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1 Introduction

Supersymmetry (SUSY) and its realization in the R-parity conserving Minimally Super-

symmetric Standard Model (MSSM) is a well-studied and motivated extension of the Stan-

dard Model (SM) of particle physics. It could provide a solution to shortcomings of the

SM such as the absence of a dark matter candidate and it might stabilize the electroweak

scale against quantum corrections. The search for SUSY at the TeV scale is therefore a

central part of the physics program of the Large Hadron Collider (LHC). The production

of squarks q̃ and gluinos g̃, the super-partners of quarks and gluons, through the strong

interaction is expected to be an important discovery channel of SUSY, provided these par-

ticles are kinematically accessible at the LHC. The most stringent limits from the 7 TeV
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and 8 TeV runs of the LHC [2, 3] exclude gluino masses up to mg̃ = 1.3 TeV and super-

partners of the quarks of the first two generations below mq̃ . 875 GeV. Equal squark and

gluino masses can be excluded up to mg̃ ∼ 1.7 TeV. First results at
√
s = 13 TeV raised

the mass bounds to mg̃ . 1.75 TeV and mq̃ . 1.26 TeV [4]. However, these bounds depend

on assumptions, e.g. on the mass of the lightest supersymmetric particle and on decay

chains, and can be evaded, for instance by compressed mass spectra or non-degenerate

light-flavour squark masses. The search for SUSY therefore remains a focus of the 13–

14 TeV run of the LHC that has the potential to discover or exclude squarks and gluinos

up to the 3 TeV range. Turning exclusion limits on production cross sections into bounds

on superparticle masses requires precise predictions for these cross sections, which moti-

vates the computation of higher-order corrections to squark and gluino production. The

next-to-leading order (NLO) corrections for production of the light-flavour squarks and

gluinos in the supersymmetric extension of quantum chromodynamics (SQCD) have been

known for a long time [5] and have been implemented in the program PROSPINO [6]. More

recently, additional higher-order QCD corrections have been added to this result in var-

ious approximations [7–20]. Corresponding results for top squarks have been obtained

as well [16, 21–28]. Complementary work to this improvement of total cross sections by

higher-order QCD corrections is provided by the computation of electroweak contribu-

tions [29–36], the automation of NLO calculations in the MSSM [37, 38], the matching of

NLO corrections to a parton shower [39–41], the calculation of NLO corrections to squark

production and decay [40, 42, 43] and the estimate of finite-width effects [44].

The dominant production channels for squark and gluino production at hadron colliders

are pair-production processes of the form

N1N2 → s̃s̃′X, (1.1)

where N1,2 denote the incoming hadrons and s̃, s̃′ the two sparticles. In this paper we will

consider all pair-production processes of gluinos and squarks except top squark production.

The NLO SQCD corrections to squark and gluino production processes can become very

large for heavy sparticle masses [5], up to 100% of the tree-level result for gluino-pair

production. This raises the question of the convergence of the perturbative series. A

substantial part of the large NLO corrections can be attributed to terms that are enhanced

in the limit of a small relative velocity β of the sparticles,

β =

√
1− (ms̃ +ms̃′)2

ŝ
→ 0, (1.2)

where ŝ is the partonic centre-of-mass energy. These corrections arise at each order in

perturbation theory through threshold logarithms αs ln2,1 β due to soft-gluon corrections

and through Coulomb corrections of the form αs/β. The large NLO corrections to squark

and gluino production and the significant contribution of the threshold region motivate

the resummation of these threshold corrections, i.e. a reorganization of the perturbation

theory under the assumption that both types of threshold corrections are of order one,

αs lnβ ∼ 1 ,
αs
β
∼ 1. (1.3)

The accuracy of the resummed perturbative series can be defined by representing the
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resummed cross section schematically as

σ̂pp′ = σ̂
(0)
pp′

∞∑
k=0

(
αs
β

)k (
1 + αscNNLL + . . .

)
× exp

[
lnβ g0(αs lnβ)︸ ︷︷ ︸

(LL)

+ g1(αs lnβ)︸ ︷︷ ︸
(NLL)

+αsg2(αs lnβ)︸ ︷︷ ︸
(NNLL)

+ . . .
]
.

(1.4)

Methods for the separate resummation of the two towers of corrections are well established

and have been applied to squark and gluino production. The resummation of threshold

logarithms [45–48] with a fixed-order treatment of Coulomb corrections was performed at

NLL [7, 8, 11, 23] and more recently at NNLL accuracy [15, 18, 20, 26]. The application of

Coulomb-resummation [49] to squark and gluino production with a fixed-order treatment

of threshold logarithms was considered in [8, 10, 13, 14].

In these approaches, only one of the two variables in (1.3) is considered to be of order

one in the threshold region, which is not justified a priori. Therefore a combined resum-

mation of soft and Coulomb corrections is desirable and was established in [12, 50] using

effective-theory methods. The application of this method to squark and gluino production

at NLL accuracy [16] has revealed a significant effect of Coulomb corrections and soft-

Coulomb interference effects that can be as large as the soft corrections alone. Since the

joint soft and Coulomb corrections at NLL can show an enhancement of up to 100% relative

to the NLO cross section for some processes and large sparticle masses [16], a combined

NNLL treatment seems to be required for a stabilisation of the perturbative behaviour.

We note that when the Coulomb corrections are not summed, some of the sizeable correc-

tions at NLL in the combined soft-Coulomb resummation appear only at the next order

(NNLL) in pure soft-gluon resummation. Ref. [20] indeed confirms the earlier finding of a

significant soft-Coulomb interference effect. In the present paper we perform for the first

time such a combined soft and Coulomb resummation for squark and gluino production at

NNLL accuracy. Preliminary results have been presented already in [19]. A combination

of Coulomb corrections and NNLL soft resummation has also been performed for the case

of top-squark bound states (“stoponium”) in [27] using a formalism similar to ours.

With respect to our previous work on NNLL resummation for top quark produc-

tion [51, 52], this paper contains several new theoretical results and features: we derive the

extension of the spin-dependent non-Coulomb α2
s lnβ terms given for top-pair production

in [53] to squark and gluino production (these results have been quoted already in [19]).

We also generalize the additional logarithm found in [54] for top-pair production to squark

and gluino production and show how it arises in the effective-theory framework. For the

soft-gluon resummation we use the scale choice introduced in [55] as a default. Our nu-

merical cross section results are publicly available in the form of grids in the squark-gluino

mass plane [1].

The paper is organized as follows: in section 2 we give an overview of squark and gluino

production, review our resummation method and provide the input for NNLL resummation.

We compute the single-logarithmic potential corrections and spell out our choice of the soft

scale in soft-gluon resummation in the momentum-space framework. In section 3 we present

our numerical results and specify our estimate of the remaining theoretical uncertainties.

Some technical details of the NNLL resummation are provided in an appendix.
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2 NNLL soft-Coulomb resummation for squark and gluino production

2.1 Production processes

The total hadronic cross sections for the processes (1.1) can be obtained from short-distance

production cross sections σ̂pp′(ŝ, µf ) for the partonic processes

pp′ → s̃s̃′X , p, p′ ∈ {q, q̄, g}, (2.1)

by a convolution with the parton luminosity functions Lpp′(τ, µ):

σN1N2→s̃s̃′X(s) =

∫ 1

τ0

dτ
∑

p,p′=q,q̄,g

Lpp′(τ, µf )σ̂pp′(τs, µf ) , (2.2)

with τ0 = 4M2/s and the average sparticle mass

M =
ms̃ +ms̃′

2
. (2.3)

The parton luminosity functions are defined in terms of the parton density functions

(PDFs) as

Lpp′(τ, µ) =

∫ 1

0
dx1dx2δ(x1x2 − τ)fp/N1

(x1, µ)fp′/N2
(x2, µ) . (2.4)

At leading order [56–58], the following partonic channels contribute to the production

of light-flavour squarks and gluinos:

gg, qiq̄j → q̃ ¯̃q ,

qiqj → q̃q̃, q̄iq̄j → ¯̃q ¯̃q ,

gqi → g̃q̃, gq̄i → g̃ ¯̃q ,

gg, qiq̄i → g̃g̃ , (2.5)

where i, j = u, d, s, c, b. Flavour indices of squarks have been suppressed. For the light-

flavour squarks a common mass mq̃ will be assumed. The predictions for the cross sec-

tions presented below always include a sum over the contributions of the ten light-flavour

squarks (ũL/R, d̃L/R, c̃L/R, s̃L/R, b̃L/R). The partonic cross sections for squark-anti-squark

and squark-squark production differ for equal and unequal initial-state (anti-) quarks, but

otherwise do not depend on the individual quark flavours. Therefore it is possible to ex-

press the cross section (2.2) in terms of diagonal and off-diagonal flavour-summed parton

luminosities.

