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1 Introduction

Massless particles in n + 1 dimensions give rise on Kaluza-Klein reduction to massive

particles in n dimensions. Consider the action for an n+ 1 dimensional massless particle:

S =

∫

dτ
1

2
λ(gµνẊ

µẊν + φ(Ẏ +AµẊ
µ)2) , (1.1)
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writing the n + 1 dimensional metric in terms of an n-dimensional metric, gµν , an n-

dimensional vector, Aµ, and an n-dimensional scalar φ. We reduce assuming none of these

fields depend on Y , so that it is a cyclic coordinate. We can eliminate it from the action

by defining the Routhian, or partial Hamiltonian,

HY = Ẏ PY − L , (1.2)

where the momentum conjugate to Y is PY = λφ(Ẏ +AµẊ
µ). The Routhian is calculated to

beHY = 1
2λφ

−1P 2
Y − λ

2gµνẊ
µẊν−PY AµẊ

µ. If we write the action as S =
∫

dτ(Ẏ PY −HY ),

then the Y equation of motion is ṖY = 0. Writing p for the constant value of PY , and then

integrating out the Lagrange multiplier λ, we obtain

S =

∫

dτ

(

−
√

φ−1p2
√

−gµνẊµẊν + pAµẊ
µ

)

. (1.3)

This is a massive particle in n dimensions, whose mass is given by the asymptotic value

of
√

φ−1p2.

Let us run this argument backwards. Given an action of the form (1.3) for a massive

particle in n dimensions, one can encode the mass in terms of an auxiliary worldline variable,

Ẏ , using an action of the form (1.1). Then this action can be given a higher-dimensional

interpretation.

In string theory, the above thinking is used to give the D0 brane an M-theory origin as

arising from 11-dimensional momentum modes. Further reduction leads to more massive

particle states arising from strings and branes wrapping compact cycles. On toroidal re-

ductions, these particles will form multiplets of a duality group, G. In this paper, we will

seek to understand a Kaluza-Klein-esque oxidation of these particles, where the higher-

dimensional theory will appear to exist in more than 11 dimensions. The masses of the

particles — or equivalently the tensions of the branes from which they arise — are encoded

very simply in the radii of the extra dimensions.

These ideas have antecedents going back many years. A Kaluza-Klein origin for string

and brane tensions was investigated in [1–3]. The idea followed is to replace the tension

of a brane with a (1 + p)-dimensional worldvolume with a dynamical p-form field living

on the worldvolume. In the case p = 0, for particles, there is a natural interpretation of

this extra field as a higher-dimensional coordinate. This interpretation is not so clear for

p ≥ 1. However, this approach leads to some nice results. For instance, in the IIB theory,

for p = 1, the resulting tension 1-form can be combined with the worldvolume gauge field

living on the D1 brane worldvolume to provide an SL(2) invariant description of the F1

and D1 [4, 5]. This approach can be generalised to SL(2) invariant actions for particles in

9 dimensions [6] and hence for more general SL(2) invariant brane actions in type IIB [7].

Indeed, the starting point for the investigations described in this paper was to use the

results of [6] for SL(2) invariant particles in 9 dimensions to guess the form of a general

action for particles in n dimensions invariant not under SL(2) but under some larger duality

group G. This action is:

S =

∫

dτ

(

−
√

pMMMNpN

√

−gµνẊµẊν + pMAµ
M Ẋµ

)

. (1.4)
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Let us explain what appears. We have a multiplet of particles transforming in a repre-

sentation R1 of G. The vector field Aµ
M is also in the same representation, and we have

introduced charges — or generalised momenta — pM , transforming in the representation

conjugate to R1. Instead of the single Kaluza-Klein scalar φ appearing in (1.3), we have a

set of scalars encoded in a generalised metric, MMN , which is constrained to parametrise

a coset G/H, where H is the maximal compact subgroup of the group G. We will check in

section 2 that this action reproduces the particle actions obtained by dimensional reduction

of various brane actions exactly as expected.

To give this action a higher-dimensional interpretation, we will encode the charges pM
in terms of auxiliary worldline scalars, Y M . This can be done using the action

S =
1

2

∫

dτλ
(

gµνẊ
µẊν +MMN

(

Ẏ M + ẊµAµ
M
)(

Ẏ N + ẊνAν
N
))

, (1.5)

where λ is a Lagrange multiplier. We can treat the Y M as cyclic coordinates in a manner

identical to that used above. The conjugate momenta are

PM = λMMN (Ẏ N +Aµ
NẊµ) . (1.6)

We calculate the Routhian given by Legendre transforming the Lagrangian L with respect

to Y M but not Xµ,

HY (X
µ, PM ) = Ẏ MPM − L

=
1

2λ
MMNPMPN − λ

2
gµνẊ

µẊν − PMAµ
M Ẋµ ,

(1.7)

and then trivially rewrite the action as S =
∫

dτ(−Y M ṖM −HY ). Now Y M appears only

as a Lagrange multiplier enforcing the fact that PM is constant. We therefore replace

PM = pM , with pM constant, so that

S =

∫

dτ

(

λ

2
gµνẊ

µẊν − 1

2λ
MMNpMpN + pMAµ

MẊµ

)

, (1.8)

which after integrating out λ corresponds to (1.4).

The form of the action (1.5) suggests an interpretation in terms of a larger space with

coordinates (Xµ, Y M ), with a metric apparently defined by (gµν ,MMN , Aµ
M ). It would

be surprising if there was a conventional higher-dimensional description, as the number of

coordinates involved will be greater than 11.

Instead, we will argue for an interpretation in terms of the structures appearing in dou-

ble field theory/exceptional field theory. These theories are reformulations of supergravity

involving the set of G-covariant coordinates (Xµ, Y M ), with the underlying symmetries

including “generalised diffeomorphisms” which realise local G transformations. Recall that

global G is the duality group on reduction to n dimensions on a D-torus. In double or ex-

ceptional field theory in general, one should really not call it a “duality group” — duality is

a statement about symmetries in certain backgrounds, such as those corresponds to toroidal

reductions — but perhaps one can refer to it here as the generalised diffeomorphism group.

– 3 –
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n = 11−D D R1 G = ED,D H

9 2 21 ⊕ 2−1 SL(2)× R
+ SO(2)

8 3 (3,2) SL(3)× SL(2) SO(3)× SO(2)

7 4 10 SL(5) SO(5)

6 5 16 SO(5, 5) SO(5)× SO(5)

5 6 27 E6 USp(8)

4 7 56 E7 SU(8)

3 8 248 E8 SO(16)

Table 1. Generalised diffeomorphism groups and coordinate representations for EFT.

It plays the same role as GL(D) in general relativity. A key property of generalised dif-

feomorphisms is that they do not form a consistent algebra unless the dependence of fields

and gauge parameters on the extra coordinates Y M is restricted. The simplest restriction

is to impose the so-called “section condition”, which forces one to choose a subset Y i of

the Y M as the “physical” coordinates on which the fields of the theory can depend.

In double field theory (DFT) [8–13] the group G is O(D,D). The coordinates Y M are

in the fundamental of O(D,D), and correspond to a doubling of a subset of (or all of) the

dimensions of the original spacetime theory. In exceptional field theory, the group G is

ED,D (where ED,D, a split real form of the exceptional groups ED, is originally found as

the U-duality group obtained on reducing 11-dimensional supergravity on a D-torus). This

sequence of groups, and the R1 representation of the coordinates Y M , is listed in table 1.

The development of EFT originally focused just on the subsector containing these coor-

dinates alone [14–17], truncating the field content and the dependence on the coordinates

Xµ, but the full reformulation of the bosonic sector of 11-dimensional supergravity has

now been carried out for every group in table 1, from SL(2) × R
+ to E8, in [18–24]. The

supersymmetric versions for the E6 and E7 theories have also been obtained [25, 26].

We will begin our interpretation of the action (1.5) in terms of these theories in sec-

tion 2, where we essentially only consider a higher-dimensional space which is an extended

torus. In section 3 however we will really allow all the fields to depend on the new coor-

dinates Y M . Doing so requires the introduction of an extra worldline vector transforming

in the R1 representation under global G (but subject to some restrictions, as we will see).

This extra vector field appears to gauge the redundancy introduced by including extra

coordinates, an idea that has been used in [27, 28] in reducing a doubled string worldsheet

model to the usual string theory (similar also to the gauging procedure of [29]). It can also

be seen as due to the fact that the naive “line element” for the extended space does not

transform covariantly under the local symmetries of DFT/EFT, as was realised for DFT

in [30, 31]. So this extra vector is a consequence of the fact that our local symmetries are

generalised diffeomorphisms, and is fundamentally tied to the fact that this symmetry con-

strains the coordinate dependence of the theory through the section condition. Integrating

out the extra coordinates and gauge fields will reduce us to particle actions in 11, 10 and

n dimensions.

– 4 –
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One could perhaps think of these dual directions as being somewhat similar to “special

isometry” directions, such as occur in a Kaluza-Klein monopole background. The world-

volume action for such a brane involves an extra worldvolume vector field which gauges

this isometry [32] and is used to eliminate what would otherwise be an extra degree of

freedom corresponding to the special isometry coordinate.

In section 4, we will point out an example where the gauge field actually survives in

the reduction to 10 dimensions. This is the massive IIA supergravity of Romans [33]. This

is a deformation of the 10-dimensional type IIA theory which does not have a conventional

11-dimensional description. However, it can be described within DFT and EFT in an

interesting manner. In DFT one introduces a deformation by allowing the RR sector

to depend linearly on a dual coordinate [34]. In EFT, the Romans deformation can be

described as a deformation of the generalised diffeomorphism symmetry [35], which can be

viewed as deriving from a generalised Scherk-Schwarz reduction of EFT [36–40] in which

the twist matrices depend again on dual coordinates. The Romans supergravity can also

be described in generalised geometry — which realises O(D,D) or ED,D symmetries on

a generalised tangent bundle [41–45] — using similar deformations of the generalised Lie

derivative [46].

Using the Scherk-Schwarz reduction procedure, our particle action gives rise to the

action of a D0 brane in massive IIA, on which an extra vector field appears [47]. Our

derivation of this fact will take a detour to highlight the fact that the EFT picture also

includes the 11-dimensional non-covariant uplift of Romans supergravity described in [47].

Our work hopefully sheds some light on the possible description within exceptional

field theory of some parts of the brane spectrum of string theory and M-theory. The search

for “duality covariant” brane actions has a long history, including many papers especially

relevant to the development of DFT and EFT [8, 9, 27, 28, 48–51]. It has not been entirely

clear how one might describe branes within EFT, where G transformations relate branes

of different worldvolume dimension (some other difficulties are described in [52]). One

attempt is [53]. The papers [54, 55] study a superparticle model in which the section

condition of EFT appears.

In a sense, we are restricting ourselves to describing some aspects of the branes whose

spatial worldvolumes completely wrap the internal space (and so appear as particles if we

reduce to n dimensions). These are the set of states that appear as waves — i.e. massless

particle excitations — in the extended space, as studied as solutions of DFT/EFT in [56–58]

(see also [59–61] for the confirmation that these carry the appropriate notion of generalised

momentum). The philosophy here is to think of DFT/EFT as a theory containing only

massless objects, which appear as usual (massive) branes or particles on restricting to the

physical spacetime.1

1We thank David Berman for emphasising this point to us.
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2 Duality covariant particle actions in n dimensions

2.1 The actions

We repeat the two actions we wrote down in the introduction: first, the higher-dimen-

sional form

S =
1

2

∫

dτλ
(

gµνẊ
µẊν +MMN

(

Ẏ M + ẊµAµ
M
)(

Ẏ N + ẊνAν
N
))

, (2.1)

which was equivalent to

S =

∫

dτ

(

−
√

pMMMNpN

√

−gµνẊµẊν + pMAµ
M Ẋµ

)

. (2.2)

We may think of these as worldline actions for particles in an n-dimensional spacetime.

Let us repeat our description of the fields appearing. On the worldline we have scalar fields

Xµ and Y M . The former can be viewed as standard n-dimensional spacetime coordinates,

while the latter will lie, as we have said, in the representation R1 of the group G, either

given by table 1 or by G = O(D,D) with R1 = 2D. We have an n-dimensional metric, gµν ,

and a symmetric matrix, MMN , which parametrises a coset G/H, and which we refer to

as the generalised metric. The vector field, Aµ
M also transforms in the R1 representation

of G. For the moment, we only allow our fields to depend on the coordinates Xµ.

To check that this action indeed corresponds to the reduction of various brane states,

we should specify n and G. First, let us check whether the above action corresponds to

the reduction of the action for point particle states to n dimensions. We begin with the

action for a massless particle in 10 or 11 dimensions, with metric ĝµ̂ν̂ and coordinates X µ̂:

S =

∫

dτ
1

2
λĝµ̂ν̂Ẋ

µ̂Ẋ ν̂ (2.3)

We split X µ̂ = (Xµ, Y i) and Kaluza-Klein reduce supposing the metric is independent of

Y i, using the decomposition

ĝµ̂ν̂ =

(

Ωgµν + φijAµ
iAν

j φikAµ
k

φjkAµ
k φij

)

. (2.4)

We include a conformal factor Ω. This can be specified in order to make gµν either an

Einstein frame metric (this is appropriate for reductions exhibiting the U-duality groups

of table 1) or a string frame metric (appropriate for reductions exhibiting the T-duality

group O(D,D)). In the latter case we have Ω = 1 if ĝµ̂ν̂ is a 10-dimensional string frame

metric. In the former case, if ĝµ̂ν̂ is 10- or 11-dimensional Einstein frame metric then

Ω = | detφ|−1/(n−2), while if ĝµ̂ν̂ is the 10-dimensional string frame metric we have Ω =

| detφ|−1/(n−2)e4Φ/(n−2).

