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1 Introduction

Monstrous moonshine was born from a mysterious observation, and it eventually grew into

a set of profound connections between modular forms, sporadic groups and conformal field

theory [1–7]. One of the crucial players in the story is that of the moonshine module

V \, which has the Fisher-Griess monster, M, as its automorphism group. The moonshine

module can be realized as the CFT of 24 free bosons compactified on the self-dual Leech

lattice, along with a Z2 orbifolding [2, 3]. Apart from playing a key role in proving the

Monstrous Moonshine conjecture, this CFT (along with its ‘extremal’ generalizations) has

also been proposed to be a candidate dual for pure gravity in AdS3 [8] (or its chiral
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version [9]). In this work, we begin an exploration into the information theoretic properties

of this theory.

Entanglement entropy captures how quantum information is distributed across the

Hilbert space of the system [10–12]. Fundamentally, since the Hilbert space of the Monster

CFT has an enormous group of symmetries (i.e., of the largest sporadic group), one might

expect manifestations of this in studies of entanglement entropy. The huge symmetry, M,

is also expected to have an incarnation in the microstates of the conjectured bulk dual [8].

This is something which has not been understood fully yet; see although for developments

along these lines [6, 13]. In recent years, entanglement entropy has served as a powerful

tool in reconstructing the bulk geometry and equations of motion of gravity [14–19]. It is

therefore natural to explore this quantity in this context. Moreover, ambiguities still exist

regarding the existence of extremal CFTs for k ≥ 2 [20–22]. One can hope that studies

of entanglement and its information theoretic inequalities (arising from unitarity, causality

and the like) may shed further light on this issue by filtering out the allowed theories.

In this paper, we study the entanglement and Rényi entropies of extremal CFTs. In

the first setup, the CFTs shall be put on the torus (of spatial periodicity, L, and tempo-

ral/thermal periodicity, β; the modular parameter is τ ≡ 2πiβ/L). This will allow us to

extract finite-size corrections from the q-series;1 see [23–34] for previous works. Moreover,

this unravels the pieces special to CFTs of this kind. The entropies shall be evaluated in

the short interval expansion (SIE), which requires information of one-point functions on

the torus [35–37]. As we shall demonstrate, the SIE is fully determined to some order by

expectation values of quasi-primaries within the vacuum Virasoro module alone. These

expectation values can, in turn, be fully determined by Ward identities on the torus. In

other words, the entanglement and Rényi entropies for a single interval on the torus, at the

first few orders in interval length, turns out to be completely determined by the spectrum.

For instance, to the order we have calculated, the entanglement entropy of V \ in the short

interval expansion reads

SE(`) = 4 log
`

ε
+

3∑
m=1

u2m

(
E6(τ)

E4(τ)

j(τ)

j(τ)− 744

)m( `
L

)2m

+ O(`8/L8).

Here, ` is the interval length and ε is the ultraviolet cutoff. E6,4 are the Eisenstein series of

weights 6 and 4 and j(τ) is the Klein j-invariant. u2m are some constant coefficients. An

important check of our result constitutes of a precise agreement with the universal thermal

corrections to the Rényi entropy, derived in [38]. This is essentially the next-to-leading

term in the q-series. Note that, the regimes of investigation of our present work and that

of [38] are somewhat different from each other which makes the agreement rather non-

trivial. The expressions in [38] are perturbative in q and non-perturbative in the length of

the entangling interval. On the other hand, our expressions are perturbative in the interval

length and non-perturbative in q. Nevertheless, one can expand these results both in the

1q is the nome, which is related to the modular parameter by q = e2πiτ . In more physical terms, these

encode the corrections owing to the finiteness of the both the spatial and temporal directions. The q-series

is equivalent to a low/high temperature expansion.
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interval length and the nome (which is the ‘region of overlap’ of these two analyses) and

verify consistency of the results. We shall also see that the Rényi entropies are sensitive to

the details of the operator content of the theory, i.e., it realizes the McKay decompositions

into Monster irreps.

To investigate the SIE at higher orders, the calculations will involve the one-point

functions of primaries on the torus. A necessary ingredient for this would be both the

spectrum and the information of three point OPE coefficients of the Monster CFT. This is

an interesting line of investigation which is sensitive to finer details about the theory. Since

the torus 1-point functions of primaries transform as cusp modular forms, one may hope

that, to some controllable order, these one-point functions may be fixed using modular

properties alone. We have not attempted to do so here and hope to address it in the

near future.

Yet another striking confirmation of our results comes from holographic computations

of Rényi entropy using the techniques of [39, 40]. The AdS3 dual of the CFT replica

manifold is given by handlebody solutions. These are quotients of AdS3 by the Schottky

group. Upon evaluating the tree level and one-loop contributions to the gravitational path

integral on these geometries, we have been able to show remarkable agreement with our

CFT results for Rényi entropy (to the order which we have calculated in the SIE). Not

only does this concurrence constitute as a powerful confirmation of our CFT calculations,

but also serves as a novel verification substantiating the holographic conjecture of [8].2

Although this agreement is perturbative, it does require details of partition functions of

arbitrary genus both on the CFT and gravity sides.

We also analyse the Rényi entropies of two intervals for these CFTs on a plane. In

particular, we shall consider the second Rényi entropies. The resulting genus of the replica

manifold, via the Riemann-Hurwitz formula, is 1. Since the torus partition functions

are exactly known for these theories, this information can be directly used to find the

second Rényis. One can also extract the mutual Rényi information. We shall uncover

some interesting features of the crossing symmetric point, i.e., when the cross ratio is

x = 1/2 [42, 43]. The mapping of the replica surface to the torus and the knowledge of the

extremal partition functions facilitates a non-perturbative (in the cross-ratio) expression

for this quantity, which allows for an explicit verification of unitarity constraints, [44].

For the third Rényi entropy, the genus 2 partition function is necessary. This has been

evaluated in a series of works [45–50] and has been a subject of renewed interest [51–55].

Although we do not delve in this direction, this information can be used to obtain the third

Rényi entropy of two disjoint intervals.

The outline of this paper is as follows. In section 2 we review the short interval expan-

sion for calculating Rényi entropy on the torus. We specialize to the case of the Monster

CFT on the torus and provide details of the calculations in section 3. The analysis is then

extended and generalized to other extremal CFTs in section 4. We reproduce the CFT

results from the bulk dual in section 5. An attempt to determine the entanglement entropy

2A modification to the conjecture of [8] has been proposed in [41]. The aspects of entanglement and

Rényi entropies, which we study here, are robust in the sense that they hold true with or without of the

modifications.
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in closed form is discussed in section 6. The second Rényi entropy of two intervals on the

plane is studied in section 7. Section 8 contains our conclusions and avenues for future

research. A number of technical details and extensions are relegated to the appendices and

are referred appropriately from the main text.

2 Short interval expansion for Rényi entropy

We are interested in the Rényi entropy of a single interval (of length `) for a chiral CFT

on a rectangular torus, T2 ≡ S1
L × S1

β , i.e., with spatial and temporal perodicities L and

β respectively. The modular parameter, τ , is therefore iβ/L. In this section, we briefly

review the formalism to evaluate the Rényi entropy as a perturbative expansion in the limit

of short interval length. Much of this analysis for a generic CFT has been advanced by

the work of [37]. Upon spatial bipartitioning, the n-th Rényi entropy of a subsystem A is

given by,

Sn =
1

1− n
log TrA [ρA ]n, (2.1)

where, ρA is the reduced density matrix of the region A defined by partially tracing out

the complementary region in the full density matrix, TrA ′ρ. The entanglement entropy

is the n → 1 limit of (2.1), i.e., the von Neumann entropy of the corresponding reduced

density matrix.

SE = −Tr[ρA log ρA ]. (2.2)

In the path integral representation, (2.1) can be written as the partition function Zn cor-

responding to the ‘replica manifold’, which is a n-sheeted Riemann surface, glued along

the entangling interval. In the present context, the replica manifold is of genus n, ála the

Riemann-Hurwitz theorem. The Rényi entropy can be rewritten as

Sn =
1

1− n
log

Zn
(Z1)n

. (2.3)

In most cases, Zn can be obtained as a correlation function of twist and anti-twist operators

σ, σ̃, inserted at the endpoints of the entangling interval [11]. The twist operators have

conformal dimension hσ = hσ̃ = c(n2−1)
24n . The general expression for the OPE of the twist

operators is [35–37],

σ(z)σ̃(0) =
cn
z2hσ

∑
K

dK
∑
r≥0

arK
r!
zhK+r∂rΦK(0). (2.4)

The summation over K in the above equation is over all the quasi-primary operators in

the replicated CFT and cn is the normalization of the twist operators. The coefficients arK
ar defined as

arK ≡
CrhK+r−1

Cr2hK+r−1

, where, Cyx =
Γ(x+ 1)

Γ(y + 1)Γ(x− y + 1)
.
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The coefficient dK can be determined by the one-point function on the n-sheeted Riemann

surface Rn,1 as,

dK =
1

αKLhK
lim
z→∞

z2hK 〈ΦK(z)〉Rn,1 . (2.5)

Here, αK is the normalization of ΦK on the plane. In the context of our calculation, the

twist operator correlation function needs to be calculated by setting z = `, equation (2.4).

When `/L � 1, we can use the OPE to find the Rényi entropies as an expansion in `/L.

This is the essence of the short interval expansion (SIE). Alternatively, from the path

integral itself, one can get the SIE more directly by the pinching limit of the cutting-sewing

construction of higher genus Riemann surfaces, as used in [36, 56].

We shall now provide a few details regarding the operators appearing in the identity

Virasoro module.3 At the lowest level, i.e., level 2, we have just the stress tensor. In the

subsequent levels, we have quasi-primaries built from powers of the stress tensor and its

derivatives. At level 4, we have

A =:TT : − 3

10
∂2T . (2.6)

There are two quasi-primaries at level 6.

