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to the ordinary Maxwell one, has been studied in the probe limit. We investigated an-

alytically by the Sturm-Liouville variational method, the holographic s-wave and p-wave

models in the background of the AdS soliton as well as five-dimensional AdS black hole

spacetimes. The two models of p-wave superfluids were considered, the so called SU(2)

and the Maxwell-vector. Special attention has been paid to the dependence of the critical

chemical potential and critical transition temperature on the velocity of the condensate and

dark matter parameters. The current J in holographic three-dimensional superconductor

studied here, shows the linear dependence on Tc−T for both s and p-wave symmetry. This

is in a significant contrast with the previously obtained results for two-dimensional super-

conductors, which reveal the (T − Tc)3/2 temperature dependence. The coupling constant

α, as well as, chemical potential µD and the velocity SD of the dark matter, affect the

critical chemical potential of the p-wave holographic SU(2) system. On the other hand,

α, dark matter velocity SD and density ρD determine the actual value of the transition

temperature of the same superconductor/superfluid set up. However, the dark matter does

not affect the value of the current.
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1 Introduction

The application of gauge/gravity duality [1]–[4] to study experimentally relevant systems

has resulted in number of important findings [5, 6]. Among the most intriguing issues is the

universal ratio between the viscosity and entropy density in the strongly interacting system,

which has helped to understand the viscosity of the quark-gluon plasma. Other equally

important findings are related to strongly coupled condensed matter systems and their

transport properties. They include analysis of holographic superconductors, superfluids

and their behavior under special conditions. Based on the AdS/CFT correspondence the

description of holographic s-wave superconductor was presented [7]–[11] and soon after

the method was adopted to take into account p [7]–[18] and d-wave superconductors [19]–

[22]. In [23] a generalization of the standard holographic p-wave superconductor with

two interacting vector order parameters was investigated. The model was proposed as a

holographic effective theory of a strongly coupled ferromagnetic superconductor.
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The aforementioned studies were generalized in many ways, e.g., back-reaction of the

order parameter on spacetime metric was considered enabling the second order phase tran-

sition to be replaced by the first order one [17], the gravitational background of AdS

soliton [24] was proposed to study holographic insulator/superconductor transition at zero

temperature [25]–[27]. Further, the studies concerning Gauss-Bonnet gravity, non-linear

electrodynamics and Weyl corrections on p-wave holographic phase transitions were elabo-

rated [28]–[35], On the other hand, holographic vortices and droplets influenced by magnetic

field were discussed in [36]–[40].

The early applications of the gravity methods to study holographic superconductors

described by the scalar field in the appropriate gravity background have soon been extended

to other symmetries and systems with super-current.

Properties of current carrying superconductors have recently been studied by means

of AdS/CFT correspondence with the hope to unveil the novel strong coupling properties

of superconductors with a constant velocity or super-current [8, 10, 41–46, 48, 50–54]. In

the gauge/gravity duality the super-current is introduced by the spatial component of the

gauge field depending on the radial direction. Close to the boundary of the spacetime

the constant part is interpreted as superfluid velocity, while the component in front of the

next leading term (∝ 1/r2) is related to the current in the dual field theory. Continuation

of the work [10], constitutes the paper [41] in which the authors consider superfluid with

superfluid current flowing through the system. It was established that there was a first order

phase transition between superfluid and the normal phase in the case when one changed

the superfluid current. At high temperatures the phase transition became a second order.

In [42], in the background of four-dimensional AdS planar black hole, the possibility of a

DC-current existence was considered. For the purpose in question, both time and spatial

components of Maxwell potential were turned on. The critical point, where the second

order superconducting phase transition changed to a first one, was envisaged.

It was shown [43] that in the strongly backreacted regime at low value of the charge,

the phase transition remains of the second order one. The direct studies of superconducting

film, reveal that a DC current affects the superconducting phase transition, making it first

order one for any non-vanishing value of the current [44]. Other studies of p and p + ip-

wave holographic superconductors with fixed super-current reveal that close to the critical

temperature, the critical current is proportional to (Tc− T )3/2 and the phase transition in

the presence of it is a first order one [45]. One remarks that studying three-dimensional

current carrying holographic superconductors, we have obtained the linear dependence of

the current on (Tc − T ) which seems to agree with some experimental measurements, as

discussed in the last section of the paper.

The studies of one-dimensional s-wave holographic superconductor with a super-

current caused by non-zero Ax component of the Maxwell potential, confirmed the pre-

viously obtained results [46]. Further, the studies of holographic superfluids in the probe

limit, for spacetime dimensions equal to three and four and various values of scalar field

masses were conducted in [47]. It turned out that Tc decreases when the super-current in-

creases and the order of the phase transition changes from second to first. For sufficiently

large value of the mass it remains second order phase transition, independently how high

the superfluid velocity is.
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Numerical investigations of a holographic p-wave superfluid in four and five dimen-

sional AdS space-time, in the model with complex Maxwell vector field, reveal that for

the condensate with fixed superfluid velocity, the results are similar to s-wave case [48].

Moreover, it was observed that the increase of the superfluid velocity causes the inversion

from the second to the first order phase transition. The larger m2 was, the larger trans-

lating superfluid velocity one received. On the other hand, numerical studies of p-wave

Maxwell vector superfluid model in the background of four-dimensional Lifshitz black hole

were presented in [49]. Investigations in AdS black hole background of p-wave superfluids

with back-reaction, were conducted in [50]. Without back-reaction, the phase transition to

the superfluid state is a second order. On the contrary, back-reaction reveals that one can

find a critical value of the parameter which describes the ratio of five-dimensional grav-

itational constant to Yang-Mills coupling, when the phase transition is a first order one.

The question of stability of holographic superfluids with finite velocity, using quasi-normal

mode spectrum was treated in [51, 52].

Analytical studies of s and p-wave holographic superfluids, in the AdS solitonic back-

ground, by means of Sturm-Liouville method, were presented in [53]. It was observed

that in the spacetime under consideration the holographic superfluid phase transition is

always second-order one. One of our aims is to analyze the holographic superconductor at

finite temperatures and calculate T dependence of the super-current in an analytic way.

The results are compared to recent experimental work on temperature dependence of the

super-current.

The other goal of the paper is related to the tantalizing and long-standing question

in the contemporary astrophysics and particle physics which is the problem of dark mat-

ter in our Universe. The latest astronomical observations reveals that almost 24 percent

of the matter filling Universe constitutes dark matter. Nowadays, cosmological measure-

ments [55]–[56] enable us to determine the abundance of dark matter with exquisite pre-

cision. Both observations and computer simulations broaden our knowledge about dark

matter distribution in galactic halos. But still its nature and experimental detection re-

main a mystery.

AdS/CMT (condensed matter theory) duality is a method how to treat condensed

matter problems by means of the gravity theory. The duality is a sort of calculus which

require the AdS spacetime for the mathematics to work in a prescribed way. However,

the content of the gravity theory defines the conditions under which the condensed matter

problem or phenomenon is studied. For example, the presence of the black soliton in the

bulk means that the boundary theory is analyzed at zero temperature, while the presence

of the black hole is connected with finite temperature effects in the dual theory. In the

same spirit the composition of the matter on the gravity side gives information about its

influence on the studied phenomenon. This is the general conviction. Based on it we

are exploring here the effect of the dark matter on the properties of superconductors. If

the duality really has something to say about real life systems, than the hope is that the

calculated effects may one day be discovered in the laboratory.

Thus the main question of astrophysical significance posed in our research is the request

how dark matter (present in our Universe) modifies the properties of superfluids studied
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here in the laboratories. Perhaps one can find some effects which can guide the future ex-

periments enabling the detection of the aforementioned elusive component of the Universe.

Studies of the influence of dark matter on various condensed matter systems [57]–[63] are

timely and of great interest in view of proposing new ways [64]–[72] to detect this hidden

component of the matter in our Universe.

We shall construct a holographic superfluid model with a super-flow by allowing for

the t-component and additional, spatial component of the gauge field. Moreover, except

of Maxwell U(1) field we consider the other gauge field representing the dark matter,

coupled to the ordinary one [73]. The model of dark matter discussed here is supported by

numerous astrophysical observations [74]–[80] and other experimental data related to the

muon anomalous magnetic moment [81], as well as, experimental searches for the dark pho-

ton [82]–[86]. In the paper we discuss three models of the superfluids, i.e., s-wave, p-wave

Maxwell vector model and SU(2) one in the gravitational background of the AdS soliton.

The paper is organized as follows. In section 2 we describe s-wave model of holographic

superfluid at zero temperature in the space-time of AdS soliton, paying attention to the

behavior of the superfluid velocity near the critical point, the relations of condensate op-

erators and charge to the difference between chemical potential and its critical value. We

also study the behavior of the spatial component of Maxwell potential near the critical

point. In section 3 we describe two models of p-wave holographic superfluids with dark

matter sector. Because of the fact that equations of motion for the Maxwell vector model

are similar to the s-wave case, we restrict our attention to the SU(2) model. As in the pre-

vious model we analyze critical chemical potential, charge density, the behavior of spatial

component of Maxwell field and the influence of the dark matter on them. Section 5 is

devoted to the studies of s and p-wave superfluids in the background of five-dimensional

AdS black hole, i.e., we shall investigate properties of the aforementioned superfluids at

a certain temperature due to the presence of black hole in the bulk. We summarize and

conclude our investigations in section 6.

2 Holographic s-wave superfluid model in soliton background

In this section we introduce a set up for zero temperature s-wave holographic superfluid.

