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Abstract: We study the black string solutions in the Einstein-Gauss-Bonnet(EGB) theory

at large D. By using the 1/D expansion in the near horizon region we derive the effective

equations that describe the dynamics of the EGB black strings. The uniform and non-

uniform black strings are obtained as the static solutions of the effective equations. From

the perturbation analysis of the effective equations, we find that thin EGB black strings

suffer from the Gregory-Laflamme instablity and the GB term weakens the instability

when the GB coefficient is small, however, when the GB coefficient is large the GB term

enhances the instability. Furthermore, we numerically solve the effective equations to study

the non-linear instability. It turns out that the thin black strings are unstable to developing

inhomogeneities along their length, and at late times they asymptote to the stable non-

uniform black strings. The behavior is qualitatively similar to the case in the Einstein

gravity. Compared with the black string instability in the Einstein gravity at large D,

when the GB coefficient is small the time needed to reach to final state increases, but when

the GB coefficient is large the time to reach to final state decreases. Starting from the

point of view in which the effective equations can be interpreted as the equations for the

dynamical fluid, we evaluate the transport coefficients and find that the ratio of the shear

viscosity and the entropy density agrees with that obtained previously in the membrane

paradigm after taking the large D limit.
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1 Introduction

In higher dimensions D > 4 the black holes have much richer physics than in four dimen-

sions [1, 2]. There are black branes whose worldvolumes are flat but look like black holes in

the transverse directions. The stability of the black branes is interesting, as they could be

the solitonic solutions in supergravity. Gregory and Laflamme discovered that the uniform

black string (UBS) solution whose horizon topology is of SD−3×S1 is unstable if it is thin

enough [3] (see the review [4]). Moreover, there is a zero mode at the critical point of the

Gregory-Laflamme (GL) instability, which indicates the existence of a static branch of non-

uniform black string (NUBS) solutions. In the NUBS solutoins, the translation symmetry

along the string direction is broken. This non-uniform branch was found perturbatively [5,

6] and was numerically studied up to D = 15 [7–13]. On the other hand, although the GL in-

stability was well studied in perturbation theory, the fate of the instability in the non-linear

regime at late times was not well understood. In ref. [6] it was found that above a critical di-

mension D∗ ' 13.5 the weakly non-uniform black strings have larger horizon areas than the

uniform ones. This suggests that the non-uniform black string could be the possible end-

point of the nonlinear evolution of the uniform black string under the GL instability. Below

the critical dimension D∗, the numerical simulations [14, 15] give strong evidence that the

evolution does not stop at any stable configuration but proceeds in a self-similar cascade to

arbitrary small scales along the string direction and the cosmic censorship maybe violated.
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In recent years, it has been found that black holes physics in higher dimensions can

be efficiently investigated by using the 1/D expansion in the near region of the black

hole [16]. The key feature when the spacetime dimension is very large D →∞ is that, the

gravitational field of a black hole is strongly localized near its horizon due to the very large

radial gradient (∂r ∼ D/r0, r0 is the horizon size) of the gravitational potential. As a result,

for the decoupled perturbations [17] the black hole can be effectively taken as a surface

or membrane embedded in the background spacetime [18–22]. The membrane is described

by the way it is embedded into the background spacetime, and its non-linear dynamics is

determined by the effective equations obtained by integrating out the Einstein equations

in the radial direction. By solving the effective equations with different embeddings of

the membrane, one can construct different black hole solutions and furthermore study

their dynamics perturbatively to find the quasinormal modes or determine numerically

the end points of their evolutions under the unstable perturbations [23–31]. For example,

in [23] the non-uniform black string solutions were constructed and the phase structure

were studied. Furthermore in [24] the non-linear evolution of the black string instability

was demonstrated and it was shown that at late times the unstable black strings in a

large enough number of dimension end at stable non-uniform black strings, which proves

the conjecture in [6]. From a broader perspective, the large D (spacetime dimensions)

expansion method and the blackfold approach [32, 33] are based on the same philosophy.

The virtue of the large D expansion method is that the spacetime dimension D provides a

natural expansion parameter, independent of the specific solutions.

