability. This is not a surprise

considering that the dominant term in this measure appears in the posterior after trading

the µ parameter to the Z mass. While most of the low tuned area lies in the bulk region,

which was eliminated by the LHC, parts of the focus point also feature low tuning and are

still experimentally feasible. Low tuning in the focus point is prominently highlighted by

the 2σ credible region of the posterior density, and supported by the BGEN measure.

The scatter plots in figure 2, and all other scatter plots, show points with appreciable

posterior weight. The density of points results from the posterior density and the nested

sampling algorithm. The CMSSM and NMSSM (m0, m1/2) planes feature a region with

no points at m0 . 100 GeV and m1/2 . 100 GeV. The CMSSM, furthermore, shows few

points at m1/2 ' 0 and m0 ' 250 GeV. Such regions are disallowed as they fail to realize

a physically sensible EWSB vacuum. This problem is particularly prevalent for large A0

and tanβ. Such regions were, moreover, ruled out prior to the LHC by LEP searches for

supersymmetric particles and for the Higgs boson.

Foreshadowing our inclusion of the Higgs mass in the likelihood, in figure 3 we show

the lightest Higgs boson mass on the (m0, m1/2) plane for the CMSSM (left) and NMSSM

(right). The color scale indicates Higgs masses from 90 GeV (red) to 130 GeV (green). We

see that low fine-tuned regions and credible regions of the (m0, m1/2) plane in figure 2

correspond to mh . 100 GeV. A Higgs mass of mh ≈ 125 GeV requires large quantum

corrections from massive sparticles and thus multi-TeV soft-breaking masses. Such points

lie outside the credible regions of the posterior and are, by traditional measures, fine-tuned.
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(d) NMSSM ∆BG.

Figure 2. Credible regions of marginalized posterior probability density conditioned upon MZ

(left) and profiled BGEN measure (right) for the CMSSM (upper) and NMSSM (lower) on the (m0,

m1/2) plane.

For completeness, we show the credible regions of the marginalized posterior density

and the BGEN measure on the (tan β, A0) plane in figure 4. The posterior and BGEN

measure agree with intuition before the LHC: A0 ≈ 0, for which loop corrections to the

Higgs mass are small, is natural and most plausible. As was also known in the absence

of constraints on the Higgs mass, the credible regions suggest that naturalness issues are

largely independent of tan β in the CMSSM, while they might slightly prefer low tan β in

the NMSSM.

In light of our growing confidence in the posterior measuring fine-tuning, it is interest-

ing to see how it fares against the addition of the most relevant piece of new information

from the LHC: the lightest Higgs mass. This is shown in figure 5. Our first observation

is that the most plausible regions, indicated by the 1σ and 2σ credible regions, are dra-

– 18 –



J
H
E
P
1
0
(
2
0
1
7
)
1
6
0

0 1 2 3 4 5
log10m0/GeV

0

1

2

3

4

5
lo

g 1
0
m

1 2
/G

eV

CMSSM with MZ

Points from scan

90

95

100

105

110

115

120

125

130

m
h

(G
eV

)
(a) CMSSM.

0 1 2 3 4 5
log10m0/GeV

0

1

2

3

4

5

lo
g 1

0
m

1 2
/G

eV

NMSSM with MZ

Points from scan

90

95

100

105

110

115

120

125

130

m
h

(G
eV

)

(b) NMSSM.