Its action is given by

S =

∫
d5x
√
−g

(
R− 2Λ

)
+ Sm, (2.1)

where Λ = −6/L2, L stands for the radius of the AdS space-time, while the action for the

matter fields is taken as

Sm =

∫
d5x
√
−g

(
− 1

4
FµνF

µν − 1

4
BµνB

µν − α

4
FµνB

µν + (2.2)

− (∇µψ − iqAµ)†(∇µψ − iqAµ) + V (ψ)

)
,

where the potential is of the form V (ψ) = m2ψ2. Fµν = 2∇[µAν] denotes the strength

tensor for the ordinary Maxwell field, whereas Bµν = 2∇[µBν] is responsible for the other
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U(1)-gauge field which represents the dark matter sector. α stands for the coupling constant

between both gauge fields, m, q is mass and charge of the scalar field ψ, respectively. This

model was widely used in the probe limit studies, as well as, backreaction effects were

taken into account in order to envisage the influence of the dark matter on the properties

of holographic s and p-wave superconductors and vortices [57]–[63].

Assuming that ψ is real and it constitutes a function of r-coordinate, one has the

following equations of motion:

∇µFµν +
α

2
∇µBµν − 2 q2 ψ2 Aν = 0, (2.3)

∇µBµν +
α

2
∇µFµν = 0, (2.4)

∇µ∇µψ − q2 AµA
µ ψ − 1

2

∂V

∂ψ
= 0. (2.5)

The first two equations can be combined to the relation of the form

α̃ ∇µFµν − 2 q2 ψ2 Aν = 0, (2.6)

where we have denoted α̃ = 1− 1/4 α2.

The gravitational background of gauge/gravity correspondence is described by the line

element of the five-dimensional AdS soliton spacetime. It implies

ds2 = −r2 dt2 + L2 dr2

f(r)
+ f(r) dφ2 + r2 (dx2 + dy2), (2.7)

where f(r) = r2 − r4
0/r

2, r0 denotes the tip of the line element which constitutes a coni-

cal singularity of the considered solution. In what follows, without loss of generality, one

sets the radius of the AdS space-time L equal to one. The AdS solitonic solution may be

achieved from the five-dimensional Schwarzschild-AdS black hole spacetime by implement-

ing two Wick rotations. The Scherk-Schwarz transformation of φ-coordinate in the form

φ ∼ φ+π/r0, enables to get rid of this inconvenient feature of the gravity background. The

temperature of the aforementioned background equals to zero. In the AdS/CMT correspon-

dence, the gravitation background in question provides a description of a three-dimensional

field theory with a mass gap, resembling an insulator in condensed matter physics.

In what follows we assume that the components of the Maxwell gauge field are given

by At(r) = ϕ(r) and Aφ(r). On this account, the equations of motion are provided by

ψ′′ +

(
f ′

f
+

3

r

)
ψ′ − 1

f

(
m2 +

q2 A2
φ

f
− q2 φ2

r2

)
ψ = 0, (2.8)

ϕ′′ +

(
f ′

f
+

1

r

)
ϕ′ − 2 q2 ψ2

α̃ f
ϕ = 0, (2.9)

A′′φ +
3

r
A′φ −

2 q2 ψ2

α̃ f
Aφ = 0, (2.10)

where the prime denotes derivative with respect to r-coordinate. Let us note that in the

absence of dark matter ( α = 0 and α̃ = 1) the above equations reduce to those describing
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the s-wave superconductor in a model with no dark matter sector [53]. Moreover, the

existence of the condensate ψ2 6= 0 couples otherwise independent components of the

gauge field At(r) and Aφ(r). The coupling among condensing ψ and the aforementioned

components of gauge field, may cause the black object (black soliton or black hole) to be

unstable to forming scalar hair. The effective mass of scalar field ψ is given by m2
eff =

m2 +q2gttA2
t +q2gφφA2

φ (see the equation (2.8)). The term proportional to gtt may become

sufficiently negative near the event horizon to destabilize the scalar field, as explained [7, 12]

for a model with Aφ = 0. The existence of the dark matter sector modifies the underlying

fields, effectively resulting in the replacement of ψ(r) by ψ(r)/α̃, but does not effect the

physics of the transition. This is due to our minimal coupling between visible and dark

matter sectors. It should be remarked that for ψ ≡ 0 there is no coupling among various

fields and both components of the gauge field become mutually independent.

In order to solve the above equations one should impose the adequate boundary con-

ditions on the tip of the AdS soliton and at infinity. Let us remark that the form of

equation (2.6) is such that the influence of the dark matter sector shows up by appearing

α-coupling constant in the relations governing the ordinary Maxwell field. Nevertheless,

for the completeness of our considerations we take into account the required behavior of

dark matter fields. The fields in the considered theory are supposed to behave as

ψ = ψ0 + ψ1(r − r0) + ψ2(r − r0)2 + . . . , (2.11)

ϕ = ϕ(0) + ϕ(1)(r − r0) + ϕ(2)(r − r0)2 + . . . , (2.12)

Aφ = Aφ(0) +Aφ(1)(r − r0) +Aφ(2)(r − r0)2 + . . . , (2.13)

Bt = Bt(0) +B(1)(r − r0) +Bt(2)(r − r0)2 + . . . , (2.14)

Bφ = Bφ(0) +Bφ(1)(r − r0) +Bφ(2)(r − r0)2 + . . . , (2.15)

where ψa, ϕ(a), Aφ(a) Bt(a), Bφ(a), for a = 0, 1, 2, . . . are the appropriate integration con-

stants. In order to obtain the finiteness of the above quantities the Neumann-like boundary

conditions are required to be satisfied. Let us remark that the Neumann-boundary con-

ditions were widely treated, e.g., in [87] where the dynamical gauge fields subject to the

aforementioned conditions on the AdS boundary were implemented.

At the tip of the the considered AdS soliton, one requires that φ, Bt will have constant

non-zero value (contrary to the behavior at the black hole event horizon, where the quan-

tities in question are equal to zero). On the other hand, at the asymptotic AdS boundary,

when r →∞, one has to satisfy the following relations:

ψ =
ψ−
r∆−

+
ψ+

r∆+
, ϕ = µ− ρ

r2
, Aφ = Sφ −

Jφ
r2
, (2.16)

where ∆± = 2 ±
√

4 +m2, µ and Sφ stand for the chemical potential and superfluid

velocity, respectively. ρ is the charge density, while Jφ gives the current in the dual field

theory. Both quantities ψ− and ψ+ multiply normalizable modes of the scalar field equation.

According to the AdS/CFT correspondence, they constitute the vacuum expectation values

ψ− = 〈O−〉 and ψ+ = 〈O+〉 of the operator dual to the scalar field. One can impose the

boundary conditions that either ψ− or ψ+ vanish. As was revealed in [9] imposing the
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boundary conditions in which ψ− and ψ+ are nonzero caused the asymptotic AdS theory

unstable [88–90]. Moreover, there are two alternative quantizations for the scalar field in

AdS5, i.e., the operators are normalizable [91] if 0 <
√
m2 + 4 < 1, which implies that

−3 > m2 > −4. In the following we shall use ψ+ 6= 0 and let ψ− = 0.

As a first preparatory step, let us rewrite the equations (2.8)–(2.10) in the new coor-

dinates z = r0/r. They can be rewritten in the following form

ψ′′(z) +

(
f ′(z)

f(z)
− 1

z

)
ψ′(z)− 1

f(z)

(
m2

z4
+

q2 A2
φ(z)

r2
0 f(z) z4

− q2 φ2(z)

r2
0 z

2

)
ψ(z) = 0, (2.17)

ϕ′′(z) +

(
f ′(z)

f(z)
+

1

z

)
ϕ′(z)− 2 q2 ψ2(z)

r2
0 α̃ f(z) z4

ϕ(z) = 0, (2.18)

A′′φ(z)− 1

z
A′φ(z)− 2 q2 ψ2(z)

r2
0 α̃ f(z) z4

Aφ(z) = 0, (2.19)

where f(z) = (1− z4)/z2.

In the next sections we solve these equations analytically close to the transition

point [90] and obtain the critical value of the chemical potential µc, the behavior of the

order parameter and Aφ component of the Maxwell field.

2.1 Critical chemical potential for s-wave superfluid

On the gravity side, the transition we are discussing here results from the addition of the

chemical potential µ to the soliton. The resulting solution is unstable towards scalar hair

for µ bigger than the critical one. The resulting system with a mass gap is on the field

theory side interpreted as an insulator. At zero temperature and for µ > µc the system

undergoes phase transition to the superfluid phase.

At the critical potential µc, the order parameter ψ ∼ 0 and the equation of motion for

ϕ-gauge field implies

ϕ′′(z) +

(
1

z
+
f ′

f

)
ϕ′(z) ' 0, (2.20)

then ϕ = µ+c1 log(1+z2)/(1−z2). The boundary conditions at the tip of the soliton require

that c1 = 0. It leads to the condition that ϕ(r) has the constant value µ, when the order

parameter tends to zero. Under the same conditions the Aφ-component fulfills the equation

A′′φ(z)− 1

z
A′φ(z) ' 0, (2.21)

with a solution Aφ = Sφ(1− z2). It fulfills the boundary conditions Aφ(1) = 0 as required

in [53]. When µ→ µc one gets the following equation for ψ

ψ′′(z) +

(
f ′

f
− 1

z

)
ψ′(z)− 1

f

(
m2

z4
+
q2 S2

φ(1− z2)2

r2
0 f z

4
− q2 µ2

r2
0 z

2

)
ψ(z) = 0. (2.22)

The boundary conditions for the equation (2.22) are given by the relations (2.16). In

order to get information valid close to the boundary (z → 0), where the field theory lives,

we suppose that ψ can be approximated by

ψ ∼ 〈O+〉 z∆+ F (z), (2.23)
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where ∆+ = 2 +
√

4 +m2. For the function F (z) we impose the standard boundary

conditions F (0) = 1, F ′(0) = 0 and for numerical illustration take F (z) = 1 − az2, with

a being a variational parameter.

