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1 Introduction

There are very large families of solitonic solutions to supergravity that appear, from far

away, to be like black holes and yet cap off in smooth geometry as one approaches the core

of the solution [1–3]. The vast majority of the known solitons are supersymmetric and,

for those that have the charge and angular momenta corresponding to black holes with

macroscopic horizons, the core of the solution asymptotes to an arbitrarily long, possibly

rotating, AdSp×Sq throat [4, 5]. The geometry then caps off just above where the black-hole

horizon would be. Classically, the depth of the throat, and hence the red-shift between

the cap and infinity, is a freely choosable parameter determined by the moduli of the

soliton. While the capping-off was long known to be the result of a geometric transition

in which non-trivial homology cycles blow up, supported by magnetic flux, it was only

relatively recently that it was shown that the non-trivial topology is an absolutely essential

ingredient if one is to have smooth solitons in supergravity [6].

One of the primary motivations for studying such supergravity solitons is the microstate

geometry program in which the solitonic geometries are related to the microstate structure

of black holes with the same asymptotic charges. For BPS black holes with AdS throats, this

can be made very precise using holographic field theory and, in particular, IIB microstate

geometries, and fluctuations around them, can be mapped directly onto states in the D1-D5

CFT. (For some recent results, see [7–11].) Deep, scaling microstate geometries can access

states in the lowest-energy sectors of the D1-D5 CFT that contain much of the microstate

structure. Indeed, once the classical moduli space of these geometries is quantized, the
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depth of the throat and the redshift are limited in precisely such a manner as to holograph-

ically reproduce the energy gap of the maximally twisted sector of the CFT [4, 5, 12, 13].

A major focus of the microstate geometry program has been to study of the BPS

fluctuation spectrum in supergravity and to determine the dual CFT states. The goal of

this work has been to see the extent to which such fluctuations can sample the microstate

structure and perhaps give a semi-classical description of the black-hole thermodynamics.

While there has been a lot of progress on this in recent years [7–11], it remains unclear as

to whether such techniques will yet give a semi-classical description of the entropy. The

challenge that remains is how supergravity can be used to access a rich variety of states

within the highly twisted sectors of the CFT. There are quite a few ideas as to how this

might be achieved but, as present, the required computations are extremely challenging.

Independent of the fluctuation story, there is the broader application of microstate

geometries as backgrounds on which to study string theory and to see if one can use intrin-

sically stringy excitations of these geometries to access the microstate structure of black

holes. One of the most interesting and promising approaches to this is the study of branes

wrapping the non-trivial space-time homology cycles that support the microstate geometry.

Perhaps the first motivation for studying such wrapped branes is the black-hole ‘de-

construction’ story [14, 15]. This starts with a fully-back-reacted geometry consisting of a

D6-D6 pair with fluxes that induce with D4-D2-D0 charges. The scaling geometry is then

AdS3 × S2. A gas of D0 branes is added to this background and the bubble equations,

or integrability conditions, localize the D0 branes at the equator of the S2. The back-

reacted D0 brane gas is, of course, an extremely singular family of solutions, however, it is

then argued that the Myers effect [16] causes polarization of the D0 branes into D2 branes

wrapping the S2. If this configuration is lifted to M -theory then the D0-charge becomes

momentum and the underlying configuration can be mapped onto the MSW string [17] and

can thus carry the entropy of a BPS black hole.

The Myers effect can only produce dielectric D2 branes and so it is something of a

‘stretch’ to get to non-trivial wrapped branes on the S2. There are also issues of tadpoles

and supersymmetry breaking that we will discuss in more detail below.

Another approach that points to importance of branes wrapping cycles of microstate

geometries comes from quiver quantum mechanics [18–21]. The underlying supergravity

background is once again a scaling geometry constructed from fluxed D6 branes. In terms

of the quantum mechanics on the brane, it is shown in [12, 21–24] that the exponentially

growing number of states of a black hole can arise only on the Higgs branch of the quiver.

The states on the Higgs branch are described by open strings stretched between the D6

branes, and in M -theory this corresponds to M2 branes wrapping the non-trivial cycles of

the corresponding scaling geometry.

Much more recent work [25] by Martinec and Niehoff provides a new framework that

gives new insights into deconstruction and the ground-state structure of quiver quantum

mechanics. One of the key observations in [25] is that if branes wrap cycles in scaling

microstate geometries, then they become very light, or give rise to either massless particles

or tensionless strings or branes in the extreme scaling limit. It is also suggested that such

“W-branes” could condense and give rise to new phases with an exponentially growing
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number of BPS states in those new phases. In this way one can imagine the W-brane

degrees of freedom giving rise to the Higgs branch of quiver quantum mechanics.

The apparent problem with this idea is that, naively, there appear to be rather few ways

that branes can wrap cycles in a microstate geometry. However, as in the deconstruction

story, Martinec and Niehoff point out that within the compactified directions, the wrapped

branes behave as point particles in the magnetic fluxes that thread the compact directions

and so there is a vast number of distinct W-branes coming from the degeneracy of lowest

Landau level. They then argue that the W-brane degeneracy is given by counting walks

on the quiver and show how this reproduces the counting formulae derived in [21–24] and

hence the exponentially growing number of states.

