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Abstract: We show that the spectrum of normalizable states on a Euclidean SL(2,

R)/U(1) black hole exhibits a duality between oscillator states and wound strings. This

duality generalizes the identification between a normalizable mode of dilaton gravity on

the cigar and a mode of the tachyon with winding number one around the Euclidean time

circle, which plays an important role in the FZZ correspondence. It implies that normal-

izable states on a large Euclidean black hole have support at widely separated scales. In

particular, localized states that are extended over the cap of the cigar (the Euclidian ana-

log of the black hole atmosphere) have a component that is localized near the tip of the

cigar (the analog of the stretched horizon). As a consequence of this duality, the states

exhibit a transition as a function of radial excitation level. From the perspective of a low

energy probe, low lying states are naturally thought of as oscillator states in the black hole

atmosphere, while at large excitation level they are naturally described as wound strings.

As the excitation level increases, the size of the states first decreases and then increases.

This behavior is expected to be a general feature of black hole horizons in string theory.
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1 Introduction

One of the important open problems in quantum gravity is the origin of the Bekenstein-

Hawking entropy of black holes [1, 2]. In particular, it is still not clear where the states

responsible for the black hole entropy are located. A priori, one might expect them to

reside inside the black hole, on the horizon, or in the thermal atmosphere. There are,

however, difficulties with all these options. In this note we present arguments that indicate

that string theory might shed light on this question.

String theory modifies classical gravity in two ways. There are string effects, whose

typical scale is the string scale ls, and quantum effects, whose scale is the Planck scale lp.

In weakly coupled string theory the hierarchy of scales is ls ≫ lp, and it is natural to ask

whether string theory modifies the picture obtained in classical gravity already at the scale

ls, well above the Planck (length) scale. This question can be studied in classical string

theory, by including α′(= l2s) effects.

One may hope to get information about the physics associated with the horizon of a

black hole by Wick rotating to Euclidean spacetime. The advantage of this continuation

is that it gives rise to a smooth geometry, with the radial and Euclidean time direction

forming a semi-infinite cigar geometry; the tip of the cigar is the Euclidean continuation

of the horizon of the black hole.
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When studying string propagation in this background, the winding of the string around

the Euclidean time direction is not conserved, since the string can slip off the tip of the

cigar. It turns out that there is another source of winding non-conservation — a condensate

of the winding tachyon field, the lowest mode of a string winding around the Euclidean

time circle at infinity, which is necessarily present in Euclidean black hole spacetimes [3]

(see also [4]). For large black holes, one can think of the tachyon condensate as a non-

perturbative α′ effect.

The two mechanisms for string winding violation mentioned in the previous paragraph

are superficially different, but it is believed that both are present and are not indepen-

dent [3]. In particular, the size of the winding tachyon condensate is determined by the

geometry of the Euclidean black hole.

While the above picture is expected to be general, it’s been studied in detail primarily

for a particular case — the two dimensional black hole corresponding to the coset conformal

field theory (CFT) SL(2,R)/U(1) [5–8]. The latter is exactly solvable due to its relation

to the CFT on the SL(2,R) group manifold, so one can study its physics in detail. In

particular, one can ask the question what are the implications of the α′ effects on the

questions mentioned above [3, 9–26]. In this note we will continue our study of this question.

The existence of the winding tachyon condensate in the two dimensional black hole

background is known as the FZZ correspondence [27]; see [28] for a review. There is an

analog of this correspondence in the theory with N = 2 worldsheet supersymmetry [29],

which plays a role in the superstring. Here we will mostly discuss the bosonic case, and

comment briefly on the supersymmetric generalization towards the end.

In the original work on the FZZ correspondence [27, 28], it was thought of as a duality

between the CFT’s describing large and small black holes. It was later realized that this

correspondence plays a role in the physics of large black holes as well [3, 9–26]. In partic-

ular, [3] argued that the tachyon condensate gives rise to a smearing of the horizon of a

black hole. In [19] it was shown that scattering particles off the tip of the cigar gives rise

to an interesting effect. While low energy particles scatter in the cigar geometry in the

way dictated by general relativity (GR), high energy ones do not see the tip of the cigar

and instead are sensitive to the winding tachyon condensate. This gives a scattering phase

shift which grows with energy, in sharp contrast to GR, where the phase shift goes to a

constant at high energy due to the fact that space ends at the tip of the cigar. Thus, one

can say that the FZZ correspondence is a high/low energy duality.

One can also think of the FZZ correspondence as an identification of two seemingly

different normalizable modes on the cigar. One governs the value of the dilaton at the

tip of the cigar, or the metric deformation that closes up the infinite cylinder to a cigar.

The other is the winding tachyon. The two modes have in general different behaviors at

infinity — the former is much more extended (in the radial direction) than the latter for

large black holes. Nevertheless, the FZZ correspondence ties the two.

We will see here that the identification between the dilaton and the wound tachyon is

a special case of a more general phenomenon, which we will refer to as the generalized FZZ

correspondence. This correspondence relates a large class of seemingly distinct normalizable

states on the cigar, which behave in a different way in the asymptotic region. It can also

be thought of as a high/low energy correspondence.
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The plan of this note is the following. In section 2 we briefly review the geometry of the

Euclidean SL(2,R)/U(1) black hole, and describe a class of normalizable states in this back-

ground. In section 3 we review the description of (part of) the spectrum of normalizable

states on the cigar in terms of strings winding around the cigar, that experience an attrac-

tive potential towards the tip. We point out that a semiclassical analysis of the bound state

problem for this potential gives the correct energies for these states, but that one expects

the detailed properties of these states to receive large corrections at low excitation levels.

These corrections are governed by the generalized FZZ (GFZZ) correspondence, which

is described for pure winding states in section 4. We start this section by describing

the spectrum of normalizable states in the CFT on SL(2,R), and in particular review

some properties of the principal discrete series representations, the representations obtained

from them via spectral flow, and the isomorphism between the two. We then use this

isomorphism to derive an identification between seemingly different states on the cigar,

relating a large class of states with winding numbers zero and one.

In section 5 we discuss the asymptotic form of the vertex operators describing a par-

ticular class of GFZZ dual states. We start by describing their ancestors in the underlying

SL(2,R) CFT using the Wakimoto representation, which is useful for studying the theory

near the boundary of AdS3. We then present an approach to finding the vertex operators

in the coset from those in AdS3. We find that the GFZZ correspondence relates in this

case oscillator states with winding number zero to states with winding number one and

oscillator number zero.

