
J
H
E
P
1
0
(
2
0
1
6
)
0
9
7

Published for SISSA by Springer

Received: October 31, 2015

Revised: September 20, 2016

Accepted: October 16, 2016

Published: October 18, 2016

ε-expansion in the Gross-Neveu

Avinash Raju

Center for High Energy Physics, Indian Institute of Science,

Bangalore 560012, India

E-mail: avinash@cts.iisc.ernet.in

Abstract: We use the recently developed CFT techniques of Rychkov and Tan to compute

anomalous dimensions in the O(N) Gross-Neveu model in d = 2 + ε dimensions. To do

this, we extend the “cowpie contraction” algorithm of arXiv:1506.06616 to theories with

fermions. Our results match perfectly with Feynman diagram computations.

Keywords: Conformal and W Symmetry, Field Theories in Lower Dimensions

ArXiv ePrint: 1510.05287v2

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP10(2016)097

mailto:avinash@cts.iisc.ernet.in
https://arxiv.org/abs/1506.06616
https://arxiv.org/abs/1510.05287v2
http://dx.doi.org/10.1007/JHEP10(2016)097


J
H
E
P
1
0
(
2
0
1
6
)
0
9
7

Contents

1 Introduction 1

2 O(N) Gross-Neveu model in 2 + ε dimensions 2

3 Counting contractions 4

3.1 f2p 5

3.2 f2p+1 6

3.3 f2pρ2p 6

3.4 f2p+1ρ2p+1 7

4 Matching with the free theory 8

A OPE coefficients from 3-point function 10

B Computing f2pρ2p and f2p+1ρ2p+1 from cow-pies 12

B.1 f2pρ2p 13

B.2 f2p+1ρ2p+1 14

1 Introduction

In recent work, Rychkov and Tan [1] have shown that the power of conformal invariance

can be used to compute ε-expansions at the Wilson-Fisher fixed point (see also [2]). This

approach is not reliant on Feynman diagrams (and in that sense is non-perturbative1), and

uses only conformal symmetry and analyticity in ε as inputs.

The results of Rychkov-Tan were generalized to other dimensions and other fixed point

theories in [2]. The computations require a systematic approach to handling contractions

of fields in these theories, and a systematic approach for doing this was developed for

scalar O(N) theories [2]. One of the goals of this paper is to generalize this to CFTs with

fermions.

Concretely, we will work with O(N) Gross-Neveu model in d = 2 + ε dimensions [3].2

This theory is interesting for various reasons: there is a huge literature on this theory, and

its large-N expansion and asymptotic freedom (among various other features) have been

thoroughly investigated in the last decades. We generalize the approach of [1, 2] to this

1This should be taken with a pinch of salt — the epsilon expansion is afterall perturbative. The idea

here is that the perturbative parameter in the present approach is not (at least manifestly) the coupling

constant.
2The multiplicative renormalizability of Gross-Neveu model in 2+ ε dimensions is discussed in [4, 5], our

results are unchanged for the U(N) model as well.

– 1 –



J
H
E
P
1
0
(
2
0
1
6
)
0
9
7

theory, and verify that the results agree with existing perturbative results in the literature,

where they overlap.

The paper is organized as follows. In section 2 we introduce the Gross-Neveu as a

Wislon-Fisher CFT along with the axioms that help us along in the computation. In

section 3 we give a recursive algorithm, based on [2], to compute OPE coefficients in

the free theory and in section 4 we show how these results are matched with that of

interacting theory in the ε → 0 limit which help us determine anomalous dimensions of

various composite operators.

Note added. The paper [12] also discusses the same problem, and even though the

details of the algorithm are different, our results agree.

2 O(N) Gross-Neveu model in 2 + ε dimensions

The Gross-Neveu model action in d = 2 + ε dimensions is given by

S =
1

2π

∫
ddσ

[
ψA6 ∂ψA +

1

2
gµ−ε(ψAψA)2

]
(2.1)

In 2 dimensions, this theory is renormalizable with a dimensionless coupling constant. The

coupling constant is proportional to ε and hence this theory describes a weakly coupled

fixed point for small values of ε. We have introduces a scale µ to make the coupling constant

dimensionless.