This is an extremely appealing picture in that it not only meshes well with the ideas

and results coming from deconstruction and from quiver quantum mechanics but it also

provides a semi-classical description of solitonic states, within a microstate geometry, whose

massless limit may well account for the black-hole entropy. The picture is also beautifully

reminiscent of how the E8×E8 W-bosons emerge from the geometry ofK3 in heterotic-type

II duality [26]. The W-brane picture exemplifies how microstate geometries can provide a

background to describe intrinsically stringy states that are part of the microstate structure

of black holes.

Whatever the perspective, there are compelling reasons to study branes wrapping

cycles in microstate geometries and, in particular, M2 branes wrapping 2-cycles in the

original five-dimensional microstate geometries [1–3] in M-theory.

Up until recently, W-branes have been treated as probes in the background of mi-

crostate geometries. However, if there are sufficiently many wrapped branes then there

will be a significant back-reaction and this will require treatment within supergravity. It

is therefore possible that supergravity may, in fact, see some large-scale, coherent aspects

of W-branes. Perhaps the simplest approach to investigating such wrapped branes in su-

pergravity is to start with the T 6 compactification of M -theory and consider an M2 brane

wrapping an S2 in a five-dimensional microstate geometry. Such a brane is point-like in the

T 6 but one can simplify the problem by smearing over the entire torus and reducing the

problem to five-dimensional supergravity. The smearing also avoids the problem of how to

handle the electric field lines on the compactification manifold since it forces all the electric

field lines into the space-time. In five dimensions, the four-form field strength sourced by

such a wrapped brane is dual to a scalar field and the relevant five-dimensional field theory

is N =2 supergravity coupled to both vector multiplets and hypermultiplets. Thus far, the

study of microstate geometries from the five-dimensional perspective has largely focussed

on N =2 supergravity coupled only to vector multiplets; the addition of hypermultiplets

add a whole new level of complexity but is required if one is to study wrapped brane states

in five dimensions. This has therefore been the starting point for studying the supergravity

back-reaction of wrapped branes [27–29].

There is a potential problem with smearing the brane source over the compactification

manifold: such a source has spatial co-dimension equal to 2 and so, in flat space, would

involve logarithmic Green functions. In asymptotically-flat backgrounds this will generi-

cally lead to singularities at infinity. One can avoid this issue by taking the background
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to be AdS3 × S2. Indeed, if one takes a bubbled microstate geometry and removes the

constants in the harmonic functions that lead to asymptotically flatness at infinity, one

typically gets a solution that is asymptotically AdS×S. This means that AdS3 ×S2 is an

excellent local model of a single bubble within a scaling microstate geometry. If the total

W-brane charge is non-zero then restoring the asymptotically flat regions will still lead to

problems. In an asymptotically flat solution one can interpret the configuration in terms of

branes, specifically in the IIA formulation, the wrapped M2 W-branes become fundamental

strings ending on the D6 that is wrapped on a T 6. This leaves an uncanceled tadpole on

the compact D6 world-volume. This issue is presumably related to divergences at infinity

in the supergravity solution. The easiest way to handle these problems in flat space is to

consider a solution with multiple bubbles and try to wrap branes in such a manner that

there is no net W-brane charge, leading to a dipolar charge distribution whose fields fall

off faster at infinity in supergravity and have no tadpoles on other wrapped branes. We

will see how this is completely incompatible with supersymmetry.

Wrapped M2 branes in AdS3 × S2 were studied in great detail in [27–29], where some

very interesting new families of BPS solutions were found. These new families were shown

to preserve 4 supersymmetries but it was not clear how those supersymmetries would be

modified in an asymptotically flat background and how the supersymmetries might depend

upon the orientation of one bubble relative to another. It is the purpose of this paper to

resolve precisely these issues.

First and foremost, if a solution is asymptotic to AdS × S or, equivalently, the dual

field theory is superconformal, then the supersymmetries come in two classes: Poincaré

and superconformal. Breaking the conformal invariance can only preserve the Poincaré

supersymmetries. For a black hole in flat space, the superconformal symmetry present in

the near-horizon limit is broken by the flat asymptotics. In the standard lexicon, when we

say that a 1
8 -BPS black hole has four supersymmetries, this means four Poincaré super-

symmetries. Moreover, any microstate of such a black hole, and thus any corresponding

microstate geometry, must also preserve the same four Poincaré supersymmetries. To

understand whether the solutions of [27–29] lie in the ensemble of 1
8 -BPS black hole mi-

crostates therefore rests on understanding how many of the four supersymmetries identified

in [27–29] are Poincaré or superconformal supersymmetries and whether these solutions,

in fact, break the Poincaré supersymmetries of the 1
8 -BPS black hole. By analyzing the

supersymmetries when these solutions are coupled to flat space, we will show that two of

the four supersymmetries are broken by that coupling, which means that there are only

two Poincaré supersymmetries and thus the solutions of [27–29] are 1
16 -BPS states.

To understand the supersymmetry in more detail, one can study the supersymmetry

projectors that arise from the corresponding brane configuartions. A priori there are two

possible ways in which the supersymmetries may work out. The first, and most obvi-

ous, comes from the standard application of brane projectors: a stack of M2 branes lying

in directions 0, 1, 2 impose the following constraint on supersymmetries (see, for exam-

ple, [30, 31]):

Γ012 ǫ = ǫ . (1.1)
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and thus, typically, cut the amount of supersymmetry in half compared to the amount

of supersymmetry without the M2 branes. In particular, applying one such projector to

a standard 1
8 -BPS microstate geometry would result in a 1

16 -BPS background. If there

were multiple wrapped branes on cycles with different orientations in the four-dimensional

spatial base, one would have to impose at least one other projector of the form Γ0xy, and

since this does not commute with (1.1), all supersymmetry would be broken.