In section 6 we discuss the physical consequences of the GFZZ correspondence. Sec-

tion 7 is devoted to some generalizations of the correspondence. Finally, in section 8 we

summarize our results and comment on their possible implications for Lorentzian black

holes.

2 Some properties of the two dimensional Euclidean black hole

The Euclidean SL(2,R)/U(1) coset CFT describes string propagation on a semi-infinite

cigar [5–8], with metric and dilaton1

ds2 = 2k(dr2 + tanh2 rdθ2);

Φ− Φ0 = − ln coshr . (2.1)

θ ∼ θ + 2π is an angular coordinate, obtained by Wick rotating the time coordinate. The

radial coordinate 0 ≤ r < ∞ is the direction along the cigar; r = 0 is the tip, while for

large r (compared to 1) the background (2.1) approaches a cylinder of radius
√
2k, with

linear dilaton along it. The string coupling eΦ depends on r; it goes to zero far from the

tip and attains its maximal value, eΦ0 , at the tip. This value controls the mass of the black

hole. The region of size of order
√
k around the tip (r of order 1 in (2.1)) is the cap of the

cigar (see figure 1); in this region the curvature is of order 1/k.

1We present the background to leading order in 1/k, and have chosen the convention α′ = 2.
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Figure 1. The tip (denoted in red) and cap of the cigar.

k is a free parameter, which governs the overall size of the cigar. In the algebraic coset

description, it corresponds to the level of the underlying SL(2,R) current algebra. Geomet-

rically, it sets the overall scale of the cigar. In particular, at large k (2.1) describes a weakly

curved geometry. That is the analog in this context of a large (Euclidean) Schwarzschild

black hole in higher dimensions.

The model comes in two versions, depending on whether one is studying it in the

bosonic string or the superstring. In the former case, one is interested in the bosonic coset

model, whose central charge is given by

c = 2 +
6

k − 2
. (2.2)

The background fields (2.1) receive perturbative α′ corrections [8], which can be thought

of as 1/k corrections.

In the superstring, one is interested in the N = 1 superconformal coset,2 which is

obtained by attaching to a bosonic SL(2,R) WZWmodel three free fermions that transform

in the adjoint representation of SL(2,R), and gauging the diagonal U(1) in the full SL(2,R)

of bosons + fermions. The total level of SL(2,R), k, can be written in this case as a sum

of bosonic and fermionic contributions, k = (k + 2) + (−2), and the corresponding central

charge is

c = 3 +
6

k
. (2.3)

In this case, the background (2.1) does not receive perturbative corrections in 1/k.

Although, as usual in string theory, to talk about a well defined theory with a stable

vacuum one needs to consider the superstring, for our purposes the bosonic theory is good

enough, since the physics we are interested in is unrelated to the usual closed string tachyon.

Hence, we will phrase the discussion below in this language; we will comment briefly on

the worldsheet supersymmetric case in section 7.3

2Which happens to have N = 2 superconformal symmetry; this is an example of the Kazama-Suzuki [30]

construction.
3The details will appear in a separate work [31].
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We will be interested here in normalizable states on the cigar. A large class of such

states is described by the Virasoro primary vertex operators Vj;m,m̄, whose scaling dimen-

sions are given by

∆j;m,m̄ = −j(j + 1)

k − 2
+

m2

k
,

∆̄j;m,m̄ = −j(j + 1)

k − 2
+

m̄2

k
. (2.4)

Here, m and m̄ label momentum and winding around the cigar; they take the values

m =
1

2
(wk − p) ,

m̄ =
1

2
(wk + p) , (2.5)

where p, w ∈ Z are the momentum and winding around the circle labeled by θ, respectively.

Note that while the momentum on the circle p is conserved, the winding w is not, as winding

can slip off the tip of the cigar.

The quantum number j governs the radial dependence of the wavefunctions of the

states (2.4). It takes value in the range

j = |m| − n = |m̄| − n̄ , n, n̄ = 1, 2, 3, · · · . (2.6)

Unitarity of the CFT leads to a bound on j,

− 1

2
< j <

k − 3

2
, (2.7)

which in turn implies a bound on the integers (n, n̄) in (2.6).

The states (2.4)–(2.6) are known as principal discrete series states, since they descend in

the GKO coset construction from analogous states in CFT on the SL(2,R) group manifold.

The vertex operators that create them, Vj;m,m̄, behave far from the tip of the cigar as

Vj;m,m̄ ≃ eipLXL+ipRXR−Q(j+1)φ , (2.8)

where (φ,X) are canonically normalized fields, in terms of which the metric (2.1) behaves

at infinity like ds2 = dφ2 + dX2, and the dilaton goes like Φ = −Q
2 φ. The background

charge Q is related to k via

Q =

√
2

k − 2
; (2.9)

for large black holes (large k) it goes to zero like Q ∼
√

2
k
. The left and right-moving

momenta on a circle of radius R, pL = p
R
− wR

2 , pR = p
R
+ wR

2 , are related to (m, m̄) (2.5)

via the relation

(pL, pR) =

√
2

k
(−m, m̄) . (2.10)

As mentioned above, the radius of the circle is R =
√
2k.
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3 Semiclassical description of states with w = 1, p = 0

To introduce the issue we will focus on, consider the states (2.4) with w = 1, p = 0.

Looking back at (2.5), we see that in this case m = m̄ = k/2, and (2.6), (2.7) imply that j

takes the values4

j =
k

2
− n; n = 2, 3, · · · ,

[
k + 1

2

]
. (3.1)

The dimensions (2.4) take in this case the form

∆n = ∆̄n =
(n− 1)(k − n)

k − 2
. (3.2)

As n varies over the range (3.1), the dimension (3.2) varies between 1 for n = 2 and a value

of order k/4 (for large k) for the largest value of n.

One can attempt to understand this spectrum qualitatively by studying the dynamics

of a wound string in the cigar geometry (2.1). The energy of a string winding the θ circle

depends on its radial position. It goes to zero as r → 0 (where the string can unwind),

and monotonically increases with r, approaching a constant at large r. Thus, the radial

equation for the zero mode of the string looks like a Schroedinger equation in a potential

which has the above qualitative structure.