We can eliminate the coordinates Y i in a fashion identical to the above. The momenta

conjugate to Y i is

Pi = λφij(Ẏ
j +Aµ

jẊµ) (2.5)

– 6 –
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and the action can be written

S =

∫

dτ

(

−
√

φijpipj

√

−ΩgµνẊµẊν + piAµ
iẊµ

)

(2.6)

after setting Pi = pi constant and dropping the total derivative term Ẏ ipi.

Now, returning to (2.2), we find that it matches the reduction (2.6) if

Mij = Ωφij , pM = (pi, 0) . (2.7)

One can check that this agrees with the explicit form of the matrix components Mij in

all cases.2

Let us now check that the action (2.2) corresponds to reductions of wrapped branes,

and in doing so begin to comment on the relationship to double field theory and exceptional

field theory.

2.2 n-dimensional particles from strings and DFT

Details of the n-dimensional theory. We focus now on the n-dimensional theory

with duality group G = O(D,D). Then we have coordinates Xµ and additional worldline

scalars Y M = (Y i, Ỹi) transforming in the fundamental representation of O(D,D). We

have a metric, gµν , and B-field, Bµν , which are invariant under O(D,D), as well as a

generalised metric MMN in the coset O(D,D)/(O(D)×O(D)) and a one-form Aµ
M again

in the fundamental. There is also a dilaton, which will not appear, completing the NSNS

sector fields (we will not need the RR fields).

In the double field theory [8–13] based on this O(D,D), all fields depend on the

coordinates (Xµ, Y M ) and transform under local O(D,D) generalised diffeomorphisms

(note that this corresponds to the formulation in [62], which is most similar to the set-

up of exceptional field theory, with not all directions doubled). For consistency, one can

impose the section condition, ∂i ⊗ ∂̃i = 0. The canonical solution ∂̃i = 0 identifies the

coordinates Y i as physical so that (Xµ, Y i) are the genuine 10 dimensional coordinates,

and the theory can be identified with (the NSNS sector of) 10-dimensional supergravity.

We can construct a dictionary between the O(D,D) covariant multiplets and the orig-

inal fields ĝµ̂ν̂ and B̂µ̂ν̂ in 10 dimensions. We decompose the latter as (for the metric, this

is the Ω = 1 case of (2.4)):

ĝµν = gµν + φijAµ
iAν

j , ĝµi = φijAµ
j , ĝij = φij , (2.8)

B̂µν = Bµν −A[µ
jAν]j +Aµ

iAν
jBij , B̂µi = Aµi +Aµ

jBji B̂ij = Bij . (2.9)

Then the appropriate field multiplets for O(D,D) are:

Aµ
M =

(

Aµ
i

Aµi

)

, MMN =

(

φij −Bikφ
klBlj Bikφ

kj

−φikBkj φij

)

. (2.10)

2A proof in generalised geometry/DFT/EFT would note that the Mij as a vector-vector component

will only transform under the generalised Lie derivative under spacetime diffeomorphisms, and so cannot

involve any p-form combinations. It must therefore be proportional to φij . Then one can just check the

weight to confirm the Ω factor.

– 7 –
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Particles: fundamental string. Start with the Nambu-Goto form of the string action

S = −T

∫

dτdσ
(

√

− det γab − B̂2

)

, (2.11)

where a, b = (τ, σ) are worldsheet indices, the induced worldsheet metric is γab =

∂aX
µ̂∂bX

ν̂ ĝµ̂ν̂ , and B̂2 denotes the pullback of the B-field. We split the 10-dimensional

coordinates X µ̂ into n + D coordinates (Xµ, Y i) and decompose the spacetime fields as

above, assuming the fields only depend on Xµ. On the worldsheet, we will carry out a

generalised double dimensional reduction, setting

Xµ(τ, σ) = Xµ(τ) , Y i(τ, σ) = Y i(τ) + wiσ . (2.12)

The action is then

S = 2πT

∫

dτ
(

−
√

−(φijw2 − wiwj)(Ẏ i +Aµ
iẊµ)(Ẏ j +Aν

jẊν)− w2Ẋ2

+Bij(Ẏ
i +Aµ

iẊµ)wj +AµiẊ
µwi
)

.

(2.13)

We now calculate the momentum conjugate to Y i, finding

Pi

2πT
=

(φijw
2 − wiwj)√− det γ

(Ẏ j +Aµ
jẊµ) +Bijw

j . (2.14)

By computing Pi(Ẏ
i+Aµ

iẊµ) and (Pi/2πT −Bikw
k)φij(Pj/2πT −Bjlw

l) we can find the

Routhian. It is

HY =
√

(Pi/2πT −Bikwk)φij(Pj/2πT −Bjlwl) + φijwiwj

√

−gµνẊµẊν

− Ẋµ(Aµiw
i +Aµ

iPi/2πT ) .
(2.15)

We then use the Y i equation of motion in the action S =
∫

dτẎ iPi −HY to set Pi = pi to

be constant. Then it is easy to see that the reduced action takes exactly the form (2.2),

with the generalised metric and one-form defined in (2.10), and the momenta

pM =

(

pi
2πTwi

)

. (2.16)

For a toroidal reduction, with torus radii R(i), pi = ki/R(i) and wi = R(i)m
i, with ki,mi ∈

Z. Then this momenta is

pM =

(

ki/R(i)

R(i)m
i/l2s

)

=

(

ki/R(i)

mi/R̃(i)

)

(2.17)

where we have introduced the T-dual radii R̃(i) = l2s/R(i). We note that the momenta

appearing look exactly like Kaluza-Klein momenta on a doubled torus with radii (R(i), R̃(i)).

We will discuss this higher-dimensional interpretation further in section 2.4.

– 8 –
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We must however notice that the momentum (2.14) obeys wiPi = 0, or miki = 0,

restricting us to have only either momenta or winding in each direction. This is a mani-

festation of the level-matching condition of the string. In O(D,D) covariant language, we

have ηMNpMpN = 0 where

ηMN =

(

0 I

I 0

)

(2.18)

is the defining O(D,D) structure preserved by O(D,D) transformations. We have not

implemented this requirement in (2.1). In section 3.4, we will see how some hint about

how it could maybe appear when starting from a version of the action invariant under the

generalised diffeomorphisms of DFT.

2.3 9-dimensional particles from branes and EFT

Details of the 9-dimensional theory. We now focus on the case of maximal super-

gravity in 9 dimensions, which from table 1 has a global SL(2) × R
+ duality group. The

representation R1 of the extra worldline coordinates Y
M is the reducible 21⊕2−1. We write

Y M = (Y α, Y s) with α = 1, 2 transforming in the fundamental of SL((2) and Y s a singlet.

The generalised metric, MMN , splits into a two-by-two block Mαβ and a one-by-one block,

Mss. These are not independent: the determinant of Mαβ is related to Mss, such that

Hαβ = (Mss)
3/4Mαβ has determinant one. We also have the one-form Aµ

M = (Aµ
α, Aµ

s),

and additional form fields which do not enter the discussion at present.

We can construct an exceptional field theory invariant under local SL(2)×R
+ involving

the full set of 9 + 3 coordinates (Xµ, Y M ), as detailed in [18]. The section condition for

this theory is [63] ∂α ⊗ ∂s = 0. The solution ∂s 6= 0 corresponds to IIB supergravity, so

we call Y s the IIB coordinate, while ∂α 6= 0 corresponds to 11-dimensional supergravity.

In our conventions, reduction on Y 1 leads to IIA supergravity in 10 dimensions, so we call

Y 1 the M-theory direction and Y 2 the IIA direction.

IIA decomposition. The 10-dimensional IIA fields are the string frame metric, ĝµ̂ν̂ ,

the B-field, B̂µ̂ν̂ , the dilaton Φ and the RR 1- and 3-forms, Ĉµ̂ and Ĉµ̂ν̂ρ̂. We split the

coordinates X µ̂ = (Xµ, X9), identifying X9 ≡ Y 2, and decompose the metric as in (2.4)

with Ω = φ−1/7e4Φ/7 (where φ ≡ | detφ|). The RR 1-form is decomposed as

Ĉµ̂ =

(

Cµ + C9Aµ

C9

)

. (2.19)

Then, we have

Mαβ = φ1/7e10Φ/7

(

1 C9

C9 C2
9 + φe−2Φ

)

, Mαβ = φ−8/7e4Φ/7

(

C2
9 + φe−2Φ −C9

−C9 1

)

, (2.20)

Mss = φ−6/7e−4Φ/7 , (2.21)

Aµ
α =

(

Cµ

Aµ

)

, Aµ
s = −B̂µ9 . (2.22)

As we have identified X9 with Y 2, note that indeed M22 = Ωφ−1 as in (2.7).
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IIA particles: fundamental string. Let us take pM = (0, 0, ps). Then the ac-

tion (2.2) is

S = |ps|
∫

dτ

(

−
√

−φ6/7e4Φ/7gµνẊµẊν ±Bµ9Ẋ
µ

)

. (2.23)

This is easily seen to be the double dimensional reduction of the Nambu-Goto action for

a fundamental string. The choice of charge vector corresponds to momentum in the IIB

direction, Y s, as expected. In this setup, the string is wrapped on the Y 2 direction with

radius R2, with the T-dual IIB radius Rs = l2s/R2. We need to identify

ps ≡ 2πR2TF1 =
R2

l2s
=

1

Rs
, (2.24)

which again exactly resembles a Kaluza-Klein momenta coming from the higher-

dimensional action (2.1), as we will further discuss in section 2.4. Note that the choice

of sign of ps corresponds to the orientation of the wound string.

IIA particles: D0 brane. Let us take pM = (p1, p2, 0). The action (2.2) is

S =

∫

dτ

(

−
√

−φ−8/7e4Φ/7((p1)2φe−2Φ + (p1C9 − p2)2)gµνẊµẊν + (p1Cµ + p2Aµ)Ẋ
µ

)

.

(2.25)

This is the dimensional reduction of a D0 brane carrying momentum in the direction on

which we have reduced. To see this, consider the D0 action

SD0 = TD0

∫

dτ

(

−e−Φ
√

−ĝµ̂ν̂Ẋ µ̂Ẋ ν̂ + Ẋ µ̂Ĉµ̂

)

, (2.26)

and reduce using the above decomposition. We let Z ≡ X9 be the direction on which

we will reduce. The action is independent of Z so the momentum in the Z direction is

conserved. This momentum is

PZ

TD0
=

φe−Φ(Ż +AµẊ
µ)

√

−g − φ(Ż +AµẊµ)2
+ C9 , (2.27)

where g ≡ φ−1/7e4Φ/7gµνẊ
µẊν . After Legendre transforming, the action can be written as

SD0 =

∫

dτ

(

−ZṖZ −
√

−gφ−1(T 2
D0φe

−2Φ + (PZ − TD0C9)2) + (TD0Cµ + PZAµ)Ẋ
µ

)

.

(2.28)

We solve the Z equation of motion by letting PZ be constant. If the Z direction has radius

R, then let PZ = p/R. Substituting back in and dropping the Ż term which is now a total

derivative, we find the action (2.25) with the identifications

p1 ≡ TD0 =
1

lsgs
=

1

R1
, p2 ≡

p

R
. (2.29)

Here, we see that standard identification of the D0 tension with Kaluza-Klein momentum

on the M-theory circle is entirely consistent with a higher-dimensional interpretation of our

particle action (2.1) as describing a particle moving in the extended spacetime.
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IIA particles: the pp-wave. Finally, we take pM = (0, p2, 0) so that

S = |p2|
∫

dτ

(

−φ−1/2
√

−φ−1/7e4Φ/7gµνẊµẊν ± ẊµAµ

)

(2.30)

This is the action for a momentum mode (compare the discussion in section 2.1). It is

written in terms of the lower-dimensional Einstein frame metric. Note the string frame

metric in 9 dimensions would be ḡµν = φ−1/7e4Φ/7gµν . It is trivial to identity p2 = p/R

with p ∈ Z.

IIB decomposition. The bosonic fields of 10-dimensional type IIB supergravity are the

Einstein frame metric, ĝEµ̂ν̂ , the B-field, B̂µ̂ν̂ , the dilaton ϕ, the RR 0-form C0, 2-form, Ĉµ̂ν̂

and self-dual 4-form Ĉµ̂ν̂ρ̂σ̂. We split the coordinates as X µ̂ = (Xµ, Y s). We decompose

the metric as in (2.4) with Ω = φ−1/7. In the convention that α = 1 is an RR field index

and α = 2 is an NSNS field index (this is the opposite to what is stated explicitly in [18]

but seems to correspond to the explicit parametrisations used there), the unit determinant

part of the generalised metric can be written as

Hαβ = eϕ

(

1 C0

C0 C2
0 + e−2ϕ

)

. (2.31)

We have

Mss = φ8/7 , Mαβ = φ−6/7Hαβ , Mαβ = φ+6/7Hαβ . (2.32)

Finally, the one-form components are

Aµ
s = Aµ , Aµ

α = Ĉµs
α . (2.33)

IIB particles: the pq string. Take pM = (qα, 0), then

S =

∫

dτ

(

−
√

−qαHαβqβφ6/7gµνẊµẊν + qαBµs
αẊµ

)

. (2.34)

This matches the action for the dimensional reduction of a pq string, equation (2.15) of [6]

(excluding the Scherk-Schwarz term). We discuss the quantisation of the charges below.

IIB particles: pp wave. Take pM = (0, p), then

S = |p|
∫

dτ

(

−φ−1/2
√

−φ−1/7gµνẊµẊν ±AµẊ
µ

)

, (2.35)

which is a pp wave for the same reasons as above.