However, the projector (1.1) is based upon rather simple brane configurations and

is possible that it is modified in a suitably complicated background. For example, the

dipolar distributions of M5 charge that underlie black rings and microstate geometries nei-

ther modifies nor places further conditions on the supersymmetries apart from the projec-

tions required by the original electric M2-brane charges. This works through a remarkable

conspiracy between the M5-charge density and the angular-momentum density so that

their combined supersymmetry projections reduce to those of the underlying M2-brane

charges [32, 33]. Thus microstate geometries exhibit the kind of geometric transitions that

allow densities of new brane charges in precisely such a way that the original supersym-

metries remain unbroken. However, such remarkable conspiracies can usually be detected

by brane probes. Brane wrapping of black-hole geometries was also analyzed in detail

in [34], where it was shown, using brane probes, that branes that wrap black holes in

asymptotically flat geometries generically break all the supersymmetry.

Here we will show that wrapping M2 branes on a space-time 2-cycle does indeed reduce

the supersymmetry in exactly the manner that the naive brane-projector analysis suggests.

In particular, we will show that two of the four supersymmetries found in [29] are artefacts

of the superconformal symmetry and will be lost as soon as the configuration is embedded

in an asymptotically-flat space-time. Indeed, for 1
8 -BPS microstate geometries that are

asymptotic to flat space necessarily impose the supersymmetry projection condition:

Γ1234 ǫ = ǫ , (1.2)

where 1, 2, 3, 4 are the non-compact spatial directions (see, for example [4]) and the Γ’s are

eleven-dimensional gamma-matrices. This condition arises from the fact that the configu-

ration must carry three M2-brane charges. Put differently, to represent a microstate of a

black hole, the microstate geometry must have the same supersymmetry of the black hole.

For five-dimensional black holes, where the supersymmetries are symplectic Majorana, the

projection condition (1.2) may be written:

γ0 ǫi = iσ3
i
j ǫ
j , (1.3)

where γ0 is a five-dimensional gamma-matrix. Using the standard identity for the product

of gamma matrices, this may be re-written as (1.2). We show precisely how imposing this

projection condition on the supersymmetries of [29], cuts their number in half, which means

that, once embedded in flat space, these solutions are actually 1
16 -BPS microstates. Going

further, we relate the computations in [29] to their flat-space analogs, and show how the

projection conditions imposed in [29] are precisely of the form (1.1).

Thus we conclude that for a microstate geometry in flat space (where conformal in-

variance is broken), wrapping branes around a single cycle will reduce the usual 1
8 -BPS,
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asymptotically flat, microstate geometries, with four (Poincaré) supersymmetries, to 1
16 -

BPS microstate geometries, with just two (Poincaré) supersymmetries. Furthermore, the

supersymmetry projection that plays an integral role in [29] actually depends upon the

orientation of the wrapped cycle and if cycles have different orientations then the corre-

sponding supersymmmetry projectors will be incompatible. This means that wrapping

more than one cycle with generic orientations will, in fact, break all the supersymmetries.

We will also show that there is no way to solve the tadpole problem without breaking all

the supersymmetries and so we recover the result expected from brane-probe analysis [34].

In section 2 give some of the relevant details of N =2 supergravity in five dimensions

coupled to vector multiplets and hypermultiplets. In section 3 we set the hypermultiplets

to zero and review (very briefly) the standard formulation of bubbled microstate geome-

tries using a Gibbons-Hawking (GH) base for the spatial sections of the manifold and then

discuss how AdS3 × S2 emerges as a local model of an isolated bubble. We then discuss

the eight supersymmetries of AdS3 × S2 in terms of the global metric and in the Bergman

form and show how these supersymmetries are reduced to four if the superconformal sym-

metry is broken by adding more bubbles or simply making the single-bubbled solution

asymptotically flat. In section 4 we restore the hypermultiplets and consider the solutions

of [29]. We discuss the structure of the supersymmetry and how it is further reduced by

the presence of wrapped branes and we translate this back into the description of bubbled

geometries using GH base geometries. This enables us to show how the supersymmetry

will generically be completely broken by wrapping branes on multiple cycles. We argue

that the only supersymmetric microstate geometries with wrapped branes are 1
16 -BPS and

these involve branes wrapped in the same orientation around co-linear cycles. Moreover,

we argue that any solution with branes wrapped in the space-time and with no net charge

for these branes necessarily breaks all the supersymmetry. Finally, in section 5 we discuss

the meaning of our result for the study of W-branes and black-hole microstates. In par-

ticular, we argue that while the wrapped-brane solutions are not, in themselves, 1
8 -BPS

microstates of black holes or black rings, W-branes do provide a way to access and might

even enable us to count the BPS microstate structure of 1
8 -BPS black holes and black rings

in deep scaling microstate geometries.