The engineering dimension of the fields is fixed by the action

[ψ] ≡ δ =
1 + ε

2
(2.2)

The equations of motion for this theory are given by

γµ∂µψ
A + gµ−ε(ψBψB)ψA = 0 (2.3)

∂µψ
Aγµ − gµ−ε(ψBψB)ψA = 0 (2.4)

According to [1], this equation has to be seen as a conformal multiplet shortening condition,

where in the free theory, the operators (ψBψB)ψA and (ψBψB)ψA is a primary, but in the

interacting theory it is made secondary by above equations. Following [1], we formalize

the relationship between operators in the free and interacting case by means of following

axioms:

• The interacting theory enjoys conformal symmetry.

• For any operator in the interacting theory, there is a corresponding operator in the

free theory, which the interacting theory operator approaches to in the ε→ 0 limit.
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For definiteness, we call the interacting theory operators as V2n, V A
2n+1 a and V A

2n+1 a,
3

which in the free limit goes to

V2n → (ψAψA)n (2.5)

V A
2n+1 a → (ψBψB)nψAa

V A
2n+1 a → (ψBψB)nψAa

• Operators V A
3 a and V A

3 a are not primaries, instead they are related to the primaries

by the multiplet shortening conditions

γµ∂µV
A

1 = −α(ε)V A
3 (2.6)

∂µV
A
1 γ

µ = α(ε)V A
3

This puts restrictions on the dimensions of these operators

∆3 = ∆1 + 1 (2.7)

The proportionality constant α(ε) can be fixed later using the axioms above. All

other operators Vm, m 6= 3, are primaries.

The two-point function of two primaries of same dimension ∆1 is

〈V A
1 a(x1)V B

1 b(x2)〉 =
(6x12)ab

(x2
12)∆1+ 1

2

δAB (2.8)

In the free limit this becomes

〈ψAa (x1)ψBb (x2)〉 =
(6x12)ab
x2

12

δAB (2.9)

The anomalous dimension is defined as the difference between the actual scaling dimension

of the operator and the engineering dimension, i.e, ∆n = nδ+γn. We also make the crucial

assumption that the anomalous dimensions are analytic functions of ε and therefore admits

a power series expansion

γn = yn,1ε+ yn,2ε
2 + . . . (2.10)

Our first task is to fix α in (2.6). Differentiating (2.8) and substituting appropriate factors

of γ matrices, we obtain

(γµ)ca〈∂1 µV
A

1 a(x1)∂2 νV
B
1 b(x2)〉(γν)bd = (γµ)ca∂1 µ∂2 ν

(
(6x12)ab

(x2
12)∆1+ 1

2

)
(γν)bdδ

AB (2.11)

= −(2∆1 + 1)(2∆1 + 1− d)
(6x12)cd

(x2
12)∆1+ 3

2

δAB

3A word on notations: small latin indices a, b, · · · are the spinor indices whereas A, B, etc stand for

O(N) indices.
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Left hand side of (2.11) takes the form

− α2〈V A
3 c(x)V B

3 d(y)〉 (2.12)

which in the free limit evaluates to

−α2(ε)(N − 1)
(6x12)cd
(x2

12)2
δAB (2.13)

Comparing both sides, we obtain

α = σ

√
4γ1

N − 1
(2.14)

where σ = ±1. The exact sign will be determined later. Following [1, 2], we consider

correlators of the form

〈V2n(x1)V A
2n+1 a(x2)V B

1 b(x3)〉, 〈V2n(x1)V A
2n+1 a(x2)V B

3 b(x3)〉 (2.15)

which in the free limit goes to

〈φ2n(x1)φA2n+1 a(x2)φB1 b(x3)〉, 〈φ2n(x1)φA2n+1 a(x2)φB3 b(x3) (2.16)

where we have introduced operators φ2n and φA2n+1 a as a shorthand for (ψBb ψ
B
b )n and