This equation was studied in [8, 12, 14] (for general p). It takes the form

(L0 + L̄0)|Ψ〉 = (∆ + ∆̄)|Ψ〉 , (3.3)

with

L0 = −△(r)

k − 2
+

m2

k
, L̄0 = −△(r)

k − 2
+

m̄2

k
, (3.4)

where △(r) is the Laplacian on SL(2,R).5 The eigenvalues ∆, ∆̄ that one finds by solv-

ing (3.3), (3.4) are precisely those given in (2.4), (2.5). Moreover, the eigenfunctions are

known exactly [12];6 their asymptotic behavior agrees with (2.8).

The quantum number n (3.1) can be thought of as the radial excitation level. The

lowest state has n = 2, and a wavefunction that is highly localized in the radial direction,

corresponding to (2.8) with j = k
2 −2. It decays at large φ as exp(−φ/Q), and corresponds

to the Sine-Liouville vertex operator [28] that is localized at the tip of the cigar. As n

increases, j (3.1) decreases; the corresponding vertex operator (2.8) becomes more spread

out in the radial direction. As n approaches the upper bound of the range (3.1), the

wavefunction spreads over a larger and larger part of the cigar. In that region one has

n =
k + 1

2
− α , (3.5)

with α an order one (in the sense of the 1/k expansion) positive real number, and the

vertex operator (2.8) decays at large φ as

e−Q( 1
2
+α)φ . (3.6)

4Here we assume that k+1

2
6∈ Z. If it is, the upper bound is smaller by one.

5△(r) is given e.g. in eq. (29) of [14], with k → k − 2 and ρ = 2r/Q.
6See, in particular, appendices E and F.
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Stripping off the factor of the string coupling gs ∼ exp(−Qφ/2) that relates the vertex

operator to the wavefunction, we find that the wavefunction of the state behaves at large

φ as exp(−αQφ), i.e. it extends over a finite fraction of the cap of the cigar.

The description of the bound states (3.3), (3.4) is obtained by considering a straight

string wrapping θ (by working in the gauge θ(σ) = σ, where σ is the spacelike worldsheet

coordinate) and studying its radial dynamics. As mentioned above, this description gives

the correct values of the scaling dimensions (2.4). It is natural to ask whether it also gives

a correct description of the detailed structure of these states, particularly for large k, when

the cigar (2.1) is large and weakly curved, and the dilaton is slowly varying.

Superficially, one would say that the winding description should only be valid when

the wavefunction of the bound state is supported primarily in the region of large φ, where

the wound string is long and the semiclassical approximation is valid. This is the case

for highly excited states, with n towards the top of the range (3.1). Such states can be

characterized by the winding around the cigar, which is approximately conserved.

For low lying states, with n close to the bottom of that range, one would expect large

corrections to the picture (3.3), (3.4). Indeed, the semiclassical analysis gives in that case

wavefunctions that are supported in the small φ region near the tip of the cigar, where

the winding number is not conserved. In that region we expect to be able to describe the

target space as an almost flat two dimensional space. Hence, the bound states should be

related to standard perturbative string oscillator states, which seem very different from the

straight strings with only radial oscillations described by (3.3), (3.4).

In the rest of this note we will study this question in more detail. We will see that the

low lying states are much more extended in the radial (φ) direction than implied by the

analysis (3.3), (3.4). Their large φ behavior is described in terms of oscillator states of a

string in the weakly curved space (2.1). This description is related to the one in terms of

winding strings by a generalization of the FZZ correspondence. The semiclassical winding

string description reviewed in this section can be neglected when studying long distance

properties of these states, but plays an important role in analyzing the properties of these

states sensitive to the region near the tip of the cigar.

Thus, the generalized FZZ correspondence is a high/low energy duality in two different

senses. One is similar to the original FZZ duality: for low lying normalizable states, low

energy probes see an oscillator state, while high energy probes see the winding string compo-

nent of the wavefunction, as in [19]. The other is that as one varies the excitation level n, for

small n low energy probes see an oscillator state, while for large n they see a winding string.

4 Generalized FZZ correspondence I: p = 0 (w = 0 vs. w = 1)

To make the picture described at the end of the previous section precise, it is convenient

to use the description of the cigar CFT as the coset SL(2,R)/U(1). Normalizable states

on the cigar descend from normalizable states in the SL(2,R) CFT. Therefore, we start by

reviewing some properties of the latter [32].

– 7 –
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(−j−1, −           )

J
−1

+

L0 L

Figure 2. The ŜL(2,R) representations D̂+,w=0
j (a), and D̂−,w=0

j (b).

The left-moving SL(2,R) current algebra at level k that governs the dynamics of this

model is

[J3
n, J

3
m] = −k

2
nδn+m,0 , [J3

n, J
±
m] = ±J±

n+m , [J+
n , J−

m] = −2J3
n+m + knδn+m,0 . (4.1)

There is a similar algebra for the right-movers; here and below we will often focus on the

left-movers. The SL(2,R)/U(1) coset CFT is obtained by modding out by the U(1) current

J3 that generates a compact abelian subgroup of SL(2,R). Therefore, it is useful to classify

the states in the underlying SL(2,R) CFT according to their J3 eigenvalues.

The affine Lie algebra (4.1) has two conjugate types of representations known as prin-

cipal discrete series representations, D̂±,w=0
j , where −1

2 < j ∈ R. The lowest weight

representation D̂+,w=0
j is built on top of a lowest weight state |j,m〉. Here m is the eigen-

value of J3
0 ; it is related to j by m = j + 1. This state has dimension (eigenvalue of L0)

∆j = −j(j + 1)/(k − 2). It is annihilated by J−
0 ; when acting on it with J+

0 , one finds

states |j,m〉 with m > j+1 (and the same dimension). Acting with raising operators of the

affine Lie algebra, Ja
−n with a = 3,±, gives states with larger dimensions (current algebra

descendants). The conjugate representation D̂−,w=0
j is obtained by flipping all the signs of

the eigenvalues of J3
0 . In particular, it is built on top of a state |j,m = −j − 1〉, which is

annihilated by J+
0 . The J3

0 and L0 eigenvalues of the states in the representations D̂±,w=0
j

are depicted in figure 2.