2 The Lagrangian and BPS equations

We work within five-dimensional, N = 2 supergravity coupled to both vector and hyper-

multiplets. The bosonic action may be taken to be:

S =

∫ √−g d5x

(
R − QIJ ∂µX

I∂µXJ − 1

2
huv Dµq

uDµqv − 1

2
QIJF

I
µνF

Jµν

− 1

24
CIJKF I

µνF
J
ρσA

K
λ ǭ

µνρσλ

)
.

(2.1)

Our goal is to write the action in a manner that is a simple extension of N =2 supergravity

coupled to vector multiplets that is typically used in the discussion of microstate geometries.

Our space-time metric is “mostly plus” and we will only have two vector multiplets and
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hence three vector fields. Thus I, J = 1, 2, 3, and we normalize the AI so that C123 = 1.

The scalars satisfy the constraint X1X2X3 = 1 and metric for the kinetic terms is:

QIJ =
1

2
diag

(
(X1)−2, (X2)−2, (X3)−2

)
. (2.2)

As usual, it is convenient to introduce three scalar fields, ZI , and take

Z ≡ (Z1Z2Z3)
1/3 , XJ ≡ Z

ZJ
, XJ ≡ 1

3

ZJ
Z

. (2.3)

The scalars, qu, are, of course, those of the hypermultiplets.

One can easily relate our conventions most simply to those of [35]. Define

ÂI ≡ −
√
3AI , ĈIJK ≡ 1

6
CIJK , hI ≡ XI , hI ≡ XI , aIJ ≡ 2

3
QIJ . (2.4)

then the hatted quantities are those of [35] and we have set κ = 1√
2
. The conventions

of [36] are very similar, except they use a “mostly minus” metric and thus one must send

gµν → −gµν and modify gamma matrices appropriately.

The BPS equations come from setting all the supersymmetry variations of the fermions

to zero:

∇µǫ
i +

i

8
XI F

I νρ
(
γµνρ − 4 gµνγρ

)
ǫi − ∂µq

v ωv
ijǫj = 0 , (2.5)

[
i γµ∂µX

I +
1

2

(
δIJ − XIXJ

)
F Iρσγρσ

]
ǫi = 0 , (2.6)

i γµ (Dµq
v) f jAv ǫj = 0 . (2.7)

The symplectic indices are raised and lowered using

vi = ǫij vj , vi = vj ǫji , (2.8)

and our gamma matrices satisfy

{
γa , γb

}
= 2 ηab , γabcde = iǫabcde , ǫ01234 ≡ +1 ,

(γ0)† = −γ0 , (γA)† = (γA)† , A = 1, 2, 3, 4 .
(2.9)

3 The standard bubbled geometries

3.1 Bubbled geometries on a Gibbons-Hawking base

We first set all the hypermultiplet scalars to zero and recall the story for bubbled geometries

on a GH base manifold, B. The metric takes the form:

ds25 ≡ −Z−2
(
dt+ µ(dψ +A) + ω

)2
+ Z

(
V −1(dψ +A)2 + V (d~y · d~y)

)
, (3.1)

where the spatial sections on B are the usual, possibly ambi-polar, GH metric with

~∇× ~A = ~∇V . (3.2)
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Later it will be useful to adopt axial polars on the R
3 sections of B, in which one has:

d~y · d~y = dρ2 + ρ2dφ2 + dz2 . (3.3)

As usual we take:

V = ε0 +

N∑

i=1

qi
ri

, (3.4)

where ri ≡ |~y − ~yi|.
The BPS Ansatz for the Maxwell fields may be decomposed into electric and magnetic

components:

AI = −Z−1
I (dt+ µ(dψ +A) + ω) + B(I) , (3.5)

where B(I) is a one-form on B. The magnetic parts of the field strengths are defined by:

Θ(I) ≡ dB(I) . (3.6)

The magnetic vector potentials are given by:

B(I) = V −1KI (dψ + A) + ~ξ(I) · d~y , ~∇× ~ξ(I) = −~∇KI , (3.7)

while the electrostatic potentials are

ZI =
1

2
CIJK

KJ KK

V
+ LI , (3.8)

where

KI =

N∑

i=1

kIi
ri

, LI = ℓ0 +

N∑

i=1

ℓI i
ri

. (3.9)

The remaining parts of the metric are given by:

µ =
K1K2K3

V 2
+

1

2

KI LI
V

+ M , M = m0 +

N∑

i=1

mi

ri
, (3.10)

~∇× ~ω = V ~∇M − M~∇V +
1

2
(KI ~∇LI − LI ~∇KI) . (3.11)

Regularity at each GH then requires that:

ℓIj = −1

2
CIJK

kJj k
K
j

qj
, mj =

1

2

k1j k
2
j k

3
j

q2j
, j = 1, . . . , N . (3.12)

The parameters ε0, ℓ0 and m0 are determined by the asymptotics at infinity.