(ψBb ψ
B
b )nψAa . The reason we are interested in these correlators is because of its sensitivity

to multiplet recombination. To see this, we notice that in the free theory, φ2n × φA2n+1 a

OPE contains operators ψAa and (ψBb ψ
b
b)ψ

A
a whereas in the interacting theory V2n×V A

2n+1 a

OPE only contains V1 as the primary. The coefficients in both cases are independently

computable and by Axiom:2, we expect them to match in the limit ε→ 0.

In the free case, we have following OPE

φ2n(x1)× φA2n+1 a(x2) ⊃ f2n(x2
12)−n

(
ψAa + ρ2n(6x12)ab(ψψ)ψAb

)
(2.17)

The coefficients f2n and ρ2n can be determined by counting the number of Wick contrac-

tions. In next section, we provide an algorithm, based on [2], to determine these coefficients

for arbitrary n. This is matched with the interacting theory OPE

V2n(x1)× V A
2n+1 a(x2) ⊃ f̃2n(x2

12)−
1
2

[∆2n+∆2n+1−∆1] (2.18)[
δac + q1δacx

µ
12∂2 µ + q2(6x126 ∂2)ac

]
V A

1 c(x2)

3 Counting contractions

We now turn our attention to computing f and ρ coefficients in (2.17). Apart from (2.17),

we also need OPE’s of the form

φA2n+1 a(x1)× φ2n+2(x2) ⊃ f2n+1(x2
12)−(n+1)

[
(6x12)abψ

A
b + ρ2n+1x

2
12(ψψ)ψAa

]
(3.1)

which are used to fix the anomalous dimensions of odd operators. In [2] a recursive algo-

rithm was used to count Wick contractions, which can be adapted for the fermions. The

– 4 –
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Wick contractions can then be viewed as various ways of connecting upper and lower rows,

resulting in recursive equations. In the case of fermions, the principle is essentially the

same, but the contractions have a bit more structure. We use ’+’ and ’−’ to denote ψ and

ψ respectively. To capture the contractions, we introduce the quantity F
p,r+,r−
p+q,s+,s−;m+,m− ,

where p is the number of upper double cow-pies which stand for ψψ, r+ is the number of

upper single cow-pies of ’+’ type, r− is the number of upper single cow-pies of ’+’ type,

p+ q is the number of lower double cow-pies, s± is the number of lower single cow-pies of

type ±, m± is the number of uncontracted ψs and ψs respectively. A contraction is always

between an upper + and a lower − or vice-versa.

The various coefficients fs and ρs in our notation becomes

f2p = F p,0,0p,0,1;0,1 f2pρ2p = F p,0,0p,0,1;1,2 (3.2)

f2p+1 = F p,0,1p+1,0,0;0,1 f2p+1ρ2p+1 = F p,0,0p+1,0,0;1,2

3.1 f2p

There are 3 different kind of contractions that are possible. Of the first type, the two

kernels of the pth double cow-pie are contracted with two kernels of same lower cow-pie.

This gives a factor of Np. The second possibility is to contract the two kernels of upper

cow-pie to two different kernels of lower double cow-pie resulting in a factor of −p(p − 1)

and the last possibility is to contract one of the kernels of upper double cow-pie with a

kernel in lower double cow-pie and the second kernel of upper cow-pie with the single kernel

of lower row. This gives a factor of −p. So, the resulting contraction can now be expressed

as following recursion equation

F p,0,0p,0,1;0,1 = (Np− p(p− 1)− p)F p−1;0
p−1,1;0,1 (3.3)

This recursion equation can be solved along with the launching condition F 0;0
0,1;0,1 = 1

and we obtain

f2p = p!(N − 1)(N − 2) · · · (N − p) (3.4)

– 5 –
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• • •+ − + − + −

• • •+ − + − + − −

• • •+ − + − + −

• • •+ − + − + − −

• • •+ − + − + −

• • •+ − + − + − −

3.2 f2p+1

There are only two types of contractions possible, analogous to the first two types above.