Figure 3. The lightest Higgs mass on the (m0, m1/2) plane for the CMSSM (left) and NMSSM

(right).

matically shifted to about two orders of magnitude higher m0 and m1/2 values. This is,

of course, the well-known quantitative conclusion from the LHC Run 1: supersymmetry is

effectively eliminated, i.e., relatively implausible, below 1 TeV. After folding in the lightest

Higgs mass the least fine-tuned regions lie in the focus point, signalled by the slanted 1σ

region at large m0 and m1/2 for both the CMSSM and the NMSSM. In this region low

fine tuning is achieved with relatively small values of A0 (figure 6). In the vertical region

spanning between m1/2 ∼ 0.1-1 TeV A0 increases with decreasing m1/2. This still allows

for acceptable fine-tuning in the CMSSM. Just as in the case when only MZ was included

in the likelihood, the BGEN measure confirms the picture painted by the posterior dis-

tribution. The former signals the narrow vertical region at m0 ∼ 10 TeV and between

m1/2 ∼ 0.1 − 1 TeV as the least fine-tuned. This long vertical strip represents the focus

point solution, thus confirming that Bayesian naturalness does find a naturalness benefit

from focus point supersymmetry [140–142].

To gauge their consistency with each other, we compare the fine-tuning measures

defined in section 4.3 in the CMSSM in figure 7 and in the NMSSM in figure 8 on the (m0,

m1/2) planes. In each plot, parameters other than m0 and m1/2, such as A0 and tanβ,

were chosen such that the fine-tuning measure was minimized. All fine-tuning measures

are qualitatively similar, with a region of low fine-tuning at mSUSY ∼MZ , and fine-tuning

increases as m0 and m1/2 are increased, as expected. The Jacobian-based fine-tuning

measures, however, are substantially smaller than the traditional BGEN measure and EW

measure. We should not, however, be mislead into a superficial comparison of the measures.

The Jacobian based measures, ∆J , are volumes of multidimensional hypercubes, e.g., a

two-dimensional volume in the MSSM. The BGEN measure, ∆BG, on the other hand,

corresponds to the length of a line element and ∆EW measures the relative size of terms

contributing to MZ .
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Figure 4. Credible regions of the marginalized posterior probability density conditioned upon

MZ (left) and profiled BGEN measure (right) for the CMSSM (upper) and NMSSM (lower) on the

(tanβ, A0) plane.

Requiring that mh ' 125 GeV increases the fine-tuning measures in the CMSSM (fig-

ure 9) and NMSSM (figure 10), and further structure is revealed. We find diagonal strips

of low fine-tuning for Jacobian-based measures at about m0 ∼ 10 TeV and m1/2 ∼ 1 TeV.

The GUT scale Jacobian measure furthermore exhibits a vertical strip of low fine-tuning

at m0 ∼ 10 TeV. This indicates that the Jacobian based measure has a much sharper

preference for the focus point region than ∆BG. Note that this is the case even though we

have not included the top mass or top Yukawa coupling in the set of parameters for which

we take logarthmic derivatives for ∆BG. The Jacobian based measures in the NMSSM are

also visibly smaller than those in the CMSSM.

We summarize the one-dimensional posterior for the dimensionful parameters in fig-

ure 11. We see that in the CMSSM and NMSSM with only MZ in the likelihood, the
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Figure 5. Credible regions of the marginalized posterior probability density conditioned upon MZ

and mh (left), and profiled BGEN measure (right) for the CMSSM (upper) and NMSSM (lower)

on the (m0, m1/2) plane.

posterior favors mSUSY . 1 TeV. Once we consider MZ and mh, however, we require

mSUSY & 4 TeV and TeV-scale soft-breaking parameters. It is, therefore, not surprising to

see no signature of supersymmetric particles until the current data set of the LHC in the

regard that our Higgs mass is 125 GeV.

As a byproduct of our investigations, we calculated the Bayes factor between the semi-

constrained NMSSM and CMSSM, though with appreciable uncertainty as in ref. [82]. The

Bayes factor measures the change in relative plausibility of two models in light of data. With

MZ only, our lower estimate of the Bayes factors favored the NMSSM by a factor of about 3,

whereas our upper estimate favored it by a factor of about 20. With MZ and mh, our lower

estimate favored the CMSSM by a factor of about 3, whereas our upper estimate favored

the NMSSM by a factor of about 6. This agrees reasonably with a Bayes factor for different
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Figure 6. Credible regions of the marginalized posterior probability density conditioned upon MZ

and mh (left) and profiled BGEN measure (right) for the CMSSM (upper) and NMSSM (lower) on

the (tan β, A0) plane.