In this paper we consider higher-order corrections to partonic channels where the

sparticle pair is dominantly produced with vanishing orbital momentum (i.e. in an S-

wave), with a Born cross section σ̂ ∝ β in the threshold limit β → 0. For the purpose of

resummation, the partonic cross section σ̂pp′ is decomposed into contributions of definite

colour and spin of the final-state system. With regard to colour, the product of the SU(3)

representations r and r′ of the initial state particles (R and R′ of the final state particles)

is decomposed into irreducible representations

r ⊗ r′ =
∑
α

rα , R⊗R′ =
∑
Rα

Rα . (2.6)
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s̃s̃′ pp′ (rα, Rβ) S Comments

q̃ ¯̃q qq̄ (1, 1), (8, 8) 0

gg (1, 1), (8s, 8) 0

q̃iq̃j qq (3̄, 3̄) 0 i 6= j only

(6, 6) 0

q̃g̃ qg (3, 3), (6̄, 6̄), (15, 15) 1
2

g̃g̃ qq̄ (8, 8a) 1

gg (1, 1), (8s, 8s), (27, 27) 0

Table 1. Spin and colour quantum numbers leading to S-wave production of squarks and gluinos.

For squark and gluino production the relevant decompositions are

3⊗ 3̄ = 1⊕ 8 ,

3⊗ 3 = 3̄⊕ 6 ,

3⊗ 8 = 3⊕ 6̄⊕ 15 ,

8⊗ 8 = 1⊕ 8s ⊕ 8a ⊕ 10⊕ 10⊕ 27 .

(2.7)

The production cross sections can be decomposed into a colour basis characterized by pairs

of representations, Pi = (rα, Rβ) with equivalent initial- and final-state representations,

rα ∼ Rβ . Basis tensors for the pairs Pi can be constructed in terms of Clebsch-Gordan

coefficients [50]. The colour and spin quantum numbers resulting in S-wave sparticle

production have been classified e.g. in [59], see also [13] for gluino pair production. The

results are collected in table 1.

The higher-order corrections are written in terms of scaling functions f
(n)
pp′ as

σ̂pp′ =
∑
i

s+s′∑
S=|s−s′|

σ̂
(0),S
pp′,i

[
1 +

∞∑
n=1

(αs
4π

)n
f

(n),S
pp′,i

]
. (2.8)

Here the sum over i runs over the colour basis defined by the pairs Pi, while s (s′) is the

spin of the sparticle s̃ (s̃′) and S the total spin of the sparticle pair.

The colour-separated Born cross sections σ̂
(0)
pp′,i for squark and gluino production are

available in [8, 11, 23]. The colour-averaged NLO scaling functions were computed in [5] for

degenerate light-flavour squark masses and have been implemented in the computer pro-

gram PROSPINO [6]. For general squark spectra, the NLO corrections have been computed

recently [37, 39]. An approximation of the NNLO scaling functions consisting of all terms

that are enhanced in the limit β → 0 has been given in [53], up to an additional α2
s lnβ

term that has been calculated for the case of top-quark production in [54]. In section 2.3

we derive the generalization of this contribution for the production of squarks and gluinos.
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2.2 Resummation formula

Up to NNLL accuracy, the partonic production cross sections for the processes (2.5) fac-

torize in the threshold limit β → 0 into spin- and colour-dependent hard and Coulomb

functions HS
i and JSRα and a soft function WRα depending only on the total colour charge

Rα of the final-state particles [12, 50]:

σ̂pp′(ŝ, µf ) =
∑
i

s+s′∑
S=|s−s′|

HS
i (mq̃,mg̃, µf )

∫
dω JSRα

(
E − ω

2

)
WRα
i (ω, µf ) . (2.9)

Here E =
√
ŝ − 2M is the partonic centre-of-mass energy measured from threshold. The

hard function encodes the partonic hard-scattering processes and is related to squared

on-shell scattering amplitudes at threshold. The potential function is defined in terms of

non-relativistic fields for the sparticles whose interactions are described in potential non-

relativistic QCD (PNRQCD). Solving the Schrödinger equation in PNRQCD allows to sum

the Coulomb corrections to all orders. The soft function is defined in terms of soft Wilson

lines and contains the threshold logarithms. The convolution of the soft- and potential

functions accounts for the energy loss of the squark/gluino system due to soft gluons with

energy of the order Mβ2. For the colour basis based on the pairs of representations Pi
constructed in [50], the soft function is diagonal in colour space and identical to that of a

simpler two-to-one scattering process where a single heavy particle with colour charge Rα
is produced from the two incoming partons. This basis has been assumed in writing (2.9).

Only production channels with an S-wave contribution will be taken into account in (2.9).

It can be seen from table 1 that only a single spin quantum number contributes for the

threshold production for a given partonic colour channel. In practice the spin sum in (2.8)

therefore collapses to a single term, so the sum over S and the spin label on the hard

function will be suppressed in the following.

Resummation of threshold logarithms is performed by evolving the soft function from

a soft scale µs ∼ Mβ2 to a hard-scattering scale µf ∼ M using a renormalization-group

equation. The anomalous dimensions required for NNLL resummation are collected in [50].

The hard function is evolved from a scale µh ∼ 2M to µf . In the momentum-space

formalism [60, 61] the resummed cross section can be written as [12]

σ̂res
pp′(ŝ, µf ) =

∑
i

Hi(mq̃,mg̃, µh)URα(µh, µs, µf )

(
2M

µs

)−2η

× s̃Rαi (∂η, µs)
e−2γEη

Γ(2η)

∫ ∞
0
dω

JSRα(Mβ2 − ω
2 )

ω

(
ω

µs

)2η

.

(2.10)

Here the energy variable in the argument of the potential function has been expanded near

threshold which yields the non-relativistic expression E = Mβ2. This defines our default

implementation. The derivation of the NLO potential function required at NNLL accuracy

is the subject of section 2.3 and the result is given in (2.46) below. The quantity s̃Rαi is the

Laplace transform of the soft function. For NNLL resummation, the NLO soft function [50]
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is required which reads

s̃Rαi (ρ, µ) =

∫ ∞
0

dωe−sωWRα
i (ω, µ)

= 1 +
αs
4π

[
(Cr + Cr′)

(
ρ2 +

π2

6

)
− 2CRα (ρ− 2)

]
+O(α2

s), (2.11)

with s = 1/(eγEµeρ/2). After carrying out the differentiations with respect to η in (2.10),

this variable is identified with a resummation function which contains single logarithms,

η = 2αs
π (Cr + Cr′) ln(µs/µf ) + . . . , while the resummation function Ui sums the Sudakov

double logarithms αs ln2 µh
µf

and αs ln2 µs
µf

. The precise definitions of these functions for

the case of heavy-particle pair production are given in [12] and the expansions required for

NNLL accuracy can be found in [61]. For µs < µf the function η is negative and the factor

ω2η−1 in the resummed cross section (2.10) has to be understood in the distributional sense,

as discussed in detail in [51]. The prescription for the choice of the soft scale is detailed in

section 2.4.