B = :(∂T )(∂T ): − 4

5
:(∂2T )T : − 1

42
∂4T, (2.7)

D = :T (:TT :): − 9

10
:(∂2T )T : − 1

28
∂4T +

93

70c+ 29
B . (2.8)

The higher level quasi primaries become increasingly important for larger values of the

ratio `/L. The corresponding dK factors (2.5) have been calculated in [37]. For example,

dT = (n2 − 1)/(12n2). Since the quasiprimary ΦK appearing with dK can be on any of

the replicated tori, the multiplicative counting factor can be coupled with dK by defining

the coefficient bK . For instance, in the case of the stress tensor we have bT = ndT . When

there are p stress tensors, one has, bTT ...T =
∑

j1<j2···<jp d
j1j2...jp
TT ...T , where the replica index,

j runs from 0 to n− 1. Below we list some of the bK coefficients that we will require [37]

bT =
n(n2 − 1)

12n2
. bA =

n
(
n2 − 1

)2
288n4

. bD =
n
(
n2 − 1

)3
10368n6

.

bB =
n(−

(
n2 − 1

)2 (
2(35c+ 61)n2 − 93

)
)

10368(70c+ 29)n6
.

bTT =

(
n2 − 1

) (
5c(n+ 1)(n− 1)2 + 2

(
n2 + 11

))
1440cn3

. (2.9)

bTA =

(
n2 − 1

)2 (
5c(n+ 1)(n− 1)2 + 4

(
n2 + 11

))
17280cn5

.

bTTT =
(n−2)

(
n2−1

) (
35c2(n+1)2(n−1)3 + 42c

(
n2−1

) (
n2+11

)
− 16(n+ 2)

(
n2+47

))
362880c2n5

.

3In addition to these, the one-point functions of the primaries also contribute to the short-interval

expansion. However, as we shall explain in section 3.2, in context of the Monster CFT, owing to modular

properties, they do not appear in the first few orders (in fact, upto order `24).
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Collecting the leading order terms in the SIE for the n-replicated torus partition function,

we have the following,

Zn = trA [(ρA)n] =
cnL

2(hσ)

`2(hσ)

[
1 + bT 〈T 〉

`2

L2
+ (bA〈A〉+ bTT 〈T 〉2)

`4

L4

+
(
bB〈B〉+ bD〈D〉+ bTA〈T 〉〈A〉+ bTTT 〈T 〉3

) `6
L6

+ · · ·

+
∑
φ

`2hφ

L2hφ

(
bφφ〈φ〉2 + · · ·

) ]
, (2.10)

where contributions from the primaries and their descendants are contained in the φ sum-

mation and the ‘. . . ’ come with higher powers of `/L. Note from (2.9) that a considerable

simplification occurs in the n → 1 limit. In particular, in the identity Virasoro module,

only the coefficients of the form, bTiTj ...Tk survive. As a result, the contribution of the

identity Virasoro module to the entanglement entropy is completely determined by 〈T 〉 on

the torus and its higher powers. We shall return to this feature in section 6.

3 Rényi entropies of the Monster CFT on the torus

3.1 The Monster CFT

The Monster CFT (the k = 1 extremal CFT or the moonshine module V \) has been ex-

plicitly constructed by Frenkel, Lepowsky and Meurman [2]; see also [3]. The construction

involves 24 free bosons compactified on 24-dimensional self-dual the Leech lattice, R24/L.

This is followed by an asymmetric Z2 orbifolding, which removes the states at level 1. The

partition function of the theory reads4

Z(τ) =
ΘLeech

2η24
+

1

2η24

[
(ϑ3ϑ4)12 + (ϑ2ϑ3)12 − (ϑ2ϑ4)12

]
= j(τ)− 744 (3.1)

=
1

q
+ 196884q + 21493760q2 + 864299970q3 + 20245856256q4 + · · ·

In the first equality, the first term is the contribution from the untwisted sector of the Z2

orbifold whilst the other terms are from the twisted sector. As is well-known, the coefficients

of the q-series display ‘moonshine’, i.e., they can be decomposed in terms of dimensions of

irreducible representations of the Fisher-Griess monster, M. More importantly, it has been

shown that automorphism group of the vertex operator algebra of the moonshine module

is indeed M [4].

The 196884 states at level 2 have the following decomposition in terms of irreps of M,

196884 = 196883 + 1, which is the McKay’s equation. This means it decomposes into a

trivial representation and the smallest non-trivial representation of M. In the language of

the conformal field theory, these are dimension 2 operators which constitute the lightest

4An equivalent depiction of this is that of an Z2 asymmetric orbifold of the bosonic string compactified

on the Leech lattice.
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states of the theory. The trivial representation corresponds to the stress tensor. In ad-

dition, there are 196883 primary fields of weight 2. This decomposition of the reducible

representation shall play an important role in section 3.4.

Since we are dealing with a chiral CFT, there is a possible dependence on the conformal

frame in which the Rényi entropies are being calculated owing to anomalies [57, 58]. This

results in an extra term which is frame-dependent. In what follows, we shall however

ignore these contributions since they are not specifically important for the theories we are

dealing with.

3.2 Torus 1-point functions

As discussed in section 2, the short interval expansion for the thermal Rényi entropy

requires the one-point functions of operators on the torus. Let us first focus on the identity

Virasoro module. The quasi-primaries contributing in the SIE, till level 6, are T,A,B,D,

as given in equations (2.6), (2.7). We shall now elaborate how to evaluate the one-point

functions of these quasi-primaries. The one-point function of stress tensor can be found

from the partition function itself:

〈T 〉 = 2πi∂τ logZ . (3.2)

Substituting the partition function (3.1) and upon using the identity for the derivative of

the j-invariant (A.6), we have

〈T 〉 =
4π2E6

E4

(
j

j − 744

)
. (3.3)

As expected, the modular weight of the one-point function of a quasi-primary equals its

conformal weight. We shall remark on this further below.

The expectation values of normal ordered products of the stress tensor can be found

as follows. We can first use the Ward identity on the torus to find the correlation function

of multiple stress-tensors. The Ward identity, derived in [59, 60], is as follows

〈T (v)T (v1)T (v2) · · ·T (vs)〉 − 〈T (v)〉〈T (v1)T (v2) · · ·T (vs)〉

=

{
2πi∂τ +

s∑
j=1

[
2(℘(v − vj) + 2η1) + (ζ(v − vj) + 2η1vj)∂vj

]}
〈T (v1)T (v2) · · ·T (vs)〉

+

s∑
j=1

c

12
℘′′(v − vj)〈T (v1) · · ·T (vj−1)T (vj+1) · · ·T (vs)〉. (3.4)

Here, ℘(v) and ζ(v) are the Weierstraß elliptic functions. Once the correlators are evaluated

using the above, we find the expectation values of normal ordered powers of the stress tensor

by taking the coincident limit of these operators and subtracting out the OPE singularities.

For instance,

〈:TT : (v)〉 ≡ lim
u→v

[〈T (u)T (v)〉 − singular terms] . (3.5)

– 7 –
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Performing this procedure, we end up with the following expressions for the expectation

values of the quasi-primaries at level 4 and 6 [37]

〈A〉 =
cg2

120
+ (〈T 〉+ 4η1 + 2πi∂τ ) 〈T 〉,

〈B〉 = −9cg3

70
− 9cg3

25
〈T 〉, (3.6)

〈D〉 = −3c(5c+ 22)g3

5(70c+ 29)
+
cg2η1

15
+

c

60
πi∂τg2 + 2π

[
3(〈T 〉+ 4η1)i∂τ − 2π∂2

τ

]
〈T 〉

+
(42c2 − 61c− 836)g2

24(70c+ 29)
〈T 〉+ [(〈T 〉+ 4η1)(〈T 〉+ 8η1) + 8πi∂τη1] 〈T 〉.

Here, η1 and g2,3 are the Eisenstein series with different normalizations (see also appendix A

for further details).

η1 = 4π2E2, g2 =
4π4

3
E4, g3 =

8π6

27
E6. (3.7)

Upon substituting the form of the partition function (3.1) for the Monster CFT in the

above formulae, we have the following expressions.

〈A〉 =
4π4

15

[
31E4(j − 24)

(j − 744)
+

40E2
6j

E2
4(j − 744)

]
,

〈B〉 = −496π6

175

E6(j − 240)

(j − 744)
,

〈D〉 = −8π6E6

[
93(1823j − 16)

15381(j − 744)
+

27344E2
6j

15381E3
4(j − 744)

]
.

(3.8)

In the above expressions, the derivatives of the j-invariant and the Eisenstein series were

simplified by making repeated use of the Ramanujan identities (A.5). Note that the leading

terms (q0 term) in the above expressions can also be derived by finding the appropriate

Schwarzian derivatives for each of the quasi-primaries under conformal transformation from

the plane to the cylinder.

It is easy to see that the 1-point functions of the quasi-primaries are modular functions

with their respective conformal weights. Under modular transformation, the expectation

value of an operator O, (primary or quasi-primary) of weight h, transforms as

〈O〉aτ+b
cτ+d

= (cτ + d)h〈O〉τ . (3.9)

Furthermore, the q-series for the 1-point functions of the quasi-primaries within the vacuum

Virasoro module starts out at q0. These are actually meromorphic modular forms of weight

h. (For example, (3.3) has a pole in the upper half-plane at the point where the partition

function j − 744 vanishes.) On the other hand, the unnormalized expectation value5 of a

primary, Φ, on the torus is given by

〈Φ〉′ = Tr
[
Φ qL0− c

24

]
=
∑
i

〈i|Φ|i〉qhi−
c
24 . (3.10)

5Here, ‘unnormalized’ refers to the feature that the the quantity is not divided by the torus partition

function. This is denoted by the prime (′) in (3.10). We thank the anonymous referee for clarifying

comments on this paragraph.
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In the second equality, the sum is over all operators of the theory. The leading contribution

to this torus 1-point function arises from the lightest primary, χ. This is

〈Φ〉′ = 〈χ|Φ|χ〉qhχ−
c
24 + (higher powers of q). (3.11)

Recall that in the moonshine module, all primary operators are of integer conformal di-

mension (and h ≥ 2). The above q-series, therefore, starts out with a positive power of

q. This fact combined with the modular transformation property (3.9), implies that the

unnormalized torus 1-point function of a primary is a cusp form of weight h. It is a well

known fact no cusp forms of weight less than 12 exist (see appendix A for further details).