The recursion equation can therefore be written by inspection

F p;1p+1,0;0,1 = (N(p+ 1)− p(p+ 1))F p−1,0,1
p,0,0;0,1 (3.5)

with the lauching condition F 0;1
1,0;0,1 = 1 which gives

f2p+1 = (p+ 1)!(N − 1)(N − 2) · · · (N − p) (3.6)

3.3 f2pρ2p

Here the first possibility involves contracting both the kernels of upper double cow-pie with

lower cow-pies analogous to the computation of f2p. This gives a factor of Np−p(p−1)−p.
Another possibility involves contracting ’+’ of an upper double cow-pie with the single ’−’

in the lower row. This gives a factor of −F p−1;0
p−1,0;1,1.

• • •+ − + − + −

• • •+ − + − + − −

– 6 –
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Other possibilities involve single contractions of upper kernels, which can be done in

following ways: (a) ’+’ of the upper double cow-pie contracted with a ’−’ of the lower

double cow-pie, (b) ’−’ from the upper double cow-pie with a + from lower double cow-

pie. One can see by explicit computation for the lower orders (i.e. p = 2, 3, · · · ) that their

contribution is given by −pF p−1,0,0
p−1,0,1;1,2. Notice that the coefficient is different from the naive

expectation because not all single contractions are independent and we must be careful to

avoid over-counting and to keep track of the index structure.

• • •+ − + − + −

• • •+ − + − + − −

• • •+ − + − + −

• • •+ − + − + − −

Thus we get the recursion equation

F p,0,0p,0,1;1,2 = p [N − p− 1]F p−1,0,0
p−1,0;1,2 − F

p−1,0,1
p,0,0;1,1 (3.7)

F p−1,0,1
p,0,0;1,1 can be again evaluated using the cow-pie formalism and its recursion equation is

given by

F p;0p,0;1,1 = (p+ 1)(N − p)F p−1,0
p,0;1,1 (3.8)

This system of recursion equations can be solved using the launching condition F 0,0,0
0,0,1;1,2 = 0

and F 0,0,0
1,0,0;1,1 = 1. Using the expression for f2p in (3.4) we get,

ρ2p = − p

N − 1
(3.9)

3.4 f2p+1ρ2p+1

We again have three cases to consider: (a) Both kernels of the upper cow-pie contracted

with lower cow-pies, (b) Both kernel remain uncontracted, and (c) Only one of the kernels

is contracted.

Case (a) is similar to the computation of f2p+1 and gives a factor of (p + 1)(N −
p)F p,0,0p−1,0,1;1,2. Case (b) does not contribute as we do not obtain the desired operator. Case

(c) is similar to the case of f2pρ2p. Once again, by explicit computation for the lowest

order, we can see that its contribution is −(p+ 1)F p,0,0p−1,0,1;1,2.

– 7 –
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• • •+ − + − + − −

• • •+ − + − + − + −

• • •+ − + − + − −

• • •+ − + − + − + −

So we have following recursion equation

F p,0,1p+1,0,0;1,2 = (p+ 1)(N − p− 1)F p−1,0,1
p,0,0;1,2 (3.10)

which can be solved with the launching condition F 1,0,0
0,0,1;1,2 = 1. Using (3.6) along with the

recursion equations above, we get

ρ2p+1 = 1− p

N − 1
(3.11)

In the appendix we provide an alternate derivation of (3.9) and (3.11) using cow-pies.