data calculated in ref. [82]. The lower estimates may be more accurate as they were found

by importance sampling; however, since there were significant differences between estimates

from importance sampling and ordinary summation, we present our results with caution,

and do not make a definitive model selection statement. To improve the accuracy of our

evidence estimates requires more computational resources, or, possibly, sampling techniques

which are more specialised for exploring the very strong degeneracies that can be induced

by the naturalness priors in scans constrained only by measurements of MZ and mh.

The minimum fine-tuning measures found in our scan are shown in table 3. For both

the CMSSM and NMSSM, we found minimum fine-tuning measures of about zero for our

measures based upon the Jacobian; about 0.3 for EW fine-tuning; and about 0.1 for BGEN

fine-tuning. If we require that mh ≈ 125 GeV, all fine-tuning measures increase, though in
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Figure 7. Comparison of fine-tuning measures in the CMSSM on the (m0, m1/2) plane. For their

definitions, see section 4.3.

this case the Jacobian-based measures and ∆BG in the NMSSM are substantially less than

those in the CMSSM. The EW measure, ∆EW, is very similar in each model. To avoid

confusion, it should be stressed again that the numbers are to be compared or interpreted

considering the dimensionality or the physical meaning of each measure.

6 Conclusions

After introducing fine-tuning in the context of Bayesian statistics with the Standard Model

as an example, we presented a comprehensive analysis of fine-tuning in a minimal and next-

to-minimal supersymmetric model. Results of a Bayesian analysis were contrasted with

traditional fine-tuning measures, for parameter inference and, briefly, for model selection.
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Figure 8. Comparison of fine-tuning measures in the NMSSM on the (m0, m1/2) plane. For their

definitions, see section 4.3.

MZ MZ and mh ≈ 125 GeV

CMSSM NMSSM CMSSM NMSSM

∆J
∣∣
MGUT

3× 10−9 2× 10−10 0.004 8× 10−7

∆J
∣∣
mSUSY

6× 10−7 2× 10−10 0.005 8× 10−7

∆EW 0.3 0.3 48.7 47.4

∆BG 0.1 0.2 451.9 133.2

Table 3. Minimum fine-tuning measures (defined in section 4.3) found in our scans with only MZ

in the likelihood and with the requirement that mh ≈ 125 GeV.
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Figure 9. Comparison of fine-tuning measures in the CMSSM with mh ≈ 125 GeV on the (m0,

m1/2) plane. For their definitions, see section 4.3.

For parameter inference, conditioning upon only MZ we found qualitative agreement

between regions favored by the posterior density and regions of low fine-tuning, as mea-

sured by, e.g., the BGEN measure. Weak-scale soft-breaking masses, i.e., mSUSY ∼ MZ ,

were favored in a Bayesian analysis, in agreement with heuristic arguments from natural-

ness. This provided numerical support for our argument, made in the introduction, that

naturalness arguments are underpinned by Bayesian statistics. Adding LHC measurements

of the Higgs mass to our likelihood pushed the posterior for the soft-breaking masses into

a multi-TeV region, as expected. This study completes our preliminary work [86] and our

argument that Bayesian statistics is the correct framework for understanding fine-tuning

and naturalness in supersymmetric models.

– 25 –



J
H
E
P
1
0
(
2
0
1
7
)
1
6
0

0 1 2 3 4 5
log10m0/GeV

0

1

2

3

4

5
lo

g 1
0
m

1 2
/G

eV

NMSSM with MZ and mh ≈ 125 GeV

Points from scan

−5

−4

−3

−2

−1

0

1

2

3

4

5

lo
g 1

0
∆

B
G

(a) ∆BG.