2.4 Interpretation from double and exceptional field theory

We have seen that the action (2.2) describes n-dimensional particles obtained by reducing

particle, string and brane actions from 10 or 11 dimensions. The masses of these particles

are encoded in terms of the constants pM , which we saw should be taken to be quantised in

units of inverse radii - with the radii appearing being both the physical radii that we have
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reduced on and also dual radii. In this section, we will encode these radii in the generalised

metric MMN . Of course, this is all in accordance with standard duality relationships.

We want to emphasise in this section how this emerges from the geometry of double and

exceptional field theory, given the action (2.1), so we will take the time to spell things out

quite explicitly.

The action (2.1) involves what looks like the pull-back to the worldline of a “generalised

line element”

“ds2” = gµνdX
µdXν +MMN (dY M + dXµAµ

M )(dY N + dXνAν
N ) . (2.36)

The Lagrange multiplier λ then suggests to think of this action as describing massless

particle-like states in an extended geometry.

Let us focus on the particular case where the directions Y M parametrise a torus. We

can write MMNdY MdY N = (R(M)/l)
2δMNdY MdY N , where the dimensionful quantity l

can be taken as either the string length or the 11-dimensional Planck length. We denote

the radius of the Y M direction by R(M). As usual, momenta in these directions should be

quantised as PM = kM/R(M) where kM ∈ Z. Such momentum states will have mass, as

measured using the metric gµν , equal to
√

δMNPMPN .3

Let us note one can really see these standard results by applying simple particle quan-

tum mecahnics to the action (2.1). The Hamiltonian is (setting Aµ
M = 0 for simplicity

here) H = gµνPµPν + MMNPMPN , which in quantum mechanics should vanish acting

on physical states. This gives an n-dimensional mass-shell condition P 2 + M2 = 0 with

M2 = MMNPMPN , and the usual results about quantisation of PM apply.

In this set-up, picking a solution to the section condition means selecting which D

of the Y M to consider as the physical coordinates. Momenta in dual directions gives rise

to particles in n dimensions which we would interpret ordinarily as arising from branes

wrapped on the physical torus. In the action (2.1), we describe all such states as particles

on the extended torus. These particles are all massless in double or exceptional field theory,

as is implied by the Lagrange multiplier λ in the action (2.1). This is consistent with the

point of view of [56–58], which argued that the supergravity solutions corresponding to

such totally wrapped branes appear as waves in the extended space.

We emphasise that our appproach in this paper is to take the generalised line ele-

ment (3.16) to be only relevant as a part of a worldline (or worldvolume) action like (2.1).

We will not think of it as corresponding to a genuine line element on the extended space

(though see the paper [64] which defines a metric on doubled space of DFT using an extra

gauge field which can be integrated out using a path integral approach. We will meet this

gauge field in the next section). Yet because it appears in the worldline action we can use

it as proxy for inferring how point particle — or fully wrapped brane — states perceive

the background of the doubled or exceptional geometry.

Let us confirm the generalised momenta coming from the double field theory generalised

line element are what we expect. On a doubled torus we have (writing only the part of (3.16)

3This is the same as
√

MMN P̄M P̄N with P̄M = kM/ls. Where convenient, we will in this way go back

and forward between having the radii appear explicitly in the metric, or in the ranges of the coordinates.
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corresponding solely to the Y M directions)

“ds2” = (R(i)/ls)
2δijdY

idY j + (ls/R(i))
2δijdỸidỸj

= (R(i)/ls)
2δijdY

idY j + (R̃(i)/ls)
2δijdỸidỸj ,

(2.37)

so we see that this involves both the physical radii R(i) for the directions Y i and the dual

radii R̃(i) = l2s/R(i) for the directions Ỹi. The momenta appearing in the action (2.2) are

then PM = kM/R(M) where kM ∈ Z and R(M) = (R(i), R̃(i)). This is exactly what we saw

in section 2.2 (where to be fully consistent we should there write φij = δij while absorbing

the radii into the definition of the coordinates Y M ∈ [0, 2πR(M)]).

Now let us turn to exceptional field theory. There is a subtlety related to the fact that a

conformal factor Ω appears in the dictionary relating the EFT fields to the decomposition of

the 10 or 11 dimensional metric (2.4), with gµν = Ω−1ĝµν+ . . . . We mentioned already that

the inverse generalised metric has components Mij = Ωφij ; similarly one will generically

have that Mij = Ω−1φij + . . . . This means that on an extended torus one has

MMNdY MdY N = (R(M)/l)
2δMNdY MdY N = Ω−1(R̃(M)/l)

2δMNdY MdY N (2.38)

where R̃(M) are the radii that would be seen using the 11/10 dimensional metric. These

differ from the radii R(M) that seem to be encoded in the generalised metric, which are

those seen by the metric gµν . In fact, one has in general that, picking some subset Y i as

the physical coordinates,

“ds2” = Ω−1
(

ΩgµνdX
µdXν + φijdY

idY j + . . .
)

= Ω−1
(

ĝµ̂ν̂dX
µ̂dX ν̂ + . . .

)

,
(2.39)

where the dots denote extra terms involving both the Y i and dual coordinates. We see

here the appearance of the 10/11-dimensional metric ĝµ̂ν̂ .

The masses measured using the metric gµν would be
√

δMNPMPN with PM =

kM/R(M) as before. We can define momenta P̃M = Ω−1/2PM instead: the mass
√

δMN P̃M P̃N then corresponds to what would be measured using ĝµ̂ν̂ .

This can be viewed as a choice of redefinition of the Lagrange multiplier λ. The

freedom to redefine λ is equivalent to rescaling both gµν and MMN by a conformal factor.

On choosing a parametrisation of MMN corresponding to a particular 10/11 dimensional

theory, one can choose this conformal factor so that whatever radii appear correspond to

those seen by the 10 or 11 dimensional metric ĝµ̂ν̂ . In particular, we would define a new

Lagrange multiplier λ̂ = λΩ−1. Note that as the generalised line element is meant to only

carry meaning on the worldline action, the generalised momenta defined from the action

are actually unchanged:

PM = λMMN Ẏ N = λ̂ΩMMN Ẏ N . (2.40)

Setting λ̂ = 1 in the action (2.1) corresponds to the standard results for the masses as seen

in the usual 10/11 dimensional theory. This also leads to the momenta that we wrote down

– 13 –



J
H
E
P
1
0
(
2
0
1
7
)
0
0
4

in section (2.3). Ultimately, this is only really a matter of convention: we are choosing to

express the masses not in terms of the n-dimensional metric gµν but in a more familiar way.

We will now show how to use this to extract all the expected masses for particles in

9d from the SL(2) × R
+ EFT. The results will of course be consistent with the standard

duality relationships between the branes of M-theory, IIA and IIB.

In the below we drop the external metric, and write “ds2” = MMNdY MdY N only.

On choosing a section, we explicitly extract the prefactor Ω−1 which will cancel against

the λ̂Ω in (2.40). For IIA, we write

“ds2” = φ1/7e−4Φ/7

(

e2Φ(dY 1 + C9dY
2)2 + φ(dY 2)2 + φ−1(dY s)2

)

, (2.41)

showing the prefactor Ω−1 = φ1/7e−4Φ/7. The quantity inside the large brackets then

provides what we call the “effective radii”. We suppose that φ = (R2/ls)
2, and the dilaton

is constant and equal to the IIA string coupling, eΦ = gAs . Then we have

“ds2”= (R2/ls)
2/7(gAs )

−4/7

(

(gAs ls/ls)
2(dY 1+C9dY

2)2+(R2/ls)
2(dY 2)2+(ls/R2)

2(dY s)2
)

.

(2.42)

The “effective radii” are

R̃s =
l2s
R2

, R̃1 = lsgs , R̃2 = R2 (2.43)

The momenta pM = kM/R̃(M) gives exactly the tensions/masses for the fundamental string

wrapped on Y 2, the D0 brane and the pp-wave with momentum in the Y 2 direction.

For IIB, we have

“ds2” = φ1/7

(

φ(dY s)2 + φ−1eϕ
(

(dY 1 + C0dY
2)2 + e−2ϕ(dY 2)2

)

)

. (2.44)

Note that here φ = gEss for the Einstein frame metric. We therefore have a few extra steps

to obtain results for the momenta that correspond to the masses that would be measured

in the IIB string frame (we do this simply because the string frame expressions are more

familiar). Letting φ = (RE
s /ls)

2 and eϕ = gBs , we have

“ds2”=(RE
s /ls)

2/7

(

(RE
s /ls)

2(dY s)2 + (ls/R
E
s )

2gBs
(

(dY 1 + C0dY
2)2 + (gBs )

−2(dY 2)2
)

)

.

(2.45)

We have the relationship ĝEµ̂ν̂ = e−ϕ/2ĝµ̂ν̂ for the 10-dimensional string frame ĝµ̂ν̂ . Thus,

(RE
s )

2 = (gBs )
−1/2(Rs)

2. In terms of string frame quantities, we therefore have4

“ds2”= (Rs/ls)
2/7(gBs )

−4/7

(

(Rs/ls)
2(dY s)2+(ls/Rs)

2
(

(gBs )
2(dY 1 + C0dY

2)2 + (dY 2)2
)

)

.

(2.46)

4Notice that the prefactor in both (2.42) and (2.46) corresponds to the T-duality invariant dilation,

e−2d = e−2φ√detφ, to the power of 2/7.
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The “effective radii” are

R̃s = Rs , R̃1 =
l2sg

B
s

Rs
, R̃2 =

l2s
Rs

(2.47)

The momenta pM = kM/R̃(M) gives exactly the tensions/masses for the pp-wave with

momentum in the Y 2 direction, the D1 brane wrapped on Y s and the fundamental string

wrapped on Y s.

3 Generalised diffeomorphism covariant particle action in extended di-

mensions

We have already seen how the background (gµν , Aµ
M ,MMN ) and coordinates (Xµ, Y M )

appearing in the action (2.1) can be interpreted in terms of the fields and coordinates of

double or exceptional field theory. So far we just considered the dictionary relating these

fields to the (toroidal) reductions of brane actions to n dimensions. In this section, we

want to really interpret the action (2.1) in the full DFT/EFT framework.

3.1 Local symmetries of double and exceptional field theory

The generalised Lie derivative. The local symmetry transformations of these theories

include “external diffeomorphisms”, parametrised by vectors ξµ(X,Y ), and “generalised

diffeomorphisms”, parametrised by generalised vectors, ΛM (X,Y ). The latter realise a

local infinitesimal G transformation, where G = O(D,D) or ED,D. Putting DFT or EFT

on a torus, global transformations of the group G become the standard duality group of

n-dimensional supergravity.

The definition of generalised diffeomorphisms δΛ (equivalently, of the generalised Lie

derivative LΛ) acting on a generalised vector V M is [17, 44]:

δΛV
M ≡ LΛV

M = ΛN∂NV M −V N∂NΛM +Y MN
PQ∂NΛPV Q+(λV +ω)∂NΛNV M (3.1)

Here λV denotes the weight of the vector V , while we also have a sort of inherent weight

ω. In DFT, ω = 0, while in EFT we have ω = − 1
n−2 . The tensor Y MN

PQ is constructed

using invariants of the group G, and its presence ensures that the generalised Lie derivative

preserves these invariants. For this to happen, the form of the Y -tensor is restricted and

can be worked out group by group [17]. For G = O(D,D), for instance, it is Y MN
PQ =

ηMNηPQ (note that in general it does not factorise in this way), while for SL(2)×R
+, where

the index M = (α, s), the non-vanishing components are Y αs
βs = δαβ and those related by

symmetry (it is symmetric on upper and lower indices except for the case of E7).

The gauge parameters themselves are taken to have weight λΛ = −ω. The closure of

the algebra of such transformations,

LΛ1LΛ2 − LΛ2LΛ1 = L[Λ1,Λ2]E , [Λ1,Λ2]E =
1

2
(LΛ1Λ2 − LΛ2Λ1) , (3.2)

is not guaranteed. Consistency conditions must be imposed. The simplest such condition

is the section condition:

Y MN
PQ∂M ⊗ ∂N = 0 , (3.3)
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whose solutions reduce the coordinate dependence of DFT to at most 10 dimensions and

that of EFT to at most 11 or 10 dimensions (there are distinct solutions giving maximal

supergravity in 11 and type IIB in 10 dimensions [22, 65]). The section condition effec-

tively kills all dependence on the dual coordinates. Alternatively, by requiring all fields

factorise in a Scherk-Schwarz (twisted) ansatz, one can find weaker conditions in which

some dependence on the dual coordinates gives rise to interesting gaugings of supergravity.

The fields (gµν , Aµ
M ,MMN ) that appear in our wordline action transform as follows

under generalised diffeomorphisms. The external metric gµν is a scalar of weight −2ω. The

generalised metric MMN is a tensor of zero weight. The vector field Aµ
M actually can be

thought of as a gauge field for these transformations. Its transformation is given by

δΛAµ
M = DµΛ

M ≡ ∂µΛ− LAµΛ
M . (3.4)

We take Aµ
M to have weight −ω. The derivative Dµ = ∂µ−LAµ is a covariantisation of the

partial derivative ∂µ with respect to generalised diffeomorphisms. It is used in writing the

action and in defining external diffeomorphisms: these are given by the usual Lie derivative

with respect to parameters ξµ, but with ∂µ replaced by Dµ.