In addition to the principal discrete series states described in the previous paragraph,

the theory has representations labeled by an integer w, which can be thought of as a winding

number around the spatial direction on the boundary of AdS3. This winding number is of

course not conserved, since strings that wind around the boundary can shrink through the

bulk of AdS3.

Algebraically, the quantum number w is associated with an automorphism of the al-

gebra (4.1) known as spectral flow [32],

J̃3
n = J3

n +
k

2
wδn,0 , J̃±

n = J±
n∓w , (4.2)

where w ∈ Z is the spectral flow parameter. One can use this automorphism to define

states |j,m = j + 1;w〉, which belong to the representation D̂+,w
j . This representation

– 8 –
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0

J
3

0

J +

(j+1−k/2, −             + j+1−k/4)
j(j+1)

k−2

0

L

Figure 3. The isomorphism between D̂+,w=1

j̃
and D̂−,w=0

j , with j̃ = k
2 − j − 2.

is obtained by taking the representation D̂+,w=0
j of the algebra J̃a

n , and viewing it as a

representation of the algebra Ja
n , related to J̃a

n via (4.2). The lowest weight state in the

representation, |j,m = j + 1;w〉, thus has J̃3
0 = j + 1 and (4.2) J3

0 = j + 1 − 1
2kw; it is

annihilated by J̃−
0 = J−

w . The states |j,m;w〉 with m = j + 1 + ℓ are obtained by acting

on it ℓ times with J̃+
0 = J+

−w; their scaling dimension ∆j;m;w and J3
0 eigenvalue are

∆j;m;w = −j(j + 1)

k − 2
+mw − kw2

4
, J3

0 = m− k

2
w . (4.3)

Other states in the representation D̂+,w
j are obtained by acting on |j,m;w〉 with J̃±

−n =

J±
−n∓w and J̃3

−n = J3
−n.

An important fact for our purposes is that the representations D̂−,w=0
j and D̂+,w=1

j̃= k
2
−j−2

are isomorphic. In particular, the states |j,m = −(j +1);w = 0〉 and |j̃,m = j̃ +1;w = 1〉
have the same values of L0 and J3

0 ,

L0 = −j(j + 1)

k − 2
,

J3
0 = −j − 1 , (4.4)

as can be checked directly by using (4.3). All other states in the two representation have

the same quantum numbers as well, as can be seen in figure 3.

Since the representations D̂−,w=0
j and D̂+,w=1

j̃= k
2
−j−2

are isomorphic, it is natural to ask

whether they should be identified in CFT on SL(2,R). We will assume that this is indeed

the case, and will see that this assumption is consistent with some known facts about the

coset SL(2,R)/U(1). In principle, one should be able to show this directly in the SL(2,R)

CFT, but as far as we know this has not been done.

So far we discussed the situation in the CFT on SL(2,R). We now turn to the coset

CFT, and in particular to the question what the identification of D̂−,w=0
j and D̂+,w=1

j̃= k
2
−j−2

in the former implies for the latter. It will be convenient to discuss this question in terms

of the normalizable vertex operators that create the various states when acting on the

vacuum. Thus, we start by reviewing their structure.

We begin with the vertex operators corresponding to the principal discrete series states

|j,m, m̄;w = 0〉 in SL(2,R) CFT, Φj;m,m̄, which have dimension −j(j + 1)/(k − 2), and

– 9 –
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charge m (m̄) under J3 (J̄3). We can write them as a product of contributions from

SL(2,R)/U(1) and the U(1) CFT corresponding to (J3, J̄3) as follows. Using (4.1), we can

write the currents (J3, J̄3) as

J3 = −
√

k

2
∂x; J̄3 = −

√
k

2
∂̄x̄ , (4.5)

where x, x̄ are canonically normalized left and right-moving scalars. The OPE

J3(z)Φj;m,m̄(w) =
m

z − w
Φj;m,m̄(w) (4.6)

implies that we can write Φj;m,m̄ as

Φj;m,m̄ = Vj;m,m̄e

√

2

k
(mx+m̄x̄)

, (4.7)

where Vj;m,m̄ is a vertex operator that commutes with the charges J3
n (4.1); its dimension

is given by (2.4). In general, the quantum numbers (m, m̄) do not take the values (2.5)

with integer (p, w), so the operator Vj;m,m̄ in (4.7) is not a good vertex operator in the

coset. This is related to the fact that SL(2,R) cannot be written as a direct product

SL(2,R)/U(1)× U(1). However, by a judicious choice of the quantum numbers (j;m, m̄),

one can construct vertex operators that do belong to the coset.

An example that will play a role in our discussion below is the state

(J+
−1)

l(J̄+
−1)

l|j = l − 1;m = m̄ = −l;w = 0〉 , (4.8)

with l a positive integer. Before applying the raising operators J+
−1, J̄

+
−1, we have a primary

state in the principal discrete series representation D̂−,w=0
l−1 . The corresponding vertex

operator is Φj;m,m̄, with the (j,m, m̄) indicated in (4.8). Under the reduction (4.7), this

operator does not, in general, reduce to a physical vertex operator in the coset.

Applying the raising operators in (4.8) corresponds in terms of the vertex operator to

multiplying by the appropriate currents. Thus, the vertex operator corresponding to (4.8) is

(J+)l(J̄+)lΦl−1;−l,−l . (4.9)

Note that the currents in (4.9) do not have short distance singularities either among them-

selves or with the primary Φl−1;−l,−l. This means that the vertex operator (4.9) is a primary

of Virasoro. Its dimension is given by

∆(l) = l − l(l − 1)

k − 2
. (4.10)

An interesting question is what is the decomposition of the operator (4.9) under

SL(2,R)/U(1)× U(1). The OPE of the current J3(z) with (4.9) can only contain a single

pole, from the OPE of J3 with the currents, and with the primary Φj;m,m̄. The residue

of the pole is the total charge of the operator, which is equal to l − l = 0. Thus, the

operator (4.9) commutes with the charges J3
n, i.e. it belongs to the coset SL(2,R)/U(1).

As we will review below, in the language of (2.5) it has p = w = 0.
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The dimension of (4.9), (4.10), is equal to one that appeared in our discussion be-

fore, (3.2), with the mapping n = l + 1. There, we discussed states with w = 1, p = 0,

while here we are dealing with states with w = p = 0. The conserved charge p is the same

in the two cases, while w is seemingly different (but is not conserved). We will see below

that the agreement of (3.2), (4.10) is not accidental, and the two are in fact the same due

to the generalized FZZ correspondence.