As a consequence, all torus 1-point functions of primaries with conformal weight less than

12 is zero [47, 61]! Hence, from the short interval expansion (2.10), the primary fields of

the Monster CFT contribute only at order (`/L)24 and higher. The 3-point coefficients

do not play a role, until that order, and the Rényi entropies depend only on the spec-

trum. This feature, arising purely from modular properties, greatly simplifies the analysis

of Rényi entropy for the first few orders in the short interval expansion.6

3.3 Rényi and entanglement entropy in the SIE

We now have the necessary ingredients to write the Rényi entropy in the short interval ex-

pansion. Using (2.3), (2.10) and the results of the one-point functions of the quasiprimaries

from (3.8), the short interval expansion can be organized as follows. Z(τ) appearing below

is the partition function of the moonshine module, j(τ)− 744.

Sn(`) =
2(n+ 1)

n
log

`

ε
+

∞∑
κ=1

M2κ(τ)

Z(τ)κ

(
`

L

)2κ

. (3.12)

The leading term is the universal area-law term. M2κ(τ) are modular functions of weight

2κ. As mentioned earlier, we have calculated this till the sixth order. Explicitly, they are

given by

M2(τ) = −π
2

3

(n+ 1)

n

E6

E4
P2,1, (3.13)

M4(τ) =
π4

1080

(n+ 1)

n3

[
E2

6

E2
4

P4,1 − E4ZP4,2

]
, (3.14)

M6(τ) =
π6

60840

(n+ 1)

n5

[
E3

6

E3
4

P6,1 − E6ZP6,2

]
. (3.15)

Notice that the structure of the above expressions are in terms of a basis of weight 2κ

‘almost modular forms’ built of the Eisenstein series E4 and E6.7 The functions P2κ,i

6This statement can be refined even further by using the Monster symmetry. It is possible that primaries

of weights even higher than 12 are the ones which contribute. This can be pinned down by finding which

structure constants appearing in (3.10) are non-zero. We thank Matthias Gaberdiel for pointing this out.
7The Eisenstein series E4,6 are holomorphic modular forms, whilst the ratio E6/E4 is an almost modular

form. Since E4 becomes 0 at τ = ρ ≡ exp
(
2πi
3

)
, the holomorphicity breaks down at τ = ρ. The almost

modular form is, in fact, a generalization of modular forms and is polynomial in (Im[τ ])−1 with coefficients

being holomorphic function of τ . This reduces to the standard modular form when the polynomial is of

degree zero.
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are modular functions, which are polynomials of the j-invariant. The coefficients of these

polynomials depend on the Rényi index n. These have the forms

P2,1 = j, (3.16)

P4,1 =
(
19n2 − 31

)
j2 + 29760

(
n2 − 1

)
j, P4,2 = 31(n2 − 1)(j − 24),

P6,1 =
(
79n4 − 341n2 + 310

)
j2 + 6944

(
67n4 − 170n2 + 103

)
j + 51663360

(
n2 − 1

)2
,

P6,2 = 31(n2 − 1)
((
n2 − 10

)
j2 + 8

(
1753n2 − 1654

)
j − 5952

(
19n2 − 1

))
.

The entanglement entropy is given by the n → 1 limit of (3.12). It takes a rather

simple form, since the 1-point functions of the stress tensor is the only contribution at the

first few orders; equation (2.10). This is because the bO coefficients — equation (2.9) —

for the other quasiprimaries vanish in this limit. Explicitly, the entanglement entropy is

SE(`) = 4 log
`

ε
− 2π2

3

E6

E4

j

(j − 744)

`2

L2
− π4

45

[
E6

E4

j

(j − 744)

]2 `4

L4

− 4π6

2835

[
E6

E4

j

(j − 744)

]3 `6

L6
+ O

(
`6

L6

)
. (3.17)

As mentioned earlier, the SIE contains terms which are closed form expressions in the

modular parameter of the torus (or, all orders in the q-expansion). In order to facilitate a

comparison with the universal predictions of [38] and with holography (to be discussed in

section 5), we require the q-expansion of Rényi entropy (3.12). This is given as follows

Sn = S0 + S2q
2 + S3q

3 + · · · , (3.18)

where

S0 =
2(n+ 1)

n

[
log

(
`

ε

)
− 1

3

(
π`

L

)2

− 1

90

(
π`

L

)4

− 2

2835

(
π`

L

)6

+ O(`8/L8)

]
, (3.19)

S2 =
n+ 1

n

[
131256

(
π`

L

)2

−
8
(
73834n2 − 90241

)
15n2

(
π`

L

)4

+
8
(
278954n4 − 754757n2 + 508617

)
315n4

(
π`

L

)6

+ O(`8/L8)

]
, (3.20)

S3 =
n+ 1

n

[
21493760

(
π`

L

)2

−
128

(
237139n2 − 270723

)
3n2

(
π`

L

)4

+
64
(
44107429n4 − 107271470n2 + 65179081

)
945n4

(
π`

L

)6

+ O(`8/L8)

]
. (3.21)

The expression for S0 is none other than the short interval expansion of universal contri-

bution to the Rényi entropy (with c = 24), which is

Suniv =
c(n+ 1)

12n
log

∣∣∣∣∣ Lπε sin

(
π`

L

) ∣∣∣∣∣.
wherein, we have written down just the chiral/holomorphic contribution.
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3.4 Leading terms in the q-series of Rényi entropy

It has been proved in [38] that the leading finite-size correction in the low temperature

expansion for the Rényi entropy on the torus is universal. The Rényi entropy takes the

following form [38] in the low temperature expansion (with h′ > h below)

Sn =
c(n+ 1)

12n
log

∣∣∣∣ Lπε sin
π`

L

∣∣∣∣+ g δS(ψ)
n + O(e−2πh′β/L). (3.22)

where, the universal thermal correction is from the lightest primary, ψ of weight h.

δS(ψ)
n =

1

1− n

[
1

n2h−1

sin2h(π`/L)

sin2h(π`/nL)
− n

]
e−2πhβ/L. (3.23)

Here, g is the degeneracy of the lightest primary operator in the theory. The above equation

and the ones to follow below have been modified for the case of the chiral CFT.

The above formula (3.23) is derived by considering the low lying spectrum of operators

and their contribution to the reduced density matrix. The nth moment of the reduced

density matrix is

Tr(ρA )n =
Tr
[
TrA ′(|0〉〈0|+

∑
ψ |ψ〉〈ψ|e−2πβhψ/L + · · · )

]n
(1 + ge−2πhψβ/L + · · · )n

. (3.24)

The summation in the numerator is over the lightest operators (primaries and/or quasi-

primaries) of the theory; g in the denominator is the degeneracy of the lightest states. It

has been assumed in [38] that the lightest state is a primary. The first subleading term in

the above expression is then equivalent to the following two point function of the primary

operator (see [38] for more details)

〈ψ(∞)ψ(−∞)〉n
〈ψ(∞)ψ(−∞)〉1

=
1

n2h

sin2h
(
π`
L

)
sin2h

(
π`
nL

) . (3.25)

Using this in (3.24) and, in turn, in the formula for the Rényi entropy, yields (3.22).

The above analysis requires an appropriate modification if the lightest state is the

stress-tensor, which is a quasiprimary. This has been pointed out in [26]. In such a

situation, we have an additional term (instead of equation (20) of [38]).

〈T (∞)T (−∞)〉n
〈T (∞)T (−∞)〉1

=
1

n4

sin4
(
π`
L

)
sin4

(
π`
nL

) +
c

18

(
1− 1

n2

)2

sin4

(
π`

L

)
. (3.26)

The second term arises from the Schwarzian derivative (of the uniformization transforma-

tion) which is not considered in [38]. This term leads to additional contributions to the the

Rényi entropy.8 Therefore, if the lightest operator is (or the set of such operators includes)

the stress tensor, its contribution to first finite-size correction is given by

δS(T )
n = −c(n+ 1)2(n− 1)

18n3
sin4

(
π`

L

)
q2 +

1

1− n

[
1

n2h−1

sin2h(π`/L)

sin2h(π`/nL)
− n

]
q2. (3.27)

8See e.g., equation (2.25) of [26].
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The first term in the above equation was obtained in the context of holographic entangle-

ment entropy in [39].

As mentioned earlier, for the moonshine module, the McKay decomposition of 196884

lightest operators is into 196883 primaries, ψi, and the stress tensor. The leading finite-size

correction therefore splits as

δSn = δS(T )
n +

196883∑
i=1

δS(ψi)
n (3.28)

Substituting (3.23) and (3.27) with c = 24, we obtain

δSn = −4(n+ 1)2(n− 1)

3n3
sin4

(
π`

L

)
q2 +

196884

1− n

[
1

n2∆−1

sin2∆(π`/L)

sin2∆(π`/nL)
− n

]
q2. (3.29)

Note that the above result is non-perturbative in the interval length in ` at each order in

q. As we have alluded to in the introduction, this is somewhat complementary to the SIE

we have derived in the previous sub-section. Nevertheless, we can expand the above result

around `/L → 0 and check it against the q-series of (3.18). The SIE at the order in q2

from equation (3.29) reads as

δSn = (n+ 1)

[
131256

n

(
π`

L

)2

−
8
(
73834n2 − 90241

)
15n3

(
π`

L

)4

(3.30)

+
8
(
278954n4 − 754757n2 + 508617

)
315n5

(
π`

L

)6

+ O(`8/L8)

]
q2.