The field strength for Aµ
M is defined as follows:

Fµν
M = 2∂[µAν]

M − [Aµ, Aν ]E
M + (∂̂Bµν)

M , (3.5)

in which a new two-form gauge field Bµν appears. This field transforms in a representation

of G which we denote by R2. (Recall that generalised vectors, and the gauge field Aµ
M

transform in what we call R1.) The derivative ∂̂ : R2 → R1 is a nilpotent operator [63, 66],

constructed using group invariants and the derivatives ∂M , which maps from R2 to R1.

The representation R2 is contained in the symmetric part of the tensor product R1 ⊗ R1

and generally we can take

(∂̂Bµν)
M = Y MN

PQ∂NBµν
(PQ) . (3.6)

The gauge field Bµν
(MN) has gauge transformations parametrised by one-forms λµ

(PQ),

under which

δλAµ
M = (∂̂λµ)

M = Y MN
PQ∂Nλµ

(PQ) . (3.7)

One can go on to construct a field strength for Bµν , which necessitates the introduction of

a further form field Cµνρ, and so on leading to a “tensor hierarchy” (note that not all the

fields that appear in this hierarchy are actually needed in the action: the point at which

this occurs depends on the duality group - in E7 and E6 the 3-form is not used). We will

not need these intricate details.

Local symmetries including twists. In order to be as general as possible in specifying

a particle action invariant under generalised diffeomorphisms, let us also include deforma-

tions. This partially pre-empts some of section 4. There, we will describe how to write down

a generalised Scherk-Schwarz ansatz of DFT or EFT. Such an ansatz involves a factori-

sation of the fields in terms of Y M -dependent twists, which appear in the transformation

rules of the fields only in certain combinations. We call these combinations ΘMN
P and
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θM : they must obey various consistency constraints, the first of which is that they must

be constant. These then amount to deformations of generalised diffeomorphisms. (The

spacetime interpretation is that they provide gaugings turning supergravity into gauged

supergravity - Θ is the embedding tensor, and θ is a trombone gauging.)

The precise definitions in terms of twist matrices of the Scherk-Schwarz ansatz are (4.8)

and (4.11). For now, we will simply specify how they end up appearing in the symmetry

transformations of our fields. First, define a combination of these which appears natu-

rally by

τMN
P = ΘMN

P +
D − 2

D − 1

(

2δP[MθN ] − Y PQ
MNθQ

)

. (3.8)

The deformed generalised Lie derivative acting on a vector V M of weight λV is:

δΛV
M ≡ LΛV

M = ΛN∂NV M − V N∂NΛM + Y MN
PQ∂NΛPV Q + (λV + ω)∂NΛNV M

−τNP
MΛNV P − λV + ω

ω
θNΛNV M . (3.9)

The additional gauge transformation of Aµ
M given in (3.7) can also be twisted, leading to

(∂̂λµ)
M = Y MN

PQ∂Nλµ
(PQ) − 2τ(NP )

Mλµ
(NP ) . (3.10)

3.2 The action

The result. We now want to use the above information to think about how to write

down a worldline action for a particle state coupled to the background (gµν , Aµ
M ,MMN ),

which respects the invariance under generalised diffeomorphisms described above. To do

so, we need to follow [27, 28, 31, 67] and introduce an auxiliary worldline vector field AM ,

transforming in the R1 representation of global G (subject to the restrictions which we will

come to below). The action we find is

S =
1

2

∫

dτλ
(

gµνẊ
µẊν+MMN

(

Ẏ M+AM+ẊµAµ
M
)(

Ẏ N+AN+ ẊνAν
N
))

. (3.11)

where under generalised diffeomorphisms (3.9) including twists we will require

δΛAM = ΛP∂PAM −AP∂PΛ
M + Y MP

KQ∂PΛ
K(Ẏ Q +AQ)

− τNP
MΛN (dY P +AP ) ,

(3.12)

and also that the Lagrange multiplier λ transform as a scalar with weight +2ω. (This

follows from the fact that the quantity in bracket naturally transforms with weight −2ω,

as is clear from the fact gµν itself does. This transformation of the Lagrange multiplier

seems reminiscent of, and is perhaps ultimately inherited from, the transformation of the

worldvolume metric of the M2 under duality transformations as mentioned in [49]. Note

that for G = O(D,D), ω = 0.)

The reasons. It is convenient to phrase the discussion in terms of the generalised line

element:

“ds2” = gµνdX
µdXν +MMN (dY M + dXµAµ

M )(dY N + dXνAν
M ) . (3.13)
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Again, we do not propose to treat this as a true metric on some extended spacetime

transforming under generalised diffeomorphisms. We shall see that — as pointed out for

double field theory in [30] — this quantity does not transform correctly under generalised

diffeomorphisms. To remedy this, the additional field AM was then introduced in [31].

A second motivation for introducing this gauge field is the observation [30] that the

section condition leads to an identification of coordinates: the points Y M and

Y M + Y MN
PQ∂Nλ(PQ) ≡ Y M + (∂̂λ)M (3.14)

(where λ(PQ) lives in the R2 representation) may be viewed as equivalent5 and then the

gauge field AM is introduced for this redundancy. This is akin to the gauging of [27, 28],

where a shift symmetry in dual directions is gauged, which is what is captured by the above

equivalence.

Our interpretation in this paper will be to treat the gauge field AM as an auxiliary

worldline (or worldvolume) variable, which appears when writing particle (or brane) actions

for DFT or EFT backgrounds. So we view the above “line element” as only having meaning

on the worldline of a particle (or other brane). We mention again that one can make use

of the introduction of AM to define a metric on the doubled space as in [64].

The field AM is restricted to obey [31]

AM∂M = 0 , (3.15)

which is preserved by the gauge shifts δλAM = (∂̂λ)M . This means after solving the

section condition, it only has components in the dual directions. As nothing depends on

these directions, they are a sort of “special isometry” direction. Any brane in the extended

space could be thought of as having such directions in addition to its usual worldvolume,

transverse and special isometry directions in the physical section. Then the appearance

of this vector is similar to the introducing auxiliary worldvolume vectors to gauge special

isometry directions for brane action.

Possible further restrictions on AM will be discussed below.

The details. We now come to the details leading to the result (3.12) for the transforma-

tion of A. We will consider the gauged generalised line element

MMN (X,Y )(dY M +AM + dXµAµ
M )(dY N +AN + dXνAν

N ) , (3.16)

and ask how AM must transform for this to behave covariantly under generalised diffeo-

morphisms. For convenience, we will continue to write everything in terms of differentials

dY M with the understanding that we really only want to consider such quantities within a

worldline (or worldvolume) action, where we will replace them with worldline derivatives,

dY M → Ẏ M .

5There is also an equivalence of generalised diffeomorphism parameters ΛM and ΛM +Y MN
PQ∂Nλ(PQ),

due to the section condition, which is a manifestation of the reducibility of p-form gauge transformations.

The motivation for the coordinate identification is to consider some function f(Y M + (∂̂λ)M ) = f(Y M ) +

(∂̂λ)M∂Mf(Y ) + · · · = f(Y M ) after Taylor expanding and using the section condition.
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Suppose we start with transformed background fields and coordinates:

M′
MN (X ′, Y ′)(dY ′M +A′M + dX ′µAµ

′M )(dY ′N +A′N + dX ′νAν
′N ) , (3.17)

where Y ′ = Y − Λ, X ′ = X.

We have

M′
MN (X,Y − Λ) = M′

MN (X,Y )− ΛP∂PM′
MN (X,Y )

= MMN (X,Y ) + LΛMMN (X,Y )− ΛP∂PMMN (X,Y ) ,
(3.18)

where we always work to first order in Λ. In addition,

A′
µ
M (X,Y − Λ) = A′

µ
M (X,Y )− ΛP∂PA

′
µ
M (X,Y )

= Aµ
M +DµΛ

M − ΛP∂PAµ
M + (∂̂λµ)

M ,
(3.19)

allowing for the possibility of an extra gauge transformation which we will specify below,

A′M (X,Y − Λ) = A′M (X,Y )− ΛP∂PA′M (X,Y )

= AM (X,Y ) + δΛA(X,Y )− ΛP∂PAM (X,Y ) ,
(3.20)

and also

dY ′M = dY M − dY P∂PΛ
M − dXµ∂µΛ

M . (3.21)

Note that we define the transformation under generalised diffeomorphisms by

δΛT (Y ) ≡ T ′(Y )− T (Y ) , (3.22)

which differs by the transport term ΛN∂NT (Y ) from the total transformation δ̃Λ =

T ′(Y ′)− T (Y ).

We would like, ideally, to show that the transformed expression (3.17) equals the

unprimed one (3.16). Expanding (3.17) gives

M′
MN (X ′, Y ′)(dY ′M +A′M + dX ′µAµ

′M )(dY ′N +A′N + dX ′νAν
′N )

= MMNDY MDY N + (LΛMMN − ΛP∂PMMN )DY MDY N

+ 2MMNDY N
(

− dY P∂PΛ
M − dXµ∂µΛ

M + δΛAM − ΛP∂PAM

+ dXµ(DµΛ
M − ΛP∂PAµ

M + (∂̂λµ)
M )
)

.

(3.23)

Here we abbreviated DY M ≡ dY M +AM + dXµAµ
M . Now, let us specify the generalised

Lie derivative. We use the general form, including twists, given in (3.9). Then, using

λM = 0, λΛ = −ω, we have

LΛMMN−ΛP∂PMMN = 2∂(MΛPMN)P − 2Y PQ
K(M∂QΛ

KMN)P − 2ω∂PΛ
PMMN

+2τP (M
QΛPMN)Q + 2θPΛ

PMMN , (3.24)

DµΛ
M = ∂µΛ

M −Aµ
N∂NΛM + ΛN∂NAµ

M − Y MN
PQ∂NAµ

PΛQ

+τPQ
MAµ

PΛQ . (3.25)
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In addition, we have the gauge transformation (3.10) of Aµ
M . Requiring

M′
MNDY ′MDY ′N = MMNDY MDY N is then equivalent to asking the following terms

vanish:

δΛAM − ΛP∂PAM +AP∂PAM − Y MP
KQ∂PΛ

K(dY Q +AQ)

+ τPQ
MΛP (dY Q +AQ) + (θP − ω∂P )Λ

PDY M

− Y MN
PQ∂N (Λ(PAµ

Q))dXµ + 2τPQ
MΛ(PAµ

Q)dXµ

+ Y MN
PQ∂Nλµ

(PQ)dXµ − 2τ(NP )
Mλµ

(NP )dXµ .

(3.26)

Taking λµ
(MN) = Λ(MAµ

N) we can kill off the last two lines. We will absorb much of the

remaining terms into our definition of the transformation δΛAM . However, before we do

so let us note that there is an issue with the weights. Setting the Y -tensor, twists, Aµ

and A to zero, we should recover ordinary differential geometry. However, in this case

the unwanted terms (3.26) do not all vanish: an anomalous +ω∂PΛ
PdY M term will still

appear. This reflects the fact that the following quantity:

(

√

|g|
)α

gijdx
idxj , (3.27)

where α is any non-zero number, is not an invariant line element. The issue is that the

generalised Lie derivative is defined such that MMN carries an intrinsic weight, while the

external metric gµν has weight −2ω. This means that we have to relax our requirement

that the quantity

gµνdX
µdXν +MMN (dY M +AM +Aµ

MdXµ)(dY N +AN +Aν
NdXν) (3.28)

be invariant under generalised diffeomorphisms. Instead, it transforms as a density, pro-

vided we take the transformation

δΛAM = ΛP∂PAM −AP∂PΛ
M + Y MP

KQ∂PΛ
K(dY Q +AQ)

− τNP
MΛN (dY P +AP ) ,

(3.29)

which on the worldline is (3.12). We note that term here involving the Y -tensor is consistent

with the transformation given in [67] (note they specify the transformation δ̃ and have used

the condition AM∂M = 0 which we have kept only in the back of our heads throughout

the above calculation). We also note that this means AM should also be taken to have the

special weight −ω under generalised diffeomorphisms.

If all we are interested in is the action (2.1), then the lack of invariance can be com-

pensated for using the Lagrange multiplier λ, leading to the action (3.11).

3.3 Reduction to massless particles in 10/11 dimensions

We now study reductions of the action (3.11) corresponding to standard solutions of the

section condition Y MN
PQ∂P ⊗∂Q = 0 (this means that the extra twists τMN

P and θM can

be set to zero for the remainder of this section of the paper — they will reappear naturally

in the Scherk-Schwarz reduction of section 4).
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In obtaining the action (2.2) from (2.1), we assumed that the fields were independent

of all the extended directions Y M . Now that we have figured out how to allow for field

dependence on all these coordinates, subject to the section condition, we can ask what

happens if we allow the fields to depend on a physical subset Y i? Then the remaining

coordinates — let us call them Y A — are cyclic and can easily be integrated out. The

condition AM∂M = 0 implies that we only have AA 6= 0.

To do so, we write (3.11) in the form

S =

∫

dτ
1

2
λ
(

gµνẊ
µẊν +

(

Mij −MiA(MAB)
−1MBj

)

(Ẏ i +Aµ
iẊµ)(Ẏ j +Aν

jẊν)

+MAB(Ẏ
A +AA +Aµ

AẊµ + (MAC)
−1MCi(Ẏ

i +Aµ
iẊµ))×

×(Ẏ B +AB +Aν
BẊν + (MBD)

−1MDj(Ẏ
j +Aν

jẊν))
)

. (3.30)

We consider the momenta conjugate to Y A, and use the same Routhian procedure as before.