All these investigations concern the Einstein gravity. In a spacetime dimension D > 4,

the Einstein gravity has a natural generalisation, the Lovelock higher-curvature gravity of

various orders. The most attractive feature of the Lovelock gravity is that its equations of

motion are still the second order differential equations such that the fluctuations around the

vacuum do not have ghost-like mode. Among all the Lovelock gravities, the second-order

Lovelock gravity, the so called Einstein-Gauss-Bonnet gravity, is of particular interest. It

includes the quadratic terms of the curvature tensors which appear as the leading-order

correction in the low energy effective action of the heterotic string theory [34, 35]. Although

the exact spherically symmetric black hole solution of the EGB gravity theory has been

known for quite a long time [35, 36], unlike the case of the Einstein gravity, a uniform

black string can not be constructed by simply adding a trivial direction to a spherically

symmetric black hole in one lower dimensions.1 Many efforts on the black string solutions

of the EGB gravity theory are based on the numerical analysis in D = 5 [40, 41] and

D = 5 ' 10 [42]. These discussions have mostly focused on the construction of the

solutions and their thermodynamics, while the issue of the classical non-linear dynamics of

the solutions is basically unexplored. The large D expansion method developed recently

offers a promising framework to address this issue.

1For the theory with pure Gauss-Bonnet term or a single Lovelock term, it is possible to construct the

black string solution analytically [37], just as in pure Einstein gravity. The black string solutions in the

Gauss-bonnet gravity in seven dimensions has been discussed in [38], and the one in the third order Lovelock

gravity in nine dimensions has been studied in [39].
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On the other hand, the large D effective equations for the black strings could be inter-

preted as the equations for the dynamical fluid. From this point of view the transport coef-

ficients was evaluated and found to match well with the fluid/gravity correspondence [27].

It would be interesting to extend the study in this aspect to the case of the EGB theory.

The purpose of this work is to study the black string solutions in the EGB theory by

using the large D expansion method. The study of the EGB black holes at large D was

initiated in [43], for which the focus was on the computation of the quasinormal modes in

the large D limit(see also [44]). Furthermore, in [45] the large D effective theory of EGB

black holes was discussed and the instability was studied, the new solution branch at the

onset of the instability was analytically constructed as well. Following the footsteps in the

Einstein gravity, it should be possible to construct the black string solutions in the EGB

theory and discuss their main features. In section 2 we solve the EGB equations with proper

metric ansatz and obtain the effective equations for the large D EGB black strings. Then

we obtain the UBS and NUBS as the static solutions of the effective equations, and discuss

their thermodynamic quantities. We interpret the effective equations as the ones for the

dynamical fluid and then study the properties of the fluid. In section 3 we investigate the

stability of the black string solutions by perturbatively analyzing the effective equations.

We find that the black string suffers from the GL instability as well, and then we clarify the

effect of the GB term on the instability. Furthermore, we numerically study the evolution of

the GL instability in the non-linear regime. We end with a summary and some discussions

in section 4.

2 Effective equations

In this section we consider the large D effective theory for the black strings in the EGB

theory. By solving the EGB equations we derive the effective equations, which contain the

information on the mass and the momentum density of a dynamical black string. In the

following for convenience we use 1/n as the expansion parameter instead of 1/D, where

n = D − 4. (2.1)

2.1 Set up

We consider the D-dimensional Einstein-Hilbert action supplemented by the GB term:

I =
1

16πG

∫
dDx
√
−g (R+ αLGB) , (2.2)

with

LGB = RµνλδR
µνλδ − 4RµνR

µν +R2, (2.3)

where α is the GB coefficient, it is positively defined and inversely proportional to the

string tension in the heterotic string theory [35]. From the action, we obtain the equations

of motion for the metric

Rµν −
1

2
gµνR+ αHµν = 0, (2.4)
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where

Hµν = −1

2
gµνLGB + 2(RRµν − 2RµγR

γ
ν + 2RγδRγµνδ +RµγδλR

γδλ
ν ). (2.5)

The simplest solution of EGB theory corresponds to the generalization of the Schwarzschild

black holes, i.e. the spherically symmetric EGB black holes. However, here we are interested

in black string solutions which approach asymptotically the D− 1 dimensional Minkowski

space times a circle, MD−1 × S1. Using the ingoing Eddington-Finkelstein coordinates,

the background metric is

ds2 = −dv2 + 2dvdr + dz2 + r2dΩ2
n+1, (2.6)

where z is a coordinate of the compact direction with period L. Then we make the metric

ansatz as

ds2 = −Adv2 + 2(uvdv + uzdz)dr − 2Czdzdt+Gzzdz
2 + r2dΩ2

n+1. (2.7)

The requirement that (2.7) should asymptotically approach to (2.6) asks that A, uv, Gzz →
1 and uz, Cz → 0 at r → ∞. So in this case the embedding of the membrane is different

from the one in [45], in which the background is a (A)dS spacetime. The functions in the

metric generally depend on (v, r, z). Note that the form of the metric ansztz is the same as

the one for the Einstein gravity [24], similarly the large D EGB black holes have the same

metric ansatz form as the black holes in the Einstein gravity [45].