Finally, there are the bubble equations that must be satisfied so as to avoid closed

timelike curves at each of the GH points. For more details, see [3].
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3.2 Two centers and AdS3 × S2

If one can separate two of the GH centers from the rest and if they are close enough

together so that one can ignore the constants, ε0 and ℓ0, then the resulting space-time may

be reduced to AdS3 × S2 [14, 37, 38]. The GH potential is simply:

V =
q+
r+

− q−
r−

, (3.13)

where q± ≥ 0 and

r± ≡
√
ρ2 + (z ∓ a)2 . (3.14)

Gauge transformations allow us to shift KI → KI + cIV , which means we can shift the

poles in the KI and assume, without loss of generality, that

KI = kI
(

1

r+
+

1

r−

)
. (3.15)

By uplifting to six dimensions one can shift V by one of the KI ’s and such a spectral flow

can be used to set

V = q

(
1

r+
− 1

r−

)
, (3.16)

For simplicity, we will take:

V = q

(
1

r+
− 1

r−

)
, KI = K = k

(
1

r+
+

1

r−

)
, (3.17)

LI = L = −k2

q

(
1

r+
− 1

r−

)
, M = −2 k3

a q2
+

1

2

k3

q2

(
1

r+
+

1

r−

)
, (3.18)

where the forms of the LI and M are determined by regularity. One then finds

ZI = Z = V −1K2 + L = −4 k2

q

1

(r+ − r−)
, (3.19)

µ = V −2K3 +
3

2
V −1K L+M =

4 k3

q2
(r+ + r−)

(r+ − r−)2
− 2 k3

a q2
. (3.20)

The one forms are given by:

A = q

(
(z − a)

r+
− (z + a)

r−

)
dφ , ~ξ · d~y = −k

(
(z − a)

r+
+

(z + a)

r−

)
dφ ,

ω = −2 k3

a q

ρ2 + (z − a+ r+)(z + a− r−)

r+ r−
dφ . (3.21)

This metric (3.1) is equivalent to the AdS3×S2 space-time and can be written in the global

form by performing the following coordinate transformation:

z = a cosh 2ξ cos θ , ρ = a sinh 2ξ sin θ , ξ ≥ 0 , 0 ≤ θ ≤ π , (3.22)

and shifting and rescaling variables:

τ ≡ a q

8 k3
t , ϕ1 ≡

1

2 q
ψ − a q

8 k3
t , ϕ2 ≡ φ− 1

2 q
ψ +

a q

4 k3
t . (3.23)
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The metric (3.1) then takes the simple form:

ds25 ≡ R2
1

[
− cosh2 ξ dτ2 + dξ2 + sinh2 ξ dϕ2

1

]
+ R2

2

[
dθ2 + sin2 θ dϕ2

2

]
, (3.24)

where

R1 = 2R2 = 4k . (3.25)

The Maxwell field also dramatically simplifies and (3.5) reduces to:

A = −2k cos θ dϕ2 , F = dA = 2k sin θ dθ ∧ dϕ2 , (3.26)

and so, as one would expect, F is proportional to the volume form on the S2.

3.3 Other frames and coordinates

There is another standard form of the metric on AdS3 that will prove useful: the Bergman

form, which describes the metric as a non-trivial time fibration over a non-compact Kähler

base. The AdS3 factor of (3.24) can be written as

ds23 ≡
R2

1

4

[
−
(
dt̂+ 2 sinh2

1

2
ζ dψ̂

)2

+ dζ2 + sinh2 ζ dψ̂2

]
, (3.27)

This comes from a very simple change of variable in (3.24):

ξ =
1

2
ζ , τ =

1

2
t̂ , ϕ1 = (ψ̂ − 1

2
t̂) . (3.28)

In particular, this and (3.23) implies

ψ̂ =
1

2 q
ψ . (3.29)

It will be convenient to introduce three sets of frames for each of the three forms of

the metric:

e0 = Z−1 (dt+ µ(dψ +A) + ω) , e1 = Z1/2V −1/2 (dψ +A) ,

e2 = Z1/2V 1/2 dρ , e3 = Z1/2V 1/2 ρ dφ , e4 = Z1/2V 1/2 dz ; (3.30)

ẽ0 = 4k cosh ξ dτ , ẽ1 = 4k dξ , ẽ2 = 4k sinh ξ dϕ1 ,

ẽ3 = 2k dθ , ẽ4 = −2k sin θ dϕ2 ; (3.31)

ê0 = 2k

(
dt̂+ 2 sinh2

1

2
ζ dψ̂

)
, ê1 = 2k dζ , ê2 = 2k sinh ζ dψ̂ ,

ê3 = 2k dθ , ê4 = −2k sin θ dϕ2 . (3.32)

The negative sign in ẽ4 and ê4 might seem unusual but it is there to ensure that the Lorentz

transformation from the frames (3.30) to (3.31) or (3.32) has determinant equal to +1.

It is a trivial exercise to verify

ê0 = cosh ξ ẽ0 + sinh ξ ẽ2 , ê2 = sinh ξ ẽ0 + cosh ξ ẽ2 . (3.33)
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The Lorentz transform between the ea and the ẽa is given by:

e0 =
1

cos θ

[
cosh ξ ẽ0 + sinh ξ ẽ2 + sin θ ẽ4

]
,

e1 = (cosh ξ sin η tan θ + sinh ξ cos η) ẽ0 + (sinh ξ sin η tan θ + cosh ξ cos η) ẽ2 +
sin η

cos θ
ẽ4 ,

e3 = (sinh ξ sin η − cosh ξ cos η tan θ) ẽ0 + (cosh ξ sin η − sinh ξ cos η tan θ) ẽ2 − cos η

cos θ
ẽ4 ,

e2 = sin η ẽ1 + cos η ẽ3 , e4 = cos η ẽ1 − sin η ẽ3 . (3.34)

where

cos η ≡ sinh 2ξ cos θ√
cosh2 2ξ − cos2 θ

, sin η ≡ cosh 2ξ sin θ√
cosh2 2ξ − cos2 θ

. (3.35)