0 1 2 3 4 5
log10m0/GeV

0

1

2

3

4

5

lo
g 1

0
m

1 2
/G

eV

NMSSM with MZ and mh ≈ 125 GeV

Points from scan

−5

−4

−3

−2

−1

0

1

2

3

4

5

lo
g 1

0
∆

E
W

(b) ∆EW.

0 1 2 3 4 5
log10m0/GeV

0

1

2

3

4

5

lo
g 1

0
m

1 2
/G

eV

NMSSM with MZ and mh ≈ 125 GeV

Points from scan

−5

−4

−3

−2

−1

0

1

2

3

4

5
lo

g 1
0

∆
J
| m

S
U

S
Y

(c) ∆J
∣∣
mSUSY

.

0 1 2 3 4 5
log10m0/GeV

0

1

2

3

4

5

lo
g 1

0
m

1 2
/G

eV
NMSSM with MZ and mh ≈ 125 GeV

Points from scan

−5

−4

−3

−2

−1

0

1

2

3

4

5

lo
g 1

0
∆
J
| M

G
U

T

(d) ∆J
∣∣
MGUT

.

Figure 10. Comparison of fine-tuning measures in the NMSSM with mh ≈ 125 GeV on the (m0,

m1/2) plane. For their definitions, see section 4.3.
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Figure 11. Violin plots showing one-dimensional posterior and summary statistics for important

dimensionful parameters in the CMSSM (upper) and NMSSM (lower) with only MZ (left) and MZ

and mh (right) in the likelihood.

A CMSSM and NMSSM Jacobians

In this appendix we present analytic expressions for the Jacobians that appear in the

effective priors as discussed in section 4.2.1.
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A.1 CMSSM Jacobian

In the CMSSM, the relevant Jacobian arises from making the change of variables

{|µ0|, B0µ0} → {M2
Z , tanβ}. (A.1)

By performing this trade in two steps, namely, by first exchanging the high-scale values

of the Lagrangian parameters for their values at the EW scale, and subsequently trading

these for the parameters M2
Z and tan β, the full Jacobian factorizes,

J CMSSM ≡ J CMSSM
mSUSY

J CMSSM
MGUT

, (A.2)

where the Jacobian determinants on the right-hand side arise from this series of variable

changes, i.e., {|µ0|, B0µ0} → {|µ|, Bµ} → {M2
Z , tanβ}. The various prior probability

density functions are related by

p(µ0, B0µ0, . . . |CMSSM) = J CMSSM
MGUT

p(µ,Bµ, . . . |CMSSM) (A.3)

= J CMSSM
mSUSY

J CMSSM
MGUT

p(M2
Z , tanβ, . . . |CMSSM). (A.4)

The elements of the two Jacobian matrices that are required read

JCMSSM
MGUT

=

(
∂µ
∂µ0

∂µ
∂B0µ0

∂Bµ
∂µ0

∂Bµ
∂B0µ0

)
, JCMSSM

mSUSY
=

(
∂M2

Z
∂µ

∂M2
Z

∂Bµ
∂ tanβ
∂µ

∂ tanβ
∂Bµ

)
, (A.5)

with J CMSSM
MGUT

= | det JCMSSM
MGUT

| and J CMSSM
mSUSY

= | det JCMSSM
mSUSY

|.
The construction of the Jacobian matrices requires evaluating derivatives of the func-

tions that implement the changes of variables from the initial high-scale parameters to

the EW parameters. The first of these trades, {|µ0|, B0µ0} → {|µ|, Bµ}, is achieved by

integrating the two-loop RGEs from the GUT scale to the SUSY scale. The dependence of

µ and Bµ on the CMSSM parameters defined at MGUT can be explicitly expressed using

semi-analytic solutions to the RGEs, with the result that

µ(mSUSY) = cµµ0(mSUSY)µ0, (A.6)

Bµ(mSUSY) = cBµB0µ0
(mSUSY)B0µ0 + cBµµ0m1/2

(mSUSY)µ0m1/2 + cBµµ0A0
(mSUSY)µ0A0. (A.7)

The elements of JCMSSM
MGUT

can immediately be read from these expressions. The dimension-

less coefficients cij depend only on the running of the gauge and Yukawa couplings; however,

in the absence of exact analytic solutions to the two-loop RGEs they must be evaluated by

numerical integration of the RGEs.