In order to do the 1/n expansion properly we need to specify the large D behaviors of

the metric functions. Due to fact that we do not have the closed form of the UBS solutoin

in the EGB theory as a reference, the large D scalings of the metric functions are unclear at

present. However, the discussion in the Einstein gravity [23, 24] may provide us with some

useful indications. As we know that the zero-mode wavenumber of the GL instability of

the black string in the Einstein gravity scales like kGL '
√
n/r0 [16, 46], this indicates one

should rescale z → z/
√
n to capture the unstable fluctuations. Here we assume that this

works for the case in the EGB theory as well. In the following we will justify this assumption

by the explicit computation of kGL. In addition we consider a small velocity O(1/
√
n) along

the string direction. Therefore the large n scalings of the metric functions are respectively

A = O(1), uv = O(1) uz = O(n−1), Cz = O(n−1), Gzz =
1

n

(
1 +O(n−1)

)
. (2.8)

By a gauge choice we can set uz = 0. Note that in the case of Einstein gravity, inspired

by the metric form of a UBS boosted along the string direction, the leading order part of

Gzz is completely determined [24]. In the EGB theory, as we do not have the closed form

of the UBS solution, here we make an assumption that the leading order part of Gzz is the

same as the one in the case of Einstein gravity, by which the leading order EGB equations

can be consistently solved as will be shown in the following.

At large D the radial gradient becomes dominant, that is ∂r = O(n), ∂v = O(1),

∂z = O(1), so in the near region of the black hole it is better to use a new radial coordinate

R defined by

R =

(
r

r0

)n
, (2.9)
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such that ∂R = O(1), where r0 is a horizon length scale which can be set to be unit r0 = 1.

To solve the EGB equations we need to specify boundary conditions at large R, they are

given by [17]

A = 1 +O(R−1), Cz = O(R−1), Gzz =
1

n

(
1 +O(R−1)

)
. (2.10)

On the other hand the solutions have to be regular at the horizon.

In the following as in [45] we use α̃ instead of α in doing the 1/n expansion, with

α̃ = αn(n+ 1). (2.11)

The reason for this choice can be seen by observing the large D limit of the metric of the

spherically symmetric EGB black holes. The metric is given by [35, 36]

ds2 = −f(r)dt2 + f−1(r)dr2 + r2dΩ2
n+2, (2.12)

where

f(r) = 1 +
r2

2α̃

(
1−

√
1 +

64πGα̃M

(n+ 2)Ωn+2rn+3

)
. (2.13)

In the metric function f(r), M is the mass of the black hole which in terms of the horizon

radius rH can be expressed as

M =
(n+ 2)Ωn+2r

n+1
H

16πG

(
1 +

α̃

r2
H

)
. (2.14)

In terms of R, at leading order of 1/n expansion, f(r) becomes

f(R) = 1 +
1

2α̃

(
1−

√
1 +

4α̃

R
rn+1
H

(
1 +

α̃

r2
H

))
. (2.15)

From the above we can see that the solution is reduced to the one in the Einstein gravity

if α̃ is very small, i.e. α̃→ 0. However, if α̃ is very large, e.g. α̃ = O(n2), f(R) becomes

f(R) = 1− 1√
R
, (2.16)

at the leading order of the 1/n expansion, where we take rH = 1. So in this case the

solution cannot smoothly connect to the one in the Einstein gravity.

In this paper we focus on the case α̃ = O(1) when doing the 1/n expansion, which

can clearly capture the effect of the GB term. The results in this case can be smoothly

extrapolated to the ones in the Einstein gravity by taking the limit α̃ → 0. On the other

hand, we can consider the case with a large α̃. In the appendix A, we study the case

α̃ = O(n2) (the case α̃ = O(n) or α̃ = O(n3) is similar). By imposing a different boundary

conditions, we find that the leading order results in the large α̃ case can be related to the

ones in the case α̃ = O(1) after taking the appropriate large D scalings, and the effective

equations are the same as the ones in the Einstein gravity. It turns out that the scaling of

the GL threshold mode is the same as that in the Einstein gravity and the assumption for

the metric components (2.8) works in that case as well.
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2.2 Effective equations

At the leading order of the 1/n expansion, the EGB equations (2.4) only contain R-

derivatives so they can be solved by performing R-integrations. Then after imposing the

boundary conditions the leading order solutions are obtained as

A = 1 +
1

2α̃

(
1−

√
1 +

4α̃m(v, z)