The primary state in (4.8) |j = l − 1;m = m̄ = −l;w = 0〉 is isomorphic, according to

our previous discussion, to the state |j̃ = k
2 − l− 1;m = m̄ = k

2 − l;w = 1〉. Acting l times

with J+
−1J̄

+
−1 corresponds (4.2) to acting l times with J̃+

0
¯̃J+
0 on the w = 1 state, which

leads to the state |j̃ = k
2 − l − 1;m = m̄ = k

2 ;w = 1〉. The corresponding vertex operators

can be constructed from those with w = 0, (4.7), by multiplying with certain twist fields

(see e.g. [32, 33]). They are given by

Φw
j;m,m̄ = Vj;m,m̄e

√

2

k
(m− k

2
w)x(z)+

√

2

k
(m̄− k

2
w)x(z̄)

, (4.11)

and have dimension and charge (4.3). For our particular case, j = k
2 − l − 1, m = m̄ = k

2 ,

and the vertex operator (4.11) reduces to one that lives purely in the coset, V k
2
−l−1; k

2
, k
2

.

This operator has winding one (2.5), and according to our discussion of SL(2,R) CFT above

it creates the same normalizable state as the seemingly different vertex operator (4.9).

In the next section we will study this duality further, and in particular address the

question how the two dual vertex operators (4.9), (4.11) behave at large φ, i.e. in the region

where the cigar can be approximated by a semi-infinite cylinder (see figure 1).

5 Dual vertex operators at large φ

In the last section we saw that naively different vertex operators (4.9), (4.11), in the

Euclidean black hole background (2.1) give rise to the same normalizable state in the cigar

CFT. The purpose of this section is to provide further insight into this duality by analyzing

the asymptotic form of the dual vertex operators far from the tip of the cigar. This will

help address some of the questions raised in section 3.

The region far from the tip of the cigar in SL(2,R)/U(1) CFT descends from the region

near the boundary of AdS3 in the underlying SL(2,R) CFT. There is a well known technique

for studying this region, known as the Wakimoto representation [34] (see also [35–37]). One

starts with the worldsheet Lagrangian

L = ∂φ∂̄φ−QR̂φ+ β∂̄γ + β̄∂γ̄ − λββ̄e−Qφ . (5.1)

Integrating out β gives the worldsheet σ-model Lagrangian on AdS3 parametrized by

(φ, γ, γ̄). Here φ is the radial coordinate on AdS3, while (γ, γ̄) parametrize the bound-

ary of this spacetime.

The description (5.1) is particularly useful at large φ, near the boundary of AdS3,

where the interaction term goes to zero and the worldsheet theory becomes free. The local

string coupling, gs(φ) ∼ exp(−Qφ/2), also goes to zero there, so string interactions are

suppressed as well.

– 11 –



J
H
E
P
1
0
(
2
0
1
6
)
1
5
7

In that region, the worldsheet fields (φ, β, γ) can be viewed as free fields, with the

propagators

〈φ(z)φ(0)〉 = − ln |z|2 , 〈β(z)γ(0)〉 = 1

z
. (5.2)

The field φ corresponding to the radial coordinate of AdS3 behaves as a free field with

linear dilaton with slope −Q/2. The fields β and γ are bosonic free fields with dimensions

1 and 0 respectively.

The SL(2,R) currents are given by

J+ = β , J3 = −βγ − 1

Q
∂φ , J− = βγ2 +

2

Q
γ∂φ+ k∂γ . (5.3)

The normalizable primary operators Φj;m,m̄ (4.6) take at large φ the form

Φj;m,m̄ ≃ γ−(j+m+1)γ̄−(j+m̄+1)e−Q(j+1)φ . (5.4)

The Wakimoto representation can also be used to determine the form of the vertex opera-

tors of ŜL(2,R) descendants. For example, the operators (4.9) take the form

(J+)l(J̄+)lΦl−1;−l,−l ≃ (ββ̄)le−Qlφ . (5.5)

Note that for l = 1 (5.5) coincides with the interaction term (the last term on the r.h.s.)

in (5.1).

Now that we have the large φ behavior of vertex operators in the SL(2,R) CFT,

we would like to determine that of their counterparts in the coset model. An efficient

technique for doing that was described in [36]. It involves adding to the model a U(1)

gauge field (A, Ā), which gives an extra contribution to the U(1) current J3 (4.5), (5.3),

J3
A = i

√
k
2∂X, where X is a canonically normalized scalar field, and there is a similar

formula for the right-movers. The total U(1) current,

J3
total = J3 + J3

A = i

√
k

2
∂(X + ix) , (5.6)

is null. Thus, we can add a pair of fermionic ghosts b and c of dimensions 1 and 0 respec-

tively, and construct the BRST charge,

Q =

∮
cJ3

total , (5.7)

which is nilpotent, Q2 = 0. The cohomology of the BRST charge (5.7) (and its right-

moving analog) is the physical spectrum of the SL(2,R)/U(1) coset model. The large φ

form of vertex operators on the cigar can be read off from it.

To see how this works in practice, consider the vertex operator Vj;m,m̄, that made an

appearance in our discussion above, in the construction of the winding one operator (4.11).

We can construct this operator by starting with the vertex operator Φj;m,m̄, and dressing
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it with the appropriate gauge field contribution. The dressing is determined by the con-

dition that the total U(1) charge (5.6) vanishes, which ensures that the operator is BRST

invariant. This leads to the general result

Vj;m,m̄ = Φj;m,m̄e
−i

√

2

k
(mX−m̄X̄) ≃ γ−(j+m+1)γ̄−(j+m̄+1)e

−Q(j+1)φ−i

√

2

k
(mX−m̄X̄)

, (5.8)

where in the last equality we used (5.4) to focus on the large φ behavior.

As explained in [36], the part of the vertex operator (5.8) that belongs to the (β, γ)

system does not contribute either to the dimension of the operator or to its correlation

functions with other BRST invariant operators, and can be omitted. The remaining op-

erator takes the form (2.8), (2.10). Thus, we learn that the scalar field X associated with

the gauge field is identified with the compact scalar parametrizing the angular direction on

the cigar. In particular, it is compact with radius
√
2k, as explained above.7 We also see

that the vertex operator Vj;m,m̄ describes a tachyon with momentum and winding (2.5).