2.2.1 Hard functions

The perturbative expansion of the hard function in the resummation formula (2.10) in the

MS scheme can be written as

Hi(mq̃,mg̃, µ) = H
(0)
i (mq̃,mg̃, µ)

[
1 +

∑
n

(
αs(µ)

4π

)n
h

(n)
i (mq̃,mg̃, µ)

]
, (2.12)

where for NNLL resummation the one-loop coefficients h
(1)
i are required.

The leading-order hard function H
(0)
i is related to the threshold limit of the Born cross

section for a given colour channel according to [12]

σ̂
(0)Rα
pp′ (ŝ) =

ŝ→4M2

(ms̃ms̃′)
3/2

M

β

2π
H

(0)
i +O(β3) . (2.13)

In our numerical implementation, we define the leading-order hard functions H
(0)
i in terms

of the exact Born-cross sections, instead of the leading term in the threshold limit, which

is seen to improve the accuracy of the threshold approximation in some cases, but not in a

systematic fashion. However, the hard function for a given production and colour channel

is set to zero if there is no S-wave contribution to the Born cross section at threshold, even

if the full Born cross section for this channel is non-vanishing. This affects the sub-process

qq̄ → g̃g̃ in the singlet and symmetric octet channels, the sub-processes gg → g̃g̃ and

gg → q̃ ¯̃q in the anti-symmetric octet channel, as well as qiqi → q̃iq̃i in the triplet channel,

see table 1.

A prescription to compute the one-loop hard functions from on-shell Born and one-

loop amplitudes at threshold has been given in [12]. Alternatively, the one-loop coefficient

can be read off from the constant term in the threshold expansion of the total NLO cross

section given in (A.1). This allows to extract the one-loop hard functions from recent

computations of the corresponding matching coefficients in the Mellin-space approach to

– 7 –
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threshold resummation [15, 59], which are defined as the constant term in the Mellin-

transformed one-loop cross section in the threshold limit (for gluino-pair production, see

also [13, 17]). From the Mellin transformation of the NLO threshold cross section in

momentum space (A.1), we obtain the relation of the one-loop hard coefficients h
(1)
i to the

matching coefficients C(1)
pp′→s̃s̃′,I in the notation of [15, 59]

h
(1)
i (mq̃,mg̃, µ) =− 4(Cr + Cr′)

(
ln2

(
2M

µeγE

)
+
π2

24

)
+ 4CRα

(
ln

(
2M

µeγE

)
− 1

)
+ 4 C(1)

pp′→s̃s̃′,I(mq̃,mg̃, µ),

(2.14)

where I is the label of the colour basis tensors used in [59] that correspond to the basis

elements Pi in our notation.

In addition to the dependence on the scale µ and the squark and gluino masses as

indicated in (2.14), the one-loop hard functions in SQCD depend as well on the top-quark

mass, with all other quarks treated as massless. Numerical results for the coefficients

C(1)
pp′→s̃s̃′,I have been plotted in [15, 59]. In the case of gluino-pair production and squark-

gluino production, the hard functions become singular for mg̃ = mq̃ +mt when the on-shell

decay-channel g̃ → t̃t opens up.1 This singularity is not physical and arises from neglecting

the gluino decay width. In addition, for gluino-pair production from a quark-antiquark

initial state, the threshold limit of the Born hard function goes to zero for mq̃ = mg̃, so

that the S-wave contribution to this channel vanishes in this special point of parameter

space. As a result, the relative NLO corrections given by the one-loop hard coefficient

diverge. Since we only apply resummation to the S-wave production channel, we set the

resummed contribution of the quark-antiquark initial state to zero for mq̃ = mg̃, while it

is included in fixed-order at NLO through the matching to PROSPINO. In practice, this

prescription is implemented by using the threshold limit of the Born hard function H(0)

for the subprocess qq̄ → g̃g̃ for 0.9 < mq̃/mg̃ < 1.1. The numerical effect of the precise

choice of this interval is negligible.

2.3 Potential effects

In the framework of [12, 50], the non-relativistic sparticles are described by the Lagrangian

of potential non-relativistic SQCD (PNRSQCD). To the order relevant for NNLL resum-

mation, the Lagrangian reads2

LPNRSQCD = ψ†

(
iD0

s +
~∂2

2ms̃
+

~∂4

8m3
s̃

)
ψ + ψ′ †

(
iD0

s +
~∂2

2ms̃′
+

~∂4

8m3
s̃′

)
ψ′

− 1

2δs̃s̃′

∫
d3~r V{k}(~r, ~∂)ψ′ †k4

(x)ψ†k3
(x+ ~r )ψk1(x+ ~r )ψ′k2

(x) .

(2.15)

1Note that in the NLO calculations of [5, 59] virtual top squarks are treated as mass-degenerate with

the light-flavour squarks.
2Note that the sign of the potential term in [12] is incorrect, which, however, has no consequence for

the results presented there. For the case of fermions, the sign here is consistent with [62] if the different

conventions for antiparticles are taken into account.
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Here the fields ψ†k and ψ′ †k are non-relativistic fields which create the heavy sparticles s̃

and s̃′. The label k collectively denotes the flavour, spin and colour quantum numbers of

the non-relativistic field, ψk = ψn,a,α, where Latin letters n and a are used for flavour and

colour indices, respectively, while the Greek index α denotes the spin index of the field.

For objects such as the potential, which depend on the labels of several fields, we employ a

multi-index convention for the spin indices, {α} = α1α2α3α4, and analogously for the colour

({a}), flavour ({n}), and collective ({k}) index. The soft gluon field couples to the non-

relativistic sparticles through the soft covariant derivative iD0
sψ = (i∂0 + gsT

(R)aAa0)ψ,

where T(R)a are the SU(3) generators in the representation R. Note that a factor 1/2

appears in the potential in the case of identical sparticle species, where we treat particles

as identical that belong to the same spin and SU(3) representation, and species (that is,

the ten light-flavour squarks are treated as identical particles with an index n denoting

flavour and the helicity label).

For NNLL accuracy, higher-order potential effects beyond the leading Coulomb po-

tential have to be taken into account, see [62] for a detailed discussion in the PNRQCD

formalism used here. The relevant potentials are given by the NLO Coulomb potential, the

1/m2 corrections to the tree-level potential, the one-loop 1/m potential, and the so-called

annihilation contributions,

V{k} = T(R)a
a3a1

T(R′)a
a4a2

[
VC δα3α1δα4α2 + δ1/m2V{α}

]
δn3n1δn4n2

+ δ1/mV{a}δα3α1δα4α2δn3n1δn4n2 + δannV{k} .
(2.16)

Note that due to (1.3), O(β) and O(αsβ, β
2) suppressed potentials appear here on the

same footing, if the latter generate a logarithm of β. All contributions to the potential

apart from the annihilation contribution are flavour-independent, while only the 1/m2

potential and the annihilation contribution are spin-dependent. Following [12, 50], we

perform a projection of the potential on states with definite colour charge and spin of the

heavy particle system by introducing projectors PRα{a} and ΠS
{α} on colour and spin space,

respectively. The colour projectors can be written in terms of Clebsch-Gordan coefficients

for the combination of the representations R and R′ into the irreducible representation Rα,

PRαa1a2a3a4
= CRα∗Aa1a2

CRαAa3a4
, (2.17)

where the index A is the colour index for the irreducible representation Rα.

Following the reasoning of appendix A of [50], gauge invariance implies that the po-

tential can be expanded in terms of the colour projectors (2.17)3

V{k} =
∑
Rα

V Rα
{n,α}P

Rα
a3a4a1a2

. (2.18)

3Strictly speaking these arguments imply that the potential can be written in the form V{a} =∑
I V

ICRα∗
Aa3a4

C
Rβ

Aa1a2
where the sum is over pairs PI = (Rα, Rβ) of equivalent representations Rα ∼ Rβ .