R

)
, uv = 1 (2.17)

Cz =
pz(v, z)

2α̃m(v, z)

(
− 1 +

√
1 +

4α̃m(v, z)

R

)
, Gzz =

1

n

(
1 +

G0(v, z)

n

)
, (2.18)

where

G0 =
(m2−pz∂zm+m∂zpz)

(1+α̃)m2

(
2arctan

√
1+

4α̃m

R
−π

2
+

ln
(

1+ 2α̃m
R

)
1+2α̃

−2ln
1+
√

1+ 4α̃m
R

2

)

+
p2
z

2α̃m2

√
1+

4α̃m

R
− p2

z

2α̃m2
. (2.19)

Note that 1/n2 term in Gzz is obtained at the next-to-leading order in the 1/n expansion

of the EGB equations. It has to be included since it also appears in the EGB equations at

the leading order of the 1/n expansion. The expression of G0 seems a little complicated, in

the limit α̃→ 0 it reproduces the simple expression of the one in the Einstein gravity [24].

In the above expressions, m(v, z) and pz(v, z) are the integration functions of R-

integrations of the EGB equations. Physically they can be viewed as the mass and mo-

mentum density of the solution. We can see that the horizon of this dynamical black string

solution is at

RH =
m(v, z)

1 + α̃
. (2.20)

At the next-to-leading order of the 1/n expansion, we are able to find non-trivial conditions

on which m(v, z) and pz(v, z) should satisfy. The non-trivial conditions are just the effective

equations for the large D EGB black strings. These equations are

∂vm− ∂2
zm = −∂zpz, (2.21)

∂vpz − ∂2
zpz − ∂zm+ ∂z

(
p2
z

m

)
+

+
2α̃

(1 + α̃)(1 + 2α̃)

(
∂2
zpz −

pz∂
2
zm

m
− ∂zm∂zpz

m
+
pz(∂zm)2

m2
+ ∂zm

)
= 0. (2.22)

In the limit α̃→ 0, the second equation becomes

∂vpz − ∂2
zp = ∂zm− ∂z

(
p2
z

m

)
, (2.23)

which reproduces the one in the Einstein gravity [24].

From these equations we can obtain the static solutions, including the uniform and

non-uniform black string solutions. These equations can describe non-linear dynamical

evolution of the fluctuations of the black strings.
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2.3 Static string solutions

In order to find the static solutions, we may further assume that m(v, z) = m(z) and

pz(v, z) = pz(z). It is straightforward to find static solutions from the effective equations.

From (2.21) we have

pz(z) = m′(z) + p0, (2.24)

here p0 is an integration constant describing the momentum along the z direction, we can

set it to zero.

Uniform black strings. In this case the solution is translationally invariant along the

z direction. Then from (2.24) we obtain

m(z) = m0, pz(z) = 0, (2.25)

where m0 is an integration constant and is related to the horizon radius by (2.20). We can

set m0 = 1+α̃ such that for the uniform black strings the horizon radius is unit. With m(z)

and pz(z), the uniform EGB black string is obtained analytically. If the 1/n2 term in Gzz
is not taken into account then in the large D limit, the leading order solution is obtained

by adding a trivial direction to a spherically symmetric black hole in one lower dimensions.

However, this is not a solution to the EGB theory. This suggests that we should include the

1/n2 corrections. However even with the 1/n2 correction, after plugging (2.25) into (2.19)

we still can not get a simple expression for G0, in contrast to the uniform black string in

the Einstein gravity which has G0 = 0.

Non-uniform black strings. From (2.20) we have

rn =
m(z)

1 + α̃
≡ m̃(z). (2.26)

When n is large, this is

r = 1 +
ln m̃(z)

n
, (2.27)

so ln(m̃(z)) describes a small O(1/n) deformation of the uniform surface at r = 1. In this

case the amplitude of the non-uniformities along the string is of order O(1/n).

Define

P(z) = ln m̃(z), (2.28)

then (2.22) becomes

P ′′′(z) + P ′(z)P ′′(z) + P ′(z) = 0. (2.29)

As a consequence, the equation for P(z) is identical to that in the Einstein gravity. Firstly,

it is easy to consider the near uniform solution, i.e. small P(z). In this case P(z) is obtained

as

P(z) = ε cos(z), (2.30)

where we assumed the reflection symmetry at z = 0. We can find that this slightly non-

uniform black strings in the EGB theory have the same leading behavior of the GL threshold
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wavenumber as the one in the Einstein gravity, i.e. kGL '
√
n/r0, which immediately shows

that the assumption (2.8) is reasonable.