As noted in section 4.2.1, the subsequent change of variables from {µ,Bµ} to

{M2
Z , tanβ} is done by solving the EWSB conditions to write the former pair as func-

tions of M2
Z and tanβ. In the MSSM, the requirement that the neutral scalar Higgs fields

acquire VEVs of the form given in eq. (4.15) leads to the two EWSB conditions,

(µ2 +m2
Hd

)v1 +
ḡ2

8
(v2

1 − v2
2)v1 −Bµv2 − t1 = 0, (A.8)

(µ2 +m2
Hu)v2 −

ḡ2

8
(v2

1 − v2
2)v2 −Bµv1 − t2 = 0, (A.9)
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where

t1 = −∂∆V MSSM
eff.

∂v1
, t2 = −∂∆V MSSM

eff.

∂v2
(A.10)

contain the one- and two-loop corrections to the Coleman-Weinberg potential in the MSSM.

Eq. (A.8) and eq. (A.9) define the VEVs v1 and v2 implicitly in terms of µ and Bµ, allowing

the required derivatives to be written in the form5

(
a11 a12

a21 a22

)(
∂v1
∂p
∂v2
∂p

)
=

(
b
(p)
1

b
(p)
2

)
(A.11)

for p = µ,Bµ. The coefficients appearing on the left-hand side of eq. (A.11) are given by

(assuming µ to be real)

a11 = m2
Hd

+ µ2 +
ḡ2

8
(3v2

1 − v2
2)− ∂t1

∂v1
, (A.12)

a12 = a21 = −Bµ− ḡ2

4
v1v2 −

∂t1
∂v2

, (A.13)

a22 = m2
Hu + µ2 − ḡ2

8
(v2

1 − 3v2
2)− ∂t2

∂v2
, (A.14)

while the derivatives of the EWSB conditions with respect to the Lagrangian parameters

read

b
(µ)
1 = −2µv1 +

∂t1
∂µ

, b
(µ)
2 = −2µv2 +

∂t2
∂µ

, (A.15)

b
(Bµ)
1 = v2 +

∂t1
∂Bµ

, b
(Bµ)
2 = v1 +

∂t2
∂Bµ

. (A.16)

The elements of the Jacobian matrix JCMSSM
mSUSY

are then related to the solution of eq. (A.11)

through

∂M2
Z

∂p
=

(
ḡ2v1

2
− ∂ Re ΠT

ZZ

∂v1

)
∂v1

∂p
+

(
ḡ2v2

2
− ∂ Re ΠT

ZZ

∂v2

)
∂v2

∂p

− ∂ Re ΠT
ZZ

∂µ

∂µ

∂p
− ∂ Re ΠT

ZZ

∂Bµ

∂Bµ

∂p
, (A.17)

∂ tanβ

∂p
=

1

v1

∂v2

∂p
− v2

v2
1

∂v1

∂p
, (A.18)

for each of p = µ,Bµ. In arriving at eq. (A.17), we approximate the solution of

M2
Z = m2

Z − Re ΠT
ZZ(p2 = M2

Z)

5Although it is possible to solve the EWSB conditions explicitly for the VEVs in the MSSM at tree-level,

once higher-order corrections are also included this is no longer the case. It is then more straightforward

to utilize the EWSB conditions in the form of eq. (A.8) and eq. (A.9) instead. This approach is also more

appropriate when we consider the NMSSM, where it is not possible to solve the EWSB conditions explicitly,

even at tree-level.
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for MZ by evaluating the Z-boson self-energy at the external momentum

p2 = m2
Z = ḡ2(v2

1 + v2
2)/4. Although it is possible to evaluate the above deriva-

tives completely analytically, the resulting expressions are quite long and unwieldy. As

described in section 4.4, for the results presented here we have instead computed these

derivatives numerically using SOFTSUSY.