This agrees precisely with the next-to-leading term in the q-expansion, as given in equa-

tion (3.20).

It is possible to proceed further to higher orders in the q-expansion using this proce-

dure;9 see e.g., [28] which does it for the vacuum block. Since the low-lying spectrum of

operators is explicitly known for the mooshine module, one can calculate the Rényi en-

tropies order by order in q using the procedure of [28, 38]. For instance, at O(q3) we need

to consider the contribution from 21296876 primaries of weight 3, 196883 descendants of

the primaries of weight 2 (L−1ψ) and the derivative of the stress tensor ∂T or L−3 acting

on the vacuum. This makes it clear that the McKay decomposition explicitly needs to be

taken into account while calculating the Rényi entropy (as in equation (3.28) for level 2).

This feature, in some sense, makes moonshine more manifest in the q-series of the Rényis.

The operators at various levels contribute differently as functions of the interval length

(depending on whether it is a primary, quasiprimary or a descendant), as opposed to the

partition function (which treats the states appearing at each level on an equal footing).

3.5 Intermezzo: other vignettes

McKay-Thompson series and twisted entanglement entropies

In the spirit of the Monstrous moonshine conjecture [1, 4], we can also consider partition

functions and their entanglement entropies corresponding to the McKay-Thompson se-

9We thank Justin David for pointing this out.
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ries.10 These are essentially the partition functions twisted by an element g ∈M and can be

shown to be genus-0 Hauptmouduls. Physically, this twisting refers to the change in bound-

ary conditions of generic fields of the theory along the temporal cycle: X(z+ τ) 7→ gX(z).

Owing to cyclicity of the trace, these twisted partition functions are defined upto conjuga-

tion hgh−1 and therefore there is one such quantity for each of the 194 conjugacy classes of

M. We consider the conjugacy class 2A as an example. The twisted partition function reads

Z2A(τ) = Tr(g2Aq
L0− c

24 ) =
1

q
+ 4372q + 96256q2 + 1240002q3 + 10698752q4 + · · · (3.31)

Apart from having the genus-0 property, the coefficients also display moonshine for the

Baby Monster, B. The partition function actually admits a closed form expression involving

ϑ-functions

Z2A(τ) = 16
ϑ2

3

ϑ2
2

(
ϑ4

3 + ϑ4
2

ϑ4
4

)4

− 104. (3.32)

The analysis of section 3.3 can be performed analogously and the twisted Rényi entropy is

found to be

S(2A)
n = S(2A)

0 + S(2A)
2 q2 + S(2A)

4 q3 + · · · (3.33)

where

S(2A)
0 =

2(n+ 1)

n

[
log

(
`

ε

)
− 1

3

(
π`

L

)2

− 1

90

(
π`

L

)4

− 2

2835

(
π`

L

)6

+ O(`8/L8)

]
(3.34)

S(2A)
2 =

n+ 1

n

[
8744

3

(
π`

L

)2

−
8
(
4926n2 − 6019

)
45n2

(
π`

L

)4

+
8
(
18686n4 − 50383n2 + 33883

)
945n4

(
π`

L

)6

+ O(`8/L8)

]
(3.35)

S(2A)
4 =

n+ 1

n

[
96256

(
π`

L

)2

−
128

(
16477n2 − 18733

)
45n2

(
π`

L

)4

+
64
(
217509n4 − 518702n2 + 310217

)
945n4

(
π`

L

)6

+ O(`8/L8)

]
. (3.36)

It can be checked that the above expression agree with predictions from universality of [38].

That is, (3.34) and (3.35) expressions can be reproduced by expanding the following about

`/L→ 0.

δSn = −4(n+ 1)2(n− 1)

3n3
sin4

(
π`

L

)
q2 +

4372

1− n

[
1

n2∆−1

sin2∆(π`/L)

sin2∆(π`/nL)
− n

]
q2 . (3.37)

Here, we have used the McKay decomposition for the operators at level 2, i.e., there are

4371 primaries and the stress tensor at this level.

10The calculations of this subsection are simple generalizations of the preceding ones.
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Presence of spin-1 currents

We can also consider meromorphic c = 24 theories in which spin-1 currents are present.

The partition function is then of the form

Z(τ) = j(τ)− 744 +N1 . (3.38)

It has been conjectured that there are 71 such theories with specific values of N1 [62]. The

only modification which we need to make is Z 7→ Z + N1 in section 3.3. It can also be

checked to agree with the universal prediction for the thermal correction of [38], which

is now

δSn =
N1

1− n

[
1

n

sin2(π`/L)

sin2(π`/nL)
− n

]
q . (3.39)

4 Extremal CFTs of k ≥ 2

4.1 Partition functions

The form of the extremal partition function for arbitrary k is given by the polynomial

(J(τ) = j(τ)− 744)

Zk(τ) = J(τ)k − (196884k − 1)J(τ)k−2 − (21493760k − 1)J(τ)k−3 (4.1)

+
(
19381654728k2 − 59009461038k + 393770

)
J(τ)k−4

+
(
4231777443840k2 − 16947377322260k + 43578174

)
J(τ)k−5 + · · · .

and this series stops at J(τ)0. The expansion above can be found by starting with a

polynomial of J(τ) of degree k and demanding the non-existence of primaries below the

conformal dimension k + 1.

There is another way to write the kth extremal partition function compactly using

Hecke operators [63]

Zk(τ) =

k∑
r=0

a−rT
′
rJ(τ). (4.2)

Here, the coefficients ar are the degeneracies of the Virasoro vacuum character

χvac(τ) ≡
∞∑

r=−k
arq

r = q−k
∞∏
n=2

1

1− qn
. (4.3)

and the Hecke operator T′r acting on a modular function F (τ) is defined as

T′sF (τ) =
∑
d|s

d−1∑
b=0

F

(
sτ + bd

d2

)
. (4.4)
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This implies that one may expect the partition function for higher k also to have the

symmetry of M, since the Hecke-transformed J-function contains the dimensions of the

irreps of M in its q-series [8]. Nonetheless, it has been argued in [21] that no k = 2

extremal CFT may admit symmetry of M.

Using the partition function above, we can calculate the short interval expansion of

the Rényi entropy as in section 2. It is worthwhile noting that the entanglement entropy

up to the sixth order in the SIE is given by

SE(`) = 4k log
`

ε
− 1

6
〈T 〉 `

2

L2
− 1

720k
〈T 〉2 `

4

L4
− 1

45360k2
〈T 〉3 `

6

L6
+ O

(
`8

L8

)
. (4.5)

We have performed the analysis for Rényi entropies of the extremal CFTs at c = 48 and

72 in appendix B. In the following, we just consider the leading terms in the q-expansion

and investigate some universal features at k ≥ 2.

4.2 Leading terms in the q-series of Rényi entropy

The q-series of the partition function, Zk, for k ≥ 2 is given by

Zk = q−k
[
1 + q2 + O(q3)

]
, logZk = −k log(q) + O(q2). (4.6)

Consequently, the expectation values of the quasi-primaries is given by (from eqs. (3.2)

and (3.6))

〈T 〉 = 4π2k − 8π2q2 + O
(
q3
)

〈A〉 =
4

15
π4 (60k + 11)

[
k + 20q2 + O(q3)

]
〈B〉 =

16

175
π6
[
−31k + 42(2880k + 1)q2 + O(q3)

]
〈D〉 =

8π6(42k + 17)(48k − 1)(60k + 11)

9(1680k + 29)

[
k + 66q2 + O(q3)

]
(4.7)

The corresponding Rényi entropy is then

Sn =
2k(n+ 1)

n
log

`

ε
+
∞∑
κ=1

M2κ(τ)

Z(τ)κ

(
`

L

)2κ

(4.8)

where M2κ(τ)
Z(τ)κ is given as follows upto q2:

M2(τ)

Z(τ)
=

(n+ 1)π2

n

[
− k

3n
+

2q2

3
+ O(q3)

]
,

M4(τ)

Z(τ)2
=

(n+ 1)π4

n

[
− k

90
−
[
(60k + 9)n2 − (60k + 11)

]
q2

45n2
+ O(q3)

]
, (4.9)

M6(τ)

Z(τ)3
=

(n+ 1)π6

n

[
− 2k

2835
−

2
[
(420k + 17)n4 − 2(210k + 23)n2 + 31

]
q2

945n4
+ O(q3)

]
.
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The leading correction to Rényi entropy in low temperature comes solely from the stress

tensor and is given by

δSn = δS(T )
n = −4k(n+ 1)2(n− 1)

3n3
sin4

(
π`

L

)
q2 +

1

1− n

[
1

n3

sin4(π`/L)

sin4(π`/nL)
− n

]
q2 (4.10)

which, in the small `/L limit, matches with the terms of order q2 in equation (4.8).

5 Rényi entropy from the gravity dual

In this section, we shall evaluate the Rényi entropy of the moonshine module from the

gravity dual [8, 9] with the goal of making contact with the CFT calculations of the

previous sections. Recall that one of the major grounds of the holographic conjecture of [8]

is that the Virasoro vacuum character alone is not modular invariant, that one needs to

include black hole states and construct a modular invariant partition function. Let us

briefly review the stream of logic here.