The equation (2.29) can be integrated twice to obtain

1

2
P ′2 + U(P) = E, (2.31)

with

U(P) = P +m0 e
−P . (2.32)

Here E and m0 are integration constants. Hence the above equation can be regarded as

the classical one-dimensional motion of a particle, with the position P, the time z, the

potential U , and the energy E. In this case it is easy to obtain analytical approximations

and numerical solutions. For example, for large deformations which correspond to large E,

E � 1, P has a parabolic profile.

2.4 Thermodynamics

The thermodynamic properties of these solution are determined by the asymptotic charges

including the mass and tension, and the quantities on the horizon including the temperature

and the entropy. In the static case ∂v becomes a Killing vector, as a result the surface

gravity κ can be expressed as

κ =
n

2
R∂RA

∣∣∣∣
RH

(2.33)

=
n

2

1 + α̃

1 + 2α̃
, (2.34)

which is clearly constant. Then the temperature is given by

TH =
κ

2π
=

n

4π

1 + α̃

1 + 2α̃
. (2.35)

The entropy of a black object in EGB theory can be written as an integral over the event

horizon via the Wald formula [47]

S =
1

4G

∫
Σh

dn+2x
√
h(1 + 2αR̃), (2.36)

where h is the determinant of the induced metric on the horizon and R̃ is the event horizon

curvature. For the static solutions we have

S =
Ωn+1

4G

1 + 2α̃

1 + α̃

∫
m(z)dz. (2.37)

Then

THS =
Ωn+1n

16πG

∫
m(z)dz, (2.38)

therefore at leading order the effect of the GB term disappears. The physical quantities of

a configuration that can be measured asymptotically in the transverse space are the mass

M and the tension T in the direction of the circle. Similar to the Einstein gravity, these

– 8 –
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quantities are defined in terms of two constants cv, cz which appear in the asymptotics of

the metric functions

gvv ' −1 +
cv
rD−4

, gzz ' 1 +
cz

rD−4
. (2.39)

Then the ADM formula determines the mass and tension as [48]

M =
ΩD−3L

16πG
[(D − 3)cv − cz], T =

ΩD−3

16πG
[cv − (D − 3)cz], (2.40)

where ΩD−3 is the volume of SD−3.

For the non-uniform black strings,

cv =
1

L

∫
m(z)dz, cz = O(1/n). (2.41)

as we have

M =
Ωn+1(n+ 1)

16πG

∫
m(z)dz, T =

Ωn+1

16πG
· O(1). (2.42)

It is easy to see the Smarr’s formula is satisfied trivially at leading order of 1/n expansion

THS =M. (2.43)

Since the tension of the black string is of O(1), both M and THS are of O(n), so T does

not contribute to the Smarr formula at the leading order of the 1/n expansion. From (2.42)

we see that like the case in the Einstein gravity [16], the tension of a EGB black string

is small compared with its mass at large D. The effect of the GB term is reflected in

the 1/n corrections to the mass and the tension. A direct application of this fact is that

we might be able to construct a EGB black ring solution by bending and rotating the

EGB black string. Intuitively one can imagine that a black ring as a rotating bent string

such that the centrifugal force balances the string tension. The analysis by the blackfold

method found [49] that the horizon angular velocity of the D dimensional thin black ring

is of O(1/
√
D). At large D, since the string tension is small, the horizon angular velocity

of a large D black string should be small as well. Using the large D effective theory, a

neutral black ring solution was constructed analytically by solving the effective equations

for slowly rotating black holes [25], then the work was extended to the charged case in the

Einstein-Maxwell theory at large D [31]. Now that the EGB black has a small tension, we

expect to obtain a EGB black ring by applying the large D effective theory to the slowly

rotating black holes in EGB theory [50].

2.5 Dynamical fluid

In ref. [27], it was showed that the effective equations for the Einstein black strings (branes)

could be interpreted as the equations for the dynamical fluid. In this subsection, following

this idea we would study the properties of the dynamical fluid in the EGB membrane.