In principle, the are two slightly different ways to treat the problem in question. Both

rely on the Sturm-Liouville variational method [90]. In the first one, used in [53], one

introduces a dimensionless parameter

k =
Sφ
µc
, (2.24)

and rewrites the relation (2.22) as

F ′′(z) + F ′(z)

[
2∆i

z
+

(
f ′

f
− 1

z

)]
(2.25)

+F (z)

[
∆i(∆i − 1)

z2
+

(
f ′

f
− 1

z

)
∆i

z
− 1

z2f

(
m2 + (1− z2)2q2S2

φ/r
2
0

z2
− µ2

cq
2

r2
0

)]
= 0.

The above equation can easily be converted into standard Sturm-Liouville one

(p(z) F ′(z))′ − q(z) F (z) + λ2 r(z) F (z) = 0, (2.26)

where we have denoted

p(z) = z2∆i−1 f(z), (2.27)

q(z) = −z2∆i−1 f(z)

[
∆i(∆i − 1)

z2
+

(
f ′

f
− 1

z

)
∆i

z
− m2

z4 f

]
, (2.28)

r(z) = z2∆i−3

(
1− (1− z2)2

z2
k2

)
. (2.29)

The Sturm-Liouville eigenvalue problem enables us to study a variational determination

of the lowest eigenvalue λ2 = µ2 q2/r2
0. Varying the following functional we estimate the

lowest value of the aforementioned spectral parameter

λ2 =
µ2 q2

r2
0

=

∫ 1
0 dz [F ′(z)2 p(z) + q(z) F 2(z)]∫ 1

0 dz r(z) F 2(z)
. (2.30)

The above Sturm-Liouville problem is subject to the divergent behavior for large values of

k2, due to the structure of r(z) function in the denominator.

To avoid such unphysical divergences we rewrite the Sturm-Liouville equation (2.26)

with the following functions p̃(z), q̃(z) and r̃(z) and the new parameter K = q Sφ/r0.

They yield

p̃(z) = z2∆i−1 f(z), (2.31)

q̃(z) = −z2∆i−1 f(z)

[
∆i(∆i − 1)

z2
+

(
f ′

f
− 1

z

)
∆i

z
− m2 +K2(1− z2)2

z4 f

]
, (2.32)

r̃(z) = z2∆i−3. (2.33)
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Figure 1. (left panel) The dependence of the critical chemical potential on the superflow parameter

Sφ. We plot λ = qµ/r0 vs. K = qSφ/r0 (green, dashed curves) or the same spectral parameter vs.

k = Sφ/µ (red, solid curves), for m2 equal to −9/4, − 13/4, − 15/4, respectively. One observes

quadratic increase of λ with k and K, albeit on different scales. (right panel) The dependence of

the super-current ∆Jφ = (Jφ − Sφ)/(q2 Sφ 〈Oi〉2) in a s-wave superconductor on the velocity Sφ,

for a few values of the parameter −4 = m2
BF < m2 ≤ 0 (curves with symbols). Curves without

symbols correspond to linear approximations for low values of Sφ.

Again, the Sturm-Liouville eigenvalue problem enables us to determine Λ2 = µ2
c q

2/r2
0 as a

spectral parameter and estimate its minimum eigenvalue by the variation of the functional

given by

Λ2 =
µ2
c q

2

r2
0

=

∫ 1
0 dz [F ′(z)2 p̃(z) + q̃(z) F 2(z)]∫ 1

0 dz r̃(z) F 2(z)
. (2.34)

This form of equation is free of the unphysical divergences for large value of k. It has to

be noted that, while k formally is a function of µc the parameter K does not depend on µ.

It enters the function q̃(z) and leads to continuous increase of λ with K.

For numerical purposes we have set q = 1 and r0 = 1. Figure 1 (left panel) illustrates

the dependence on the critical value of the chemical potential in both cases, or more

precisely, λ (Λ) as a function of k (K). We show both dependencies on the same plot, but

one has to take into account that the units of k are different from K. This means that the

actual values of Sφ are much bigger if parametrized by k. For both ways of calculations,

the parameter λ(Λ) increases in an approximately quadratic manner with Sφ, starting with

the same value for Sφ = 0. However, this dependence seems to be much slower if Sφ is

measured in units of the critical potential µc. This is related to the fact that µc is generally

bigger than 1 and the actual superflow values differ. Needless to say, the numerical results

for λ exactly agree with those reported in [53], in the appropriate cases.

2.2 Critical phenomena

In this subsection we shall concentrate on the relation connecting charge density and the

chemical potential. Because of the fact that the equations describing the problem in ques-

tion are the same as studied in [59], we refer the reader to this reference for the details.
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Among all, one finds that the order parameter 〈Oi〉 depends on the chemical potential

as

〈Oi〉 =

√
α̃ (µ− µc)
2 µc ξ(0)

. (2.35)

It shows that the critical phenomenon represents the second order phase transition for which

the exponent has the mean field value 1/2. The final result describing the dependence of

ρ on the chemical potential µ reads

ρ =
µ− µc
2 ξ(0)

q2

∫ 1

0
dz z2∆i−3 F 2(z). (2.36)

As in [58] the charge density for s-wave holographic superfluid is proportional to the dif-

ference of (µ− µc) and is independent of α-coupling constant of dark matter sector.

2.3 Behavior of Aφ near critical point

To extract the relation between the super-current Jφ and velocity Sφ one needs to consider

the asymptotic behavior of Aφ. Thus we investigate here the properties of Aφ-component of

Maxwell field near the critical point. The inspection of the equation of motion (2.19) reveals

A′′φ −
1

z
A′φ −

2 q2 z2∆i 〈Oi〉2 r2
0 F

2(z)

α̃ f(z) z4
Aφ = 0, (2.37)

Then, expanding Aφ near the critical point in series, implies

Aφ ' Sφ(1− z2) + 〈Oi〉2
[
κ(0) + κ′(0) z +

1

2
κ′′(0) z2 + . . .

]
. (2.38)

The same procedure as in the preceding section implemented to Aφ, enables us to find

that for κ(z) up to 2-order in 〈Oi〉, we get

κ′′(z)− 1

z
κ(z)′ ' 2 q2

r2
0α̃ f(z)

Sφ (1− z2) z2∆i−4 F 2(z). (2.39)

In the next step we find that

κ′′(0) =
κ′(z)

z
|z→0= −

2 q2 Sφ
r2

0

∫ 1

0
dz

(1− z2)

α̃ f(z)
z2∆i−5 F 2(z), (2.40)

where we have used the fact that inspection of the z-order terms reveals that κ′(0) = 0.

All the above help us to determine that

Aφ = Sφ(1− z2)−
q2 Sφ 〈Oi〉2

r2
0α̃

z2

∫ 1

0
dx

(1− x2)

f(x)
x2∆i−5 F 2(x). (2.41)

The obtained relation is in accord with our boundary condition demand that Aφ(1) = 0,

at the critical point. The Aφ is α-coupling dependent. The bigger α one considers, the

smaller value of the spatial component of Maxwell field we gain. Thus, the existence of dark
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matter sector diminishes the value of Aφ, causing the increase of the superfluid current Jφ.

Using the asymptotic behavior of Aφ as given in (2.16), the current Jφ is provided by

Jφ = Sφ +
q2 Sφ 〈Oi〉2

r2
0 α̃

∫ 1

0
dx

(1− x2)

f(x)
x2∆i−5 F 2(x). (2.42)

The above equation shows that the current Jφ is linearly related to the velocity Sφ. Small

deviations are expected for the dependence of the integral on Sφ. In the right panel of

figure 1, the dependence of ∆Jφ = (Jφ − Sφ)/(q2 Sφ 〈Oi〉2) on Sφ is shown for a s-wave

superconductor and for a few values of the parameter m2
BF < m2 ≤ 0 and the coupling

to the dark matter α = 0. Only the slight deviation from the linear dependence can be

observed. It is traced back to the neglecting of backreaction effects. Due to independence

of 〈Oi〉2/α̃ on α one notes that Jφ does not depend on dark matter.

3 Holographic p-wave superfluid model in soliton background

3.1 Vector model of p-wave superfluid

In this subsection we shall analyze the so-called Maxwell vector model of p-wave superflu-

ids [29] with dark matter sector. Its action is similar to the action appearing in quantum

electrodynamical ρ-meson description [92].

The gravitational part of the model in question is the same as before, whereas the

matter action is given by

Sm =

∫ √
−g d5x

(
− 1

4
FµνF

µν − 1

4
BµνB

µν − α

4
BµνF

µν (3.1)

−1

2
ρ†µν ρ

µν − m2 ρ†µ ρ
µ + i q γ0 ρµ ρ

†
ν F

µν

)
,

where ρµ is a complex vector field with mass m and the charge q. The quantity ρµν is defined

by means of the co-variant derivative Dµ = ∇µ−iqAµ in the form ρµν = Dµρν−Dνρµ. The

last term in equation (3.1) is devoted to the magnetic moment of the vector field ρµ. In the

model under consideration, a charged U(1) vector field is equivalent on the AdS/CFT side

to an operator carrying the same charge under the symmetry in question. On the other

hand, a vacuum expectation value of this operator is being subject to the spontaneous

U(1) symmetry breaking. The condensate of the dual operator leads to the U(1) symmetry

breaking. Due to vector character of the field, the rotational symmetry is broken by

choosing a specific spatial direction. Therefore one can conclude that the vector field may

be regarded as an order parameter and the model may describe p-wave superfluids.