In squark-gluino production, the only case where equivalent but non-identical representations appear is the

production of gluino pairs, that can be in an 8s or 8a state. However, for a given partonic initial state, only

one of the two channels appears (see table 1), so in practice it is sufficient to consider the case where the

two representations are identical and the decomposition assumes the form (2.18).
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We will also only require potentials which allow for an analogous decomposition in spin

space. The potential term in the Lagrangian then assumes the form

V{k} ψ
′ †
k4
ψ†k3

ψk1ψ
′
k2

=
∑
Rα,S

V Rα,S
{n}

[
(ψ ⊗ ψ′)Rα,Sn3n4

]†
(ψ ⊗ ψ′)Rα,Sn1n2

(2.19)

in tensor-product notation (ψ ⊗ ψ′)12(t, ~r, ~R) = ψ
(0)
1 (~R+ ~r

2)ψ
′ (0)
2 (~R− ~r

2).

As shown in [12] for the case of the Coulomb potential, the interaction of the non-

relativistic particles with soft gluons can be eliminated from the PNR(S)QCD Lagrangian

through a field redefinition. It can be seen that the same transformation also decou-

ples soft gluons from a general gauge invariant potential. Therefore the fields in the La-

grangian (2.15) can be replaced by the decoupled fields ψ(0) and the covariant derivatives

can be replaced by ordinary derivatives. This decoupling holds to all orders in the strong

coupling but at leading power in the non-relativistic expansion in β. Non-decoupling ef-

fects appear at O(β) through the chromo-electric interaction, but do not contribute NNLL

corrections to the total cross section [12].

The potential function is defined as the correlation function of the decoupled poten-

tial fields,

J{k}(q) =
∑
Rα,S

PRαa3a4a1a2
ΠS
α3α4α1α2

JSRα,{n}(q) . (2.20)

For identical bosonic (fermionic) sparticles, the potential function satisfies the symmetry

(antisymmetry) property

J1234 = ±J2134 = ±J1243 (2.21)

that implies the symmetry properties of the colour and spin-projected potential function

JSRα,{n} together with the symmetry or antisymmetry of the colour and spin representations.

Since the Coulomb potential, the one-loop 1/m and the tree-level 1/m2 potentials are

flavour-independent, the flavour structure can be neglected in all contributions apart from

the annihilation contribution, which will be discussed in section 2.3.2.

The LO potential function, which resums all corrections of the form (αs/β)n, is given

by the imaginary part of the zero-distance Green function of the Schrödinger equation with

the leading Coulomb potential, i.e. the O(αs/β) contribution to (2.24),

J
S,(0)
Rα

(E) = 2 Im
[
G

(0)
Rα

(0, 0;E)
]
. (2.22)

The explicit expression can be obtained by the simple replacement mt → 2mred from

the corresponding result for top-pair production quoted e.g. in eq. (A.1) of [51]. For the

NNLL prediction, the NLO contributions to the potential (2.16) are taken into account

perturbatively,

δG
(1),S
Rα,{n}(0, 0, E) =

∫
d3z G

(0)
Rα

(0, ~z, E) (iδV Rα,S
{n} (~z )) iG

(0)
Rα

(~z, 0, E) , (2.23)

where it was used that all NLO potentials are diagonal with respect to the colour rep-

resentations and that the leading Coulomb Green function is spin-independent. It is not

necessary to (anti-)symmetrize the Green function with respect to the flavour indices. The
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contribution to the cross section automatically inherits the correct symmetry properties

from those of the potential and the hard function. This allows us to omit the flavour indices

of G
(0)
Rα

. The solution to (2.23) for the potential (2.16) is given in section 2.3.3.

2.3.1 Coulomb and non-Coulomb potential terms

In momentum space, the colour-projected Coulomb potential up to NLO reads

Ṽ Rα
C (p, q) =

4πDRααs(µ)

q2

[
1 +

αs(µ)

4π

(
a1 − β0 ln

q2

µ2

)
+ . . .

]
, (2.24)

where β0 = 11
3 CA−

4
3nlTf is the one-loop beta-function coefficient, and a1 = 31

9 CA−
20
9 nlTf .

The coefficient DRα of the Coulomb potential for a pair of heavy particles in the SU(3)

representations R, R′ in the irreducible product representation Rα is given in terms of the

quadratic Casimir operators for the various representations by

DRα =
1

2
(CRα − CR − CR′) , (2.25)

where negative values correspond to an attractive Coulomb potential, positive values to a

repulsive one. The numerical values for the representations relevant for squark and gluino

production can be found in [12, 63].

The following potentials are all suppressed by two powers of velocity in the non-

relativistic expansion, but have to be considered, since, contrary to the Coulomb potential,

they generate logarithms of β not related to the running coupling. At the next order in

1/m, the colour-projected one-loop potential of order m−1 in D = 4 − 2ε dimensions is

given by

δ1/mṼ
Rα(q) =

π2α2
sDRα

2mred

µ2ε

|q|1+2ε

eεγEΓ2(1
2 − ε) Γ(1

2 + ε)

π3/2 Γ(1− 2ε)

×
(
DRα

2
(1− 2ε)

2mred

M
+ CA(1− ε)

)
. (2.26)

We obtain the 1/m2 potential at tree-level for squark-and gluino production from the

generalization of the spin-dependent non-Coulomb terms for top-quark production [51, 53]

to squarks and gluinos (the result has been quoted already in [19]). This derivation is

analogous to the one for the 1/m2 potential for threshold production of top-quark pairs.

Details for the latter can be found in [62]. The general expression is

δ1/m2 Ṽ Rα(p, q) =
4πDRαs(µ

2)

q2

[
p2

ms̃ms̃′
− q2

8m2
s̃m

2
s̃′

(2ms̃ms̃′ +m2
s̃ c

s̃′
2 +m2

s̃′ c
s̃
2)

+
cs̃2c

s̃′
2

16ms̃ms̃′
[σi, σj ]qj ⊗ [σi, σk]qk + cs̃2

(
1

8m2
s̃

+
1

4ms̃ms̃′

)
[σi, σj ]qipj ⊗ 1

+ cs̃
′

2

(
1

8m2
s̃′

+
1

4ms̃ms̃′

)
1⊗ [σi, σj ]qipj

]
, (2.27)

with 1 the 2× 2 unit matrix in spin space, q = p′ − p, and p (p′) the in-going (out-going)

three-momentum of the heavy particle in the scattering amplitude. The coefficient c2 has
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the tree-level value zero (one) for scalar (fermionic) sparticles. For scalars it also sets the

corresponding spin-dependent terms to zero.

Projecting on the relevant spin states (see section 4.5 of [62]) and setting D → 4, which

is justified when one is only interested in the logarithmically enhanced term generated by

the potential insertion, the non-Coulomb corrections can be cast in the form

δ1/m2 Ṽ Rα,S(p, q) =
4πDRααs

q2

[
p2

ms̃ms̃′
+

q2

4m2
red

νSspin

]
, (2.28)

where the spin-dependent coefficient for the squark and gluino production processes is

given by

νspin(q̃ ¯̃q) = νspin(q̃q̃) = −2mred

4M
, ν

s= 1
2

spin (q̃g̃) =
1

2

(
m2
g̃

(mq̃ +mg̃)2
− 1

)
,

νS=0
spin (g̃g̃) = 0, νS=1

spin (g̃g̃) = −2

3
.

(2.29)

Together with the Coulomb potential (2.24) and the 1/m potential in (2.26), this result is

the needed generalization of eq. (4.95) of [62], up to the so-called annihilation contribution,

which is derived in the next section.

Using these results we can now determine the corresponding logarithm of β in the

NNLO cross section. For this purpose we use the known results for the NNLO Green

function of a system of two particles with equal masses from [64] (given explicitly in [65])

and generalize them to the case of unequal masses. In the following, we briefly outline

this derivation, leaving a more detailed description for a momentum independent potential

to section 2.3.2. It is straightforward to adapt the coefficients of the potentials in the

expressions for the Green function to the more general case. Afterwards, the remaining

mass dependence is due to the equation of motion and thus has to be identified with the

reduced mass. We then expand the expressions to order α2
s, keeping only logarithms of β.