The vacuum character also equals the one-loop partition function of the graviton in

AdS3 [64]. For a CFT with central c = 24k — which is related to the three dimensional

Newton’s constant by the Brown-Henneaux formula, c = 3/2GN — the holomorphic par-

tition function with the one-loop graviton determinant included is

Z0(q) = q−k
∞∏
n=2

1

1− qn
(5.1)

To account for the presence of black holes in the theory (which have L0 eigenvalues ≥ 0),

this should be modified as

Zk(q) = q−k
∞∏
n=2

1

1− qn
+ O(q) (5.2)

The modular function of the above form exists and is unique, and is given in terms of the

j-invariant. Using the definition J = j − 744, the partition function for the theory with

c = 24k is given by polynomials of J . The coefficients of the polynomial can in turn be

determined by demanding that the partition function is of the form (5.1). For the case of

k = 1, this is simply Z(q) = J(q). Further support in favour of this partition function has

been provided by interpreting the polynomials in J arising from a sum over geometries,

which are modular images of AdS3 — referred to as the ‘Farey tail’ [13, 65–69].11

We shall focus only on the k = 1 theory, i.e., the holographic dual to the moonshine

module. The analysis will proceed in a very similar manner for the theories with k ≥ 1.

The (holomorphic) partition function can be separated into the classical or tree-level piece

11More concretely, our holographic calculations is relevant in the context of the chiral gravity conjec-

ture [9]. It can be shown that the partition function of extremal CFTs can be obtained from chiral gravity

as a regularized sum over Euclidean geometries [70]. Yet another recent proof of this using localization

techniques has also been provided in [68, 69].
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and the one-loop contribution.12

Ztree
k=1(q) = q−1 Z1−loop

k=1 (q) = 1 + 196884q2 + 21493760q3 + · · · (5.3)

The formalism for calculating Rényi entropy from the bulk has been expounded in [71] and

extended to include one-loop contributions in [39]. The procedure consists of finding the

Schottky uniformization of the replica geometry in the boundary C/Γ. The Schottky group

Γ is a discrete sub-group of PSL(2,C). For a Riemann surface of genus g, it is generated

by the loxodromic generators Li, where i = 1, 2, · · · , g. Once Γ is found, we need to find

the partition function of the holographic dual on AdS3/Γ which has C/Γ as its conformal

boundary. The quotients of AdS3 by the Schottky group Γ are handlebody geometries.

The classical (order c) contribution can be obtained from studying monodromies of

the torus differential equation and then integrating the accessory parameter. We refer the

reader to [26, 39] for further details. For the entangling interval A given by [−y, y], the

result is (in a low temperature expansion with q = e−2πβ/L and with c = 24)

Stree
n =

2(n+ 1)

n
log sin

(
2πy

β

)
+ const.− 4

3

(n+ 1)(n2 − 1)

n3
sin4

(
2πy

L

)
q2

− 16

3

(n+ 1)(n2 − 1)

n3
sin4

(
2πy

L

)
cos2

(
2πy

L

)
q3 + O(q4) (5.4)

The first term is the well-known universal contribution to the Rényi entropy. The second

term is exactly the first term in (3.29), which arises from the Schwarzian derivatives of the

uniformization transformation as explained earlier. For the sake of eventual comparison

with CFT results, we organize the finite size corrections as follows

Stree
n = Stree

0 + Stree
2 q2 + Stree

3 q3 + · · · (5.5)

with

Stree
0 =

2(n+ 1)

n
log sin

(
2πy

β

)
+ const. (5.6)

Stree
2 = −4

3

(n+ 1)(n2 − 1)

n3
sin4

(
2πy

L

)
(5.7)

Stree
3 = −16

3

(n+ 1)(n2 − 1)

n3
sin4

(
2πy

L

)
cos2

(
2πy

L

)
(5.8)

The prescription to find the one-loop contributions to the quotients AdS3/Γ is as

follows [39, 72]. We need to find the set of representatives of primitive conjugacy classes

γ ∈ P of the Schottky group, Γ. This is done by constructing non-repeated words from the

loxodromic generators Li and their inverses upto conjugation in Γ. The final step consists

of calculating the largest eigenvalues (qγ) of the words for each primitive conjugacy class,

12Unlike [39], which uses Schottky quotient of the BTZ black hole, we implicitly consider the regularized

sum over geometries as our starting point. In other words, the ‘gravity partition function of handlebodies’

is the weighted sum over geometries with genus n boundary.
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P; these are then substituted as the arguments for one-loop determinants. The free energy

then reads

logZ1−loop
n =

∑
γ∈P

logZ1-loop(qγ) (5.9)

For the case at hand, the one-loop contribution is given in equation (5.3). Therefore

logZ1−loop
n =

∑
γ∈P

Re
[
196884q2

γ + 21493760q3
γ + O(q4

γ)
]

(5.10)

For the quadratic and cubic orders which appear in the above equation, the contribution

from single letter words is sufficient. The largest eigenvalue qγ of the single-letter word is

given by (we have retained terms up to q1/2, which will suffice for our purposes)

q−1/2
γ ≈ q−1/2

[
n
(
u
−1/n
y − u1/ny

)
(
u−1
y − uy

) +
q
(
u−1
y − uy

)
n
(
u
−1/n
y − u1/ny

)× (5.11)

(
u
−1/n
y −u1/ny

4
(
u−1
y − uy

)2 (u1/ny

[
n(uy+u−1

y )− (uy−u−1
y )
]2 − u−1/n

y

[
n(uy+u−1

y ) + (uy−u−1
y )
]2)−1

)]

Here, uy = e2πy/L. These eigenvalues are independent of the index of the conjugacy

class and therefore the sum in (5.10) is trivial. Substituting (5.11) in (5.10), and using the

path integral definition of the Rényi entropy (2.3), we obtain

S1−loop
n = S1−loop

2 q2 + S1−loop
3 q3 + · · · , (5.12)

where in terms of ξ ≡ 2πy
L , we have

S1−loop
2 =

196884

(n− 1)n3

n4 − sin4 (ξ)

sin4
(
ξ
n

)
 , (5.13)

S1−loop
3 =

(n2 − 1)2

(n− 1)

[
4 sin4 (ξ)

n5 sin6
(
ξ
n

)
−49221

 sin
(

(n−1)ξ
n

)
n− 1

−
sin
(

(n+1)ξ
n

)
n+ 1

2

− 5373440 sin2 (ξ)

(n2 − 1)2


+

21493760n

(n2 − 1)2

]
. (5.14)

In order to compare with the CFT expressions, we need to make the identification of the

entangling interval, ` = 2y. Combining the terms from the classical part (5.6), (5.7), (5.8)

and those of 1-loop (5.13), (5.14) it can been be seen that these precisely match with the

short interval expansion calculated from the CFT. This is

Stree
0

(5.6)

∼= S0
(3.19)

, (5.15)

Stree
2

(5.7)

+ S1−loop
2
(5.13)

∼= S2
(3.20)

, (5.16)

Stree
3

(5.8)

+ S1−loop
3
(5.14)

∼= S3
(3.21)

. (5.17)
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Figure 1. Illustrating the accessible regimes of CFT and holographic calculations. The short

interval expansion (SIE) is non-perturbative in q (the nome) at each order in the interval length.

On the other hand, the holographic calculation provides the q-expansion and is non-perturbative

in the interval length at each order in q.

This agreement can be explicitly seen by Taylor expanding the l.h.s. above about `/L→ 0.

See also figure 1 which puts the CFT and holographic computations in a larger context and

illustrates the regime where we are testing the bulk/boundary results.13 The first and sec-

ond equalities above are well expected since they correspond to the universal contribution

to the Rényi entropy and is the universal thermal correction of [38] respectively. The third

equality, equation (5.17), is substantially specific to the details of the CFT under consid-

eration. A high temperature expansion for the Rényi entropy can also be found upon the

modular transformation (L 7→ iβ, β 7→ iL), which indeed agrees with the corresponding

modular transformed q-series from the short interval expansion.

This holographic verification serves a two-fold purpose. Firstly, it confirms the cor-

rectness of our CFT expressions derived via the short-interval expansion. And secondly,

it also provides a non-trivial verification of the holographic conjecture of [8] and the one-

loop exactness of the partition function in our context. Note that this agreement, albeit

perturbative, is that of arbitrary genus n partition functions of the CFT and the gravity

theory.14 The moduli space in the present situation is, however, restricted to a plane —

consisting of n replicas of a torus (each with modular parameter τ) which are joined by

tubes of the same pinching parameter (the interval length `).

13It is worthwhile to note that this agreement is not special for extremal CFTs. This is expected to be

true in a more generic setting when the equivalence of CFT and AdS partition functions can be shown. We

thank Justin David for pointing this out.
14This was speculated as an optimistic possibility in [70].
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We finally note that the low temperature expansion for the entanglement entropy (i.e.,

the n→ 1 limit) as derived from holography is

SE = 4 log

∣∣∣∣ Lπε sin

(
π`

L

)∣∣∣∣+ 4× 196884

[
1− π`

L
cot

(
π`

L

)]
q2 (5.18)

+ 6× 21493760

[
1− π`

L
cot

(
π`

L

)]
q3 + O(q4).

where, we have fixed the ‘const.’ in (5.6) by demanding that the universal term should be

given by the Ryu-Takayanagi formula.

6 Towards a closed formula for entanglement entropy

The results for entanglement entropy which we have obtained from the short interval ex-

pansion, (3.17), and the q-series, equation (5.18), obtained from holography agree in the

q → 0 and `/L→ 0 limit — figure 1. One may conjecture that these are expansions of the

following expression

S̃E
?
= 4 log

∣∣∣∣∣ Lπε
(
E6(τ)

E4(τ)

j(τ)

j(τ)− 744

)−1/2

sin

[(
E6(τ)

E4(τ)

j(τ)

j(τ)− 744

)1/2 π`

L

]∣∣∣∣∣ . (6.1)

It can be checked explicitly that the `/L expansion of this yields (3.17) and, more re-

markably, the q-expansion yields (5.18), which is quite promising. The above formula is

suited for a low temperature expansion, τ = iβ/L. It is clearly visible that the universal

formula for entanglement entropy on a cylinder (with periodic spatial direction) [73] can

be recovered in the strict q → 0 limit.

The high temperature version of (6.1) can be obtained by a modular transformation.