To study the generalized FZZ correspondence, we need to extend the above discussion

to ŜL(2,R) descendants such as (5.5). We will see that these correspond to oscillator states

on the cigar. To demonstrate that, it is convenient to “bosonize” the (β, γ) system in a

way familiar from string theory (see e.g. [38]):

β = −∂wew−u; γ = eu−w . (5.9)

u and w are free fields with 〈w(z)w(0)〉 = −〈u(z)u(0)〉 = ln z. We also have βγ = −∂u.

Plugging this into (5.3), (5.6), we find

J3
total = ∂u− 1

Q
∂φ+ i

√
k

2
∂X . (5.10)

Eq. (5.7) implies that

J3
total = {Q, b} . (5.11)

Thus, in correlation functions of BRST invariant operators we can set the current (5.10)

to zero.

We are now ready to discuss the operators (5.5) as operators in the SL(2,R)/U(1)

coset, and in particular their form at large φ. Consider first the operator βl written in

terms of the bosonized variables (u,w) (5.9). On general grounds, we know the following:

(1) Since the OPE of two β’s does not have a short distance singularity, βl is a Virasoro

primary (of dimension l).

(2) In terms of the bosonized variables (5.9), βl takes the form Pl(∂w, ∂
2w, · · · )el(w−u).

Pl is a polynomial in ∂nw, n = 1, 2, · · · , with total scaling dimension l. It can be

computed explicitly for all l; we will give the result for some low values of l below.

(3) The operator (5.5) thus takes the form

βle−lQφ = Pl(∂w, · · · )el(w−u−Qφ) , (5.12)

7This is related to the fact that the U(1) symmetry that we are gauging is compact.

– 13 –



J
H
E
P
1
0
(
2
0
1
6
)
1
5
7

where we again suppressed the right-moving part of the operator, which is very

similar.

(4) Both the polynomial Pl and the exponential in (5.12) commute with J3
total (5.10).

Since the latter is BRST exact (5.11), in correlation functions of BRST invariant

operators we can replace ∂w → ∂w − J3
total = ∂w − ∂u + 1

Q
∂φ − i

√
k
2∂X. The first

two terms depend on the combination w−u and thus do not contribute to correlation

functions for the same reason as the exponentials of w − u in (5.8), (5.12). Thus, in

the polynomial Pl in (5.12) we can replace ∂w by the combination 1
Q
∂φ− i

√
k
2∂X.

To summarize, we conclude that the vertex operator (5.5) takes in the cigar CFT the large

φ form

(ββ̄)le−Qlφ ≃ Pl(∂w, · · · )Pl(∂̄w̄, · · · )e−Qlφ , (5.13)

with ∂w → 1
Q
∂φ− i

√
k
2∂X. Note that at large k, the combination ∂w takes the form

∂w → 1

Q
∂φ− i

√
k

2
∂X ≃

√
k

2
∂(φ− iX) = i

√
k

2
∂Z , (5.14)

where in the last equality we defined the complex coordinate on the asymptotic cylinder,

Z = φ− iX.

The polynomials Pl are in general non-trivial. For l = 1, 2, 3 one finds8

P1 = ∂w , P2 = (∂w)2 − ∂2w , P3 = (∂w)3 − 3∂2w∂w + ∂3w . (5.15)

For general l, Pl is given by a linear combination of many different terms ranging from

(∂w)l to ∂lw, with k-independent coefficients. In the large k limit, ∂w is naturally of order√
k (see (5.14)). Thus, in this limit the polynomial Pl simplifies,

Pl ≃ (∂w)l ≃ k
l
2 (∂Z)l . (5.16)

The vertex operator (5.13) describes an oscillator state at level l. Its GFZZ dual has

winding one and j = k
2 − l − 1. The corresponding vertex operator, (5.8), has the form

e
−Q( k

2
−l)φ−i

√

k
2
(X−X̄)

. (5.17)

It describes the lowest lying state of a string with winding one around the circle (the

winding tachyon).

The two dual operators (5.13) and (5.17) correspond naively to different modes of the

string, and have quite different behaviors at large φ. Nevertheless, they describe the same

normalizable state in the theory. Consider, for example, the special case l = 1. In that case

the winding tachyon vertex operator (5.17) reduces to the Sine-Liouville operator [27, 28].

The oscillator vertex operator (5.13) becomes the metric deformation that closes up the

infinite cylinder to a cigar (the leading expansion of the metric (2.1) at large r). The

identification between the two is the original FZZ correspondence.

8We neglect an overall l-dependent sign which cancels between the two Pl’s in (5.13).
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One can view the arguments presented above in two different ways. If one takes

the identification of the ŜL(2,R) representations described in section 4 as given, these

arguments provide a derivation of the (G)FZZ correspondence from properties of the un-

derlying SL(2,R) WZW model. Conversely, if one takes the FZZ correspondence as given,

they provide strong evidence for the identification of representations with w = 0 and w = 1

described in the previous section, at least for the special case l = 1. This makes it natu-

ral to identify the ŜL(2,R) representations with l > 1 as well, which leads to the GFZZ

correspondence.

6 Comments on the correspondence

In sections 3–5 we discussed a class of normalizable states on the cigar. We saw that

these states have two components, which from the perspective of the asymptotic cylinder

geometry have windings zero and one, respectively. The two components are always present;

in general they have different localization properties in the radial direction and so influence

physics at different scales. We referred to this as the generalized FZZ correspondence.

In section 3 we discussed the winding one component of these states. The fact that we

did not include the winding zero component led to an incomplete picture. In this section

we would like to describe these states taking into account the GFZZ correspondence, which

will give a more complete picture.

We start by considering low lying states, corresponding to l ∼ O(1), while taking

k to be large. The w = 0 contribution to such a state is given by the vertex opera-

tor (5.13), (5.16),

(∂Z)l(∂̄Z̄)le−Qlφ . (6.1)

This vertex operator describes an oscillator state whose zero mode wavefunction is sup-

ported in a region (roughly) the size of the curvature radius of the cigar (
√
k) (see figure 4).