4 Matching with the free theory

Having fixed the OPE coefficients of the free theory, we are now in a position to compute

the anomalous dimensions of the interacting theory operators. This involves analyzing 3-

point functions with V2n × V A
2n+1 a OPEs in (2.18) and demanding that in the ε→ 0, they

go to corresponding quantities in free theory. In particular, we analyze 3-point correlators

of the form

〈V2n(x1) V A
2n+1 a(x2) V B

1 b(x3)〉 → 〈φ2n(x1)φA2n+1 a(x2)φB1 b(x3)〉 (4.1)

∼ f2n(x2
12)−n〈ψAa (x2)ψBb (x3)

and

〈V2n(x1) V A
2n+1 a(x2) V B

3 b(x3)〉 → 〈φ2n(x1)φA2n+1 a(x2)φB3 b(x3)〉 (4.2)

∼ f2nρ2n(x2
12)−n(6x12)ab〈φA3 a(x2)φB3 b(x3)〉

The l.h.s. of (4.2) can be evaluated, to the leading order, using V2n×V A
2n+1 a OPE of (2.18)

and the fact that V3 is a descendent of V1, i.e,

〈V A
1 a(x1)V B

3 b〉 = α−1(ε)∂2 µ〈V A
1 a(x1)V B

1 c〉(γµ)cb = σ
√

(N − 1)γ1
δabδ

AB

(x2
12)∆1+ 1

2

(4.3)

– 8 –
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Since this is proportional to
√
γ1, it vanishes in the ε → 0 limit. Therefore, to repro-

duce (2.17) and (3.1) we need q1 to remain finite in this limit. We also need q2 to blow up

as ε→ 0 limit such that

qi2α(ε)→ ρi, i = 2p, 2p+ 1 (4.4)

The coefficients qi are determined by conformal symmetry whose details and explicit form

can be found in appendix. As alluded before, we find that q1 is indeed finite in the free

limit. The asymptotic behavior of q2 is given by

q2n
2 ≈

(γ1 + γ2n − γ2n+1)

4γ1
, q2n+1

2 ≈ (γ1 + γ2n+1 − γ2n+2)

4γ1
(4.5)

Its evident that for q2 to blow up y1,1 has to vanish. This gives us following telescoping

series

y2n,1 − y2n+1,1 = 2σ
√

(N − 1)y1,2 ρ2n, n = 1, 2, · · · (4.6)

y2n+1,1 − y2n+2,1 = 2σ
√

(N − 1)y1,2 ρ2n+1 n = 0, 1, · · · (4.7)

Together this can be written as

yi,1 − yi+1,1 = 2σ
√

(N − 1)y1,2 ρi, i = 1, 2, · · · (4.8)

Summing the telescoping series gives

yn,1 = K
n−1∑
m=1

ρm (4.9)

This gives the anomalous dimensions of all the odd and even primaries in the theory once

we fix the numerical value of K. To fix this we make use of (2.7) which can be written as

2δ + γ3 = γ1 + 1 (4.10)

This gives y3,1 = −1 which can now be used to fix K by setting n = 3 in (4.9).

y3,1 = K(ρ1 + ρ2) (4.11)

This gives K = − (N−1)
(N−2) which fixes σ = −1 and furthermore fixes y1,2 also. Thus we obtain

γ1 =
(N − 1)

4(N − 2)2
ε2 (4.12)

One can also compute the anomalous dimensions of V2 which we obtain to be

γ2 = −(N − 1)

(N − 2)
ε (4.13)

which are in perfect agreement with the results of [6–8].

– 9 –
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A OPE coefficients from 3-point function

As mentioned in section 2, the OPE coefficients, qi, are completely determined by the

conformal symmetry [9]. Here we outline a procedure for obtaining these coefficients from

an expansion of 3-point functions. For the case in hand, the coefficients are computed from

a scalar-fermion-antifermion 3-pt correlator which takes following form [10, 11]

〈V2n(x1)V A
2n+1 a(x2)V B

1 b(x3)〉 = C123
(6x23)abδ

AB

(x2
12)l3 (x2

23)l1 (x2
31)l2

(A.1)