3.4 Killing spinors

We continue with all the hypermultiplet scalars set to zero. Since our background obeys

the “floating brane Ansatz” [39] the BPS equation (2.6) is trivially satisfied as a result of

a cancellation between the connection terms and the Maxwell field strengths. This leaves

the equation

∇µǫ
i +

i

8
XI F

I νρ
(
γµνρ − 4 gµνγρ

)
ǫi = 0 , (3.36)

which determines how all the supersymmetries depend upon the coordinates. Indeed,

using the ẽa frames (3.31) with (2.9) to write products of three gamma matrices in terms

of products of two gamma matrices, we find the following differential equations:

∂τ ǫ
j = −∂ϕ1

ǫj =
1

2
sinh ξ γ01ǫj − 1

2
cosh ξ γ12ǫj , ∂ξǫ

j =
1

2
γ02ǫj , (3.37)

∂θǫ
j = − i

2
γ4ǫj , ∂ϕ2

ǫj = −1

2
cos θ γ34ǫj − i

2
sin θ γ3ǫj .

One can trivially solve for the dependence on ξ and θ and the rest can be solved direct by

taking derivatives and commuting gamma matrices through the first part of the solution.

We find

ǫj = e
1

2
ξ γ02 e−

i

2
θ γ4 e

1

2
(ϕ1−τ) γ12 e−

1

2
ϕ2 γ34 ǫj0 . (3.38)

where ǫj0 is a constant spinor. Note that there are eight solutions: four components and

two choices for j. These solutions contain both the Poincaré and superconformal super-

symmetries.

If one uses the êa frames (3.32) then the local Lorentz rotation (3.33) undoes the

ξ-dependence and gives

ǫj = e−
i

2
θ γ4 e

1

2
(ϕ1−τ) γ12 e−

1

2
ϕ2 γ34 ǫj0 . (3.39)

Based on (3.34), define the “gamma matrix:”

Γ0 =
1

cos θ

[
cosh ξ γ0 + sinh ξ γ2 + sin θ γ4

]
. (3.40)

Observe that if we take the γa in this expression to be that gamma matrices in the ẽa frames

in (3.31), then (3.34) implies that Γ0 represents the γ0 matrix of the GH frames, (3.30). The
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natural Poincaré projection condition in a generic GH space is given by taking Γ0ǫj = ±iǫj

for one choice of sign. Acting with Γ0 on the spinor in (3.38) gives:

Γ0 ǫj = e
1

2
ξ γ02 e−

i

2
θ γ4 e

1

2
(ϕ1−τ) γ12 e−

1

2
ϕ2 γ34

[
γ0 + tan θ (iγ0 + 1)

]
ǫj0 . (3.41)

This implies that

Γ0 ǫj = iǫj ⇔ γ0 ǫj0 = iǫj0 , (3.42)

but that the solution space does not respect the projection with the opposite sign. The

projection condition (3.42) therefore identifies the Poincaré supersymmetries associated

with the general GH space. Note that this is normally recast using (2.9) so as to emphasize

the hyper-Kähler property of the base:

Γ1234 ǫj = ǫj ⇔ γ1234 ǫj0 = ǫj0 . (3.43)

Alternatively, based on (3.33) and (3.34) one can take the γa to be those of the Bergman

frames, (3.32), and define the “gamma matrix:”

Γ̂0 =
1

cos θ

[
γ0 + sin θ γ4

]
. (3.44)

This is representative of the γ0 matrix of the GH frames, (3.30), in the Bergman frames

and, acting on (3.39), it leads to the same result as in (3.42) and (3.43).

4 The supersymmetries with hypermultiplet scalars

4.1 The hypermultiplet solutions

The background considered in [29] is the half-hypermultiplet parametrized by a complex

scalar, τ . The simplest way to satisfy the BPS equations for this is to take τ = τ(z) to be

a holomorphic function of the coordinate, z = tanh ζ
2 e

iφ̂ on the Bergman base in (3.27).

Indeed, the simplest non-trivial solution has:

τ = −iq∗ ln(z) + iV∞ = q∗ ψ̂ + i

(
V∞ − q∗ ln

(
tanh

ζ

2

))
, (4.1)

where q∗ and V∞ are constants. This locates the wrapped M2 branes at z = 0 with a source

proportional to q∗. In [29] the solution is written in terms of coordinates (x, ψ) where:

log z = x+ iψ̂ ⇒ ζ = − log

(
tanh

(
− x

2

))
. (4.2)

The new class of solutions obtained in [29] have a metric with frames

E t̂ =
l

2
(dt̂− (1 + Φ′(x))dψ̂) , Ex̂ =

l

2

√
τ2e

−Φ(x) dx , Eψ̂ =
l

2

√
τ2e

−Φ(x) dψ̂ ,

E θ̂ =
l

2
dθ , Eφ̂ = − l

2
sin θ ( dφ− dψ̂ + dt̂ ) = − l

2
sin θ dϕ2 .

(4.3)

where Φ(x) satisfies a non-linear, ordinary differential equation.
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Observe that we have made some changes of notation and convention compared to [29].