We suppose that the vector field is real with only one component and the other gauge

fields are chosen as

ρα dx
α = ρx dx, Aµ dx

µ = ϕ(r) dt+Aφ(r) dφ, Bν dx
ν = η(r) dt+ ξ(r) dφ. (3.2)

The close inspection of the equations of motion for the underlying theory with dark matter

sector and with the real components of the vector field, gives us the same description as the
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s-wave model studied before, when we exchange ψ(r) (which acts as an order parameter

in s-wave case) for the ρx-component of the vector field. The same situation has been

encountered earlier in the description of p-wave superconductors in [60]. Therefore we

shall not discuss this model and concentrate on the other holographic superfluid p-wave

model, the SU(2) one.

3.2 SU(2) Yang-Mills p-wave holographic superfluid model with dark matter

sector

This section is devoted to the basic features of the SU(2) Yang-Mills holographic p-wave

superfluid model with the dark matter sector. The action for the matter field is given by

Sm =

∫ √
−g d5x

(
− 1

4
Fµν

(a)Fµν(a) − 1

4
Bµν

(a)Bµν(a) − α

4
Bµν

(a)Fµν(a)

)
, (3.3)

where Fµν
(a) and Bµν

(a) are two SU(2) Yang-Mills field strengths of the form Fµν
(a) =

∇µA(a)
ν −∇νA(a)

µ + εabc A
(b)
µ A

(c)
ν . The totally antisymmetric tensor is set as ε123 = 1. The

components of the gauge fields are bounded with the three generators τ of the SU(2) algebra

by the relations A = A
(a)
β τa dxβ , where [τa, τ b] = εabc τ c. As before, the parameter α

describes the coupling between ordinary and dark matter U(1)-gauge fields.

The equations of motion for Bµν are provided by

∇µBµν(a) +
α

2
∇µFµν(a) + εabc Bµ

(b) Bµν(c) +
α

2
εabc Bµ

(b) Fµν(c) = 0. (3.4)

and for Fµν by

∇µFµν(a) +
α

2
∇µBµν(a) + εabc Aµ

(b) Fµν(c) +
α

2
εabc Aµ

(b) Bµν(c) = 0. (3.5)

In order to simplify the above equations we multiply relation (3.4) by α/2 and extract the

term α
2∇µB

µν(a). The second term in the equation (3.5) is replaced by the aforementioned

outcome. The final result may be written as

α̃ ∇µFµν(a) − α

2
εabc Bµ

(b) Bµν(c) − α2

4
εabc Bµ

(b) Fµν(c) (3.6)

+εabc Aµ
(b) Fµν(c) +

α

2
εabc Aµ

(b) Bµν(c) = 0,

where α̃ = 1− α2

4 .

Both Aµ
(b) and Bµ

(b) fields, are dual to some current operators in the four-dimensional

boundary field theory. We choose the following components of the underlying gauge fields

A = ϕ(r) τ3 dt+Aφ(r) τ3 dφ+ w(r) τ1 dx, (3.7)

B = η(r) τ3 dt+ ξ(r) τ3 dφ. (3.8)

In the above relations the U(1) subgroups of SU(2) group generated by τ3 are identified with

the electromagnetic U(1)-gauge field (ϕ(r)) and the other U(1) group connected with the

dark matter sector field (η(r)) coupled to the Maxwell one. The gauge boson field (w(r))
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having the nonzero component along x-direction is charged under A
(3)
t = ϕ(r). According

to the AdS/CFT dictionary, φ(r) is dual to the chemical potential on the boundary, whereas

w(r) is dual to x-component of a charged vector operator. The condensation of w(r) field

will spontaneously break the U(1) symmetry and is subject to the superconducting phase

transition. It breaks the rotational symmetry by making the x-direction a special one

and inclines the phase transition. The transition in question is interpreted as a p-wave

superconducting phase transition on the boundary. As far as the U(1)-gauge field related

to the dark matter sector is concerned, it has the component B
(3)
t dual to a current operator

on the boundary. One can remark that the choice described by the relation (3.7) is the

only consistent choice of the gauge field components allowing the analytic treatment of the

problem [60].

The direct calculations reveal that the x(1), ϕ(3) and t(3) components of the equa-

tion (3.4) are given as follows

α

2
∇µFµx(1) +

α

2

(
ε132 Bt

(3) F tx(2) + ε132 Bϕ
(3) F φx(2)

)
= 0, (3.9)

∇µBµφ(3) +
α

2
∇νF νφ(3) = 0, (3.10)

∇µBµt(3) +
α

2
∇νF νt(3) = 0, (3.11)

while the same components of the equation (3.5) yield

∇µFµx(1) + ε132 Aφ
(3) F φx(2) + ε132 At

(3) F tx(2) = 0, (3.12)

∇νF νφ(3) +
α

2
∇νBνφ(3) + ε312 Ax

(1) F xt(2) = 0, (3.13)

∇νF νt(3) +
α

2
∇νBνt(3) + ε312 Ax

(1) Fµt(2) = 0, (3.14)

and the main relation (3.6) reduces to the following:

α̃ ∇µFµx(1) − α2

4
ε1bc Bµ

(b) Fµx(c) + ε1bc Aµ
(b) Fµx(c) = 0, (3.15)

α̃ ∇µFµφ(3) + ε3bc Aµ
(b) Fµφ(c) = 0, (3.16)

α̃ ∇µFµt(3) + ε3bc Aµ
(b) Fµt(c) = 0. (3.17)

In what follows, we rewrite the above general equations for the adequate components of Aµ
and Bµ gauge fields, given by the relations (3.7) and (3.8), discuss the appropriate boundary

conditions, the asymptotic behavior and the relations between them in the superconducting

and normal states.

3.2.1 Critical chemical potentials

As in s-wave case we shall consider the gravitational background of five-dimensional AdS

soliton characterized by the line element (2.7)

ds2 = −r2 dt2 + L2 dr2

f(r)
+ f(r) dφ2 + r2 (dx2 + dy2), (3.18)
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where f(r) = r2 − r4
0/r

2. Let us recall that r0 denotes the tip of the line element which

constitutes a conical singularity of the considered solution. Solitonic background means

that we shall consider zero temperature model of p-wave superfluid. In order to solve the

underlying equations of motion for the p-wave holographic superfluid model, one imposes

the adequate Neuman-like boundary conditions. At the tip one has the same boundary

conditions as in the s-wave superfluid problem

w = w0 + w1 (r − r0) + w2 (r − r0)2 + . . . , (3.19)

Aφ = Aφ(0) +Aφ(1)(r − r0)2 + . . . , (3.20)

ϕ = ϕ(0) + ϕ(1) (r − r0) + ϕ(2) (r − r0)2 + . . . , (3.21)

η = η(0) + η(1)(r − r0) + η(2)(r − r0)2 + . . . , (3.22)

ξ = ξ(0) + ξ(1)(r − r0) + ξ(2)(r − r0)2 + . . . , (3.23)

where wj Aφ(j), ϕ(j), η(j), ξ(j), for j = 0, 1, 2, . . . are constants. One encumbers the

Neumann-like boundary condition to obtain every physical quantity finite [25]. Contrary,

near the boundary where r → ∞, we have the different asymptotic behavior (comparing

to the s-wave case). The asymptotic solutions read

w → w0 +
w2

r2
, ϕ→ µ− ρ

r2
, Aφ → Sφ −

Jφ
r2
, (3.24)

η → µD −
ρD
r2
, Bφ → SD −

JD
r2
, (3.25)

where µ, µD and ρ, ρD are interpreted as the chemical potential and the charge density

in the dual theory for ordinary and dark matter, respectively. Similarly, Sφ, Jφ, SD and

JD are interpreted as velocity and current of ordinary matter superfluid and dark matter

sector quantities. Consequently with the requirements of the AdS/CFT dictionary, w0 and

w2 have interpretations as a source and the expectation value of the dual operator. In order

to gain the normalizable solution, one puts w0 = 0 as we are interested in the spontaneous

transitions to the condensed state.

In z-coordinates (with r0 = 1) the equations in question yield

w′′(z) +

(
f ′(z)

f(z)
+

1

z

)
w′(z) +

ϕ(z)[ϕ(z)− α2

4 η(z)]

α̃ f(z) z2
w(z)+ (3.26)

−
Aφ(z)[Aφ(z)− α2

4 ξ(z)]

α̃ f2(z) z4
w(z) = 0,

A′′φ(z)− 1

z
A′φ(z)− w2(z)

α̃ z2 f(z)
Aφ(z) = 0, (3.27)

ϕ′′(z) +

(
f ′(z)

f(z)
+

1

z

)
ϕ′(z)− w2(z)

α̃ z2 f(z)
ϕ(z) = 0. (3.28)

The obtained equations can be benchmarked against the known results for SU(2) model

of p-wave holographic superconductors. Putting α̃ = 1 and Aφ = 0 one obtains the set

of equations studied earlier in [33] , albeit in 3+1 dimensional background. In analogy

to the discussion of s-wave case we remark again, that it is a condensation of the field

– 14 –



J
H
E
P
1
0
(
2
0
1
6
)
1
5
2

w(z) which, when non-vanishing, couples various gauge fields and makes them linearly

dependent everywhere in the bulk. On the other hand if, the vector condensate vanishes,

w(z) ≡ 0, the various components of the gauge fields become independent.