+C ′123

(6x126x31)abδ
AB

(x2
12)l

′
3 (x2

23)l
′
1 (x2

31)l
′
2

where l1, l2 and l3 and their primed counterparts are determined in terms of the scaling

dimensions of the operators

l1 =
1

2
[1−∆2n + ∆2n+1 + ∆1]

l2 =
1

2
[∆2n −∆2n+1 + ∆1] (A.2)

l3 =
1

2
[∆2n + ∆2n+1 −∆1]

and l′1 = l1 − 1/2, l′2 = l2 + 1/2 and l′3 = l3 + 1/2. The functional form of the 3-pt

function (A.1) is essentially fixed by imposing conformal symmetry, i.e.

0 = 〈GIV2n(x1)V A
2n+1 a(x2)V B

1 b(x3)〉 (A.3)

= 〈[GI , V2n(x1)]V A
2n+1 a(x2)V B

1 b(x3)〉+ 〈V2n(x1)[GI , V
A

2n+1 a(x2)]V B
1 b(x3)〉

+〈V2n(x1)V A
2n+1 a(x2)[GI , V

B
1 b(x3)]〉

where GI collectively stand for the generators of the conformal group and V2n(x1),

V A
2n+1 a(x2) and V B

1 b(x3) are all assumed to transform as primary under the action of GIs.

The case of n = 1 has to be treated separately since V3 is not primary. For the time

being, we consider the simpler case of all three operators being primary and return to n = 1

case in the end. Now we imagine a scenario where the first two operators, V2n(x1) and

V A
2n+1 a(x2), are coming together such that |x12| � |x31| and |x12| � |x23|. This allows us

to expand the 3-pt function (A.1) by eliminating x31 using the relation

x2
31 = x2

23

(
1 +

2x12.x23

x2
23

+
x2

12

x2
23

)
(A.4)

– 10 –
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Substituting this in (A.1) and keeping leading terms in x12 we obtain following series

〈V2n(x1)V A
2n+1 a(x2)V B

1 b(x3)〉 ≡ C123
(6x23)abδ

AB

(x2
12)l3 (x2

23)l1 (x2
31)l2

(A.5)

≈ C123(x2
12)−

1
2

[∆2n+∆2n+1−∆1]

[
(6x23)ab

(x2
23)∆1+ 1

2

− 2l2
(6x23)ab(x12.x23)

(x2
23)∆1+ 3

2

]

−C ′123(x2
12)−

1
2

[∆2n+∆2n+1−∆1]

[
(x2

12)3/2δab

(x2
23)∆1+ 1

2

+
(x2

12)1/2(6x126x23)ab

(x2
23)∆+ 1

2

]

Since the operators V2n and V A
2n+1 a(x2) are close, we may use OPE (2.18). Substituting

this into the l.h.s. of (A.1), we obtain

〈V2n(x1)V A
2n+1 a(x2)V B

1 b(x3)〉 ≈ f̃(x2
12)−

1
2

[∆2n+∆2n+1−∆1]
[
〈V A

1 a(x2)V B
1 b(x3)〉 (A.6)

+q1 x
µ
12∂2 µ〈V A

1 a(x2)V B
1 b(x3)〉+ q2 (6x126 ∂2)ac〈V A

1 c(x2)V B
1 b(x3)〉

]
This evaluates to

〈V2n(x1)V A
2n+1 a(x2)V B

1 b(x3)〉 ≈ f̃(x2
12)−

1
2

[∆2n+∆2n+1−∆1]

[
(6x23)ab

(x2
23)∆1+ 1

2

(A.7)

+ q1

(
(6x23)ab

(x2
12)∆1+ 1

2

− (2∆1 + 1)(x12.x23)(6x23)ab

(x2
23)∆1+ 3

2

)
+ q2

(d− 2∆1 − 1)(6x12)ab

(x2
23)∆1+ 1

2

]
δAB

Comparing this with the 3-pt expansion (A.1), we see that the terms proportional to C ′123

does not match with the terms in (A.7). Therefore we have C ′123 = 0 and

q1 =
∆2n −∆2n+1 + ∆1

2∆1 + 1
(A.8)

q2 =
∆2n −∆2n+1 + ∆1

(2∆1 + 1)(2∆1 + 1− d)