Another result from DFT and EFT is that

Mij −MiA(MAB)
−1MBj = Ω−1φij , (3.31)

while the component Aµ
i is identified with the vector appearing the decomposition (2.4)

of the 10- or 11-dimensional metric ĝµ̂ν̂ . As a result, with λ̂ = Ω−1λ,

S =

∫

dτ
1

2

(

λ̂ĝµ̂ν̂Ẋ
µ̂Ẋ ν̂ − Ω−1

λ̂
(MAB)

−1pApB

)

+ pA

∫

dτ
(

AA + ẊµAµ
A + (MAB)

−1MBi(Ẏ
i + ẊνAν

j)
)

.

(3.32)

Naively, we might then integrate out λ̂ to find the action for a particle in 10 or 11 dimensions

of “mass”

M2 = Ω−1(MAB)
−1pApB , (3.33)

where the constant pA, arising as the constant value of the momenta

PA = λMAB(Ẏ
B +AB +Aµ

BẊµ + (MBC)
−1MCi(Ẏ

i +Aµ
iẊµ)) , (3.34)

appears to correspond to there being non-zero momenta in a dual direction, which one

might attempt to interpret as arising from a brane winding. However, we’ve not made any

assumptions about compact directions here, and furthermore we must not forget about the

gauge field AA. Its equation of motion set pA = 0. Then in fact the action (3.32) becomes

just that of a massless particle in 10 or 11 dimensions:

S =

∫

dτ
1

2
λ̂ĝµ̂ν̂Ẋ

µ̂Ẋ ν̂ . (3.35)

The redefinition of the Lagrange multiplier is crucial here in order to match with the

usual 10- or 11-dimensional metric. This redefinition of course corresponds exactly to the

discussion in section 3.2.

We could have also integrated out AA, or the combination Ẏ A +AA, directly, getting

the same result. This is the procedure adopted in [31] for a doubled string action and [67]
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for particles (where they actually start explicitly with a massive particle in the doubled

space. We prefer to begin with a massless particle in order to obtain the particle and

wrapped brane states of string theory).

3.4 Reduction to massive particles in n dimensions

We would also like to reobtain the n-dimensional action (2.2) from the generalised dif-

feomorphism invariant action (3.11). Assume our background is independent of all the

extended coordinates Y M , so that we can integrate these out entirely. The condition

AM∂M = 0 does not restrict the worldline vector AM at all. Then after integrating out

we will obtain a term
∫

dτpMAM , and the equation of motion of AM then implies that

pM = 0, so that we can only obtain in this way a massless particle in n dimensions.

We would prefer to be able to use the action (2.2) with arbitrary pM . However, we see

that the role of AM in n dimensions is to kill generalised momenta in the directions in which

AM has non-zero components. It is possible that there are some extra ingredients that allow

us to avoid being led to pM = 0. Firstly, we should note that we have not considered a

supersymmetric form of the action (3.11). Secondly, we could consider restricting AM

in different ways, by formulating constraints on AM , which may either replace, imply or

live alongside the condition AM∂M = 0. This includes the possibility that in certain

backgrounds it may be consistent to choose AM = 0, i.e. not introduce the gauge field at

all. We note that in general different choices of which components of AM are non-zero

should correspond to what set of wrapped branes would exist in 10/11 dimensions, and

so additional restrictions on AM may contain information about what branes are present.

This may pertain also to topological or global information about the extended spacetime.

Let us now discuss these possibilities.

Supersymmetry. The actions that we are studying have been solely bosonic. It is pos-

sible that the supersymmetric versions of (3.11) will include couplings of AM to fermions,

so that the equation of motion of the AM would be modified to pM 6= 0. Something

similar happens in the case of the D0 brane in massive IIA, for which the bosonic action

includes an extra vector field (which in section 4 we will see is actually a component of AM )

whose equation of motion appears to set the Romans mass to zero. Including fermions is

consistent with non-zero Romans mass [47].

Restrictions on AM . Let us discuss possible restrictions on AM in more detail.

In [64, 67], the gauge field AM does not just obey AM∂M = 0, but also is required to be null

with respect to ηMN , the O(D,D) structure: ηMNAMAN = 0. The motivation is that AM

is the gauge field for what [30] called the “coordinate gauge symmetry” Y M ∼ Y M +∆M

with ∆M = φ1η
MN∂Nφ2, and the gauge field is supposed to have the same behaviour as the

gauge generator ∆M which evidently satisfies ηMN∆M∆N = 0 by the section condition.

Suppose we imposed this in the action (3.11) by a Lagrange multiplier, ϕ, including a term

S ⊃
∫

dτ

(

1

2
ϕηMNAMAN

)

. (3.36)
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Integrating out first Ẏ M leads to

S ⊃
∫

dτ

(

pMAM +
1

2
ϕηMNAMAN

)

, (3.37)

and then the equation of motion for AM leads to

S ⊃ −
∫

dτ
1

2ϕ
ηMNpMpN . (3.38)

The Lagrange multiplier ϕ now restricts pM to be null with respect to η.

Recall that in section 2.2, we found that the generalised momenta arising from

the direct dimensional reduction of the Nambu-Goto string action obeyed the condition

ηMNpMpN = 0 that we impose here. The particle action (2.1) was that for a massless or

null particle in the doubled or extended space. If the generalised momenta are restricted

to also obey the section condition, which in DFT is that they are null with respect to the

O(D,D) structure, we find that our actions are in a sense “doubly null”.

This is interesting. Does it generalise to EFT? There, we have ∆M =

φ1Y
MN

PQ∂Nφ
(PQ)
2 and it is not generally true that Y MN

PQ∆
P∆Q = 0. We note that

in the case of DFT, the number of dual directions equals the number of physical directions.

It is therefore something of an accident that one can have AM be null with respect to ηMN

and find this is compatible with enforcing the momenta also be null with respect to ηMN .

In EFT, the condition Y MN
PQAPAQ = 0 would impose that there are the same number of

non-zero components of AM as ∂M : but this number will be less than the number of dual

coordinates on picking the section ∂i 6= 0, and so be more restrictive than (and generally

incompatible with) AM∂M = 0.

The condition Y MN
PQAPAQ = 0 can be viewed as a “purity condition” on the R1

valued tensor AM (we will explain below the reason for the terminology). (In the language

of the generalised Cartan calculus [63, 66] it is that the product A•A ∈ R2 vanishes.) One

can develop a general notion of pure G tensors to describe branes in DFT/EFT [68–70]:

given AM restricted as above one can formulate a differential condition defining a brane

whose spatial components are wholly wrapped in the physical section. It is possible that

requiring such a condition on this AM , or on some other pure object with which AM must

be appropriately compatible, relates to this idea.

An approach which is similar in spirit is to use linear constraints to implement the

condition AM∂M = 0. This is based on [17], which shows how to reformulate the section

condition (a quadratic condition) as a linear condition using an auxiliary “pure” tensor.

This auxiliary object Λ transforms in some representation of G and obeys a purity condition

Λ ⊗ Λ|P = 0, where |P denotes the restriction to a particular representation (or set of

representations) P of G. The section condition can be imposed via Λ⊗ ∂|N = 0, where N

is again some particular representation of G.

In DFT, the section condition can be formulated in this way using a pure spinor Λ

of O(D,D) (hence the terminology “pure” in general), satisfying ΛγMΛ = 0 for γM the

gamma matrices of O(D,D). The section condition is equivalent to γMΛpM = 0. We note

that, as we can use the O(D,D) structure to raise and lower indices, that we can also
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require AM be null with respect to η by imposing effectively the same linear constraint:

γMΛAM = 0. Suppose we impose this in the action (3.11) using a Lagrange multiplier ϕ

which is an O(D,D) spinor. After integrating out Ẏ M , one has the terms

S ⊃
∫

dτ
(

pMAM + ϕγMΛAM
)

. (3.39)

The equation of motion for AM implies that pM = −ϕγMΛ. This obeys ηMNpMpN = 0

using a Fierz identity and the fact Λ is pure; one can also show similarly that γMΛpM = 0.

In appendix A, we show how to implement similar linear constraints for the EFT

groups G = SL(2)× R
+ and G = SL(5).

We note that the section condition on momenta is closely related to the BPS condition,

and this may account for why it appears in this way. A particle in n dimensions with

arbitrary momenta pM could not be thought of as arising from the reduction of a single

(BPS) brane in higher dimensions - rather, it could have momenta corresponding to e.g.

M2 winding and M5 winding simultaneously. This is one physical interpretation of the

condition that the generalised momenta obey the section condition. Again, everything we

are doing is bosonic and it would be interesting to construct the supersymmetric version

of the particle action (3.11) to learn more about these ideas.

Setting AM = 0. Finally, let us consider what it means in general to be able to choose

AM = 0 (which is of course one solution to the above constraints). We are interested in

backgrounds in which we can take ∂M = 0. We can think of this as the most simple and

extreme solution to the section condition. If so, following the general philosophy of solving

the section condition means we should be applying ∂M = 0 not only to our fields but also to

our gauge parameters. Evidently, this is very restrictive. If the parameters of generalised

diffeomorphisms are indeed restricted to be independent of the coordinates Y M , then the

action (2.2) is already invariant under such transformations (which are now acting only as

X-dependent shifts of Y M and standard gauge transformations of Aµ
M , δAµ

M = ∂µΛ
M ).

So we could argue there is no need to introduce AM at all.

Let us also offer a thought about how to formalise this. Consider the map ∂̂ : R2 → R1.

If B ∈ R2, then (∂̂B)M∂M = 0 by the section condition. We required AM∂M = 0. We can

define a map from R1 to the trivial representation ∂ : R1 → 1 by V M 7→ V M∂M . Evidently

the image of ∂̂ is the kernel of the latter. One could perhaps require AM to be trivial in

the sense that AM = (∂̂B)M for some B ∈ R2.

Then, when the section is ∂i 6= 0, ∂A = 0, we only have components AA as before.

However, in the section ∂M = 0 in fact AM is zero. The action (3.11) is then identical

to (2.1). More generally, one could also conceive of restricting solely to AM which are

(equivalent to) zero in this “cohomology”. This may have something to do with the global

or topological structure of the extended space.

The gauge field AM was originally introduced in DFT in order to gauge the equivalence

between Y M and Y M + φ1η
MN∂Nφ2 due to the section condition. For ∂i 6= 0, we have

an equivalence (Y i, Ỹi + φ1∂iφ2) for arbitrary functions φ1,2 of the physical coordinates

Y i. Then one can identify all points (Y i, Ỹi) and (Y i, Ỹi + ci) for arbitrary constant ci as

belonging to the same gauge orbit.
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This identification of coordinates is a lot more severe than what you would want to

have some notion of a genuine doubled torus (the most acceptable version of a genuinely

doubled space), for which we would require only the periodic identification (Y i, Ỹi) ∼
(Y i, Ỹi + 2πR̃(i)).

One might suppose that introducing AM = (0, Ãi) is what one does when one needs to

gauge away entirely the dual coordinates, as perhaps would be the case when the physical

spacetime is non-compact. To describe a flat doubled torus, which is a simple background

in which ∂M = 0, one does not introduce this gauge identification. However, to understand

fully what is going on presumably requires a better understanding of the global properties

of DFT/EFT.

To illustrate the above points, consider the case of SL(2) × R
+. We are interested

in “reducing” the 9+3 dimensional extended space with coordinates (Xµ, Y α, Y s) to 11

or 10 dimensions. (The below discussion is somewhat similar to the situation suggested

presciently in [71].)

We claim that the section choice ∂α 6= 0 corresponds to a “reduction” on R
2 × {0}.

The gauge field component As is non-zero and is used to gauge away the apparent dual

coordinate for the (non-existent) Y s direction, equivalently, its equation of motion coming

from the action (3.11) enforces that there is no momentum in this direction. Conversely, in

the section choice ∂s 6= 0, our extended spacetime is {0}2×R. The gauge field components

Aα are non-zero, and play the same role for the dual coordinates Y α.

On the other, the choice ∂M = 0 in which we depend on none of our coordinates can

be associated to an extended space T
2 × S1 (with the area of the [M-theory] torus related

to the radius of the [IIB] circle). We now have AM = 0. Our particle action now captures

momentum states in all directions of the extended space. There is no standard geometrical

description, meaning that there is no decompactification limit in which all three directions

become non-compact. In the limit where the area of the torus goes to zero, the radius of the

circle becomes infinite. The states with momentum in the circle direction can be regarded

as the momentum modes of the non-compact IIB direction, while those with momentum

in the torus directions become infinitely massive. The converse statements apply when the

radius of the circle becomes zero, which leads to an 11-dimensional theory.

4 Romans supergravity as EFT on a twisted torus and the D0 brane

action

In this final section, we will consider the effects of relaxing the section condition in order to

allow some (controlled) dependence on the dual coordinates. After crossing this Rubicon,

we will arrive at the Romans supergravity [33]. This is a 10-dimensional deformation of

type IIA supergravity, with deformation parameter m known as the Romans mass. This

appears directly in the action as a sort of cosmological constant term:

SRomans ⊃ −1

2

∫

d10X
√

|ĝ|m2 (4.1)

and appears in the gauge transformations of the form fields. Under a gauge-transformation

of the B-field, δB̂2 = dλ̂1, we have also massive gauge transformations δĈ1 = −mλ̂1,
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δĈ3 = −mB̂2∧ λ̂1. The gauge invariant field strengths appearing in the action are modified

due to this, with F̂2 = dĈ1 +mB̂2 and F̂4 = dĈ3 − Ĥ3 ∧ Â1 +
m
2 B̂2 ∧ B̂2.

The Romans supergravity is interesting within string theory, as it appears not to have

a standard 11-dimensional origin. One may view it as the low energy limit of a massive

IIA theory which applies in the presence of D8 branes. The Romans mass is essentially

the dual of the 10-form field strength of the 9-form RR gauge field coupling to the D8.