As we have noted earlier,(
E6(τ)

E4(τ)

j(τ)

j(τ)− 744

)
= τ−2

(
E6(−1/τ)

E4(−1/τ)

j(−1/τ)

j(−1/τ)− 744

)
.

Substituting this in (6.1) and recalling τ = iβ/L and j(−1/τ) = j(τ), we get

S̃E
?
= 4 log

∣∣∣∣∣∣ βπε
(
E6(− 1

τ )

E4(− 1
τ )

j(τ)

j(τ)− 744

)−1/2

sinh

(E6(− 1
τ )

E4(− 1
τ )

j(τ)

j(τ)− 744

)1/2
π`

β

∣∣∣∣∣∣ . (6.2)

which easily reproduces the universal formula at high temperatures in the cylinder limit;

see e.g., [73].

Despite these niceties, it is rather unfortunate that the above formula (6.2) cannot be

correct. It can be seen that it does not reproduce the thermal entropy in the limit `→ L,

the limit when the sub-system equals the full system. This is the property [23]

SE(` = L− ε)− S(` = ε)
ε→0
= Sthermal. (6.3)
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The thermal entropy is, in turn, given by

Sthermal = logZ + ∂τ logZ = log(j(τ)− 744)−
(
E6(τ)

E4(τ)

j(τ)

j(τ)− 744

)
. (6.4)

This disagreement with the proposed non-perturbative formula is plausibly related to the

fact that the expressions — (6.1) and (6.2) — are not manifestly doubly periodic nor

modular invariant. In fact, one can explain why the conjectured formula is not entirely

correct by looking at higher order terms in short interval (`/L) expansion. We claim that

the equation (6.1) captures the contribution to entanglement entropy coming from identity

Virasoro module alone and does not capture contributions arising from conformal families

of non-vacuum primaries.

In n → 1 limit, the short interval expansion (2.10) yields the following expression for

entanglement entropy

SE(`) = 4 log
`

ε
+
∑
k

b̃Tk〈T 〉k `2k + · · · , where, b̃Tk = lim
n→1

1

n− 1
bTk . (6.5)

the ‘· · · ’ represent the contribution from the conformal families of non-vacuum primaries.

As noted mentioned earlier, the torus 1-point function of all the primaries with conformal

weight less than 12 vanishes since cusp forms of lower modular weight do not exist. The

extra terms denoted by ‘· · · ’ in equation (6.5), therefore, become relevant only at (`/L)24

and beyond. Hence, the conjectured formula (6.1) is in fact a re-summation of identity

Virasoro module, i.e.,

SE ⊃ Svac = 4 log
`

ε
+
∑
k

b̃Tk〈T 〉k `2k = 4 log

∣∣∣∣∣ 2

ε〈T 〉1/2
sin

[
〈T 〉1/2

2
`

]∣∣∣∣∣ . (6.6)

The proof of the above is simple in the cylinder limit of the torus (this is the zero-

temperature limit which decompactifies the temporal direction, but keeps the periodicity

of the spatial direction intact — leading to R × S1
L). The one point function of primaries

are 0 on the cylinder. In other words, the entanglement entropy on the cylinder receives

contributions from the vacuum Virasoro module alone.

Scylinder
E (`) = 4 log

`

ε
+
∑
k

b̃Tk〈T 〉kcylinder `
2k. (6.7)

On the other hand, considering the two point function of twist operators and its conformal

transformation to the cylinder, one can arrive at

Scylinder
E (`) = 4 log

∣∣∣∣ Lπε sin

(
π`

L

)∣∣∣∣ = 4 log

∣∣∣∣∣ 2

ε〈T 〉1/2
sin

[
〈T 〉1/2

2
`

]∣∣∣∣∣ . (6.8)

where, in the second equality we have used 〈T 〉cylinder = 4π2/L2. It can be seen that (6.7)

is precisely the Taylor expansion around `/L→ 0 of (6.8). This leads to the cylinder-limit

of the identity given in equation (6.6) in which SE = Svac, since one-point functions of non-

vacuum primaries (and their descendants) vanish on the cylinder. Furthermore, one can
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obtain the high temperature version (with the ‘sinh’ in (6.2)) by conformal transformation

to the thermal cylinder, R× S1
β .

The failure of the (6.3) can also be traced back to the fact that the conjectured formula

is not true at (`/L)24 and beyond, when cusp forms corresponding to 1-point functions

of primaries contribute; as discussed in section 3.2. Therefore it does not reproduce the

expected behaviour when ` becomes of the same order as L. Undoubtedly, a better approach

which captures the entanglement entropy in all its entirety is desirable.

7 Rényi entropies of two intervals on a plane

7.1 Second Rényi entropy and mutual information

In this section, we aim to find out second Rényi entropy and second mutual information

of two disjoint subsystems given by the intervals [u1, v1] and [u2, v2]. One can perform a

conformal transformation

w =
(z − u1)(v2 − u2)

(u2 − u1)(v2 − z)
(7.1)

so that the intervals [u1, v1] and [u2, v2] get mapped to [0, x] and [1,∞], where x is cross-

ratio given by,

x =
(v1 − u1)(v2 − u2)

(u2 − u1)(v2 − v1)
. (7.2)

The second Rényi entropy for the intervals [u1, v1] and [u2, v2] can now be obtained as a

function of x using the four point function of Z2 twist operators, σ(z), having conformal

weight hσ = c/16. The appropriately normalized four point function of these twist oper-

ators, in turn, can be expressed in terms of the torus partition function of the CFT [43].

For a chiral CFT, this is given by

S2 = − log Trρ2 = − log〈σ(1)σ(0)σ(∞)σ′(x)〉,
= − logZ(τ) +

c

24
log
[
28x(1− x)

]
. (7.3)

Here the modular parameter τ is related to x via,

τ = i
2F1

(
1
2 ,

1
2 , 1, 1− x

)
2F1

(
1
2 ,

1
2 , 1, x

) . (7.4)

The second term in (7.3) takes into account the dependence on the conformal frame. Using

the knowledge of the genus-1 partition functions for extremal CFTs, we evaluate the second

Rényi entropy as a function of x, depicted in figure 2a. As the four point function of twist

operators are crossing symmetric, we have S2(x) = S2(1 − x), implying that S′2(1/2) = 0.

This conforms to the figure 2a, where the maxima occurs at x = 1/2 or equivalently at

τ = i. We also observe that the Rényi entropy develops a sharper maxima with increasing

k. From the dual gravitational perspective, the entanglement entropy undergoes a phase

transition at x = 1/2. However, it can be shown that 1/c corrections smoothen out the

phase transition [39]. The prominence of the peak therefore happens in the large c regime
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Figure 2. (Left) Second Rényi entropies and (Right) Mutual Rényi Information for k =

1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60 as a function of x. The inset in (Right) shows the smooth

behavior around x = 1/2.

when 1/c corrections are highly suppressed. Furthermore, the absence of light primary

states also contributes to such a phase transition at large k (the spectrum of primaries

is h ≥ k + 1).15 The fact that the phase transition is indeed a large c artifact can be

seen from evaluating mutual information as well. The mutual information between the two

subsystems [u1, v1] and [u2, v2], for a chiral CFT, is given by,

I2 = log
(
x2hσ〈σ(1)σ(0)σ(∞)σ′(x)〉

)
= logZ(τ)− c

24
log

(
28 1− x

x2

)
. (7.5)

From the figure 2b, we observe that as k increases, the second mutual Rényi informa-

tion, I2, becomes flatter and goes to 0 for x ≤ 1/2 followed by a sharp rise for x ≥ 1/2.

The sharpness of the change (to be precise, the apparent discontinuity in the derivative of

I2 with respect to x at x = 1/2) becomes more prominent as k increases, corroborating to

the large c intuition. Nonetheless, since all the plots given are for finite c, there isn’t any

actual discontinuity in the derivative of I2, as evident form the zoomed-in version of the

graphs as shown inset of figure 2b.

Second Rényi maxima, [S2]max

Curiously enough, the maximum value of Rényi entropy of two intervals, as depicted in

figure 2a, is approximately given by

[S2]max
∼= 2k(3 log 2− π)− log 2, (7.6)

which arises from

logZ(i) ∼= 2πk + log 2. (7.7)

We provide numerical evidence in favour of this in figure 3.

15This is related to fact that presence of too many light states wash out the Hawking-Page transition.

This happens, for instance, in coset theories in 2d and vector models in 3d [74].
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Figure 3. Verifying logZ(i) ∼= 2πk + log 2.

At the self-dual point (τ = i at which j(i) = 1728), we are therefore led to a rather

non-trivial (but approximate) mathematical identity. Using the expression for the par-

tition function of the kth extremal CFT in terms of the Hecke-operators acting on j,

equation (4.2), we have

log

[
k∑
r=0

a−r
[
T′rJ(τ)

]
τ=i

]
∼= 2πk + log 2. (7.8)

This approximation is true even at low values of k and therefore isn’t a statement about

large central charge asymptotics. A crude derivation is as follows.16 The partition function

for the extremal CFT can be approximated as

Zk(τ) ≈ q−k + (q̃)−k (7.9)

Here, q = e2πiτ and q̃ = e−2πi/τ . This is in the spirit of the ‘Farey tail’ sum [65]; al-

though the partition function is invariant only under S-modular tranformations. From a

holographic perspective, the above equation takes into account contributions from thermal

AdS3 and the BTZ black hole. Contributions arising from the other modular images of

SL(2,Z) are sub-dominant for purely imaginary τ , especially when k is large. At the self-

dual point, τ = i, the partition function (7.9) is given by Zk(i) ≈ 2 e2πk, which is equivalent

to equation (7.7).