Firstly we define the velocity variable as

pz = muz + ∂zm, (2.44)

– 9 –
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in terms of which, the first effective equation (2.21) becomes the continuity equations for

the mass density,

∂vm+ ∂z(muz) = 0, (2.45)

as the one in the case of the Einstein gravity. Moreover, in terms of uz, the effective

equation (2.22) becomes

∂v(muz) + ∂z(mu
2
z + τzz) = 0, (2.46)

where

τzz = − 1 + α̃+ 2α̃2

(1 + α̃)(1 + 2α̃)
m− 2(1 + 2α̃+ 2α̃2)

(1 + α̃)(1 + 2α̃)
m∂zuz −

1 + α̃+ 2α̃2

(1 + α̃)(1 + 2α̃)
m∂2

z lnm. (2.47)

We may view these as the equations for a non-relativistic, compressible fluid with the

mass density m, the velocity uz and the stress tensor τzz. In the hydrodynamic gradient

expansions, the third part in (2.46) can be neglected if we keep only the leading order of

the spatial gradients of the variables. Compare with the standard equations for the fluid

we can identify the pressure

P = − 1 + α̃+ 2α̃2

(1 + α̃)(1 + 2α̃)
m, (2.48)

which reads the equation of state of the black string. The speed of sound of long-wavelength

perturbations is then

cs ≡
√
∂P

∂m
=

√
− 1 + α̃+ 2α̃2

(1 + α̃)(1 + 2α̃)
. (2.49)

Note that since the physical mass density is ρ = nm (see from (2.42)), the speed of sound is

as small as O(1/
√
n), which also justifies the assumption that the velocity along the string

direction is of O(1/
√
n). A negative pressure and therefore an imaginary cs for the EGB

black strings gives rise to the GL instability, like the case of the Einstein gravity [33, 51].

From the stress tensor of the fluid, we can read shear and bulk viscosities be

η =
1 + 2α̃+ 2α̃2

(1 + α̃)(1 + 2α̃)
m, ζ = 2η. (2.50)

In addition to the energy density m, we have other local thermodynamical variables, the

entropy density s, and the reduced temperature (TH = nT )

s =
1 + 2α̃

1 + α̃
4πm, T =

1

4π

1 + α̃

1 + 2α̃
, (2.51)

where we have used the unit 16πG = Ωn+1. Then besides the generic thermodynamics

equations Ts = m and dm = Tds, we have the ratio of the shear viscosity and the entropy

density
η

s
=

1 + 2α̃+ 2α̃2

(1 + 2α̃)2

1

4π
. (2.52)

In [52], it was conjectured that through the AdS/CFT correspondence for all known

physical systems η/s ≥ 1/4π, which is called the KSS bound. It was found that in the
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theories dual to the EGB gravity this bound was violated [53]. Moreover, the membrane

paradigm [54, 55] for the EGB gravity in D ≥ 5 has been studied in [56], in which the

transport coefficient for the black holes with constant curvature horizons and negative or

zero cosmological constant was derived. For the asymptotical flat spacetime, the ratio of

the shear viscosity and the entropy density is of the following form in our convention

η

s
=

1

4π

1 + 2α̃D−5
D−3(1 + α̃)

(1 + 2α̃)(1 + 2α̃D−2
D−4)

. (2.53)

At the large D limit, this is exactly the same as the relation (2.52) we obtained before.

Obviously, it violates the KSS bound for any α̃ > 0.

3 Instability and non-linear evolution

In this section, we study the instability of the black string solutions obtained in the last

section. For the black string, there could be Gregory-Laflamme instability. This will be

discussed in the following subsection. Moreover we will study the non-linear dynamical

evolution of the unstable string.

3.1 Quasinormal modes: Gregory-Laflamme instability

Consider a small perturbations around the static uniform black string (2.25), with momen-

tum k aligned along the string direction

m = m0 + δme−iωv+ikz, (3.1)

pz = δpz e
−iωv+ikz. (3.2)

The linearized equations of motion of the perturbations could be obtained from the ef-

fective equation. After imposing appropriate boundary conditions on the fluctuations at

the horizon and at asymptotic region, we may obtain the frequencies of the quasinormal

modes. For the scalar-type gravitational perturbations, which are most essential to the

stability, we find their frequencies

ω± = −ik2 1 + 2α̃+ 2α̃2

(1 + α̃)(1 + 2α̃)
±
ik
√

1 + 4α̃+ (7 + k2)α̃2 + 8α̃3 + 4α̃4

(1 + α̃)(1 + 2α̃)
. (3.3)

To develop an instability the frequency must have a positive imaginary part, i.e. Im[ω+]> 0,

this requires

k < kGL = 1. (3.4)

This is the GL instability at large D. The threshold wavenumber kGL is the same as the

one in the Einstein gravity. In other words, the threshold wavenumber kGL is independent

of the GB term. From (3.3) we can easily find that the frequency ω+ is bounded below and

has a minimum at α̃ = 1/
√

2 as shown in figure 1. From figure 1 we can see the effect of

the GB term on the GL instability, when α̃ < 1/
√

2 the presence of the GB term makes the

instability weaker, which is similar to the role played by the electric charge. In contrast,
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Figure 1. Dependence of Im[ω+] of the EGB black string on the GB coefficient α̃. Here the solid

line corresponds to k = 1/2 and the dashed line corresponds to k = 1/4.