Note that in addition to the 1/m and 1/m2 potentials discussed above, we also have to

include the kinetic energy correction p4/(8m3
s̃) from the terms with a fourth power of the

spatial derivative in (2.15). The final result reads

∆σ̂
(2)Rα,S
pp′,nC (ŝ, µf ) = σ̂

(0)Rα,S
pp′ (ŝ)α2

s lnβ
[
−DRα b1 − 2D2

Rα

(
1 + νSspin +

mred

2M

)]
= σ̂

(0)Rα,S
pp′ (ŝ)α2

s lnβ
[
CADRα − 2D2

Rα

(
1 + νSspin

) ]
, (2.30)

where b1 = −CA − DRαmred/M is the 1-loop coefficient of the 1/m potential, cf. (2.26).

Combining the contributions of the 1/m and 1/m2 potential, we obtain the same expression

as in eq. (3) of [53], which was derived for the equal mass case. Remarkably, even for the

case of unequal masses, the process dependence is completely contained in the coefficient

νSspin and the leading order cross section.

2.3.2 Annihilation contributions

We next derive the annihilation contribution δannṼ{k} to the potential (2.16) for the squark

and gluino pair-production processes as well as the resulting corrections to the potential
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(a) (b) (c) (d)

Figure 1. Tree-level contributions to the matching of four-field annihilation operators in

NR(S)QCD. Dashed lines represent scalars, solid lines quarks and the solid-curly lines the gluino.

function (2.46) and the threshold expansion of the NNLO cross section. For the case of

top-quark pair production this single-logarithmic correction of order α2
s lnβ appears only

in the qq̄ partonic channel. It has been identified in [54] and was not included in the

approximate NNLO cross section of [53].

The annihilation corrections arise from four-field operators in NRSQCD that match

onto a local contribution to the potential (2.16) in PNRSQCD and contribute to the cross

section at NNLO provided their matching coefficients are generated at tree level. The

matching coefficients are obtained by equating the EFT matrix element with an insertion

of the potential to the non-relativistic expansion of the matrix element of the two-to-two

sparticle scattering process s̃s̃′ → s̃s̃′,

1

2δs̃s̃′
(−i)δannṼ{k}〈s̃3s̃

′
4|ψ
′ †
k4
ψ†k3

ψk1ψ
′
k2
|s̃1s̃

′
2〉EFT

=
1

4√ms̃1ms̃′2
ms̃3ms̃′4

iM(s̃1s̃
′
2 → s̃3s̃

′
4)
∣∣ann

ŝ=4M2 , (2.31)

where the pre-factor on the right-hand side arises from the non-relativistic normalization

of the one-particle states. As indicated by the superscript “ann”, only the contributions to

the matrix element matching to a local four-fermion operator must be taken into account.

Also t-channel gluon exchange contributions are excluded since they are assigned to the

non-Coulomb scattering potential. The relevant tree-level diagrams for the various squark

and gluino pair-production processes are shown in figure 1. Diagram (a) is the typical

diagram for fermion-antifermion annihilation through a gluon, which arises for the gluino-

gluino process. Diagram (b) is the corresponding diagram for the squark-gluino process

with an s-channel quark and diagrams (c) and (d) are the scalar four-point interactions for

the squark-squark and squark-antisquark processes, respectively. Note that the s-channel

gluon annihilation diagram is P -wave suppressed for the squark-antisquark case so the

only contribution comes from the four-squark vertex (d). Note that we shall assume that

the difference of squark and gluino masses is sufficiently large, |mg̃ −mq̃| > Mβ2, so that

annihilation contributions that change the sparticle species (e.g. q̃ ¯̃q → g̃g̃ through t-channel

quark exchange) do not lead to threshold-enhanced contributions to the cross section.

As an example, we discuss the case of gluino-pair production in detail. In this case it

is convenient to identify the operator ψ′ in the PNRSQCD Lagrangian (2.15) and the EFT

matrix element in the matching condition (2.31) with the creation operator of the charge-

conjugate gluino field ψc†. The non-relativistic limit of the annihilation contribution to the
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matrix element corresponding to figure 1(a) is given by

1

4m2
g̃

iM(g̃1g̃2 → g̃3g̃4)
∣∣ann

ŝ=4M2 = (−i) g2
s

4m2
g̃

F aa3a4
F aa2a1

(η†2σ
iξ1)(ξ†3σ

iη4)

= (−i) g2
s

4m2
g̃

2Nc P
(8a)
{a} ΠS=1

{α} η
†
α2
ξα1ξ

†
α3
ηα4

(2.32)

with the generators of the adjoint representation F aa1a2
= ifa1aa2 and the two-component

particle (antiparticle) spinors ξ (η). In the second line, we have introduced the projection

operators on the 8a colour representation and the spin-triplet,

P
(8a)
{a} =

1

Nc
F aa3a4

F aa2a1
, ΠS=1

{α} =
1

2
σiα3α4

σiα2α1
. (2.33)

To evaluate the matrix element on the left-hand side of (2.31), note that the property

of Majorana fermions in an S-wave state (see e.g. [66])

(ψ†iσ
iψcj) = −(ψ†jσ

iψci ) (2.34)

and the anti-symmetry of the F aaiaj imply that all possible four contractions of the external

states with the field operators give an identical contribution to the projection of the matrix

element on the 8a, S = 1 state. Taking the factor 1/2 for identical particles in (2.31) into

account, the potential is therefore obtained by multiplying the matrix element (2.32) by a

symmetry factor of 1/2. The final result for the coefficients in the decomposition (2.19) of

the annihilation potential reads

δannṼ
Rα,S =

παs
m2
g̃

[Nc δRα,8 δS,1] . (2.35)

The corresponding result for quark-antiquark annihilation [67] is obtained by changing the

colour factor Nc to TF = 1
2 due to the normalization of the colour projector P (8) in the

fundamental representation and multiplying by a factor of two due to the absence of the

symmetry factor for Dirac fermions.

The results for the remaining squark and gluino pair-production processes are obtained

in a similar way and collected in table 2 in the form of coefficients ARα,S{n} defined by

δannṼ
Rα,S
{n} =

παs
M2

ARα,S{n} . (2.36)

The flavour labels are only required for the cases of squark-squark and squark-antisquark

scattering where the label ni denoting the ten light-flavour squark states is considered as

a pair (i, λi) of a flavour label i and a helicity label λi = 1 (2) for left (right) squarks.

The results are given with a general squark-mass dependence, although we only require

the equal-mass case for our numerical results. We have assumed vanishing squark mixing

which implies that the matrix Xi
λiλj

appearing in the four-squark vertex [68] has the form

Xi
λiλj

= (−1)
λi+λj

2 δλiλjδij . (2.37)
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(s̃s̃′)RαS ARα,S{n}

(q̃ ¯̃q )1 −D1
M

2mred
Xi1
λ3λ1

Xi2
λ2λ4

(q̃ ¯̃q )8 M

2mred

(
TFX

i1
λ1λ2

Xi3
λ3λ4
−D8X

i1
λ3λ1

Xi2
λ2λ4

)
(q̃q̃)3̄ D3̄TF

M

2mred

(
Xi1
λ1λ3

Xi2
λ2λ4
−Xi1

λ1λ4
Xi2
λ2λ3

)
(q̃q̃)6 D6TF

M

2mred

(
Xi1
λ1λ3

Xi2
λ2λ4

+Xi1
λ1λ4

Xi2
λ2λ3

)
(q̃g̃)3

1
2

CF
mq̃ +mg̃

2mq̃

(g̃g̃)8a
1 Nc

Table 2. Non-vanishing values for the coefficients ARα,S
{n} of the annihilation potential (2.36) for

the different squark and gluino production processes for the colour state Rα and spin state S (if

applicable). The helicity labels for the squark i are denoted by λi. The matrix appearing in the

squark potentials is defined in eq. (2.37).