The w = 1 contribution (5.17) to the same state is highly localized near the tip of the

cigar (figure 4), where the potential experienced by the wound string is quadratic in the

radial coordinate. Thus, it gives rise to a two dimensional harmonic oscillator [10, 14]. The

states that correspond to (6.1) take the form

(a†+)
l(a†−)

l|0, 0〉 , (6.2)

where a†+ and a†− are the two creation operators associated with the harmonic oscillator.

The structure of (6.2) is very similar to that of (6.1), with the role of the worldsheet

oscillators (α−1, ᾱ−1) of (Z, Z̄) in (6.1) played by the spacetime oscillators (a†+, a
†
−). For

a string wrapping the circle on the cigar the two are closely related, as can be seen by

choosing the gauge θ(σ) = σ.

We see that the states (6.1), which correspond to standard oscillator states of a string

whose wavefunction is spread over the cap of the cigar (see figure 1), have a component (6.2)

that has the same oscillator structure, but is localized at the tip. In the next section

we shall see that this picture remains intact when we turn on angular momentum. Low

energy probes are insensitive to the localized contribution and experience only the oscillator
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(a) (b)

Figure 4. The two components of each normalizable state have in general different localization

properties. For low lying states, the oscillator state contribution (a) is extended over a larger region

than the winding tachyon one (b).

component (6.1). For l = 1 it was shown in [19] that energetic probes are quite sensitive

to (6.2). We expect this to remain the case for l > 1 as well.

Note that in (6.2), like in (6.1), the parameter l takes value in the positive integers. In

particular, the ground state of the harmonic oscillator, which corresponds to l = 0, does not

give rise to a physical state. The reason for that is mysterious from the perspective of section

3, but is easy to understand from the GFZZ correspondence — the dual state (6.1) with

l = 0 is not normalizable. This is an example of a fact mentioned in section 3: at small l, one

expects the winding string description of that section to be subject to significant corrections.

As l increases, the w = 0 contribution to the state undergoes two processes. The zero

mode wavefunction becomes more localized — it is supported in the region φ ≤ 1
Ql

— while

the increasing oscillator level leads to an increase in the size of the string, which goes like√
l, due to the fact that a string at oscillator level l can be viewed as a random walk with

l steps. Eventually, when l becomes of order k this picture breaks down, since the size of

the string becomes comparable to the radius of curvature of the geometry.

The w = 1 contribution to the state also undergoes two processes as l increases.

The zero mode wavefunction in (5.17) spreads to larger φ, φ ≤ 1
Q( k

2
−l)

. The size of the

string again grows, initially like
√
l, which in this language is due to the growth of harmonic

oscillator states with the level. As l continues to increase, one eventually reaches a regime in

which the wound string probes the region in its potential where the harmonic approximation

breaks down, and one is sensitive to the full potential described in section 3. The flattening

of the potential at infinity gives rise to an upper bound on l, and modifies the zero mode

wavefunctions from their harmonic oscillator forms.

As l approaches the top of its range, l ∼ k/2, the size of the winding string state

approaches ∼
√
k. In this region, the semiclassical description of section 3 (and its exact

analog in section 5, given by the vertex operator (5.17)) becomes accurate.
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The w = 0 contribution to the state (6.1) has the following behavior for l ∼ k/2. The

center of mass wavefunction is sharply peaked at small φ — at large φ it goes to zero

rapidly, like exp(−φ/Q). However, the oscillator level l in (5.13) is large in this case, and

the size of the string behaves like
√
k, due to the random walk.

It is interesting that the size of the oscillator state predicted by the random walk

picture is comparable to the size of the winding string with the same value of l predicted

by the analysis of sections 3 − 5. We would like to argue that this is not a coincidence.

The oscillator state (6.1) “knows about” the dual winding string state (5.17). The long

random walk with l steps provides a description of the winding string from the perspective

of the oscillator state. However, that description has large fluctuations, associated with the

random walk. The winding description is better in this regime (l ∼ k/2) in the sense that

it is semiclassical — the string that winds around the cigar is straight, and does not have

large fluctuations. This property is not easy to see from the oscillator state perspective.

One way to summarize the above discussion is by describing the properties of the l’th

normalizable state as viewed by a low energy observer as a function of l. For small l the

good description of this state is as an oscillator state (6.1). Its size is governed by the zero

mode wavefunction; it goes like
√
k/l, thus decreasing with l. At intermediate values of l

the situation is in general complicated, as one needs to take into account both the winding

and momentum components of the normalizable state, and the growth of the size of the

oscillator state with l. When l approaches k/2, i.e. when α in (3.5) is of order one, the

correct long distance description is the winding one, and the size of the state grows with l

in the way described after eq. (3.6).

The above discussion is reminiscent of that of the string/black hole transition in [3, 39–

41], who discussed the question what happens to an excited string state as we increase its

excitation level, eventually reaching masses for which the corresponding black hole is large.

The picture proposed in these papers is that when the excitation level is such that the

corresponding black hole has a horizon of size ls, the description in terms of perturbative

string states with their Hagedorn entropy is replaced by that in terms of classical black

holes and Bekenstein/Hawking entropy. The mechanism driving this transition is quantum

(gs) effects, which make the naively large highly excited perturbative string state shrink

as we approach the correspondence point, beyond which the states start growing again

according to the black hole description.

In our case, we have a similar transition that happens as a function of the oscillator

level l, and like in the case of the string/black hole transition, as we increase l the states first

decrease and then increase in size. Instead of large black holes, here we have long winding

strings, and instead of gs effects that drive the transition there, here it is (non-perturbative)

α′ effects associated with the generalized FZZ correspondence. The reason that we can say

more about the transition in our case than is currently possible in the string/black hole

case is that unlike the gs effects there, the α′ effects are under complete control here.
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7 Generalizations

In this section we discuss some generalizations of the basic idea presented in the previous

sections.

7.1 Generic p (w = 0 vs. w = 1)

In the previous sections we saw that normalizable states on the cigar with zero momentum

around the cigar have two components, which from the perspective of the asymptotic

cylinder have winding zero and one, respectively. In this subsection we show that this is

the case for non-zero momentum around the cigar as well.