In the next step we find the dependence of ϕ(z) and Aφ(z) on the component of the dark

matter sector η(z) and ξ(z). Using the the adequate components of the metric tensor for

the line element (3.18) and the equations (3.10)–(3.11), we arrive at the following relations

ξ(z) +
α

2
Aφ = C1 (1− z2), (3.29)

η(z) +
α

2
ϕ(z) = D2, (3.30)

where C1 and D2 are integration constants. The integration constant D1 we put equal to

zero at z = 0, due to the well behavior of the functions. We set D2 = µD. On the other

hand, the relation between C1 and C2 was established taking into account the boundary

conditions ξ(1) = 0 and Aφ(1) = 0, then identify the integration constants with dark matter

characteristics SD and µD, one obtains

ξ(z) = SD (1− z2)− α

2
Aφ(z), (3.31)

η(z) = µD −
α

2
ϕ(z). (3.32)

For z close to boundary z → 0, we use the fact that ϕ(z) = µ and Aφ = Sφ(1− z2), which

in turn leads to the following relations:

ξ(z) = SD (1− z2)− α

2
Sφ(z)(1− z2), (3.33)

η(z) = µD −
α

2
µ(z). (3.34)

Let us turn back to the problem of the consistency of the chosen ansatz. Using the

equation (3.9) and (3.12) multiplied by α/2, as well as having in mind the relations (3.33)

and (3.34), we arrive at(
− (2 + α)

α
Bφ

(3) +
2

α
SD (1−z2)

)
F φx(2) +

(
− (2 + α)

α
Bt

(3) +
2

α
µD

)
F tx(2) = 0. (3.35)

Having in mind that

Fφx
(2) = Aφ

(3)Ax
(1), Ftx

(2) = −Ax(1)At
(3), (3.36)

we obtain the following relation binding the components of the ansatz if A
(1)
x = w(z) 6= 0(

− (2 + α)

α
ξ(z)+

2

α
SD (1−z2)

)
Aφ(z) gφφ−

(
− (2 + α)

α
η(z)+

2

α
µD

)
ϕ(z) gtt = 0. (3.37)

This relation between Aφ(z) and φ(z) is valid for condensed state. On the other hand,

for A
(1)
x = 0 equation (3.35) is identically fulfilled and both components of Aµ evolve

independently.
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The above equations enable us to rewrite the equation (3.26) as

w′′(z) +

(
f ′(z)

f(z)
+

1

z

)
w′(z) + µ2 [β − (1− α̃)kµ]

α̃

1

f(z) z2
w(z) (3.38)

−S2
φ(1− z2)2 [β − (1− α̃) kS

α̃

1

f2(z) z4
w(z) = 0,

where we have denoted by kµ = µD/µ the ratio between chemical potentials of dark

and visible sector, while by kS = SD/Sφ similar ratio of the velocities, β = 1 + α3/8.

The obtained equation for the field w(z) is valid close to the critical value of the chemical

potential µc and in fact constitutes an equation for its determination. To find µc, we correct

the solution for w(z) close to the boundary z → 0 by defining the trial function G(z)

w(z) ∼ 〈O〉 z2 G(z), (3.39)

with G(z) = 1−az2 fulfilling the appropriate boundary conditions G(0) = 1 and G′(0) = 0

and 〈O〉 = w2. Equation for w(z) can be rewritten in the form adequate to study the

Sturm-Liouville eigenvalue problem [90]

(P (z) G′(z))′ −Q(z) G(z) + Λ2 R(z) G(z) = 0, (3.40)

where we have defined

Λ2 = µ2 β − (1− α̃)kµ
α̃

(3.41)

P (z) = z5 f(z), (3.42)

Q(z) = −f(z)

(
4z3 + 2z4 f ′(z)

f(z)
− S2

φ(1− z2)2 [β − (1− α̃) kS ]

α̃ f2(z)

)
, (3.43)

R(z) = z3. (3.44)

This equation allows us to find the minimum eigenvalue of Λ2, by the method of minimizing

the following functional with respect to a

Λ2 =

∫ 1
0 dz [G′(z)2 P (z) +Q(z) G2(z)]∫ 1

0 dz R(z) G2(z)
. (3.45)

It has to be noted that the critical chemical potential µc we are looking at, depends on

the parameters kµ and kS as well as on the velocity Sφ and the α-coupling constant to

dark matter sector. Under the adopted approximations the dependence on µc(α) has two

sources: one is the direct dependence of Λ(α) and the other is subject to the function

Q(z), in the considered functional. The results are shown in the figures 2 and 3.

In view of the dependence of the critical chemical potential of the p-wave superfluid

on four parameters (α, Sφ, kS and kµ), we shall only show some of the results. We start

with the dependence of µ2
c on the superfluid velocity Sφ, for a few values of the α-coupling

to the dark matter sector and for kS = kµ = 0. The results are shown in the left panel of

the figure 2.
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Figure 2. In the left panel we illustrate the dependence of the critical value of µc of the p-wave

SU(2) Yang-Mills superconductor on the velocity for a few values of the coupling constant α, for

fixed µD = SD = 0. The right panel shows the dependence of the critical chemical potential squared

on the coupling α to the dark matter, for kµ = 0, two values of velocity Sφ = 1, 4 and a number of

parameters kS = SD/Sφ.

The right panel of the figure 2 shows the dependence of µ2
c on α for zero value of the dark

matter chemical potential µD = 0, two values of the velocity Sφ = 1, 4 and a few values of kS
for each of the Sφ. For some values of α, the Sturm-Liouville eigenvalue Λ drops below zero,

which is unphysical. This means absence of the superconducting solution in these parameter

ranges. Our equations are valid close to critical value of chemical potential, but otherwise

are exact. The lack of the solution means that for those parameters, no matter how big will

be the chemical potential, the system will stay insulating. The increase of the dark matter

velocity SD (kS = SD/Sφ) generally decreases the value of µc thus making the transition

easier to appear, until one reaches zero value of µc. This conclusion is generally true also

for non-zero value of the dark matter chemical potential, as is visible in the right panel of

the figure 3, albeit the detailed dependence µc(α) is different. The fact that µc increases

with the superflow Sφ indicates the adverse effect of the latter parameter on the transition.

The left panel of figure 3 envisages the dependence of µ2
c on the α-coupling constant

of dark matter for kS = 0, a number of parameters kµ = µD/µc and the two values of the

superflow velocity Sφ = 0, 4. For a constant α 6= 0, the growth of the dark matter chemical

potential µD generally increases µc, thus making the condensation harder to appear. The

right panel of figure 3 shows the similar dependence of µ2
c on α for Sφ = 1, 4 and a few

values of the velocity of dark matter parametrized by kS = SD/Sφ but contrary to the

figure 2 for kµ = 1. Note that the effect of the dark matter velocity is relatively small for

small values of Sφ and dramatically increases for the elevated superflow. In the latter case

the detailed behavior strongly depends on the dark matter velocity, i.e., on kS .

3.2.2 Critical phenomena in p-wave superfluid model

The equations of motion for ϕ(z)-component of the Maxwell field are the same as analyzed

in [60], where holographic p-wave superconductor with dark matter sector have been stud-

ied. We refer the readers to this reference for the particulars of calculations and figures
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Figure 3. The dependence of the squared critical chemical potential on the α-coupling to the

dark matter, for kφ = 0, a number of parameters kµ = µD/µc and two values of superflow velocity

Sφ = 0, 4 (left panel). The right panel presents the similar dependence for Sφ = 1, 4 and a few

values of the velocity of dark matter parametrized by kS = SD/Sφ and for kµ = 1. Note that the

effect of the dark matter velocity is relatively small for the small values of Sφ and dramatically

increases for the large values of the superflow.

describing the elaborated quantities. However in this section we present only a bird eye

view on the problem in question.

When µ → µc, the condensate operator value is small but finite and the equation for

time component of Maxwell potential is given by

ϕ′′(z) +

(
f ′

f
+

1

z

)
ϕ′(z)− 〈O〉

2 z2 F 2(z)

α̃ f
ϕ(z) = 0. (3.46)

Calculations analogous to those presented previously in [60] lead to the following ex-

pression of the mean value of the condensation operator:

〈O〉 ' ∆ (µ− µc)
1
2 , (3.47)

where the pre-factor ∆ =
√

α̃
µcξ(0) , the exact value of ξ(0) is given in [60]. The form

of the equation (3.47) envisages the fact that the p-wave holographic superfluid critical

phenomenon represents the second order phase transition for which the critical exponent

has the mean field value 1/2.

On the other hand, the charge density is found to linearly depend on µ

ρ = (µ− µc) D̃, (3.48)

where the quantity D̃ is constant independent on α.