Since the annihilation potential (2.36) is momentum independent (proportional to

δ(3)(z) in coordinate space), the resulting Green function correction (2.23) is proportional

to the square of the Coulomb Green function at the origin,

δannG
(1)S
Rα,{n} = −παs

M2
ARα,S{n}

[
G

(0)
Rα

(0, 0;E)
]2
. (2.38)

Note that the squark-squark annihilation potential in table 2 shares the (anti-)symmetry

with respect to the exchange of initial- or final-state flavours of the potential function in

the 3̄ (6) colour channel, as assumed in (2.23).

The correction to the potential function JSRα is given by twice the imaginary part

of δGSRα ,

δannJ
S
Rα,{n} = −4παs

M2
ARα,S{n} Re

[
G

(0)
Rα

(0, 0;E)
]

Im
[
G

(0)
Rα

(0, 0;E)
]
, (2.39)

with

Re
[
G

(0)
Rα

(0, 0;E)
]

=
m2

redDRααs
π

lnβ + . . . , (2.40)

Im
[
G

(0)
Rα

(0, 0;E)
]

=
β

4π

(ms̃ms̃′)
3/2

M
+O(αs) , (2.41)

where the ellipsis denotes non-logarithmic terms or terms of higher order in αs.

To obtain the annihilation correction to the cross section from the factorization for-

mula (2.9), the non-trivial flavour structure of the hard production process must be taken

into account by introducing a flavour dependent hard function, HS
i,{n}. This is schemati-

cally of the form HS
i,{n} ∼ CSi,n1n2

CS∗i,n3n4
, where the matching coefficient CSi,ninj is related
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pp′ → (s̃s̃′)RαS νRα,Sann

gg → (q̃ ¯̃q )Rα −DRα

M

2mred

qq̄ → (q̃ ¯̃q )Rα DRα

M

2mred

qiqj → (q̃iq̃j)
Rα 2TFDRα

M

2mred

qg → (q̃g̃)3
1
2

CF
mq̃ +mg̃

2mq̃

qq̄ → (g̃g̃)8a
1 Nc

Table 3. Non-vanishing values of the coefficient νRα,S
ann of the annihilation corrections for the differ-

ent squark and gluino production processes for the colour state Rα and spin state S (if applicable).

to the amputated production amplitude of the sparticle state (s̃ni s̃nj )
Rα
S at threshold (see

eqs. (2.60) and (3.10) in [12]). The product of the flavour-dependent hard function and

the annihilation contribution to the potential function therefore takes the interference of

the different production channels s̃n1 s̃n2 and s̃n3 s̃n4 into account, which are connected by

a rescattering through the annihilation potential δannṼ{n}. The potential function JSRα(E)

appearing in (2.9) is the flavour-averaged potential function defined by

JSRα(E) =
JSRα,{n}(E)H

S(0)
i,{n}

H
S(0)
i

, (2.42)

where H
(0)S
i is the flavour-summed LO hard function that appears in the LO cross sec-

tion (2.13).

The NNLO annihilation correction to the cross section in the colour and spin state Rα
and S is then given by

∆σ̂
(2)Rα,S
pp′,ann (ŝ, µf ) = H

S(0)
i δannJ

S
Rα(E)|O(α2

s)

= σ̂
(0)Rα,S
pp′ (ŝ)α2

s lnβ

(
−DRα

2

4m2
red

M2
νRα,Sann

)
, (2.43)

where it was used that only the leading-order soft function contributes to the O(α2
s lnβ)

correction, which renders the convolution in (2.9) trivial. The annihilation correction

relative to the LO cross section has been defined in terms of the coefficient

νRα,Sann =
ARα,S{n} H

S(0)
i,{n}

H
S(0)
i

, (2.44)

whose values for all squark and gluino pair-production processes are collected in table 3.

The results for the squark-antisquark production process can be derived from the

potential coefficients given in table 2 and the definition (2.44) using the fact that, in
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the absence of flavour violation, the matching coefficients for the gluon initial state are

non-vanishing only for equal squark flavours and helicity labels, gg → q̃iλi
¯̃qiλi . For the

quark-antiquark initial state only opposite helicity labels contribute, while the flavours are

fixed by the initial-state quarks, qiq̄j → q̃iL ¯̃qjR and qiq̄j → q̃iR ¯̃qjL (see e.g. ref. [12]). For

squark-squark production, the helicity labels of the two squarks agree, qiqj → q̃iLq̃jL and

qiqj → q̃iRq̃jR, while the symmetry properties of the matching coefficients under exchange

of the squarks follow from the respective colour representation, i.e. the coefficients for the

3̄ (6) state are anti-symmetric (symmetric).

For the example of gluino pair-production we obtain the correction

∆σ̂
(2)Rα=8,S=1
qq̄,ann (ŝ) = σ̂

(0)Rα=8
qq̄ (ŝ)α2

s lnβ

(
−D8Nc

2

)
, (2.45)

which agrees with the one for top-quark pair production in eq. (4.15) of [54] after the

appropriate changes of the group-theory factors, Nc → TF and D8 → 1
2(CA − 2CF ), and

multiplication by a factor of 2 due to the Dirac nature of the top quark.

2.3.3 NLO potential function

For resummation at NNLL accuracy, the NLO potential function has to be inserted into

the resummation formula (2.10). It is given by the perturbative solution (2.23) of the

Schrödinger equation with the potential (2.16) and can be written in the form

JSRα(E) = 2 Im
[
G

(0)
Rα

(0, 0;E)∆Rα,S
nC (E) +G

(1)
Rα

(0, 0;E)
]
. (2.46)

The function G
(1)
Rα

is obtained from one insertion of the NLO Coulomb potential and in-

cludes all terms of the form αs × (αs/β)n. Its explicit expression can be obtained by the

simple replacement mt → 2mred from the corresponding result for top-pair production

quoted in eq. (A.1) of [51]. The factor ∆Rα,S
nC arises from an insertion of the one-loop 1/m,

the tree-level spin-dependent non-Coulomb, and the annihilation potentials. It is given in

terms of the results of sections 2.3.1 and 2.3.2 as

∆Rα,S
nC (E) = 1 + α2

s(µC) lnβ

[
CADRα − 2D2

Rα(1 + νSspin)− DRα

2

4m2
red

M2
νRα,Sann

]
θ(E) .

(2.47)

Eq. (2.46) combines the non-Coulomb correction (2.47) with all-order Coulomb resumma-

tion and therefore includes corrections of the form α2
s lnβ × (αs/β)n. As in [51] we do

not resum the logarithms arising from the non-Coulomb corrections, which formally are

also an NNLL contribution. Such a resummation can in principle be performed using

renormalization group methods in PNR(S)QCD, but is left for future work.

2.3.4 Bound-state effects

In the colour channels with an attractive Coulomb potential (DRα < 0), the Coulomb

Green function develops bound-state poles below threshold,

JRα(E) = 2
∞∑
n=1

δ(E − En)Rn θ(−DRα) , E < 0 (2.48)
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with binding energies

En = −
2mredα

2
sD

2
Rα

4n2

(
1 +

αs
4π

e1

)
(2.49)

and residues

Rn =

(
2mred(−DRα)αs

2n

)3 (
1 +

αs
4π

δr1

)
. (2.50)

The values of the NLO corrections e1 and δr1 [69, 70] are quoted in [51], where again the

replacement mt → 2mred is implied.