The fermion-scalar-anti-fermion 3-point function is given by

〈V A
2n+1 a(x1)V2n+2(x2)V B

1 b(x3)〉 = C123
(6x126x23)abδ

AB

(x2
12)m3 (x2

23)m1 (x2
31)m2

(A.9)

+C ′123

(6x31)abδ
AB

(x2
12)m

′
3 (x2

23)m
′
1 (x2

31)m
′
2

with

m1 =
1

2
[1−∆2n+1 + ∆2n+2 + ∆1] (A.10)

m2 =
1

2
[∆2n+1 −∆2n+2 + ∆1]

m3 =
1

2
[1 + ∆2n+1 + ∆2n+2 −∆1]
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and m′1 = m1 + 1/2, m′2 = m2− 1/2 and m′3 = m3− 1/2. Here we may set C ′123 = 0 which

follows directly from the arguments of the previous case. Proceeding in a similar manner,

the 3-point function expansion takes the form

〈V A
2n+1 a(x1)V2n+2(x2)V B

1 b(x3)〉 ≡ C123
(6x126x23)abδ

AB

(x2
12)m3 (x2

23)m1 (x2
31)m2

(A.11)

≈ C123(x2
12)−

1
2

[∆2n+1+∆2n+2−∆1+1](6x12)ac

[
(6x23)cb

(x2
23)∆1+ 1

2

− 2m2
(x12.x23)(6x23)cb

(x2
23)∆1+ 3

2

]

On the other hand, OPE of the first two operators is given by

V A
2n+1 a(x1)× V2n+2(x2) ≈ f̃(x2

12)−
1
2

[∆2n+1+∆2n+2−∆1+1](6x12)ac (A.12)

×
[
δcd + q1 δcdx

µ
12∂2 µ + q2 (6x126 ∂2)cd

]
V A

1 d(x2)

Substituting this in the l.h.s. of (A.9) and comparing with (A.11), we get

q1 =
∆2n+1 −∆2n+2 + ∆1

2∆1 + 1
(A.13)

q2 =
∆2n+1 −∆2n+2 + ∆1

(2∆1 + 1)(2∆1 + 1− d)

We now return to the case of n = 1 in (A.1). Here we have

〈V2(x1)V A
3 a(x2)V B

1 b(x3)〉 = − 1

α(ε)
(6 ∂2)ac〈V2(x1)V A

1 c(x2)V B
1 b(x3)〉 (A.14)

− 1

α(ε)

[
(d+ 2l1)δab − 2l3

(6x126x23)ab
x2

12

]
1

(x2
12)l3 (x2

23)l1 (x2
31)l2

Expanding the above expression for |x12| � |x31| and |x12| � |x23| as previously, and

comparing against the OPE gives the required coefficient

q2
2 ≈

(γ2,1 + 1)

4γ1,2ε
(A.15)

where we have used the fact that γ1 = γ1,2ε
2 and γ2 = γ2,1ε. Similarly, from the

〈V A
1 a(x1)V4(x2)V B

1 b(x3)〉 3-pt function one obtains

q3
2 ≈ −

(1 + γ4,1)

4γ1,2ε
(A.16)

B Computing f2pρ2p and f2p+1ρ2p+1 from cow-pies

In this appendix we give an alternate way to obtain f2pρ2p and f2p+1ρ2p+1 coefficients using

cow-pie contractions. This works as a double check of our results, because there are not

many results other than (4.12) and (4.13) that we can check in the literature.
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B.1 f2pρ2p

For the ease of counting, we invert the cow-pie and start the contractions from the single

kernel. There are two cases to consider,

Case I: The ‘−’ kernel remains uncontracted. It is easy to see that its contribution is zero

because rest of the contractions cannot give the desired operator.