A large set of states in the representation D̂−,w=0
j ⊗ ¯̂

D−,w=0
j , which reduce to primaries

with w = 0 and generic momentum p around the cigar, are given by

(J+
−1)

l(J̄+
−1)

l̄|j = 1

2
(l + l̄)− 1;m = m̄ = −(j + 1);w = 0〉 . (7.1)

They correspond to ŜL(2,R)L × ŜL(2,R)R currents acting on operators Φw
j;m,m̄ (with the

corresponding (j;m, m̄;w)); in the Wakimoto variables they take the form

(J+)l(J̄+)l̄Φw=0
j= 1

2
(l+l̄)−1;m=m̄=−(j+1)

∼ βlβ̄ l̄e−
1

2
Q(l+l̄)φ . (7.2)

These reduce on the asymptotic cylinder in figure 1 to

Pl(∂w, · · · )Pl̄(∂̄w̄, · · · )e
i

p√
2k

X
e−

1

2
Q(l+l̄)φ , (7.3)

namely, to

((∂Z)l + . . . )((∂̄Z̄)l̄ + . . . )e
i

p√
2k

X
e−

Q

2
(l+l̄)φ , (7.4)

where

p = l̄ − l (7.5)

is the angular momentum on the cigar, and the “. . . ” in (7.4) stand for 1/k corrections,

which in particular make (7.4) a primary. In the special case p = 0 the above states

reduce to those described in sections 4,5. In particular, (7.1) generalizes (4.8), (7.2) gener-

alizes (5.5), and (7.3)–(7.5) generalize (5.13), (5.16).

The states (7.1) are isomorphic to certain states in the D̂+,w=1

j̃= k
2
−j−2

⊗ ¯̂
D+,w=1

j̃= k
2
−j−2

repre-

sentation with

j + 1 =
1

2
(l + l̄) , (7.6)

concretely, to

|j̃ = k

2
− j − 2; (m, m̄) =

1

2
(k − p, k + p);w = 1〉 , (7.7)

which correspond to the operators (4.11) with the corresponding (j̃;m, m̄;w). On the

asymptotic cylinder of the cigar these reduce to

e−Q(j̃+1)φe
−i

√

2

k
(mX(z)−m̄X(z̄))

, (7.8)
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where

j̃ + 1 =
k − l − l̄

2
, (m, m̄) =

1

2
(k − p, k + p) . (7.9)

They have w = 1 and momentum p around the cigar.

At small φ, near the tip of the cigar, they are described by the following states in the

2d harmonic oscillator

(a†+)
l(a†−)

l̄|0, 0〉 . (7.10)

Comparing (7.10) with (7.4) we see that, just like in the p = 0 case, in the large k limit

the oscillator structures of the diffuse and localized components agree.

7.2 Generic (p,w)

The isomorphism between ŜL(2,R)L × ŜL(2,R)R representations reviewed in section 4 is

a particular case of a more general isomorphism [32], relating

D̂−,w
j ⊗ D̂−,w

j ←→ D̂+,w+1
k
2
−j−2

⊗ D̂+,w+1
k
2
−j−2

. (7.11)

This gives rise, upon reduction to the SL(2,R)/U(1) CFT, to a GFZZ duality between

operators corresponding to states with generic winding and momentum. For w > 0, the

left and right dimensions of such states, ∆ and ∆̄, are of order k. Hence, the only case

for which the GFZZ correspondence affects physics at energies well below k is the duality

between w = 0, 1 described above. The dualities (7.11) with w ≥ 1 play a role at high

energies, and for k of order 1.

7.3 N = 2 superconformal case

As mentioned in section 2, the supersymmetric extension of the bosonic cigar theory gives

rise to an N = 2 SCFT. The N = 2 superconformal symmetry is very useful for organizing

the spectrum of the theory into N = 2 primaries and descendants. The latter dominate

the high energy density of states.

The N = 2 superconformal symmetry also provides additional evidence for the GFZZ

correspondence [31]. All the discrete representations of the underlying SL(2,R) SCFT con-

tain a state which reduces to a BPS state, whose N = 2 character contributes to the elliptic

genus of the supersymmetric cigar theory. This elliptic genus has been studied in the litera-

ture for integer k (see e.g. [13, 14, 42]) and is known including overall normalization (which

can be obtained e.g. from the Witten index). One can then ask whether the BPS states

contribute with coefficient one to the elliptic genus, or two, for the state and its GFZZ dual.

One finds that the answer is one, which implies that the two states are indeed identified.

Once these states are identified in the superconformal SL(2,R)/U(1) theory, this must

also be true for their ancestors in the underlying N = 1 superconformal SL(2,R) CFT.

The latter consists of a bosonic SL(2,R) CFT and three free fermions in the adjoint of

SL(2,R). Thus, the identification of representations necessary for the elliptic genus to

work also implies the identification necessary for the bosonic coset model.9

9The details of the sketch presented in this subsection will appear in [31], in particular, providing a proof

of the GFZZ correspondence (both in the supersymmetric case as well as the bosonic case).
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8 Summary and discussion

In this note we showed that standard normalizable states in string theory on the cigar (2.1)

that are smeared over the cap (the region with curvature ∼ 1/k) in figure 1, have a compo-

nent that is localized a stringy distance from the tip. Despite the fact that their target-space

description is so different, in the CFT the two components cannot be separated. This sug-

gests that the information that from one perspective is smeared over the whole cap, from

the other is localized near the tip. Reference [19] suggests that low-energy probes are sen-

sitive only to the standard stringy modes while high-energy modes are sensitive also to the

modes that are localized at the tip.

It is natural to wonder what might be the implications of our results for Lorentzian

black holes. The Wick rotation takes the cap of the cigar to the black hole atmosphere

(the region outside the horizon where the potential is attractive towards the horizon), and

the tip to the black hole horizon. This suggests that, at least naively, in string theory

the information in the black hole atmosphere is stored also at the black hole horizon

(and possibly in the interior, that is absent in the Euclidean geometry). To make this

exciting possibility precise one needs to understand the analog of the generalized FZZ

correspondence for the Lorentzian black hole.

Note added. After the appearance of this work, the conjecture concerning the GFZZ

correspondence was tested at the level of interactions in [43]; this provides a non-trivial

check of the correspondence. Moreover, the degeneracy of states in the cigar CFT was

inspected from the partition function in [44]; the multiplicities obtained are in harmony

with the GFZZ correspondence.
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