For long-lived squarks or gluinos, the poles correspond to physical gluinonium or

squarkonium bound states, which subsequently decay to di-photon or di-jet final states. In

this paper we do not consider this case with the resulting very different collider signals com-

pared to the usual missing-energy signatures. For squarks and gluinos that decay within

the LHC detectors, the bound-state poles are smeared out by the finite decay widths. The

resulting contribution to the total cross section from partonic centre-of-mass energies below

the nominal production threshold can be included in the resummation formula (2.10) by

using the bound-state contributions (2.48) for vanishing decay widths. The convolution

of these corrections with the soft corrections is performed as described in [51]. In [44]

this procedure has been compared at NLL accuracy to the description of finite-width ef-

fects through a complex energy E → E + i(Γs̃ + Γs̃′)/2 in the potential function. It

was found that finite width effects on the NLL K-factors for squark-squark and squark-

antisquark production processes are well below the 5% level while they can become of the

order of 10% or even larger for gluino production processes with a gluino decay width

above Γg̃/mg̃ & 5%. However, this case only occurs for SQCD two-body decays g̃ → q̃q

in the region mg̃ & 1.3mq̃, where gluino production is kinematically suppressed and gives

a small contribution to the total SUSY production rate. In phenomenologically relevant

parameter-space regions of the MSSM, the finite width effects are therefore smaller than

the remaining perturbative uncertainty of the NNLL calculation, which justifies the use of

the narrow-width approximation in this paper.

2.3.5 Fixed-order treatment of Coulomb corrections

In order to assess the impact of Coulomb resummation and to compare to NNLL predictions

treating Coulomb corrections at fixed order, we also consider an approximation NNLLfixed-C

where the product of hard and Coulomb corrections in the resummation formula (2.10) is

replaced by its fixed-order expansion up to O(α2
s),

Hi(µh)JSRα(E) ⇒ H
(0)
i (µh)

β

2π

(ms̃ms̃′)
3/2

M
∆NNLO

hC (ŝ, µh, µf ). (2.51)
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The correction factor is given by

∆NNLO
hC (ŝ, µh, µf ) =

{(
1− αs(µf )

πDRα

2

√
2mred

E

)(
1 +

αs(µh)

4π
h

(1)
i (µh)

)

+ α2
s(µf )

[
π2D2

Rα

12

(
2mred

E

)
+
DRα

8

√
2mred

E

(
β0 ln

(
8mredE

µ2
f

)
− a1

)

+
1

2
ln
E

M

(
CADRα − 2D2

Rα(1 + νSspin)− DRα

2

4m2
red

M2
νRα,Sann

)]}
.

(2.52)

In this approximation one can derive an analytic formula for the NNLL cross-section that

is given in appendix A.2.

2.3.6 Numerical size of non-Coulomb potential, annihilation and bound state

contributions

In table 4 we illustrate the numerical impact of the non-Coulomb and annihilation poten-

tials computed in sections 2.3.1 and 2.3.2, respectively, as well as the bound-state correc-

tions discussed in section 2.3.4. The correction to the full NNLL cross section is obtained

by removing the respective contribution to the NLO potential function (2.46) from the

resummation formula (2.10). In table 4 the results for a given partonic initial state are

normalized to the total NLO cross section, so that they specify the contribution to the

NNLL K-factor defined in (3.2) below. The choices of the input parameters, PDFs and the

various scales are discussed in sections 2.4 and 3.1.

The corrections from the bound-state contributions and the non-Coulomb potential are

of comparable size and generally in the per-cent range. The size of the potential corrections

for the different processes follows a similar pattern as the full NNLL corrections discussed

in section 3. The largest values are observed for gluino-pair production, where they grow

above 10% at high masses. In contrast, for squark-squark production all types of corrections

stay below a percent. The annihilation correction is typically an order of magnitude smaller

than the two other types of corrections and therefore phenomenologically negligible. For the

case of squark-antisquark and gluino-pair production, the size of the corrections from the

quark-antiquark and gluon initial states reflects the relative contribution of these partonic

channels to the total cross section. For gluino-pair production, the quark-antiquark channel

contribution to the numbers in table 4 is further suppressed, since only a single colour

channel contributes to S-wave production at threshold, cf. table 1.

2.4 Scale choices

The resummed cross section (2.10) depends on the factorization scale µf , which we set to

µf = M as a default, the soft scale µs, the hard scale µh, as well as on the scale µC used

in the Coulomb function. While the solution to the renormalization group equations for

the hard and soft functions is formally independent on µh and µs, due to the truncation of

the perturbative series the NNLL resummed cross section contains a residual dependence

on these scales at O(α2
s). We specify our scale choices here which, with the exception of

the soft scale, follow the treatment in [16, 51].
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mq̃ = 1 TeV,mg̃ = 1.5 TeV mq̃ = 2.5 TeV,mg̃ = 3 TeV

s̃s̃′ pp′ δBS δnC δann δBS δnC δann

q̃ ¯̃q qq̄ 1.5% 3.2% 0.4% 4.2% 5.7% 0.8%

gg 0.3% 0.8% −0.1% 0.4% 0.6% −0.1%

q̃iq̃j qq 0.1% 0.5% 0.1% 0.2% 0.4% 0.1%

q̃g̃ qg 0.8% 1.7% −0.3% 2.4% 3.3% −0.5%

g̃g̃ qq̄ 0.2% 0.3% −0.1% −0.1% −0.1% 0.03%

gg 5.1% 8.5% — 14.9% 16.2% —

mq̃ = 1.5 TeV,mg̃ = 1 TeV mq̃ = 3 TeV,mg̃ = 2.5 TeV

s̃s̃′ pp′ δBS δnC δann δBS δnC δann

q̃ ¯̃q qq̄ 1.8% 3.6% 0.5% 5.1% 6.2% 0.8%

gg 0.2% 0.4% −0.1% 0.4% 0.5% −0.1%

q̃iq̃j qq 0.1% 0.3% 0.1% 0.3% 0.4% 0.1%

q̃g̃ qg 1.5% 2.8% −0.3% 3.2% 4.0% −0.5%

g̃g̃ qq̄ 0.3% 0.4% −0.1% 0.6% 0.6% −0.2%

gg 4.0% 7.8% — 10.5% 13.3% —

Table 4. Contribution of the bound-state, non-Coulomb and annihilation corrections to the NNLL

result for the LHC with
√
s = 13 TeV. The corrections are normalized to the total NLO cross

sections.

Hard scale. Our default value for the hard scale is µh = 2M which can be motivated by

the logarithmic structure of the renormalization group equation of the hard function [50].

This choice is also seen to eliminate the logarithms in the expression of the hard func-

tion (2.14). To estimate the theoretical uncertainty from the choice of the hard scale,

we include a variation in the interval M ≤ µh ≤ 4M in our estimate of the theoretical

uncertainties.

Soft scale. A resummation of all logarithms of β in the partonic cross section could

be achieved by the running soft scale µs ∼ Mβ2 which, however, renders the convolution

of the partonic cross-section (2.10) with the PDFs unintegrable and leads to a Landau

pole in αs(µs). Instead, ref. [60] proposed a fixed soft scale that minimizes the one-loop

soft corrections to the hadronic cross section. Alternatively, a running soft scale µs =

ksM Max[β2, β2
cut] was introduced in [51]. This method was applied to squark and gluino

production at NLL accuracy in [16] with ks = 1 and choosing the parameter βcut small

enough to justify the resummation of logarithms ln βcut in the lower interval, and large

enough so that threshold logarithms can be treated perturbatively in the upper interval,

following the procedure of [51].

Recently, Sterman and Zeng [55] considered an expansion of the logarithm of the parton

luminosity function,

lnLpp′ (τ0/z, µ) = s
(0)
pp′(τ0, µ) + s

(1)
pp′(τ0, µ) ln z + . . . (2.53)
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with

s
(1)
pp′(τ0, µ) = −

d lnLpp′(τ, µ)

d ln τ
|τ=τ0 . (2.54)

To the extent that the convolution of the parton luminosity with the partonic cross section

is dominated by the ln z term, it was shown in [55] that the momentum-space resummation

method is equivalent to the traditional resummation in Mellin-moment space if the soft

scale is chosen as

µs =
2Me−γE

s
(1)
pp′

. (2.55)

Note that the scale choice (2.55) amounts to the use of a different soft scale in every

partonic channel. As demonstrated in [55] for the case of Higgs production, the single-

power approximation of the parton luminosity provides a dominant contribution to the

convolution with the partonic cross section, so the scale choice (2.55) is motivated also

for the use of the exact PDFs. This conclusion is also supported by an analysis using the

saddle-point approximation [71]. We therefore adopt (2.55) as our default choice for the

soft scale. This choice is also convenient for the numerical implementation, since it can

be determined during the evaluation of the cross section at very small computational cost

without a prior minimization procedure as for the other scale-setting procedures. In our

implementation, the flavour-summed parton luminosities mentioned below (2.5) are used

for the determination of the soft scale in the case of initial-state quarks. The theoretical

uncertainty due to the scale choice is estimated by varying µs from one-half to twice the

default scale. Note that we keep the factorization scale fixed in the determination of the

soft scale, i.e. we always use the default value µf = M in (2.54).