Figure 2. The dynamical evolution of a perturbed EGB black string with α̃ = 1. From left to

right kL = 1.2, 0.98 and 0.55, which corresponds to a fat, a not-too-thin and a thin black string,

respectively.

as α̃ > 1/
√

2 the presence of the GB term enhances the instability. From (3.3) we can see

another feature of the GL instability of EGB black strings, in the limit α̃→∞, ω± becomes

ω± = −ik(k ± 1), (3.5)

the result is identical to the case α̃ = 0 [16] as shown in figure 1, which is consistent with

the analysis of the large α̃ case in the appendix A.

3.2 Non-linear evolution

Using the effective equations (2.21) and (2.22) we can numerically study the non-linear

evolution of the black strings. We parametrize the periodicity L of the string direction z

in terms of a wavenumber kL as

kL =
2π

L
. (3.6)

Then since the string thickness r0 is fixed r0 = 1, the uniform strings are characterized by

the value of kL. The smaller values of kL correspond to the thinner black strings.

We fix the value of kL and introduce a small perturbation of the static uniform black

string, m(0, z) = m0+δm(z), pz(0, z) = δp(z). We find that when kL > 1, the perturbation

– 12 –
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Figure 3. The final state of the unstable EGB black strings with α̃ = 1. The left panel shows the

case of a not-too-thin black string with kL = 0.98, the right panel shows the case of a thinner black

string with kL = 0.55. The profile of the left panel is well approximated by a cosine function and

the profile of the right panel is well approximated by a gaussian function.

quickly dissipates and the black string becomes uniform, this is in accord with the pertur-

bation analysis in section 3.1 that the linear modes are stable with a wavenumber kL > 1.

On the contrary, when kL < 1, the initial deformation grows fast, eventually the black

string settles down at a stable state that approximates very well the NUBS obtained as the

static solution of the effective equations (2.21) and (2.22). Therefore, the dynamical evo-

lution of the unstable EGB black string is very similar to case in the Einstein gravity [24].

In figure 2 we show the complete evolutions of a fat, a not-too-thin and a thinner black

string by plotting m̃(v, z). The final state of the unstable black strings is shown in figure 3.

For a not-too-thin black string with kL = 0.98 the evolution costs much time to reach the

final stable state, since kL is near kGL = 1 so the growth rate is small. The final profile is

approximately cosinoidal which agrees with discussion of the near uniform solution of the

static effective equations (2.30). For a thinner black string with kL = 0.55, the evolution

is faster and its final state has a large blob. In the case of the Einstein gravity, the profile

of the large blob is very approximately gaussian, here we find the similar picture for the

EGB black strings.

According to the perturbation analysis of the effective equations, the GB term affects

the growth rate of the unstable modes. Thus we expect that this is reflected by the evolution

rate of the black strings. Indeed, as shown in figure 4, when α̃ < 0.708, the time needed

to reach the final state increases with α̃ monotonically, however when α̃ > 0.708, the time

needed to reach the final state decreases with α̃, and when α̃ becomes very large the time

to reach the final state approaches to the one in the case α̃ = 0. We find the turning point

is α̃ ' 0.708 for all 1/2 < kL < 1 within the range of numerical validity. (Note that this is

close to the QNM turning point α̃ = 1/
√

2.)
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Figure 4. The time vs needed to reach the final state with respect to different α̃. We see that

when α̃ < 0.708, the time needed to reach the final state increases with α̃. When α̃ > 0.708, the

time needed to reach the final state decreases with α̃.

4 Summary

In this article we studied the black strings in the Einstein-Gauss-Bonnet (EGB) theory by

using the large D effective theory. Inspired by the properties of the black strings in the

Einstein gravity and the EGB black holes at large D, by embedding the effective membrane

in the backgroundMD−1×S1, we obtained the effective equations for the EGB black strings

after integrating the radial direction of the EGB equations. The EGB black strings were

obtained as the static solutions of the effective equations. The uniform black string (UBS)

was constructed analytically and it was shown that the leading order solution at large D

was identical to a spherically symmetric black hole plus a trivial direction. The non-uniform

black strings (NUBS) bifurcating from the UBS at the threshold of the Gregory-Laflamme

(GL) instability were studied by numerically solving the effective equations. We found that

like the NUBS in the Einstein gravity the profile of large deformations is very approximately

gaussian. By performing perturbation analysis of the effective equations we obtained the

quasinoramal modes (QNM) of the EGB black strings. As in the case of the Einstein

gravity, the GL instability occurs when the black string is relatively thin. Moreover, we

found that there exists a critical value for the GB coefficient, below which the presence of

the GB term makes the instability weaker, above which the instability gets enhanced.