One can formulate a notion of “massive T-duality” [72] to relate Romans supergravity on

a circle to type IIB supergravity, while also one can think of it as being related via duality

to a particular compactification of M-theory on a twisted torus [73].

In DFT, one can obtain the massive IIA by deforming the Ramond-Ramond sector [34],

introducing a linear dependence on a dual coordinate. In EFT or generalised geometry,

this deformation can be viewed as a deformation of the generalised Lie derivative [35, 46],

which in turn can be obtained as a Scherk-Schwarz reduction of exceptional field theory on

a twisted torus. The latter in particular suggests that EFT provides a higher-dimensional

origin of the Romans supergravity. What is interesting is the role played by the dual

coordinates in this framework.

4.1 Romans supergravity as a Scherk-Schwarz reduction

Scherk-Schwarz reductions of EFT. We will largely follow [35, 40]. The procedure

is to specify a Scherk-Schwarz or twisted ansatz for all fields of the theory. The Scherk-

Schwarz twists depend on some of the coordinates Y M subject to various consistency

constraints, and the fields that appear in the particle action factorise as follows:

MMN (X,Y ) = UM
M (Y )UN

N (Y )M̄MN (X,Y ) , (4.2)

eaµ(X,Y ) = ρ−2λ(Y )ēaµ(X,Y ) , (4.3)

Aµ
M (X,Y ) = ρ−2λ(Y )(U−1)M

M (Y )Āµ
M (X,Y ) , (4.4)

where we have written the ansatz for the vielbein of the external metric, gµν = eaµe
b
νηab.

We also assume that gauge parameters for generalised diffeomorphisms factorise similarly:

ΛM (X,Y ) = ρ−2λ(Y )(U−1)M
M (Y )Λ̄M (X,Y ) . (4.5)

This can be extended to the other gauge fields of the EFT, however we will not really need

these. We denote the fields that will appear in the Scherk-Schwarz reduced theory with

bars on both the fields and their indices. We are being as general as possible and allowing

them to still depend on some of the extended coordinates. To do so, we have to require

ρ−2λ(Y )(U−1)M
N (Y )∂N V̄ (X,Y ) = ∂M V̄ (X,Y ) , (4.6)

i.e. the twist is trivial in directions on which the barred fields depend.

The generalised fluxes can be extracted from the transformation rules of the fields of

the reduced theory. For instance, one has

δΛe
a
µ ≡ ρ−2λδ̄Λ̄ē

a
µ

= ρ−2λ
(

Λ̄M∂M ēaµ + λ∂M Λ̄M ēaµ + Λ̄MθM ēaµ
)

,
(4.7)
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where

θM =
1

D − 2
ρ−2λ

(

∂M (U−1)M
M − (D − 1)(U−1)M

M∂M ln ρ2λ
)

. (4.8)

If UM and V M carry the specific weight λ, then

LUV
M ≡ ρ−2λ(U−1)M

M L̄Ū V̄
M (4.9)

= ρ−2λ(U−1)M
M
(

ŪN∂N V̄ M − V̄ N∂N ŪM + Y MN
PQ∂N ŪP V̄ Q − τPQ

M ŪP V̄ Q
)

,

where

τPQ
M = ΘPQ

M +
D − 2

D − 1

(

δ
M
P θQ − δ

M
Q θP − Y MN

PQθN

)

, (4.10)

with

ΘPQ
M = ρ−2λ

(

UK
M (U−1)Q

N∂N (U−1)P
K − UK

M (U−1)P
N∂N (U−1)Q

K

− Y KN
PQUK

M (U−1)Q
Q∂N (U−1)P

P

− 1

D − 1

(

δ
M
P ∂N (U−1)Q

N − δ
M
Q ∂N (U−1)P

N − Y MN
PQ∂N (U−1)N

N
))

.

(4.11)

This is the embedding tensor.

For this ansatz to make sense, various consistency conditions follow [35, 40]. These

replace, and are weaker than, the section condition. For instance, we have the quadratic

constraints

2τ[P |L
Kτ|Q]K

M + τKL
Mτ[PQ]

K = 0 (4.12)

and constraints like

τMN
P∂P V̄ = 0 , Y MN

PQ∂M (U−1)Q
Q∂N V̄ = 0 . (4.13)

In addition, the section condition should still hold on the derivatives ∂M acting on the

fields of the reduced theory.

SL(2)× R
+ EFT on a twisted torus and Romans supergravity. The example we

will consider is to take the SL(2)× R
+ EFT and reduce it on a twisted torus. Recall that

the R1 representation of this EFT was the reducible 21 ⊕ 1−1, and that the generalised

metric MMN consisted of two blocks Mαβ and Mss. The unit determinant part of the

former was Hαβ = (Mss)
3/4Mαβ . We can generically write this in terms of a complex

scalar τ = τ1 + iτ2,

Hαβ =
1

τ2

(

1 τ1
τ1 |τ |2

)

, (4.14)

which we will interpret as the complex structure of the torus (in the IIB section, this is

the complex axio-dilaton, in the M-theory section on a torus, it would genuinely be the

complex structure of a physical torus). We could therefore write the internal “line element”

MMNdY MdY N as

“ds2” = (Mss)
−3/4

(

1

τ2

(

dY 1 + τ1dY
2
)2

+ τ2(dY
2)2
)

+M3/4
ss (dY s)2 . (4.15)
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The gauging which gives us the Romans supergravity is:

Uα
β(Y M ) =

(

1 0

mY s 1

)

, Us
s = 1 , ρ(Y M ) = 1 . (4.16)

We thus have

Mαβ(X,Y M ) = Uα
α(Y s)Uβ

β(Y s)M̄αβ(X,Y α) , Mss(X,Y M ) = δs
sδs

sM̄ss(X,Y α) .

(4.17)

The effect of the gauging is to set τ1(X,Y M ) = τ̄1(X,Y α) +mY s.

The EFT background on which we are reducing can be seen to be a twisted torus by

“freezing out” the fields of the reduced theory, i.e. setting M̄MN to the identity. Then we

see that this gauging comes from

“ds2” =
(

dY 1 +mY sdY 2
)2

+ (dY 2)2 + (dY s)2 , (4.18)

which one would like to think of as a twisted torus (where owing to the restrictions on

the generalised metric, there should be some relationship between the radius of the Y s

direction, viewed as an S1 base, and the area of the Y α directions, viewed as a T 2 fibre).

For Y s → Y s+2π, Y 1 → Y 1−2πmY 2. This is the usual coordinate patching for a twisted

torus.6 When we carry out the Scherk-Schwarz reduction, we end up with a theory that

no longer sees the Y s direction. Thus the twisted torus is only there from the point of

view of the full EFT. Note that the appearance of the twisted torus here is analogous to

its appearance in [73].

We stress that the gauging (4.16) depends on the IIB coordinate Y s. We will inter-

pret the effective fields and gauge parameters of our reduced theory as depending on the

coordinates Y α of the M-theory section. In fact, from U−1
M

N∂N V̄ = ∂M V̄ we see that fields

and gauge parameters in the reduced theory should be taken to be independent of Y 1.

The above gauging induces a single non-vanishing component of the generalised fluxes:

τs 2
1 = Θs 2

1 = m. (4.19)

The constraints are satisfied, assuming the fields do not depend on Y 1.

The appendix contains the explicit details of the action and deformations of the SL(2)×
R
+ EFT. Here, let us just explain a few points. The EFT action contains a “scalar

potential” term

S ⊃
∫

d9Xd3Y
√

|g|V (M, g) , (4.20)

which contains all terms involving just the generalised metric, external metric and their

derivatives with respect to the extended coordinates. The full expression is (B.21). One

can show that inserting the Scherk-Schwarz ansatz for the Romans theory leads to
∫

d9Xd3Y
√

|g|V (M, g) =

∫

d9Xd3Y
√

|ḡ|
(

V (M̄, ḡ)− 1

2

√

|ḡ|m2(H̄11)
2M̄ss

)

(4.21)

6This is assuming the validity of giving such a precise geometric interpretation to the extended space of

the EFT. At the very least though, we argue that from the point of view of the actions we are considering,

particle states do “see” a twisted torus.
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(where the bars again mean that these are the fields of the effective Scherk-Schwarz reduced

theory). Using the relationship between the EFT fields and those of IIA, it is easy to see

that new term proportional to m2 is actually

− 1

2

√

|ĝ|m2 , (4.22)

where ĝ here denotes the 10-dimensional string frame metric. This is exactly the Romans

mass term.

Meanwhile, the EFT gauge fields are also deformed. This is described in the appendix,

and is equivalent to making the replacements

F̂µ̂ν̂ → F̂µ̂ν̂ +mB̂µ̂ν̂ , F̂µ̂ν̂ρσ̂ → F̂µ̂ν̂ρσ̂ + 3mB̂[µ̂ν̂B̂ρ̂σ̂] . (4.23)

These are exactly the modified field strengths of the Romans theory. Using these deforma-

tions together with the fact that we know the SL(2) × R
+ reduces to the action of IIA in

10 dimensions, we immediately see that this gauging indeed provides a reduction from the

12-dimensional SL(2) × R
+ EFT to the 10-dimensional massive deformation of IIA. One

can also check for instance that the massive gauge transformations of the Romans theory

are reproduced.

4.2 11-dimensional interpretation of the Romans twist

In the above procedure we let all our fields be independent of the “M-theory direction” Y 1

and interpreted our theory in the IIA section. However, at least in principle we should be

able to study the deformed theory directly in 11 dimensions, with the restriction that the

Y 1 direction must be an isometry.

The dictionary between the metric ĝµ̂ν̂ of 11-dimensional supergravity and the fields

of the SL(2)×R
+ EFT is contained in [18]. We split the coordinates X µ̂ = (Xµ, Y α). The

EFT generalised metric is given by

Hαβ = φ−1/2φαβ , Mss = φ−6/7 . (4.24)

Here φαβ denotes the “internal” components of the 11-dimensional metric, φαβ ≡ ĝαβ as

usual.

Now, the Scherk-Schwarz consistency conditions tell us that our fields must be inde-

pendent of Y 1. Let k = ∂
∂Y 1 be the vector field associated to this isometry. The norm of

this vector is k2 = φ11. Then translating the Romans mass term appearing in (4.21) to

M-theory variables, we find that it is:

− 1

2

√

|ĝ|m2|k2|2 . (4.25)

One can also check that the field strength of the three-form Ĉµ̂ν̂ρ is replaced according to

F̂µ̂ν̂ρ̂σ̂ → F̂µ̂ν̂ρ̂σ̂ + 3mĈ1[µ̂ν̂Ĉρ̂σ̂]1 . (4.26)

These deformations are identical to those used in [47] (up to a numerical factor in the

definition of m), where an 11-dimensional uplift of Romans supergravity was constructed.
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This uplift is not the usual 11-dimensional supergravity, which is well known not to reduce

to Romans supergravity. The crucial feature is the presence of the Killing vector k: it is a

theory with a built in isometry. This isometry allows the construction of the “cosmological

constant” term (4.25) which does reduce to the Romans mass term in 10 dimensions. We

see here that the EFT description of Romans supergravity naturally includes its uplift to

this variant of 11-dimensional supergravity. It was perhaps inevitable that this had to be

true, as the 11-dimensional section was still available to us (with the restriction ∂1 = 0),

and it would be surprising if there was some other 11-dimensional uplift of the Romans

supergravity — however it is of interest to see that this works explicitly.

4.3 Massive IIA particles

We start with the action (3.11) and specialise to the SL(2)×R
+ EFT, imposing the Scherk-

Schwarz ansatz with the gauging (4.16) that leads to massive IIA. The action can be written

(omitting bars from the indices)

S =
1

2

∫

dτλ
(

ḡµνẊ
µẊν + M̄MN

(

Ẏ M + ĀM + ẊµĀµ
M
)(

Ẏ N + ĀN + ẊνĀν
N
))

.

(4.27)

Here ḡµν ,M̄MN and Āµ
M only depend on the coordinate Y 2. We have defined

Ẏ M + ĀM = UN
M (Ẏ N +AN ) . (4.28)

(So note that we would identify in general Ẏ M = δ
M
M Ẏ M .) For the components, we

explicitly have Ās = As, Ā2 = A2 and

Ā1 = A1 +mY s(Ẏ 2 +A2) . (4.29)

We have kept all the components of the gauge fields here, however the condition ĀM∂M = 0

(acting on barred quantities) implies that in fact Ā2 = 0.

The transformation rule of ĀM follows now from the analysis of section 3.2, where we

included the twists in the generalised Lie derivative. Alternatively, we may note that Ẏ M+

AM transforms covariantly under generalised diffeomorphisms, and so the usual twisting

process applied to it leads to the correct expression (3.12) for the transformation of ĀM .

The action (4.27) depends only on Ẏ s and not Y s, and so we can easily proceed to

integrate out this coordinate as before. We can either use our previous results, or just

do the calculation which is especially simple for SL(2) × R
+. We find after Legendre

transforming that

S =

∫

dτ

(

Ẏ sPs +
1

2
λ(ḡµνẊ

µẊν + M̄αβDτY
αDτY

β)− 1

2λ
M̄ssPsPs + Ps(As+ẊµAµ

s)

)

,

(4.30)

where Ps = λM̄ss(Ẏ
s + Aµ

sẊµ) is the momentum in the Y s direction, and DτY
α ≡

Ẏ α + Āα + ẊµAµ
α (but recall Ā2 = 0).