First, we have relabelled t and ψ in [29] by t̂ and ψ̂. This makes the notation in (4.3)

consistent with our notation here and avoids the confusion between Im(log(z)) in (4.2)

and the GH fiber coordinate, ψ. These coordinates are, of course, related by (3.29). We

have also reversed the sign of t̂ relative to t in [29] and flipped the orientation of the

frame Eφ̂. This brings (4.3) into line with the orientations of (3.30)–(3.32). It should be

remembered that [29] uses conventions that make the two-forms in the BPS equations of

bubbled geometries have the opposite dualities to the standard ones on the GH base. Our

modifications restore the canonical forms of these duality conditions.

If one sets q∗ = 0 and thus removes the wrapped M2 branes then one has [29]:

Φ(x) = Φ̃(x) +
1

2
log V∞ , Φ̃(x) = log(sinh(−x)) , τ2 = V∞ (4.4)

and one finds that the frames (4.3) become precisely the Bergman frames in (3.32) with

l = 4k.

4.2 The supersymmetries

In [29] it was shown that non-trivial half-hypermultiplet background imposes one additional

projection condition on the supersymmetries if the AdS3 × S2 background without the

wrapped M2 branes. This condition is:

(
1 δij − iγx̂ψ̂ σ3

i
j

)
ǫj = 0 , (4.5)

where σ3 is the usual 2× 2 Pauli spin matrix acting on the N =2 indices of the spinor and

γx̂ψ̂ refers to the product of gamma matrices in the frames (4.3).

We first note that this is a projector in the Bergman basis and so must be applied

to the Killing spinor (3.39). In particular, γx̂ψ̂ = γ12 commutes with all the exponentials

in (3.39) and thus implies: (
1 δij − iγx̂ψ̂ σ3

i
j

)
ǫj0 = 0 , (4.6)

Next we observe that (2.9) implies that

iγx̂ψ̂ = −γ t̂θ̂φ̂ , (4.7)

and so (4.5) is precisely the projector of a brane wrapping the S2.

Using (3.33) and (3.34) one can also easily map this projector into standard GH form.

To do this we note that

Ex̂ ∧ Eψ̂ = ê1 ∧ ê2 = ẽ1 ∧ (sinh ξ ẽ0 + cosh ξ ẽ2) = (sin η e2 + cos η e4) ∧ (cos η e1 + sin η e3)

= − cos2 η e1 ∧ e4 + sin2 η e2 ∧ e3 − sin η cos η (e1 ∧ e2 + e3 ∧ e4) , (4.8)

This means that in transforming from the Bergman basis to the GH basis, we have

γx̂ψ̂ → − cos2 η γ14 + sin2 η γ23 − sin η cos η (γ12 + γ34) . (4.9)
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However, because of the self-duality of the GH base and the projection condition (3.43) in

the GH frames, we have

γab ǫjGH = −1

2
ǫabcdγcd ǫjGH , (4.10)

and so (4.9) becomes

iγx̂ψ̂ → i γ23 = −γ014 , (4.11)

where we have used (2.9) in the last identity. Now recall that the homology cycles in a GH

metric are defined by the ψ-circle fibered along any curve between poles of V . Moreover,

the minimum area cycle involves the shortest such curve. Thus, in the GH form of the

metric with (3.16), the two cycle is defined by the ψ-circle over the interval along the z-

axis between −a and a. From (3.30), the area form of this cycle is e1 ∧ e4. Thus (4.11)

corresponds to the projector for the M2 brane wrapping this cycle.

In a general bubbled solution, each wrapped M2 brane will give rise to a supersymmetry

projector that depends on the orientation of the brane. More precisely, the supersymmetry

projector will depend upon the orientation of the straight line joining the two GH points in

the base R
3 parametrized by ~y in (3.1). The γ4 in (4.11) will be then replaced by a linear

combination of γa, a = 2, 3, 4. Any two such projectors are compatible (have a common

null space) if and only if all the GH points are co-linear and the wrapped branes have the

same orientation. Indeed, co-linear wrapped branes with opposite orientations source the

Maxwell field with opposite signs and so lead to opposite signs in (4.6). A pair of such

opposed projectors manifestly have no common null space.

This has several important consequences for the supersymmetry. First, all the super-

symmetry will be broken if the branes wrap cycles that are not co-linear. If the wrapped

cycles are all co-linear then supersymmetry will still be broken if the branes wrap in differ-

ent orientations, determined by the relative signs of the Maxwell fields they source. This

means that solutions with wrapped M2 brane but no net wrapped M2-brane charge necessar-

ily break all the supersymmetries. Finally, if all the wrapped branes lie on co-linear cycles

and have the same orientation then the projectors of these branes are all the same and the

combined effect is that they reduce the supersymmetry by another factor of a half.

As regards the total number of supersymmetries, the AdS3 × S2 starts with eight real

supersymmetries once the symplectic Majorana condition is imposed on (3.38) or (3.39).

If one simply wraps the S2, one preserves the conformal invariance and hence the super-

conformal supersymmetries but one must impose the projector (4.6), and, as shown in [29],

this leaves four supersymmetries. If one breaks the conformal invariance by either restoring

the asymptotically flat region or by adding more bubbles then one must impose another

supersymmetry projector, (3.42) or (3.43), which is compatible with the projector (4.6).

This reduces the solution to two supersymmetries, and renders it a 1
16 -BPS background.