3.2.3 Aφ in SU(2) p-wave holographic model

In this subsection let us consider the velocity of p-wave superfluid current. The adequate

equation of motion for the spatial component of Maxwell potential Aφ is given by

A′′φ(z)− 1

z
A′φ(z)− w2(z)

α̃ f(z) z2
Aφ(z) = 0. (3.49)
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As in the preceding sections, we set again the ansatz for w(z) = 〈O〉 z2 F (z) and reduce

the relation to the form

A′′φ(z)− 1

z
A′φ(z)− 〈O〉

2 z2 F 2(z)

α̃ f(z)
Aφ(z) = 0. (3.50)

The function F (z) obeys the standard boundary conditions F (0) = 1, F ′(0) = 0. To

proceed further, let us approximate Aφ near the critical point. It yields

Aφ ' Sφ (1− z2) + 〈O〉2 χ(z) + . . . (3.51)

As in the previous case we expand χ(z), near the boundary of AdS space-time in a series

provided by

χ(z) = χ(0) + χ′(0)z +
1

2!
χ′′(0)z2 + . . . , (3.52)

which leads to the relation of the form

χ′′(z)− 1

z
χ′(z) =

F 2(z) z2

α̃ f(z)
(1− z2) Sφ(z) +O

(
〈O〉n≥2

)
. (3.53)

Then, the above equation can be rewritten in the form

(p(z) χ′(z))′ + q(z) F 2(z) = 0, (3.54)

where we have set

p(z) =
1

z
, q(z) = −F

2(z) z

α̃ f(z)
(1− z2) Sφ. (3.55)

Integrating the above relation and using the condition χ′(0) = 0, one gains

χ′′(0) =
χ′(z)

z
|z→0= −Sφ

∫ 1

0
dz

(1− z2) z F 2(z)

α̃ f(z)
. (3.56)

Having in mind z2-order terms, we can find that the superfluid current implies

Jφ = Sφ + Sφ
〈O〉2

α̃

∫ 1

0
dz

(1− z2) z F 2(z)

f(z)
. (3.57)

Consequently, the relation describing Aφ(z) yields

Aφ(z) = Sφ (1− z2)−
Sφ 〈O〉2

α̃
z2

∫ 1

0
dx

(1− x2) F 2(x)

f(x)
. (3.58)

Taking into account the dependence of the pre-factor of 〈O〉 (see the equation (3.47))

on α̃, one finds that the dark sector does not directly effect the current of holographic

p-wave superconductor. Contrary to the s-wave case, the current depends on dark matter

indirectly via µc = µc(α, µD, SD).
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4 Holographic s-wave superfluid in black hole background

In this section we take up the problem of three dimensional s-wave holographic superfluid

at a certain temperature. In order to scrutinize the question one analyzes the background

of five-dimensional AdS black hole given by the line element

ds2 = −f(r) dt2 +
dr2

f(r)
+
r2

L2
(dx2 + dy2 + dz2), (4.1)

where f(r) = r2/L2 − r4
+/r

2L2. In what follows, without loss of generality we set L = 1.

The Hawking temperature for the black hole is equal to TBH = r+/π and defines the

temperature T at the boundary. We assume that the non-zero components of the Maxwell

fields are given by At(r) = φ(r), Ay(r). The equations of motion read

ψ′′(r) +

(
3

r
+
f ′

f

)
ψ′(r)−

(
m2

f(r)
− q2 φ2(r)

f2(r)
+
q2 A2

y(r)

r2 f(r)

)
ψ(r) = 0, (4.2)

φ′′(r) +
3

r
φ′(r)− 2

q2 ψ2(r)

α̃ f(r)
φ(r) = 0, (4.3)

A′′y(r) +

(
1

r
+
f ′

f

)
A′y(r)− 2

q2 ψ2(r)

α̃ r3 f(r)
Ay(r) = 0, (4.4)

where the prime denotes the derivative with respect to r-coordinate. We again note that

the dependence between φ(r) and A(r)µ is induced by the condensation of the ψ(r) field.

The close inspection of the above relations envisages that in z = r+/r-coordinates,

they are given by

ψ′′(z)+

(
f ′

f
− 1

z

)
ψ′(z)+

q2 φ2(z)

r2
+z

4 f2(z)
ψ(z)−

q2 A2
y(z)

r2
+z

2 f(z)
ψ(z)− m2

z4 f(z)
ψ(z) = 0, (4.5)

φ′′(z)− 1

z
φ′(z)− 2

q2 ψ2(z)

α̃ f(z) z4
φ(z) = 0, (4.6)

A′′y(z) +

(
1

z
+
f ′

f

)
A′y(z)− 2

q2 ψ2(z)

α̃ r3
+ f(z) z

Ay(z) = 0, (4.7)

where now the prime is bounded with taking derivative with respect to z-coordinate. We

have also denoted by f(z) the relation

f(z) =

(
1− z4

z2

)
. (4.8)

4.1 Critical temperature for s-wave superfluids

For T → Tc the condensate is very small ψ(z)→ 0. The value of the horizon radius for the

black hole with temperature Tc is denoted by r+c. The asymptotic boundary conditions,

as r tends to infinity, are the same as given by the equation (2.16), with the replacement

of Aφ and Jφ by Ay and Jy, respectively.

The equation (4.6) for the φ field near the critical point reduces to the relation

φ
′′
(z)− φ′(z)

z
' 0, (4.9)
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which has the general solution of the form φ(z) = c1 + c2z
2. The boundary conditions

imposed on Maxwell t-component gauge field φ(1) = 0, enable us to find that

φ ' ρr−2
+c (1− z2).

Consequently, the inspection of the spatial component of the Maxwell gauge field, near

the critical temperature implies

A′′y(z) +

(
f ′

f
+

1

z

)
A′y(z) ' 0, (4.10)

with the condition Ay(1) = 0, we get Ay = Sy. We are looking for the function ψ(z) near

the boundary z → 0 of the considered spacetime. It is approximated by the expression

ψ(z) |z→0=
〈C〉
r∆

+

z∆ F (z), (4.11)

where we have to set F (0) = 1, F ′(0) = 0. Finally, near the critical temperature one

arrives at

F ′′(z) + F ′(z)

[
2∆

z
+

(
f ′

f
− 1

z

)]
+ λ2 (1− z2)2

f2(z) z4
F (z)+ (4.12)

+F (z)

[
∆ (∆− 1)

z2
+

∆

z

(
f ′

f
− 1

z

)
− m2

z4 f(z)
−

q2 S2
y

r2
+z

2 f(z)

]
= 0,

with the parameter λ2 = ρ2 q2/ r6
+. Repeating the procedure leading to the Sturm-Liouville

functional, we get

λ2 =

∫ 1
0 dz [F ′(z)2 p(z) + q(z) F 2(z)]∫ 1

0 dz r(z) F 2(z)
, (4.13)

where the introduced functions are defined as

p(z) = z2∆−1 f(z), (4.14)

q(z) = −z2∆−1 f(z)

[
∆ (∆− 1)

z2
+

∆

z

(
f ′

f
− 1

z

)
− m2

z4 f(z)
−

q2 S2
y

r2
+ z2 f(z)

]
, (4.15)

r(z) =
z2∆−5

f(z)
q2 (1− z2)2. (4.16)

Interestingly, the relation for λ2 which serves as a condition for the critical temperature

of the superconductor itself depends parametrically on the temperature of the considered

black hole. This is a direct consequence of the fact that the Hawking black hole temperature

TBH = r+/π and λmin = ρq/r3
+ enter the function q(z) above. In order to find the transition

temperature Tc, one ought to elaborate the self-consistent solution of the transcendental

equation (4.13), as the critical temperature is related to λmin via relation

Tc = (ρ)
1
3

(
1

π3 λmin

) 1
3

. (4.17)

– 21 –



J
H
E
P
1
0
(
2
0
1
6
)
1
5
2

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0  2  4  6  8  10

π
T

c

Sy

m2=-15/4

m2=-9/4

m2=-5/4

m2=-1/4

 0.46

 0.48

 0.5

 0.52

 0.54

 0.56

 0.58

 0.6

 0.62

 0.64

 0  2  4  6  8  10

π
T

c

Sy

α=-1.0

α=0.0

α=1.0

Figure 4. The dependence of the self-consistently calculated transition temperature of the current

carrying superconductors of s-wave symmetry, equation (4.17) (left panel) and the p-wave symmetry,

equation (5.24) (right panel), on the superflow velocity Sy for a number of mass parameters m2

or couplings α, respectively. For numerical purposes we have taken q = 1 and ρ = 1. In the right

panel we have set kS = 0 and kρ = 0.

with λmin depending on Tc. This behavior is characteristic to the superconductor carrying

the current or superfluid with non-zero velocity of the condensate. Without superflow,

Sy = 0, one gets simple equation for Tc.

We have solved the resulting equation numerically in a self-consistent way. The results

of the dependence of Tc on Sy for a number of m2 values are presented in figure 4. The

increase of the velocity results in the rise of the eigenvalue of the Sturm-Liouville problem

and thus by the equation (4.17) to decrease of the superconducting transition temperature.

Quantitatively it agrees with the known phenomenology of real superconductors.

4.2 Condensation operator values

Here we study the influence of dark matter sector on the condensation operator for s-

wave holographic superfluid. The equation of motion for φ is independent of the spatial

component of the Maxwell field potential Ay and has the form studied in [59]. So we

address here only the main features of the derivation, referring the reader the the previous

work, for details.

The equation of motion for the time component of the Maxwell field, near the critical

temperature is obtained from by introducing (4.11) into (4.6) and is given by

φ′′(z)− φ′(z)

z
=

2 q2 r2
+ φ(z)

α̃ f(z)
z2∆−4 〈C〉2

r2∆
+

F 2(z). (4.18)

Proceeding as in [59] for T → Tc, the condensation operator 〈C〉 is found as

〈C〉 =

√
2 α̃

B
(π Tc)

∆

√
1− T

Tc
, (4.19)

where B is given [59] by

B = 2

∫ 1

0
dz

q2 r2
+

f(z)
(1− z2) z2∆−5 F 2(z). (4.20)
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The mean value of the condensation operator depends on the α-coupling constant of the

dark matter sector. The bigger α-coupling one takes into account, the smaller is the value of

the condensate mean value operator 〈C〉. In addition operator 〈C〉 depends on α via Tc(α).