A.2 NMSSM Jacobian

The calculation of the Jacobian in the NMSSM proceeds in a similar fashion to the approach

used in the CMSSM. As mentioned in section 4.2.1, in this model we trade the GUT scale

parameters λ0, κ0, and m2
S0

for the low-energy parameters M2
Z , tanβ and λ. An initial

exchange of parameters defined at the GUT scale for their low-energy counterparts, i.e., λ,

κ, and m2
S , generates a factor of J NMSSM

MGUT
≡ | det JNMSSM

MGUT
|, where the Jacobian matrix has

the form

JNMSSM
MGUT

=


∂λ
∂λ0

∂λ
∂κ0

∂λ
∂m2

S0

∂κ
∂λ0

∂κ
∂κ0

∂κ
∂m2

S0
∂m2

S
∂λ0

∂m2
S

∂κ0

∂m2
S

∂m2
S0

 . (A.19)

The elements in the last column of this matrix are easily seen to be given by

∂λ0

∂m2
S0

=
∂κ0

∂m2
S0

= 0,
∂m2

S

∂m2
S0

= c
m2
S

m2
S0

(mSUSY),

where the last expression contains the coefficient of m2
S0

in the semi-analytic solution for

m2
S , eq. (4.30). Unlike in the case of the CMSSM, the dependence of the low-energy

parameters on λ0 and κ0 cannot be given explicitly, and these derivatives, along with the

coefficient c
m2
S

m2
S0

, must be evaluated numerically.

The Jacobian matrix associated with the second change of variables, {λ, κ,m2
S} →

{λ,M2
Z , tanβ}, reads

JNMSSM
mSUSY

=


∂M2

Z
∂κ

∂M2
Z

∂m2
S

0

∂ tanβ
∂κ

∂ tanβ
∂m2

S
0

0 0 1

 , (A.20)

where it should be noted that, since λ remains an input parameter, it is taken to be the

case that M2
Z and tan β are independent of λ. The determinant of this matrix, J NMSSM

mSUSY
≡

| det JNMSSM
mSUSY

|, when combined with J NMSSM
MGUT

, yields the full Jacobian appearing in the

effective priors in the NMSSM,

J NMSSM = J NMSSM
mSUSY

J NMSSM
MGUT

. (A.21)

The derivatives of M2
Z and tanβ can once again be expressed in terms of derivatives of the

Higgs and singlet VEVs, v1, v2 and s. Eq. (A.18) continues to hold in the NMSSM, with

p = κ,m2
S , while the dependence on the additional singlet VEV leads to an expression of
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the form

∂M2
Z

∂p
=

(
ḡ2v1

2
− ∂ Re ΠT

ZZ

∂v1

)
∂v1

∂p
+

(
ḡ2v2

2
− ∂ Re ΠT

ZZ

∂v2

)
∂v2

∂p
− ∂ Re ΠT

ZZ

∂s

∂s

∂p

− ∂ Re ΠT
ZZ

∂κ

∂κ

∂p
− ∂ Re ΠT

ZZ

∂m2
S

∂m2
S

∂p
(A.22)

for the required derivatives of M2
Z .

Analytic formulas for the derivatives of the VEVs are most conveniently obtained from

the three EWSB conditions,(
m2
Hd

+
λ2s2

2

)
v1 +

λ2v2
2v1

2
+
ḡ2

8
(v2

1 − v2
2)v1 −

sv2√
2

(
aλ +

λκs√
2

)
− t1 = 0, (A.23)(

m2
Hu +

λ2s2

2

)
v2 +

λ2v2
1v2

2
− ḡ2

8
(v2

1 − v2
2)v2 −

sv1√
2

(
aλ +

λκs√
2

)
− t2 = 0, (A.24)[

m2
S +

λ2(v2
1 + v2

2)

2

]
s+ κ2s3 +

aκs
2

√
2
− v1v2

(
aλ√

2
+ λκs

)
− t3 = 0, (A.25)

where we take there to be no additional sources of CP-violation, and write the one- and

two-loop corrections to the effective potential as

t1 = −∂∆V NMSSM
eff.