We now note that Ps is constant by the Y s equation of motion, and zero by the As

equation of motion. The action simplifies to

S =

∫

dτ
λ

2

(

ḡµνẊ
µẊν + M̄αβDτY

αDτY
β
)

, (4.31)
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which describes a massless particle. What is this particle? We can actually interpret it in

eleven dimensions. We can use the identification (4.24) relating the generalised metric of

the SL(2) × R
+ EFT to the metric components of 11-dimensional supergravity, together

with the identification of the one-form doublet Aµ
α with the Kaluza-Klein vector of the

M-theory metric as in (2.4). The caveat is that as we have carried out a Scherk-Schwarz

twisting, we are not really dealing with 11-dimensional supergravity but the deformed

version which reduces to massive IIA. Still, the dictionary works. Defining λ̂ = λ|γ|1/7, we
find the action

S =

∫

dτλ̂ĝµ̂ν̂DτX
µ̂DτX

ν̂ (4.32)

where ĝµ̂ν̂ is the 11-dimensional metric, the coordinates are X µ̂ = (Xµ, Y 1, Y 2) and

DτX
µ̂ = Ẋ µ̂ +Aµ̂ with DτX

µ = Ẋµ, DτY
1 = Ẏ 1 + Ā1, DτY

2 = Ẏ 2.

This is the action for the “massive M0-brane” i.e. a massless momentum mode in the

11-dimensional deformation of supergravity which reduces to the Romans supergravity,

described in [47], where we are using adapted coordinates such that the Killing vector k

is just ∂/∂Y 1. To confirm this, consider the part of the transformation of the worldline

vector Ā1 involving the twists, which can be read off from (3.12):

δΛĀ1 = −mΛsẎ 2 (4.33)

Now, in our 11-dimensional theory we have also a three-form Ĉµ̂ν̂ρ̂ transforming under

gauge transformations with two-form parameter χ̂µ̂ν̂ . The one- and zero- form components

of these appear in the SL(2) × R
+ EFT as Aµ

s = Ĉµ12 and Λs = χ̂12. Define the vector

λ̂µ̂ = −kν̂ χ̂µ̂ν̂ . Then λ̂2 = χ̂12. We thus have

δΛĀ1 = −mλ̂τ (4.34)

under massive gauge transformations. This is the transformation of the worldline vec-

tor of [47].

The dimensional reduction of the massive M0-brane then leads to the action for a

massive D0 in massive IIA:

SmD0 = TD0

∫

dτ

(

−e−Φ
√

−ĝµ̂ν̂Ẋ µ̂Ẋ ν̂ + Ẋ µ̂Ĉµ̂ +mVτ

)

, (4.35)

after defining mVτ ≡ Ā1 following [47]. We see that the vector Ā1 becomes an additional

worldline vector. The string theory interpretation is that this arises from the endpoints of

strings stretching from the D0 to the background D8 brane. (The equation of motion of Vτ

appears to set m = 0, but this is only because this is just the bosonic part of the action.)

We have therefore established that our action (3.11) for point particle states in the

extended spacetime of EFT leads to the correct action for a D0 brane in massive IIA, on

making use of the Scherk-Schwarz ansatz. Crucially, this would not have been possible

without the extra worldline vector field AM , whose appearance was originally due to the

generalised diffeomorphism symmetry of EFT. After deforming these symmetries to obtain

the massive gauge transformations of Romans supergravity, a component of the gauge field

remains in the setting of the latter theory.
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5 Discussion

5.1 A brief recap

We investigated a higher-dimensional oxidation of a particle action (2.2), which described

a multiplet of particle states in n dimensions transforming under a duality group G. This

uplift led to the actions (2.1) and (3.11), in which one naturally saw structures from

double and exceptional field theory appearing. In particular, the action (2.1) could be

interpreted as a masslessness, or null, condition on a particle state in an extended spacetime.

The action (3.11) showed that in order to have invariance under the local generalised

diffeomorphism symmetries of DFT/EFT, one had to introduce an auxiliary vector field

on the worldline, as argued in [31] for a doubled string action: effectively, this auxiliary

vector field is used to gauge away the dual directions [27, 28]. Our line of thinking offers

a perspective on how to describe a subset of wrapped brane states in DFT/EFT. It was

interesting to see in section 4 that the extra worldline field, which ordinarily would not be

present in a particle or brane action, could be shown to become the extra worldline vector

field that appears on a D0 brane in massive IIA [47]. This made use of EFT as a higher-

dimensional origin for massive IIA, by Scherk-Schwarz reducing the SL(2)×R
+ EFT on a

twisted torus to obtain the necessary deformations to describe massive IIA as in [35, 46].

5.2 What about branes?

We had two types of particle actions. The action (2.2) corresponded directly to a massive

particle in n dimensions, with mass encoded in charges pM . The other, the action (2.1),

used extended coordinates Y M to encode the charges, and could be interpreted as the action

for massless particle states in the extended spacetime of double field theory or exceptional

field theory.

It would be interesting to extend these approaches to strings and branes. Indeed, the

gauge vector AM was introduced in [31] in order to construct an action for a string in the

doubled geometry of DFT.

The generalisation to EFT should be considered. In fact, the analogue of the ac-

tion (2.2) in n dimensions can be worked out fairly easily for the case of the SL(2) × R
+

EFT. This can be done simply by reducing brane actions to 9 dimensions and using the

EFT dictionary to rewrite these in terms of natural SL(2) × R
+ covariant quantities. (A

useful guide for what sort of action to expect is [7].)

For instance, there is an SL(2) doublet of strings. Let us think about this in terms of

(somewhat unnaturally, maybe) IIA quantities. This doublet combines the direct dimen-

sional reduction of the D2 brane and the transverse dimensional reduction of the F1. We

can find an action for this doublet by carrying out these reductions (we also integrate out

the worldvolume gauge field of the D2, and dualise the worldvolume scalar on the F1 that

corresponds to the coordinate Y 2 on which we reduce). Here, we simply state the result

(a, b are worldsheet indices):

S =

∫

d2σ
(

−
√

pαsMαβMsspβs
√

− det(gab +MssFa
sFb

s)

+
1

2
ǫabpαs(Bab

αs +Aa
αAb

s −Aa
αFb

s)
)

,

(5.1)
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where Fa
s = ∂aY

s +Aa
s, with Y s an auxiliary worldsheet scalar which corresponds to the

singlet coordinate of the SL(2)×R
+ EFT, and the one- and two-form fields that appear are

the pullbacks of the fields of the SL(2)× R
+ EFT to the worldsheet. The D2 corresponds

to p1s 6= 0 and the F1 to p2s 6= 0. The tensions are encoded in these charges as before.

Similarly, one check that the transverse reduction of the M2 action (equivalently, the

D2) to 9 dimensions gives (a, b, c are worldvolume indices):

S =−
∫

d3σ

√

1

2
pαβsMαγMβδMsspγδs

√

− det(gab +MαβFa
αFb

β) (5.2)

+

∫

d3σ
1

12
pαβsǫ

abc
(

Cabc
αβs + 2Aa

αAb
βAs

c + 6(Bab
αs +Aa

αAb
s)Fc

β + 6Aa
sFb

αFc
α
)

where pαβs = psǫαβ , Fa
α = ∂aY

α + Aa
α, with the Y α appearing as auxiliary worldvolume

scalars which can be viewed as the doublet coordinates of the SL(2) × R
+ EFT, and the

other fields are those of the EFT. No dualisations were carried out.

The challenge now would be to lift these to actions describing strings and 2-branes in

the 9+3 dimensional extended space of the SL(2)× R
+ EFT. Inspired by [1–5], and using

the massive to massless particle analogy, the approach may perhaps involve searching for

some notion of a tensionless brane in DFT or EFT.

5.3 Other directions

We saw that one could determine the masses and tensions of wrapped brane states from

a simple Kaluza-Klein analysis of the “generalised line element” of DFT or EFT, remem-

bering that we should only really interpret this as such as part of the worldline theory of a

particle state. We only considered simple toroidal reductions here. Then, in section 4, we

analysed a twisted torus reduction of EFT leading to Romans supergravity. We are cur-

rently investigating what this means in terms of the spectrum of massive IIA [74]. To move

further away from tori, one might want to consider for instance the description of EFT

on more complicated backgrounds (such as K3 as in [75]) to see whether our approach

captures the description of branes totally wrapping some internal manifold leading to a

duality group other than the G associated to toroidal reduction. With a more complete

understanding of not just particles but brane actions one could go on to study physics in

non-geometric backgrounds which may be more naturally described using the DFT/EFT

formalisms, for instance exotic branes [76] and their electric duals [77].

There was a slightly puzzle about how to treat the gauge field AM on reducing the

generalised diffeomorphism invariant particle action (3.11) to the n-dimensional particle

action (2.2). One could argue that choosing ∂M = 0 as a solution of the section condition

of DFT/EFT meant that one need not introduce AM at all: in this case the n-dimensional

particle could have arbitrary generalised momenta pM . Alternatively, by imposing certain

linear constraints on AM , we found that the generalised momenta pM had to obey the

section condition itself. This restriction on the allowed momenta may be interpreted as a

statement about the origin of the n-dimensional particle from a single brane in higher di-

mensions, and be essentially a BPS condition. We saw that this condition also arose coming

from the worldsheet of the fundamental string, where it is also related to level-matching.
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It would be interesting to further explore these relations, in particular to understand what

an uplifted brane configuration whose reduction leads to generalised momenta violating

the section condition would look like from the point of view of DFT/EFT. We should also

explore the relationship to the work of [68–70] where linear constraints are used to identify

branes in DFT/EFT and construct actions for such objects. This may further clarify the

properties and role of AM .

Evidently it would be beneficial to have not just bosonic actions, as presented

here, but fully supersymmetric versions. Doubled string actions can be supersym-

metrised [28, 78–81], and one could explore such an extension for the particle action (3.11).

This may help clarify the general restrictions on the extra gauge field AM and how they

relate to restrictions (especially the imposition of the section condition) on the generalised

momenta pM . Here there could be a link with the superparticle models of [54, 55].
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A Linear constraints on AM in EFT

Following [17, 68], we show to impose linear constraints on AM in the cases of G = SL(2)×
R
+ and G = SL(5) which have the effect of restricting the allowed generalised momenta

pM to obey the section condition.

We start with the SL(2) × R
+ EFT. Following the prescription in [17] (in which G =

SL(2) × R
+ was not considered) we take Λ ∈ R̄3, which is the representation 1−1. The

index structure is Λαβs with αβ antisymmetric. We require Λ⊗ ∂|R̄4
= 0, where R̄4 = 10.

This condition is Λαβs∂s = 0. The condition on AM is that A⊗Λ|R̄2
= 0, or ΛαβsAβ = 0.

This implies that Aα = 0. In the action, this leads after integrating out Ẏ M to

S ⊃
∫

dτ
(

ϕαΛαβsAβ + pαAα + psAs
)

, (A.1)

from which we find ps = 0 and pα = −ϕβΛβαs 6= 0.

Evidently, this imposes that we have no momenta in the IIB direction, Y s. Equiv-

alently, the linear condition used here only enforces the solution ∂s = 0 of the section

condition. It turns out that in EFT one needs a different linear constraint to give the IIB

section ∂s 6= 0, as was explained in [68]. The pure object Λ must now be taken to belong to

the R1 representation. For SL(2)× R
+, this is the 21 ⊕ 1−1. The purity condition is that

we only have components in the 32 ⊕ 1−2 representation in the tensor product R1 ⊗ R1.

This means Λs = 0 and Λα 6= 0. One can take Λ1 = 1 and Λ2 = 0 as a representative.
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Then we impose the condition Λ ⊗ ∂|adj = 0. The projection into the adjoint here means

that we require Λα∂β− 1
2δ

α
βΛ

γ∂γ = 0. For Λα 6= 0 this implies ∂α = 0. We then also require

Λ ⊗ A|R2 = 0, which is ΛαAs + ΛsAα = ΛαAs = 0. This means that As = 0. This is in

accord with the IIB section, ∂s 6= 0. The Lagrange multiplier terms in the action then give

S ⊃
∫

dτ (ϕαsΛ
αAs + pαAα + psAs) . (A.2)

This gives pα = 0 and ps = −ϕαsΛ
α 6= 0.

Let’s take another example, this time G = SL(5). The coordinate representation R1

is the 10. We let a be a five-dimensional index in the fundamental representation, so that

we can write AM = Aab with ab antisymmetric. The other representations relevant to us

are R2 = 5̄, R3 = 5 and R4 = 1̄0.

The linear constraint for the section condition solution corresponding to 11-dimensional

supergravity is [17] Λ[a∂bc] = 0. Here Λa ∈ R̄3 = 5̄. No purity condition is required. We

also impose ΛbAab = 0. Taking only Λ5 6= 0, for example, gives ∂i5 6= 0, ∂ij = 0 for

i, j = 1, 2, 3, 4, and also corresponds to Aij 6= 0, Ai5 = 0, as we expect. In the reduction of

the action (3.11), we find

S ⊃
∫

dτ

(

ϕaΛbAab +
1

2
pabAab

)

, (A.3)

which implies pab = −2ϕ[aΛb], so that Λ[apbc] = 0 and hence ǫabcdepabpcd = 0, which is the

section condition for this EFT [16].

Meanwhile, the linear constraint relevant to the IIB section solution is [68] Λab∂bc = 0

for Λab ∈ R1 obeying Λ[abΛcd] = 0. We also require Λ[abAcd] = 0. A representative

solution is Λ45 6= 0, which means only ∂12, ∂13, ∂23 are non-zero, which is the IIB section

solution [65]. This also implies that A12,A13 and A23 are zero and the rest non-zero, as

necessary. In the action we find

S ⊃
∫

dτ

(

1

4
ϕeǫeabcdΛ

abAcd +
1

2
pabAab

)

. (A.4)

This gives pab = −1
2ϕ

eǫeabcdΛ
cd, which implies Λabpbc = 0 and hence ǫabcdepabpcd = 0.