4.3 Ay in s-wave superfluid at given temperature

Having in mind the relation (4.11) the equation of motion for Ay(z) (4.7) near T → Tc
reads

A′′y(z) +A′y(z)

(
f ′

f
+

1

z

)
− 2 q2 Ay

α̃
〈C〉2 z2∆−1 F 2(z)

f(z) r2∆+1
+

' 0. (4.21)

To proceed further, we assume that

Ay(z) ' Sy + 〈C〉χ(z), (4.22)

and restrict our consideration to the terms of order 〈C〉. Consequently we obtain

χ′′(z) + χ′(z)

(
f ′

f
+

1

z

)
− 2

q2 〈C〉 Sy
α̃ f(z) r2∆+3

+

z2∆−1 F 2(z) ' 0. (4.23)

Like in the preceding sections, expansion of χ(z) in series near z = 0 and the comparison

of terms in the expansion of z2-order, enable us to write the relation binding Ay(z) and

the super-current. It implies

Ay(z) = Sy − z2 〈C〉2 Sy q2

α̃ r2∆+3
+

∫ 1

0
dx x2∆ F 2(x). (4.24)

One can point out that, as in the AdS solitonic background the dark matter sector increases

the value of the super-current Jy(z), while its dependence on Sy remains nearly linear in a

close analogy to the s-wave superconductor in a solitonic background. On the other hand,

the current does depend on the coupling constant to dark matter sector only through

Tc(α), as is visible from the dependence of 〈C〉2 ∝ α̃. More importantly, we have found

the dependence of the current on temperature in the linear form Jy ∝ (Tc−T ), sometimes

called the Onnes relation. This fact is in a significant contrast to the Ginzburg-Landau

analysis of Jc for thin superconducting films, i.e., effectively two-dimensional systems, were

one has J ∝ (Tc−T )3/2. The experimental relevance of these results will be discussed later.

5 Holographic p-wave superfluid in black hole background

In this section we shall pay attention to the holographic p-wave superfluid case at finite

temperatures. As in the previous sections, one can consider at least two models of p-wave

holographic superfluids, i.e., the Maxwell vector and SU(2) one. The same arguments as

quoted in the section concerning holographic p-wave superfluid models in the AdS solitonic

background, can be implemented in this case. Namely, the Maxwell vector model reduces

to the s-wave case when one elaborates real vector field ρx. Therefore we restrict our
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considerations to the SU(2) model. Taking into account five-dimensional AdS black hole

background we choose gauge fields components as

A = φ(r) τ3 dt+Ay(r) τ
3 dy + w(r) τ1 dx, (5.1)

B = η(r) τ3 dt+ ξ(r) τ3 dy. (5.2)

The z-dependent equations of motion x(1), y(3) and t(3) can be written as

w′′(z) +

(
f ′(z)

f(z)
+

1

z

)
w′(z) +

φ(z)[φ(z)− α2

4 η(z)]

α̃ f(z) z2
w(z)+ (5.3)

−
Ay(z)[Ay(z)− α2

4 ξ(z)]

r4
+ α̃ f2(z) z4

w(z) = 0,

A′′y(z)− 1

z
A′y(z)− w2(z)

r2
+ α̃ z2 f(z)

Ay(z) = 0, (5.4)

φ′′(z)− 1

z
φ′(z)− w2(z)

r2
+ α̃ z2 f(z)

φ(z) = 0, (5.5)

where the prime denotes the derivative with respect to z-coordinate, f(z) is described in

the preceding section. The structure of the above equations is analogous to those studied

earlier, with obvious changes related to the SU(2) character of the gauge field components.

In particular their independence is lost due to the hairy structure, w(z) 6= 0, of the black

hole. For w(z) = 0, the equations (5.4) and (5.5) are independent and each of the compo-

nents of the Aµ field evolves independently, albeit in the same way as it is visible from the

above equations of motion.

The choice of the gauge field components (5.1) is the only consistent choice enabling

the analytic considerations of the problem in question. The set of the differential equa-

tions (5.3)–(5.5) ought to be accomplished by the addition of the boundary conditions.

One assumes that on the black hole event horizon φ(1) = 0 and the condensation field is of

a finite norm, which in turn requires that w(r+) should be finite. By virtue of the above,

we assume that the following will hold in r space

w = w0 + w1 (r − r0) + w2 (r − r+)2 + . . . , (5.6)

Ay = Ay(0) +Ay(1)(r − r+)2 + . . . , (5.7)

φ = φ(1) (r − r+) + φ(2) (r − r+)2 + . . . , (5.8)

η = η(0) + η(1)(r − r+) + η(2)(r − r+)2 + . . . , (5.9)

ξ = ξ(0) + ξ(1)(r − r+) + ξ(2)(r − r+)2 + . . . , (5.10)

where wj Ay(j), φ(j), η(j), ξ(j), for j = 0, 1, 2, . . . are constants. The Neumann-like

boundary condition are required to obtain every physical quantity finite. When r tends to

infinity (one is close the boundary of the AdS space-time) the fields behave as

φ(r)→ µ− ρ

r2
, w(r)→ w(0) +

w(2)

r2
, Ay(r)→ Sy −

Jy
r2
, (5.11)
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From equations

∇µBµt(3) +
α

2
∇µFµt(3) = 0, (5.12)

∇µBµy(3) +
α

2
∇µFµy(3) = 0, (5.13)

the dependence of φ(z) and Ay(z) on the component of the dark matter sector η(z) and

ξ(z) can be established. Namely, having in mind the boundary conditions η(1) = 0 and

φ(1) = 0 we can identify the integration constants with dark flow and dark density. It

results in the following relations binding the ordinary and dark matter characteristics for

the holographic p-wave superfluid

ξ(z) +
α

2
Ay = SD, (5.14)

η(z) +
α

2
φ(z) =

ρD
r2

+

(1− z2). (5.15)

For z close to boundary, z → 0, we use the fact that φ(z) = (ρ/r2
+)(1 − z2)

and Ay(z) = Sy and rewrite the equation (5.3), having in mind the relations (5.14).

Consequently it yields

w′′(z) + w′(z)

(
1

z
+
f ′

f

)
+

1

α̃ z4 f2(z)

(
ρ

r3
+

)2

(1− z2)2

[
β − (1− α̃) kρ

]
w(z) (5.16)

−
S2
y

r2
+α̃ z

2 f(z)

[
β − (1− α̃) kS

]
w(z) = 0,

where we have defined

kS =
SD
Sy

, kρ =
ρD
ρ
. (5.17)

Inserting w(z) ∼ 〈R〉 z2 G(z), we can rewrite the above equation in the form characteristic

for studies of the Sturm-Liouville variational problem, which results in

G′′(z) +

(
5

z
+
f ′

f

)
G′(z) +

[
4

z
+

2

z

f ′

f
−

S2
y

r2
+ α̃ f(z) z2

(
β − (1− α̃) kS

)]
G(z) (5.18)

+Λ2 (1− z2)2

f2(z) z4
G(z) = 0,

where Λ2 is provided by

Λ2 =

(
ρ

r3
+

)2

[β − (1− α̃) kρ]. (5.19)

The Sturm-Liouville variational problem enables us to achieve the minimum eigenvalue of

Λ2 from the functional

Λ2 =

∫ 1
0 dz [G′(z)2 p(z) + q(z) G2(z)]∫ 1

0 dz r(z) G(z)
, (5.20)
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Figure 5. In the left panel we depicted the dependence of the self-consistently calculated transition

temperature of the current carrying superconductor, equation (5.24), on the α-coupling constant,

for two values of the velocity Sy = 1, 4, kρ = 0 and a few values of the dark matter velocity

SD parametrized here by kS = SD/Sy is shown in the left panel. The right panel shows similar

dependence of Tc(α) for Sy = 4, kS = 2 and three values of kρ = 0, 1, 2.

where we have defined the following quantities

p(z) = z5 f(z), (5.21)

q(z) = −z5 f(z)

[
4

z2
+

2

z

f ′

f
−

S2
y

r2
+α̃ z

2 f(z)

[
β − (1− α̃) kS

]
, (5.22)

r(z) =
z (1− z2)2

f(z)
. (5.23)

The transition temperature is calculated as

πTc =

(
ρ2[β − (1− α̃) kρ]

Λ2

)1/6

. (5.24)

In a close analogy to the s-wave superconductors discussed earlier, Tc of the SU(2) p-wave

superconductor has also to be determined in a self-consistent way, as the function q(z)

above depends on r+ and makes Λ to depend on Tc.

The results of the self-consistent calculations of the α dependence of the transition tem-

perature (πTc) are shown in the left panel of figure 4 and in figure (5). For the current carry-

ing superconductor Tc is calculated form the relation (5.24). We show the results for kρ = 0,

two values of the superfluid velocity Sy = 1, 4 and three values of the dark matter velocity

SD parametrized here by kS = SD/Sy. With increasing dark matter velocity Tc diminishes

and eventually it ceases to exist (one gets negative solution for Λ2) for negative values of

α. The behavior is qualitatively the same for both values of Sy. The right panel of figure 5

shows the similar dependence of Tc(α) for Sy = 4, kS = 2 and three values of kρ = ρD/ρ =

0, 1, 2. The increase of the dark matter density generally leads to the relatively small

decrease of Tc, for a given coupling α < 0 and larger decrease, for α closer to the value 2.
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5.1 Condensation value

In this subsection we discuss the behavior of the condensation operator due to the presence

of dark matter sector and its dependence on temperature, near the critical one, Tc. The

form of the equation (5.5) is the same as studied in [60], so for the details we refer to this

work. For completeness of our discussion, we quote only the final result for the condensation

operator 〈R〉

〈R〉 =

√
2α̃π2

E
Tc(α)

√
1 +

T

Tc(α)

√
1− T

Tc(α)
, (5.25)

where E is given by the integral

E =

∫ 1

0
dz

z3 F 2(z)

(1 + z2)
. (5.26)

One concludes that 〈R〉 depends on α-coupling constant of the dark matter sector directly

via factor α̃1/2 and indirectly through Tc(α). It also depends on the density ρD of the dark

matter via Tc. The mean value of the operator 〈R〉 can be interpreted as responsible for the

pairing mechanism. The smaller vacuum expectation value it has, the harder condensation

happens. So we conclude that dark matter sector destructively influences the condensation

phenomena in p-wave superconductors for ρD/ρ > 1. One has to notice, that in the

presence of the velocity the dependence of 〈R〉 on α differs from that without super-flow

and the resulting α dependence of Tc will be different from that reported earlier [60].