Case II: The ‘−’ kernel is contracted with ‘+’ from the double cow-pie.

• • •+ − + − + − −

• • •+ − + − + −

which contributes −pF p−1,0,1
p,0,0;1,1 which can again be evaluated using cow-pies. Once

again, we invert the cow-pie diagram and start the contractions from the uncontracted

‘−’ in the double cow-pie. As can be readily seen, there are two cases to consider:

(a): ‘−’ remains uncontracted. This gives a contribution of F p,0,0p+1,0,0;1,1.

• • •+ − + − + −

• • •+ − + − + − −

F p,0,0p+1,0,0;1,1 can in turn be evaluated using cow-pies. This is similar to the case

of f2p and f2p+1 and its recursion equation is given by

F p,0,0p+1,0,0;1,1 = (p+ 1)(N − p)F p−1,0,0
p,0,0;1,1 (B.1)

(b): ‘−’ can be contracted with one of the double cow-pies. This gives a factor of

(p+ 1)F p,0,0p,0,1;1,2

• • •+ − + − + −

• • •+ − + − + − −

– 13 –
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Putting all the pieces together, we have the following system of recursion equations

F p,0,0p,0,1;1,2 = −pF p−1,0,1
p,0,0;1,1 (B.2)

F p,0,1p+1,0,0;1,1 = F p,0,0p+1,0,0;1,1 + (p+ 1)F p,0,0p,0,1;1,2

F p,0,0p+1,0,0;1,1 = (p+ 1)(N − p)F p−1,0,0
p,0,0;1,1

which can be solved along with the launching conditions F 0,0,0
0,0,1;1,2 = 0, F 0,0,1

1,0,0;1,1 = 1 and

F 0,0,0
1,0,0;1,1 = 1. Using the expression for f2p in (3.4), we obtain

ρ2p = − p

N − 1
(B.3)

B.2 f2p+1ρ2p+1

We proceed analogous to the even case, i.e. f2pρ2p. As in the previous case, we start the

contractions with the single kernel ‘−’. Again, we have two cases:

Case I: ‘−’ remains uncontracted. This indeed contributes, with a factor of F p,0,0p+1,0,0;1,1

which can be further evaluated using cow-pies. It can be seen that the recursion

equation for F p,0,0p+1,0,0;1,1 is given by

F p,0,0p+1,0,0;1,1 = (p+ 1)(N − p)F p−1,0,0
p,0,0;1,1 (B.4)

Case II: ‘−’ is contracted with one of the double cow-pies. This contributes a factor of

(p+ 1)F p,0,0p,0,1;1,2, where F p,0,0p,0,1;1,2 can be furthermore evaluated using cow-pies. To this

end, we invert the cow-pie diagram and once again consider two separate cases

a: ‘−’ of the double cow-pie remains uncontracted. It can be seen that this does not

contribute as we do not get the desired operator.

b: ‘−’ of the double cow-pie is contracted with one of the double cow-pies. This

contributes −pF p−1,0,1
p,0,0;1,2.

• • •+ − + − + − + −

• • •+ − + − + − −

Thus we have following system of recursion equations, which can be solved along with the

launching conditions F0, 0, 11,0,0;1,2 = 1, F 0,0,0
1,0,0;1,1 = 1, F 0,0,0

0,0,1;1,2 = 0.

F p,0,1p+1,0,0;1,2 = F p,0,0p+1,0,0;1,1 + (p+ 1)F p,0,0p,0,1;1,2 (B.5)

F p,0,0p+1,0,0;1,1 = (p+ 1)(N − p)F p−1,0,0
p,0,0;1,1

F p,0,0p,0,1;1,2 = −pF p−1,0,1
p,0,1;1,2
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Using (3.6), along with above set of recursion equations gives

ρ2p+1 = 1− p

N − 1
(B.6)
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