7.2 Constraints on second Rényi

The existence of extremal CFTs beyond k = 1 has a much debated status. One might hope

to eliminate their possible existence (or perhaps save them from extinction!) by checking

whether they satisfy all the inequalities involving Rényi entropy. In this subsection, we

take a small step in this direction using the inequalities derived in [44].17

16We are grateful to Christoph Keller for this proof.
17We thank Tarun Grover for discussions and for pointing out this reference sometime ago.
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Figure 4. Verifying the second Rényi inequalities — (7.13) on left and (7.14) on right — for

two intervals, for extremal CFTs with different values of central charges. The first plot is for

k = 1, 5, 10, 15, 20, 45, (the curves from left to right are for decreasing k) while the second one is for

k = 1, 15, 30, 45.

The tool used in [44] to constrain the Rényi entropies is the wedge reflection positivity.

This acts as follows, where t and y denote the Lorentzian coordinates within the wedge,

i.e., outside the light cone, (see [44], figure 1)

(t, y) −→
Wedge

reflection

(−t,−y) , (7.10)

and takes operator sub-algebra of one wedge (y > 0, |t| < y) to its reflection (y < 0, |t| <
−y). In particular, it has been shown in [44] that nth Rényi entropy satisfies the following

inequality

2Sn(AB̄) ≥ Sn(AĀ) + Sn(BB̄). (7.11)

Here Ā and B̄ are the wedge reflected analogues of the intervals A and B respectively.

In a chiral CFT, the nth Rényi entropy for two intervals A = [u1, v1] and B = [u2, v2]

with cross-ratio x, as defined in (7.2), is given by

Sn =
κ2

n− 1

[
c

12

(
n− 1

n

)
log [x(u2 − v1)(v2 − u1)]− log [Fn(x)]

]
, (7.12)

where κ is some constant and Fn is a function of cross-ratio x, with Fn(0) = 1 and

Fn(x) = Fn(1 − x). Consequently, the n-th Rényi entropies for two intervals obey the

following set of inequalities, derivable from (7.11)

∂

∂x

(
Fn(x)

(1− x)p

)
≥ 0 (7.13)

Fn(x)

(1− x)p
Fn(y)

(1− y)p
−
(

Fn(z)

(1− z)p

)2

≥ 0. (7.14)

Here, p = c/8, for the chiral case. In the second inequality, x and y can be anything from

0 to 1, while z = 2
√
xy/(1 +

√
1− x

√
1− y +

√
xy). The inequalities are not sensitive to

the overall constant κ2, as they get cancelled out from both sides.
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Without the loss of generality we choose, A=[u1 =0, v1 =x] and B=[u2 =1, v2 =x∞].

From equation (7.3) we have,

S2 = κ2
[ c

8
log [x(1− x)x∞]− log [F2(x)]

]
, where F2(x) =

1

κ2

[
1

16
x(1− x)

]c/12

Z[τ(x)].

(7.15)

where τ(x) is given by equation (7.4).

The numerical verification of the inequalities (7.13) and (7.14) however does not yield

any surprises. These are satisfied (see figure 4) by the c = 24k extremal CFTs. It is

worthwhile checking whether the same holds true for the higher Rényis.

7.3 On higher genus partition functions

As mentioned in the introduction, one can use higher genus partition functions for the

calculation of Rényi entropies. The genus-2 partition functions for extremal CFTs have

been calculated in [45–47, 49, 50] and are given in terms of Sp(4,Z) Siegel modular forms.

The moduli space of a genus g Riemann surface has 6g− 6 real dimensions. There are

three presentations in which the genus-2 partition functions can be used. These are (a) the

third Rényi entropy of two intervals, or (b) the second Rényi entropy of three intervals, or

(c) the second Rényi of a single interval on the torus. The first scenario (a) scans a one-

dimensional trajectory in the 6-dimensional moduli space, parametrized by the cross ratio

x. In (b) we have a 6-point function of twist operators and this is a 3-dimensional surface

in moduli space parametrized by the cross ratios. Finally, in (c) (which is a special case of

section 3, albeit non-perturbative) a two-dimensional surface in moduli space is probed —

the moduli being given in terms of the temperature (τ = 2πiβ/L) and the interval length

(`/L). The interval length, temperature and the cross-ratios (in the other two cases) can

be related to elements of the period matrix of the Siegel modular forms.

However, translating the results of [45–47, 49, 50] into Rényi entropies requires a proper

handling of conformal anomaly factors;18 see also [57, 58]. One way of calculating these

factors is to find the large-c conformal block with fixed internal weights as in [75] or from

the Liouville action corresponding the relevant correlators as described in [76]. It is not

clear to us whether closed form results can be obtained (which is a necessity and not an

option, for checking the inequalities of [44]).

8 Conclusions and future directions

In this work, we have studied the Rényi and entanglement entropies of extremal CFTs. For

the case of a single interval on the torus we have considered the nth Rényi entropy in the

short interval expansion, verified this with expectations from universal thermal corrections

and have also provided a corresponding holographic analysis which is consistent with that

of the CFT. The analysis reveals that, for the Monster CFT, features of moonshine are

18We are grateful to Ida Zadeh and Xi Yin for discussions on this topic.
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manifested in the Rényi and entanglement entropies. We have also studied the second

Rényi entropy of two intervals on the plane, in which the partition function of the branched

Riemann surface can be mapped to the torus partition function.

This is clearly not the full story and we have just begun to scratch the surface (as

shown in figure 1). The computational tractability for the Rényis on the torus is rendered

by the short interval expansion. Since this approach is perturbative, a better approach to

the problem would be welcomed; although a resummation of the series was attempted, but

with partial success, in section 6. One may expect that further constraints from modular

invariance can provide a result for Rényi and entanglement entropies which is, hopefully,

a closed form expression of the modular parameter and the interval length.19

Another possible approach which we have eschewed in this work, is to evaluate the

Rényi entropy using the Frenkel-Lepowsky-Meurman construction of the moonshine mod-

ule. This will involve an analysis akin to [25, 30]; see also section 5 of [31]. The contribution

of the bosonic oscillators is fairly easy to handle as it just gets raised to the power of 24.

However, dealing with the classical part coming from the compactification on the Leech lat-

tice is non-trivial. A potential drawback of this approach is that the analytic continuation

to the n→ 1 limit is not known, since the classical part is given in terms of Riemann-Siegel

theta functions. Furthermore, it is not known whether the FLM construction has analogues

for extremal CFTs with arbitrary k.

There are several other avenues to explore features of entanglement in extremal CFTs.

One direction of immediate interest is to evaluate the higher Rényis for two intervals on

the plane, and verify whether constraints of [44] are obeyed. This can then shed light on

conundrums regarding the existence of extremal CFTs for k ≥ 2. There are also other

bipartitionings of the Hilbert space we can work with. For instance, we can consider a

partitioning left v/s right movers of D-branes having symmetries of M, which have been

constructed in [77]. It would be intriguing to explore whether the finite piece of the left-

right entanglement entropy has a topological interpretation as in [78–81].

It is also worthwhile investigating how the symmetry of the sporadic group M arises in

the bulk dual. The symmetry is realized as an automorphism of the vertex operator algebra

of the CFT. It may be possible to derive an analogue of this symmetry in the gravity dual

using the entanglement entropy derived here, along with clues from bulk reconstruction

techniques and the proposal for quantum corrections to entanglement [82]. One may also

consider an approach based on the bulk-boundary reconstruction of [83].

Finally, it would be exciting to explore entanglement in BPS sectors of string compact-

ifications which exhibit moonshine in their elliptic genus [84–86]. Since much remains to be

deciphered regarding moonshine in these setups, it is worthwhile to consider refined mea-

sures which can make these aspects more manifest. The supersymmetric Rényi entropy [87]

(or suitable modifications thereof) can turn out be a useful measure in this context.

19We note that it has been shown in [49] that higher genus partition functions with g ≤ 4 for c ≤ 24

theories are shown to be uniquely fixed by the torus partition function alone.
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A Eisenstein series and Ramanujan identities

The Eisenstein series are defined by the following lattice sums

E2κ(τ) =
∑

(m,n)∈Λ\(0,0)

1

(m+ nτ)2κ
(A.1)

These are weight 2κ modular forms (for κ ≥ 2). E2 is mock modular. Their q-series are

given by

E2κ(τ) = 1− 4κ

B2κ

∞∑
n=1

σ2κ−1(n)qn. (A.2)

Here, Br is the Bernoulli number and σp(s) is the divisor function. The Eisenstein series

fall under the category of holomorphic forms i.e., these are modular forms for which non-

negative powers of q in the q-series do not exist. E4 and E6, in particular, are algebraically

independent and generate the space of all modular forms.

The Klein j-invariant is a weakly holomorphic modular form of weight zero (i.e., it

has finitely many negative powers of q in the q-series). It can be written in terms of the

Eisenstein series.

j(τ) =
1728E3

4

E3
4 − E2

6

(A.3)

We use the standard convention for the nome, q = e2πiτ .

The cusp forms are modular forms having solely positive powers of q in the q-series.

The lowest weight cusp form is the discriminant (or the Ramanujan tau function). This is

given by

∆(τ) = η(τ)24 =
E3

4 − E2
6

1728
, (A.4)
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and has weight 12. The lowest weight is 12 since it is the first instance by which the q0

term can be killed by a combination of powers of E4 and E6 (i.e., the lowest weight is the

lowest common multiple of the weights of generators E4,6).

The Ramanujan identities provide expressions for the τ -derivatives of the Eisenstein

series. These are

q ∂q E2 =
E2

2 − E4

12
, q ∂q E4 =

E2E4 − E6

3
, q ∂q E6 =

E2E6 − E2
4

2
. (A.5)

These relations have been used in the final expressions for the expectation values of quasi-

primaries on the torus. This and (A.3) also enables one to write a simple expression for

the derivative of the j-invariant

q ∂q j = − E6

E4
j. (A.6)

This leads to simplifications in the expressions of the 1-point functions of quasiprimaries

e.g., (3.3) and (3.8).