Furthermore we also numerically solved the effective equations to study the non-linear

evolution of the EGB black strings. The behavior in the non-linear regime is basically sim-

ilar to the case of the Einstein gravity. For fat black strings the initial perturbation quickly

dissipates and the black string becomes uniform which is in accord with the perturbation

analysis of the effective equations. For thinner black strings the initial deformation grows

fast, finally the black string settles down at a stable NUBS. The effect of the GB term is

reflected in the time the unstable black strings needed to reach the final stable state. We

found that when α̃ < 0.708 the time increases, when α̃ > 0.708 the time decreases, which

qualitatively agrees with the effect of the GB term on the GL instability.
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On the other hand, we may interpret the large D effective equations for the EGB black

strings as the equations for the dynamical fluid. From this point of view, the pressure of

the fluid is negative and the speed of the sound of the long-wavelength perturbation is

imaginary, which signals the GL instability, similar to the case in the asymptotically flat

Einstein gravity. Furthermore we evaluated the transport coefficients and found that the

KSS bound for the ratio of shear viscosity and the entropy density (η/s) is violated for any

positive GB coefficient. Our result for η/s is the same as the one obtained in the membrane

paradigm in the large D limit [56].

The work in this paper can be extended in several directions. For example, as discussed

in [23] by adding the 1/n2 corrections to the effective equations the large D analysis gives a

critical dimension D∗ ' 13.5 at which the phase transition between the UBS and the NUBS

changes from first order to second order. It would be interesting to investigate if the same

phenomenon occurs for the EGB black strings and the effect of the GB term on the critical

dimension by using the 1/n expansion method. Another extension is to consider the black

ring solution in the EGB theory [50], until now this is basically an unexplored problem. As

we mentioned before since the tension of the large D EGB black string is small compared

with its mass, such that the rotation of the bent rotating black string used to balance its

tension is small, as a consequence the construction of the corresponding black ring solution

is possible. It would be interesting to study the EGB black strings in the framework of

the large D membrane paradigm developed recently as well [20–22, 30, 57, 58]. Another

interesting subject is on the asymptotically AdS black objects in the EGB gravity at large

D. This may shed light on the large D limit of the turbulence [59] from holographic point

of view.
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A The case α = O(1)

In this appendix we study the 1/n expansion of the EGB black strings in the case α = O(1).

In this case α̃ = O(n2) which is very large in the large n limit. From the action (2.2) one

can see that now the GB term becomes dominant since R = O(n2), and the effect of the

Einstein gravity is pushed to the third order of the 1/n expansion, so the leading order

solutions and the effective equations stem from the pure GB term.

In this case the boundary conditions (2.10) are not valid anymore. Instead, the proper

ones are given by

A = 1 +O(R−1/2), Cz = O(R−1/2), Gzz =
1

n

(
1 +O(R−1/2)

)
, (A.1)
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which come from the discussion of the decoupled quasinormal modes of the EGB black

holes [43]. The leading order solutions of the EGB equations are

A = 1−
√

m(v, z)

R
, Cz =

pz(v, z)√
m(v, z)

√
R

(A.2)

uv = 1, Gzz =
1

n

(
1 +

1

n

pz(v, z)2

m(v, z)2
√
R

)
, (A.3)

where m(v, z) and pz(v, z) are introduced as the integration functions of the R-integrations.

The above formulae are related to (2.17) and (2.18) by the following relations

m(v, z) = α̃m(v, z), pz(v, z) = α̃pz(v, z), (A.4)

when taking the large n limit.

The effective equations are

∂vm− ∂2
zm + ∂zpz = 0, (A.5)

∂vpz − ∂2
zpz − ∂zm + ∂z

(
pz

2

m

)
= 0. (A.6)

They can also be reproduced from (2.21) and (2.22) by using the relations (A.4). It is easy

to find that the effective equations are exactly the same as the ones in the Einstein gravity

at large D. Therefore the assumptions for the large D scaling of the GL threshold modes

and the metric components are self-consistent.
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