We therefore see that one can formulate certain constraints on the gauge field AM ,

which correspond to imposing the section condition on the generalised momenta which

appear as charges in the n-dimensional action (2.2). In this case, with ∂M = 0, one has

access to the duality symmetry G which allows one to transform any particular generalised

momenta into any other in its orbit.

B Further details of the Scherk-Schwarz reduction of the SL(2) × R
+

EFT

We record in this appendix some general expressions for the Scherk-Schwarz reduction of

the SL(2)×R
+ EFT, which were worked out in a prior incarnation of this paper, and which

may prove to have some use.
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B.1 The action

The bosonic fields of the SL(2) × R
+ EFT that we encountered in the main body of this

paper were the external metric, gµν , the one-form Aµ
M and the generalised metric MMN .

The extended coordinates Y M were in the 21 ⊕ 1−1 of SL(2)× R
+. In addition, there are

other form fields in the tensor hierarchy. We have an SL(2) doublet of two-forms, Bµν
αs,

with field strength Hµνρ
αs, a singlet three-form Cµνρ

αβs (the indices αβ are antisymmetric)

with field strength Jµνρσ
αβs, a singlet four-form, Dµνρσ

αβss with field strength Kµνρσλ
αβss,

and a doublet of five-forms, Eµνρσλκ
γ,αβss with field strength Lµνρσλκτ

γ,αβss. The precise

definitions of these field strengths, and the gauge transformations of the gauge fields, can

be found in [18].

From the point of view of supergravity, these gauge fields encode the degrees of freedom

of the various supergravity gauge fields plus their duals (so in the M-theory case, just the

three-form field and its six-form dual). Hence they do not all represent independent degrees

of freedom: in the SL(2)×R
+ EFT, one only has kinetic terms for Aµ

M , Bµν
αs and Cµνρ

αβs.

The action is

S =

∫

d9Xd3Y
√

|g|
(

R− 7

32
gµνDµ lnMssDν lnMss +

1

4
gµνDµHαβDνHαβ

− 1

2 · 2!MMNFµν
MFµνN − 1

2 · 3!MαβMssHµνρ
αsHµνρβs

− 1

2 · 2!4!MssMαγMβδJµνρσ
[αβ]sJ µνρσ[γδ]s

+ V (MMN , g) +
√
g−1Ltop

)

(B.1)

where V (MMN , g) denotes the would-be scalar potential (we correct here a numerical error

in the coefficients of [18])

V =
1

4
Mss

(

∂sHαβ∂sHαβ + ∂sg
µν∂sgµν + ∂s ln g∂s ln g

)

(B.2)

+
9

32
Mss∂s lnMss∂s lnMss −

1

2
Mss∂s lnMss∂s ln g

+M3/4
ss

[

1

4
Hαβ∂αHγδ∂βHγδ −

1

2
Hαβ∂αHγδ∂γHδβ + ∂αHαβ∂β ln

(

g1/2M3/4
ss

)

+
1

4
Hαβ

(

∂αg
µν∂βgµν + ∂α ln g∂β ln g +

1

4
∂α lnMss∂β lnMss +

3

2
∂α ln g∂β lnMss

)

]

,

and the topological term may be defined most conveniently as an integral over one dimen-

sion higher as
∫

d10xd3Y L̃top with

L̃top =
1

5!48
εµ1...µ10

1

4
ǫαβǫγδ

[

1

5
∂sKµ1...µ5

αβssKµ6...µ10
γδss − 5

2
Fµ1µ2

sJµ3...µ6
αβsJµ7...µ10

γδs

+
20

3
Hµ1...µ3

αsHµ4...µ6
βsJµ7...µ10

γδs

]

. (B.3)
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B.2 Scherk-Schwarz reduction

Let us now consider Scherk-Schwarz reductions of the SL(2)×R
+ exceptional field theory.

Owing to the reducibility of the extended coordinate representation, the twist matrix UM
M

in this case consists of doublet and singlet pieces, Uα
α and Us

s. Here Uα
α is not an SL(2)

element, its determinant is related to Us
s by

det(Uα
α) = (Us

s)−3/2 . (B.4)

In order to simplify the notation, we will henceforth frequently drop the underlines from

the indices (they can always be reintroduced by checking whether the matrix involved is

U or U−1). We will also call u ≡ Us
s.

It is straightforward to evaluate the components of the embedding tensor and trombone

gauging from the general expressions in section 4.1. One finds for the embedding tensor

proper the components:

ρ2λΘsβ
α = −3

4
δαβ∂su

−1 − u−1Uγ
α∂s(U

−1)β
γ , (B.5)

ρ2λΘαs
s = −3

4
∂γ(U

−1)α
γ − (U−1)α

β∂β lnu
−1 , (B.6)

ρ2λΘβγ
α = +Uδ

α(U−1)γ
ǫ∂ǫ(U

−1)β
δ − Uδ

α(U−1)β
ǫ∂ǫ(U

−1)γ
δ

−1

8
δαβ∂δ(U

−1)γ
δ +

1

8
δαγ ∂δ(U

−1)β
δ . (B.7)

In fact, the latter two are not independent: one can show that

Θβγ
α = 3δα[βΘγ]s

s . (B.8)

We will denote Θα ≡ Θαs
s. One also has Θsγ

γ = 0. Hence the embedding tensor compo-

nents correspond to a 3 and 2 of SL(2).

In addition, the trombone gaugings are

7ρ2λθα = ∂γ(U
−1)α

γ − 8(U−1)α
γ∂γ ln ρ

2λ , (B.9)

7ρ2λθs = ∂su
−1 − 8u−1∂s ln ρ

2λ . (B.10)

These give a further 2 and 1.

The components of the generalised torsion built using the above are

ρ2λταs
s = −∂γ(U

−1)α
γ − (U−1)α

β∂β lnu
−1 + 2(U−1)α

β∂β ln ρ
2λ , (B.11)

ρ2λτsβ
α = −u−1Uγ

α∂s(U
−1)β

γ − δαβ∂su
−1 + 2δαβu

−1∂s ln ρ
2λ , (B.12)

ρ2λτβγ
α = Uδ

α(U−1)γ
ǫ∂ǫ(U

−1)β
δ − Uδ

α(U−1)β
ǫ∂ǫ(U

−1)γ
δ

−δαβ (U
−1)γ

δ∂δ ln ρ
2λ + δαγ (U

−1)β
δ∂δ ln ρ

2λ . (B.13)
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The fields strengths are deformed in the following manner:

Fµν
α → F̄µν

α + τβγ
αĀµ

βĀν
γ + τsγ

αĀs
[µĀν]

γ + B̄µν
βs

(

7

4
θsδ

α
β −Θsβ

α

)

, (B.14)

Fµν
s → F̄µν

s + ταs
sĀ[µ

αĀν]
s + B̄µν

αs

(

7

4
θα −Θα

)

, (B.15)

Hµνρ
αs → H̄µνρ

αs + 3τγδ
αĀ[µ

γB̄νρ]
δs + 3τsγ

αĀ[µ
sB̄νρ]

γs + 3τγs
sĀ[µ

γB̄νρ]
αs

−τγs
sĀ[µ

αĀν
γĀρ]

s − τβγ
αĀ[µ

sĀν
βĀρ]

γ

+C̄βαs

(

21

8
θβ +

1

2
Θβ

)

, (B.16)

Jµνρσ
αβs →J̄µνρσ

αβs+4 · 2τγδ [α|Ā[µ
γC̄νρσ]

δ|β]s+4·2τsγ [α|Ā[µ
sC̄νρσ]

γ|β]s+4τγs
sĀ[µ

γC̄νρσ]
αβs

−6

(

+2τγδ
[α|Ā[µ

γĀν
δ + 2τsγ

[α|Ā[µ
sĀν

α + B̄[µν|
γs

[

7

4
θsδ

[α
β −Θsγ

[α

])

B̄|ρσ]
β]s

+D̄αβss 7

2
θs , (B.17)

while we also have

DµMαβ → D̄µM̄αβ − 2Āµ
δΘδ(α

γM̄β)γ − 2Āµ
sΘs(α

γM̄β)γ

− 7

8

(

2θ(αĀµ
γM̄β)γ −

12

7
θsĀµ

sM̄αβ +
2

7
θγĀµ

γM̄αβ

)

,
(B.18)

DµMss → D̄µM̄ss − 2Āµ
γΘγM̄ss −

7

8

(

16

7
θsĀµ

sM̄ss −
12

7
θγĀµ

γM̄ss

)

. (B.19)

If the trombone gaugings θ are zero, one can define an action for the reduced theory, after

integrating out the coordinates on which the twist matrices depend, i.e.

S =

∫

d9Xd3Y
√
gL(g,M, A, . . . ) =

∫

d3Y ρ−14λd9X
√
ḡL̄(ḡ,M̄, Ā, . . . ) . (B.20)

The Lagrangian L̄ takes the same form as that of the original EFT, but with the field

strengths modified as above and the scalar potential modified as follows: the reduction of

the scalar potential gives new terms involving the gaugings (up to total derivatives):

V (M) → V (M̄)

+ M̄ss

(

− 1

2
H̄αγH̄βδΘsα

βΘsγ
δ − 1

2
Θsβ

αΘsα
β −Θsβ

αH̄βδ∂sH̄αδ

)

+ M̄3/4
ss

(

3

2
∂αH̄αβΘβ − 7

8
H̄αβ∂α lnM̄ssΘβ − 2ΘαΘβ

)

.

(B.21)

If the trombone is non-zero, then one must work just with the equations of motion.

B.3 IIA section

We now describe some details of the dictionary relating the SL(2) × R
+ EFT described

above to (massive) IIA.
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Ordinary IIA. The action of IIA supergravity in string frame is:

SIIA =

∫

d10X
√

|ĝ|
(

e−2Φ

[

R− 1

12
Ĥµ̂ν̂ρ̂Ĥ

µ̂ν̂ρ̂ + 4∂µ̂Φ∂
µ̂Φ

]

− 1

4
F̂µ̂ν̂F̂

µ̂ν̂ − 1

48
F̂µ̂ν̂ρ̂λ̂F̂

µ̂ν̂ρ̂λ̂ +
√

|ĝ|−1LCS

)

,

(B.22)

with field strengths Ĥµ̂ν̂ρ̂ = 3∂[µ̂B̂ν̂ρ̂], F̂µ̂ν̂ = 2∂[µ̂Ĉν̂] and F̂µ̂ν̂ρ̂λ̂ = 4∂[ν̂Ĉν̂ρ̂λ̂] + 4Ĉ[µ̂Ĥν̂ρ̂λ̂].

In order to match with the 9 + 3 split of the SL(2) × R
+ EFT, we must impose a 9 + 1

coordinate split such that X µ̂ = (Xµ, X9), where we will match X9 ≡ Y 2.

The 10-dimensional string frame metric ĝµ̂ν̂ is decomposed as in (2.4) with Ω =

φ−1/7e4Φ/7 (where φ ≡ ĝ99), and the RR 1-form decomposed as (2.19). The EFT de-

grees of freedom can then be decomposed in terms of the fields of IIA supergravity. The

generalised metric components encode the dilaton Φ, metric scalar φ and one-form scalar

C9 as in (2.20) and (2.21). The components of the one-form Aµ
M are as in (2.22). The

remaining form fields encoding the physical degrees of freedom are

Bµν
αs =

(

Cµν9 − C[µBν]9

−Bµν −A[µBν]9

)

, (B.23)

and

Cµνρ
12s = Cµνρ − 3A[µCνρ]9 − 3C[µBνρ] − 4C[µAνBρ]9 . (B.24)

The field strengths of the IIA supergravity appear in those of the SL(2)× R
+ EFT via

Fµν
α =

(

Fµν + 2A[µFν]9 − C9Fµν

Fµν

)

, Fµν
s = −Hµν9 , (B.25)

(here Fµν = 2∂[µAν] − 2A[µ∂9Aν] is the field strength of the Kaluza-Klein vector)

Hµνρ
αs =

(

Fµνρ9 + C9(Hµνρ − 3A[µHνρ]9)

−Hµνρ + 3A[µHνρ]9

)

, (B.26)

Jµνρσ
12s = Fµνρσ + 4A[µFνρσ]9 + 4C9A[µHνρσ] , (B.27)

as well as in

DµHαβ=

(

Dµ(φ
−1/2eΦ) φ−1/2eΦFµ9 + C9Dµ(φ

−1/2eΦ)

φ−1/2eΦFµ9+C9Dµ(φ
−1/2eΦ) Dµ(φ

1/2e−Φ)+2C9φ
−1/2eΦFµ9+(C9)

2Dµ(φ
−1/2eΦ)

)

.

(B.28)

Massive IIA. We give here the full deformations relevant to checking how the field

strengths are modified. The twist matrix is

Uα
β(Y M ) =

(

1 0

mys 1

)

, Us
s(Y M ) = 1 , ρ(Y M ) = 1 . (B.29)
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The non-trivial twistings of the field strengths in the tensor hierarchy are, using (B.14)

to (B.17),

Fµν
1 → F̄µν

1 +mĀ[µ
sĀν]

2 −mB̄µν
2s , (B.30)

Hµνρ
1s → H̄µνρ

1s + 3mĀ[µ
sB̄νρ]

2s , (B.31)

Jµνρσ
12s → J̄µνρσ

12s + 3mB̄[µν
2sB̄ρσ]

2s − 6mĀ[µ
sĀν

2B̄ρσ]
2s , (B.32)

while one also has from (B.18) and (B.19)

DµH12 → DµH̄12 −mĀµ
sH̄11 , DµH22 → DµH̄22 − 2mĀµ

sH̄21 . (B.33)
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