B Extremal CFT at c = 48 and c = 72

Extremal CFT at c = 48

The k = 2 (i.e. c = 48) extremal CFT on a torus is described by the partition function

Zk=2(τ) = j(τ)2 − 1488j(τ) + 159769,

=
1

q2
+ 1 + 42987520q + 40491909396q2 +O

(
q3
)

(B.1)

The q expansion of the partition function reveals that the lowest non-trivial quasi-primary

is T , having conformal weight 2. There are 42987520 operators of conformal weight 3,

out of which, 42987519 are primary operators and the lone descendant is ∂T . Hence, the

leading contribution to Rényi entropy Sn at low temperature comes from T alone

δSn = δS(T )
n = −c(n+ 1)2(n− 1)

18n3
sin4(

π`

L
)q2 +

1

1− n

[
1

n3

sin4(π`/L)

sin4(π`/nL)
− n

]
q2 (B.2)

One can match the small ` limit of the equation (B.2) with the one coming from the

short interval expansion. As elucidated earlier for the Monster CFT, the short interval

expansion provides us with an expression, perturbative in `, but non-perturbative at each

order in the modular parameter τ of the torus. Subsequently, the matching is done upon

doing a small q expansion of the result. This involves (as in the case for k = 1) evaluation

of the torus one point function of quasi-primaries in the identity module.
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For the k = 2 extremal CFT, the expectation values appearing in the short interval

expansion, are given by:

〈T 〉 =
8π2E6

E4

j(j − 744)

j2 − 1488j + 159769
(B.3)

〈A〉 =
8π4

15

(
E4(31j2 − 23808j + 159769)

(j2 − 1488j + 159769)
+

20E2
6(5j2 − 1488j)

E2
4(j2 − 1488j + 159769)

)
(B.4)

〈B〉 = −32π6E6

175

(
31j2 − 30504j + 1597690

j2 − 1488j + 159769

)
(B.5)

〈D〉 =
16π6E6

30501

(
714705j2 − 259500504j + 15657362

j2 − 1488j + 159769
+

108448E2
6(5j2 − 372j)

E3
4(j2 − 1488j + 159769)

)
(B.6)

Using the short interval expansion as described in section 2, the expectation values of

quasi-primaries lead to an expression for Rényi entropy

Sn =
4(n+ 1)

n
log

`

ε
+

∞∑
κ=1

M2κ(τ)

Z2(τ)κ

(
`

L

)2κ

. (B.7)

Here, M2κ(τ) are the meromorphic weakly modular functions of weight 2κ and given by

M2(τ) = −2π2

3

n+ 1

n

E6

E4
P2,1 (B.8)

M4(τ) =
π4

1080

n+ 1

n3

[
E2

6

E2
4

P4,1 − E4Z2P4,2

]
(B.9)

M6(τ) =
π6

102060

n+ 1

n5

[
E3

6

E3
4

P6,1 − E6Z2P6,2

]
(B.10)

where we have defined the following polynomials of the j-invariant

P2,1 =
2∑

k=0

f2,1
k jk+1, and Pm,1 =

m−1∑
k=0

fm,1k jk+1, Pm,2 =
m−2∑
k=0

fm,2k jk for m = 4, 6.

The coefficients of the polynomials above are the following:

f2,1
2 = 1, f2,1

1 = 744

f4,1
3 = 2(19n2 − 31), f4,1

2 = 2(1488n2 + 16368)

f4,1
1 = 2(5611004n2 − 12253436), f4,1

0 = 4754725440(n2 − 1)

f4,2
2 = 62(n2 − 1), f4,2

1 = −47616(n2 − 1)

f4,2
0 = 319538(n2 − 1)

f6,1
5 = −(237n4 − 1023n2 + 930), f6,1

4 = −(866760n4 − 1258104n2 + 69936)

f6,1
3 = −(106931498n4 − 443936764n2 + 576132818)

f6,1
2 = −(237752546256n4 − 461214060768n2 + 164157881616)

f6,1
1 = (267774584843024n4 − 624694566015520n2 + 356919981172496)

f6,1
0 = 5317604101763520(n2 − 1)2.
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We define f6,2
j ≡ (n2 − 1)f̃6,2

j , where f̃6,2
j s are given by

f̃6,2
4 = −93(n2 − 10), f̃6,2

3 = −(1165848n2 + 153264)

f̃6,2
2 = (465242371n2 + 78648104), f̃6,2

1 = −(212892831576n2 − 196845633216)

f̃6,2
0 = (484996533859n2 − 25526133361).

Extremal CFT at c = 72

The partition function for the k = 3 (i.e., c = 72) extremal CFT on a torus is given by

Zk=3(τ) = j(τ)3 − 2232j(τ)2 + 1069957j(τ)− 36867719,

= 1/q3 + 1/q + 1 + 2593096794q + 12756091394048q2 +O(q3) (B.11)

From the q expansion, it is evident that the lightest non-trivial quasi-primary is T , having

conformal weight 2. The only operator, appearing with conformal weight 3, is ∂T . The

extremal CFTs have lightest primaries appearing with conformal weight k + 1 (4 in this

case), by construction. The number of operators with conformal weight 4 is 2593096794,

out of which, 2593096792 ones are the primaries while the rest of the two are A and ∂2T .

Here, as well, the leading contribution to Rényi entropy Sn at low temperature comes from

the stress tensor.

δSn = δS(T )
n = −c(n+ 1)2(n− 1)

18n3
sin4

(
π`

L

)
q2 +

1

1− n

[
1

n3

sin4(π`/L)

sin4(π`/nL)
− n

]
q2 (B.12)

In fact, this is a generic feature of all k ≥ 2 extremal CFTs, the leading contribution

comes from T alone. We will not repeat the matching here, since this has been shown

generally in section 4. Nonetheless for the sake of completeness, we provide the torus one

point functions of quasi-primaries, appearing in short interval expansion, for the k = 3

case; these are given by

〈T 〉 =
4π2E6

E4

(
3j3 − 4464j2 + 1069957j

j3 − 2232j2 + 1069957j − 36867719

)
(B.13)

〈A〉 =
4π4

15

(
3E4(31j3 − 46872j2 + 11769527j − 36867719)

(j3 − 2232j2 + 1069957j − 36867719)

+
40E2

6(12j3 − 11160j2 + 1069957j)

E2
4(j3 − 2232j2 + 1069957j − 36867719)

)
(B.14)

〈B〉 =
−48π6E6

175

(
31j3 − 53568j2 + 18189269j − 368677190

j3 − 2232j2 + 1069957j − 36867719

)
(B.15)

〈D〉 =
8π6E6

45621

(
4904541j3 − 4854564288j2 + 578130935767j − 21457012458

j3 − 2232j2 + 1069957j − 36867719

+
81104E2

6(84j3 − 44640j2 + 1069957j)

E3
4(j3 − 2232j2 + 1069957j − 36867719)

)
(B.16)
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The Rényi entropy reads as follows:

Sn =
6(n+ 1)

n
log

`

ε
+

∞∑
κ=1

M2κ(τ)

Z3(τ)κ

(
`

L

)2κ

(B.17)

where the weak modular function of weight 2k appears again and given by the following

expressions for k = 3:

M2(τ) = −π
2

3

n+ 1

n

E6

E4
P2,1 (B.18)

M4(τ) =
π4

3240

n+ 1

n3

[
E2

6

E2
4

P4,1 − E4Z3P4,2

]
(B.19)

M6(τ) =
π6

1837080

n+ 1

n5

[
E3

6

E3
4

P6,1 − E6Z3P6,2

]
(B.20)

where the polynomials of j are defined as

P2,1 = j

(
k=2∑
k=0

f2,1
k jk

)
; (B.21)

P4,1 = j

(
k=5∑
k=0

f4,1
k jk

)
, P4,2 =

(
k=3∑
k=0

f4,2
k jk

)
; (B.22)

P6,1 = j

(
k=8∑
k=0

f6,1
k jk

)
, P6,2 =

(
k=6∑
k=0

f6,2
k jk

)
. (B.23)

Here f i,jk s are function of the Rényi index n only and are given by:

f2,12 = 3, f2,11 = −4464, f2,10 = 1069957

f4,15 = (171n2 − 279), f4,14 = −(241056n2 − 562464)

f4,13 = (57892482n2 − 374056938), f4,12 = (62642091456n2 + 51988821696)

f4,11 = (18170421644291n2 − 31908117426479), f4,10 = 4733624882169960(n2 − 1)

f4,23 = 279(n2 − 1), f4,22 = −421848(n2 − 1)

f4,21 = 105925743(n2 − 1), f4,20 = −331809471(n2 − 1).

f6,18 = −(6399n4 − 27621n2 + 25110), f6,17 = −(9119952n4 + 27681264n2 − 54157248)

f6,16 = (42500558241n4 − 34278659631n2 − 38207667042)

f6,15 = −(49955320651536n4 − 79354333120896n2 + 4209289143408)

f6,14 = (16917854014928979n4 − 32734292306379489n2 + 5121944013384702)

f6,13 = (6046225178420247156n4 − 13165871496849172584n2 + 9327348981409665780)

f6,12 = (1285155631058486117707n4 − 2526894768482940564821n2 + 1065354212232184136122)

f6,11 = −(580982466026811352729428n4 − 1289597264020531187530200n2

+ 708614797993719834800772)

f6,10 = 3664876992152254105946040(n2 − 1)2.
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We define f6,2
j ≡ (n2 − 1)f̃6,2

j , where f̃ is given by

f̃6,26 = −2511(n2 − 10), f̃6,25 = −9(3082392n2 + 4611312)

f̃6,24 = 9(6555493484n2 + 1365872932), f̃6,23 = −9(4344636377193n2 − 1217158713330)

f̃6,22 = 9(491636422030439n2 − 49946709507086)

f̃6,21 = −9(72148332579073807n2 − 65402917121981614)

f̃6,20 = 9(77476036142988777n2 − 4077686112788883)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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