Thus, if one takes a general 1
8 -BPS bubbled geometry and wraps any single bubble

with M2 branes, the result is a 1
16 -BPS solution. If one wraps more than one bubble then

all the supersymmetry will be broken unless all the wrapped bubbles are co-linear and are

wrapped in the same orientation and only then will it be 1
16 -BPS.
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5 Conclusions

We have shown that wrapped branes do indeed break some, or all, of the supersymmetries

in a microstate geometry and that this is governed by the naive supersymmetry projectors

associated with the wrapped brane. Thus branes wrapped on a single cycle, as in [27–29],

should really be viewed as a 1
16 -BPS excitations of a microstate geometry because that is

the amount of supersymmetry that will survive once superconformal invariance is broken.

This means that such wrapped branes should not be identified with microstates of 1
8 -BPS

black holes but should be viewed as (partial) supersymmetry-breaking excitations of such

geometries.

Our results also suggest that there might well be interesting 1
16 -BPS generalizations of

the results in [28, 29] in which the branes wrapped, with the same orientation, on multiple,

co-linear 2-cycles on a Kähler base. The starting point for such a set of solutions might be

to generalize the GH base geometry to the Kähler bubbled geometries of LeBrun [40] and

perhaps try to find BPS bubbled solutions in which one adds hypermultiplets to the work

of [41, 42].

On the other hand, one cannot solve the tadpole problem supersymmetrically without

decompactifying the compact directions. To remove the tadpoles, the M2 branes wrapped

on space-time cycles must have no net charge. This can be achieved by wrapping branes

around cycles in a closed quiver but this would involve multiple, incompatible supersym-

metry projectors. One might try to use co-linear cycles wrapped in opposite orientations

but this would lead to projectors with

Γ012 ǫ = ±ǫ , (5.1)

where the sign depends on orientation, and so there would be no residual supersymme-

try. Therefore, any wrapped brane configuration that solves the tadpole problem without

decompactification will necessarily break all the supersymmetries.

The fact that wrapped branes do not preserve the supersymmetries of a given mi-

crostate geometry means that they should not be viewed as supersymmetric microstates.

However, this does not mean that they cannot be used to describe the microstate structure.

Indeed, we believe that W-branes can access the 1
8 -BPS structure of black holes and that

counting W-brane configurations will enable one to enumerate the ground-state degeneracy

of 1
8 -BPS black holes.

First, Martinec and Niehoff [25] point out that the fact that W-branes are becoming

light in the scaling limit means that there will be a new phase of stringy physics emerging

in the deep scaling regime of microstate geometries. They argue that the W-branes will

probably form condensates and new operators will develop vevs and define order parameters

in that new phase. Quiver quantum mechanics confirms this picture rather nicely: when

the D6 branes are widely separated, the W-branes are massive Higgs excitations of the

system. When the branes coincide, the Higgs fields become massless and the Higgs branch

opens up. The ground-state degeneracy determined in [12, 21–24] amounts to counting all

the different vacua on that Higgs branch. Thus W-branes are one-particle excitations on a
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new massless branch of physics that is opening up in deep scaling solutions. To think of W-

branes as microstates is to confuse particle excitations with condensates and ground states.

A simple toy-model is, perhaps, helpful here. Consider the N = 2 Landau-Ginzburg

theory in 1 + 1 dimensions with superpotential W = xn+2 + ax, where x is the complex

Landau-Ginzburg field and a is a parameter. This model has a residual discrete Zn+1 R-

symmetry. The F-term constraint shows that there are n+1 vacua (Ramond ground states)

preserving N = 2 supersymmetry. Between each pair of vacua, there are minimum energy
1
2 -BPS kinks, or solitions carrying a discrete R-charge. Individual solitons thus preserve

only N = 1 supersymmetry and multi-soliton states break all the supersymmetry. (See,

for example, [43].) The limit a → 0 corresponds to the nth N = 2 superconformal minimal

model [44–46]. At the conformal point the Ramond vacuum has an (n+1)-fold degeneracy

and it is the chiral primary fields that interpolate between these states. In the limit a → 0,

the solitons become massless and are related to combinations of left-moving and right-

moving chiral primaries. For a 6= 0, the 1
2 -BPS solitons reflect the fundamental degrees of

freedom of the massless field theory and yield information about its ground state structure.

In this sense, W-branes in microstate geometries are, relative to the supersymmetry of the

microstate geometry, 1
2 -BPS excitations that reflect the new massless degrees of freedom

and the ground state structure that will emerge in the deep scaling limit. Thus, while W -

branes are not the 1
8 -BPS microstates of the black hole, they do reveal degrees of freedom

that will play an essential role in accessing a large component of the microstate structure.

Another important aspect of the supergravity approach taken in [27–29] is the smearing

of the branes on the compactification manifold that reduces the problem to five dimensions.

Ignoring the degeneracy of states in the lowest Landau level will, of course, do huge violence

to the state counting and make vast families of distinct W-branes look exactly the same in

supergravity. Indeed, it will collapse the W-brane states to simply the number of ways of

wrapping non-trivial cycles in the space-time. In the field theory on the branes this would

wash out most of the interesting structure of the new phase that emerges in the deep scaling

limit. It would therefore be extremely interesting to see how one might describe distinct

W-branes without smearing in supergravity. This will almost certainly mean working with

higher-dimensional supergravity theories and finding ways of modeling the distinct Landau

orbits or states within the lowest Landau level.
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