∂v1
, t2 = −∂∆V NMSSM

eff.

∂v2
, t3 = −∂∆V NMSSM

eff.

∂s
. (A.26)

The quantities ∂v1/∂p, ∂v2/∂p and ∂s/∂p are then once again obtained by solving a linear

system of the form

X


∂v1
∂p
∂v2
∂p
∂s
∂p

 =


y

(p)
1

y
(p)
2

y
(p)
3

 . (A.27)

The elements of the 3× 3 matrix X are easily found to be given by

x11 = m2
Hd

+
λ2

2
(s2 + v2

2) +
ḡ2

8
(3v2

1 − v2
2)− ∂t1

∂v1
, (A.28)

x12 = x21 =

(
λ2 − ḡ2

4

)
v1v2 −

s√
2

(
aλ +

λκs√
2

)
− ∂t1
∂v2

, (A.29)

x13 = x31 = λ2sv1 −
v2√

2
(aλ +

√
2λκs)− ∂t1

∂s
, (A.30)

x22 = m2
Hu +

λ2

2
(s2 + v2

1)− ḡ2

8
(v2

1 − 3v2
2)− ∂t2

∂v2
, (A.31)

x23 = x32 = λ2sv2 −
v1√

2
(aλ +

√
2λκs)− ∂t2

∂s
, (A.32)

x33 = m2
S +

λ2

2
(v2

1 + v2
2) + κ2s2 +

√
2aκs− λκv1v2 −

∂t3
∂s

. (A.33)
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Similarly, the derivatives of the EWSB conditions with respect to κ and m2
S appearing on

the right-hand side of eq. (A.27) are simply6

y
(κ)
1 =

λs2v2

2
+
∂t1
∂κ

, y
(κ)
2 =

λs2v1

2
+
∂t2
∂κ

, y
(κ)
3 = −2κs3 + λv1v2s+

∂t3
∂κ

, (A.34)

y
(m2

S)
1 =

∂t1
∂m2

S

, y
(m2

S)
2 =

∂t2
∂m2

S

, y
(m2

S)
3 = −s+

∂t3
∂m2

S

. (A.35)

B EW fine-tuning contributions

The tuning measure ∆EW defined in eq. (4.32) in section 4.3 quantifies the competition

between the terms contributing to the EWSB condition determining mZ . The Ci are given

by the absolute values of the terms entering into the prediction of mZ in the model, i.e., the

terms on the right-hand side of eq. (4.16) or eq. (4.24), excluding the self-energy correction.

In the MSSM we consider the coefficients

Cµ = −µ2, CHd =
m2
Hd

tan2 β − 1
, CHu = −

m2
Hu

tan2 β

tan2 β − 1
,

Ct1 = − t1
v1(tan2 β − 1)

, Ct2 =
t2 tan2 β

v2(tan2 β − 1)
.

(B.1)

Here the quantities t1 and t2 are the Coleman-Weinberg contributions defined in eq. (A.10)

and previously absorbed into m̄2
Hu,d

in section 4.3. The coefficients considered in the

NMSSM are similar, with the only differences being that µ → µeff. and t1, t2 are instead

given by eq. (A.26).

Separating the Coleman-Weinberg pieces allows to see how the loop corrections in

the Higgs potential cancel the tree level parameters delicately. The ideal case would be

|Ci| ∼ O(m2
Z), while reality pushes them to much larger values. In the case of large tan β,

the prediction for mZ is well approximated by

1

2
m2
Z ≈ −µ2

(eff.) − m̄2
Hu , (B.2)

so that Cµ, CHu and Ct2 play the most important roles in the determining ∆EW.
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