5.2 Ay in p-wave black hole holographic superfluid

As in the preceding sections we want to find the velocity and the current of the y-directed

superflow. The equation of motion for Ay(z) is of the form

A′′y(z) +

(
1

z
+
f ′

f

)
A′y(z)− w2(z) Ay(z)

r2
+ α̃ f(z) z2

= 0. (5.27)

For T close to Tc we correct w(z) using an ansatz w(z) = 〈R〉 z2 F (z) and reduce the

relation to the form

A′′y(z) +

(
1

z
+
f ′

f

)
A′y(z)− 〈R〉

2 z2 F 2(z)

r2
+ α̃ f(z)

Ay(z) = 0. (5.28)

To proceed, let us approximate Ay(z) near the critical point by

Ay ' Sy + 〈R〉 χ(z) + . . . (5.29)

As in the previous cases we expand χ(z), near the boundary of AdS space-time in a series

provided by

χ(z) = χ(0) + χ′(0)z +
1

2!
χ′′(0)z2 + . . . , (5.30)

which leads to the relation

χ′′(z) +

(
1

z
+
f ′

f

)
χ′(z) =

F 2(z) z2

α̃ f(z)
(1− z2) Sy(z) +O

(
〈R〉n≥2

)
. (5.31)
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The above equation can be rewritten in the form

(p(z) χ′(z))′ + q(z) F 2(z) = 0, (5.32)

where we set for p(z) and q(z) the following relations:

p(z) = f(z) z, q(z) = −〈R〉 z
3

r2
+ α̃

Sy. (5.33)

Integrating the above equation and using the condition f(0) = 0, enable us to find that

χ′′(0) =
χ′(0)

z
|z→0= − Sy

r2
+

∫ 1

0
dz

z3 F 2(z)

α̃
. (5.34)

Thus we get

Ay(z) = Sy −
Sy 〈R〉2

2r2
+ α̃

z2

∫ 1

0
dx x3 F 2(x), (5.35)

where the term multiplying z2 is interpreted as the superfluid current. In analogy to the

previously studied cases, the coupling constant to the dark matter sector cancels out and

the current depends on α via transition temperature Tc(α) enters through r+. Again, we

find the linear in temperature, (Tc − T ) dependence, of the current. The disappearance of

the current at T = Tc is a well established behavior. It is encouraging that the holographic

approach recovers this behavior.

6 Summary and discussion

In the paper we have considered the properties of holographic superfluid with the super-

flow of the condensate, i.e., the situation when on the gravity side one accepts not only

t-component of the gauge fields but also takes into account the spatial one, as well. The

problem in question has been studied analytically by means of the Sturm-Liouville varia-

tional method. We have analyzed the s-wave and p-wave current carrying superfluids with

dark matter sector which has been described by additional U(1)-gauge field coupled to the

ordinary one, in the background of the AdS soliton (T=0) or black hole (T 6= 0). We have

elaborated the probe limit case. According to the AdS/CFT dictionary the asymptotic

(r → ∞) behavior of the spatial component of the gauge potential Aφ(r), respectively

Ay(r), being of the form Ai(r) = Si − Ji/r2 are related to the superfluid velocity Si and

superfluid current Ji in the dual field theory.

In agreement with the previous analysis of the similar models without superflow we

have found that the transitions are of the second order, as indicated by the mean field values

of the critical exponents. The presence of the superflow does not change the fact that,

neither the critical value of the chemical potential nor the density operator depend on α-

coupling constant. The spatial components of the Maxwell field identified with the currents

at the boundary are affected by the coupling to dark matter sector. Also the current of

the s-wave holographic superconductor in the solitonic background (equation (2.42)) does

not depends on the dark matter sector. Its dependence on the chemical potential is of the

form Jφ ∝ (µ− µc).
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soliton (T=0) black hole (T 6= 0)

µc(α) = µc(0) Tc = Tc(α)

s-wave 〈O(α)〉 =
√
α̃〈O(0)〉 ∝ (µ− µc) 〈O(α)〉 =

√
α̃〈O(0)〉

Jφ(α) = Jφ(0)(µ− µc) Jy(α, T ) = Jy(Tc)(1− T
Tc

)

µc = µc(α, µD, SD) Tc = Tc(α, µD, SD)

p-wave 〈O(α)〉 =
√
α̃〈O(µc)〉 〈R(α)〉 =

√
α̃〈R(Tc)〉

SU(2) Jφ(α) = Jφ(µc)(µ− µc) Jy(α, T ) = Jy(Tc)(1− T
Tc

)

Table 1. Summary of the obtained results. The table shows the functional dependence of

the critical chemical potentials and temperatures as well as order parameters and currents of

holographic superconductors on dark matter parameters α, µD and SD (see text). Note the

linear dependence of the currents on temperature for both symmetries of the order parameter

independently of its symmetry.

The critical chemical potential of the SU(2) p-wave holographic superconduc-

tor/superfluid in the solitonic background is strongly effected by the presence of dark

matter. Not only it depends on the velocity of the condensate Sφ but also the coupling α,

the dark matter chemical potential µD and the dark matter velocity SD. These dependen-

cies have been illustrated in figures 2 and 3.

The black hole taken as a gravitational background allows the study of finite tem-

perature phase transitions. The critical temperature of the model with superflow has to

be calculated self-consistently, due to the transcendental character of the corresponding

equations. This is true for both s-wave and p-wave symmetries. The s-wave superconduct-

ing transition temperature does not depend on the coupling constant to the dark matter

sector. Contrary to that, the transition temperature of the p-wave SU(2) holographic su-

perconductor depends on the dark matter not only via the coupling α but also through

the dark matter velocity SD and density ρD. In the figures, the last two parameters have

been quantified by their ratio to corresponding parameters of the Maxwell sector.

In SU(2) p-wave superfluids one can observe an interesting duality between solitonic

and black hole backgrounds. Near z → 0, in the case of solitonic background one has that

Aφ is function of z2 and At tends to the constant value of chemical potential µ. On the

contrary, in black hole background the situation changes dramatically. The t-component is

function of z2, while the spatial one leads to the constant value of the superfluid velocity Sy.

The table 1 summarizes our findings related to the dependence on the dark matter

of the critical chemical potentials, critical temperatures, the order parameters and the

currents for both symmetries and both gravitational backgrounds, respectively. Of some

interest are the universal relations of the currents on µ, which read J ∝ (µ− µc) for both

s-wave and p-wave holographic superconductors. Much more important is the dependence

of the currents on temperature. Again for both symmetries we get the linear in (1−T/Tc)
dependence. This important finding which might be of relevance for real superconductors,

as discussed below. In the literature, the above behavior is sometimes referred as the Onnes

relation [96, 97].
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Now we shall discuss the obtained results in the light of experimental data on different

families of superconductors with various symmetries of the order parameter. We start with

some preliminaries. It is well known that the vanishing of the electrical resistivity and the

appearance of the ideal diamagnetism (i.e., the expulsion of the external magnetic field)

below specific transition temperature Tc are two defining characteristics of superconductors,

with the latter being of utmost importance for the understanding of the phenomenon. The

real material remains in the superconducting phase if its temperature T , magnetic field B

and the current (density) J are kept below their critical values, Tc, Bc or Jc, respectively.

It means that on phase diagram in the temperature T , magnetic field B and current J

space, there exist critical surface below which the system is superconducting. Out of the

range of the aforementioned parameters, the changes of the superconducting properties of

materials, subject to the current flow, are not quite well theoretically elaborated. However,

it is known that if the current flowing in a superconductor exceeds a certain critical value,

the system undergoes a superconductor to the normal metal transition.

The response of the superconductor to the current flow is completely different for the

type I and type II superconductors, due to the appearance and the flow of vortices and the

concomitant existence of two critical fields (lower and upper), in the latter. Generally it

has been assumed that the superconductors undergo superconductor - normal conductor

transition, if the flowing current produces on the surface of material magnetic field of the

order of the critical one Hc [98]. Type II superconductors are typically used for applications

and they also can sustain only the finite currents. The maximum value of Jc is related to

the lower critical field Hc1 as indicated in recent experiments studying the properties of

current currying superconductors [93–95], where some universalities observed in a number

of different families of superconductors with various symmetries of the order parameter

have been pointed out. Among all, it has been shown that for thin films of thickness b less

than the penetration depth λ, there exist a limiting value of the current Jc which for type

I superconductors is Hc/λ, whereas for type II materials Hc1/λ, where Hc1 is the lower

critical field [93].

More recent data seem to indicate that the relation between Jc and the penetration

depth changes from Jc ∝ λ−3 valid for films with b ≤ λ to Jc ∝ λ−2 valid for films with

b� λ. This analysis which the main aim was to show the above dependence in the whole

temperature range and for a number of different superconductors with various symme-

tries of the order parameter, obtained an additional support from the present ond earlier

calculations using holography. Namely, the holographic analysis of (2+1)-dimensional su-

perconductors and the present one studying 3+1 dimensional systems show universal tem-

perature dependence of the currents for s-wave and p-wave superconductors of the form

J(T ) = J(0)(1− T/Tc)ν with the expenent ν depending only on the dimensionality of the

system with ν = 3/2 for two dimensional and ν = 1 for three dimensional systems. The

experimental data on three dimsional sample show [96] J(T ) = J(0)(1−T/Tc) temperature

dependence for T close to Tc. For superconducting films of the thickness lower than the

penetration depth, the experimental data for the critical current close to Tc well agree with

the dependence given by the relation J(T ) = J(0)(1 − T/Tc)3/2. Recent summary of a

number of experimental data [94] supports the holographic results.
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