Coulomb scale. At NNLL accuracy the scale µ in the potential function (2.46) can be

chosen independently of the other scales. NLL effects related to Coulomb exchange can be

resummed by choosing the scale of the order of
√

2mredMβ, which is the typical virtuality of

Coulomb gluons. For small β, in production channels with an attractive Coulomb potential

the relevant scale is instead given by the Bohr scale 2mred|DRα |αs set by the first bound

state, as can be seen from the β → 0 limit of the NLO potential function quoted in [51].

We thus choose the scale in JRα to be

µC = Max
{

2αs(µC)mred|DRα |, 2
√

2mredMβ
}
. (2.56)

Note that no bound states arise for a repulsive potential, DRα > 0, in which case JRα
vanishes for small β. Therefore the above argument does not determine the Coulomb scale

for β → 0 in this case. We nevertheless use the prescription (2.56) also for a repulsive

potential where resummation of Coulomb corrections leads to small effects, so that the

precise choice of µC has a negligible numerical impact on predictions of the cross section.

We vary µC from one-half to twice the default value (2.56) to estimate the theoretical

uncertainty.
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3 Numerical results

3.1 Setup

In order to include the known fixed-order NLO corrections without kinematic approxima-

tion, we match the NNLL-resummed result to the NLO result from PROSPINO, supplemented

with the threshold approximation of the NNLO cross sections, where all constant contribu-

tions at O(α2
s) are set to zero. In order to avoid double counting, the fixed-order expansion

of the NNLL corrections up to O(α2
s) is subtracted from the cross section. Our matched

predictions are therefore given by

σ̂NNLL
pp′matched(ŝ) =

[
σ̂NNLL
pp′ (ŝ)− σ̂NNLL(2)

pp′ (ŝ)
]

+ σ̂NLO
pp′ (ŝ) + σ̂NNLO

app,pp′(ŝ) . (3.1)

The approximate NNLO cross section is obtained from eq. (A.1) in [53] by inserting the

one-loop hard functions 2Re(CX) = h
(i)
1 , the results for νSspin given in (2.29) and adding

the annihilation contribution (2.43). The expansion of the NNLL correction to O(α2
s),

σ̂
NNLL(2)
pp′ , is given in appendix A.1. The partonic cross sections in (3.1) are convoluted

with the parton luminosities determined using the PDF4LHC15 nnlo 30 PDFs [72],4 which

combine the MMHT14 [73], CT14 [74] and NNPDF3.0 [75] sets according to [76–78]. We

have used the ManeParse [79] interface for some calculations. In the hard functions we use

mt = 173.2 GeV.

In our results we include an estimate of the theoretical uncertainties of our default

implementation from various sources.5

Factorization scale uncertainty: the factorization scale µf is varied between half and

twice the default value, i.e. M/2 < µf < 2M . For the resummed result, this is

done keeping the other scales µh, µC and µs fixed. Note that in the fixed-order

results we identify the factorization and renormalization scales, which is the default

procedure implemented in the numerical code PROSPINO used for the computation of

the fixed-order NLO result [6].

Resummation uncertainty: the soft, hard and Coulomb scale are separately varied

around their default values as discussed in section 2.4. Power-suppressed terms are

estimated by using the expression E =
√
ŝ − 2M in the argument of the potential

function instead of the non-relativistic limit E = Mβ2. The resulting uncertainties

from all sources are added in quadrature.

Missing higher-order corrections: in order to estimate the uncertainty from uncal-

culated NNLO corrections we follow [51] and vary the unknown two-loop constant

4The PDF4LHC15 nnlo mc set recommended for predictions for the search for new physics [72] yields

unphysical negative cross sections at large sparticle masses for some member PDFs. We have checked that

the central value and the PDF uncertainty of the PDF4LHC15 nnlo 30 set are in good agreement with the

68% confidence level predictions of the MC set, with differences of the central prediction in general below

1% and staying below 10% for gluino pair production at the highest considered masses.
5The terminology used here follows [16] and differs slightly from the one for tt̄ production in [51] where the

errors from variation of the hard and Coulomb scales, and of the soft scale for the fixed-scale implementation,

were included in the scale uncertainty instead of the resummation uncertainty.
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Figure 2. Resummation uncertainty for the NNLL resummed result with the default scale

choice (2.55) (NNLLfixSZ, solid blue) compared to a running and a fixed soft scale determined as

discussed in [16] (NNLLfixBN, short dashed green, and NNLLrun, dashed red) for squark-antisquark

(top-left), squark-squark (top-right), squark-gluino (bottom-left) and gluino-gluino (bottom-right)

at LHC with
√
s = 13 TeV. The central lines represent the K-factors for the default scale choice,

while the bands give the resummation uncertainties associated with the results. See text for

explanation.

term C
(2)
pp′,i in the threshold expansion of the NNLO scaling function f

(2)
pp′,i in (2.8)

in the interval −(C
(1)
pp′,i)

2 ≤ C
(2)
pp′,i ≤ +(C

(1)
pp′,i)

2, where the one-loop constant C
(1)
pp′,i is

defined in (A.4).

PDF+αs uncertainty: we estimate the error due to uncertainties in the PDFs and the

strong coupling using the PDF4LHC15 nnlo 30 pdfas set [72], adding the PDF uncer-

tainty at 68% confidence level in quadrature to the uncertainty from the variation of

the strong coupling constant αs(MZ) = 0.118± 0.0015.

In the following we will often refer to the sum in quadrature of scale and resummation

uncertainty and the variation of the two-loop constant as “total theoretical uncertainty”.

In figure 2 we compare the NNLL K-factors, defined in (3.2) below, and the resum-

mation uncertainty for our default implementation with the fixed soft scale (2.55) to an
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implementation using a running scale, as in the previous NLL results in [16], and a fixed

scale determined using the method of Becher and Neubert [60]. In the running-scale re-

sults the variation of µs in the resummation uncertainty is replaced by a variation of the

parameters βcut and ks according to the procedure given in [51]. The curves do not include

the C(2) error estimate, which is common to all implementations. The central predictions

obtained with the different scale-setting methods agree well for all production processes,

while the estimate of the resummation uncertainty is larger for the running scale pre-

scription. However, we find that the total theoretical uncertainty including factorization

scale variation is similar for the three methods. Note that the agreement of the different

scale choices is significantly improved compared to the NLL results (see figure 6 in [16]).

Therefore contrary to resummation at NLL level, we find that at NNLL the ambiguity in

the choice of the soft scale prescription is negligible with respect to the total theoretical

uncertainty.

3.2 Results

We present results for squark and gluino production at the LHC for five different higher-

order approximations:

• NNLL: the default implementation. Contains the full combined soft and Coulomb

resummation, eq. (2.10) including bound-state contributions (2.48) below threshold,

matched to NNLOapp according to (3.1). For the soft scale we adopt the fixed scale

given in (2.55).

• NNLLfixed-C: as above but using the fixed-order NNLO Coulomb terms (2.52) with-

out bound-state effects interfering with resummed soft radiation, and for µh = µf .

• NNLOapp: the approximate NNLO corrections [53] including the spin-dependent

non-Coulomb (2.47) and annihilation terms.

• NLL: the NLL corrections from [16] with combined soft and Coulomb resummation

and bound-state effects. Note that the scale choice (2.55) is used for the NLL results

as well, whereas a running scale was used as the default in [16].

• NLLs: soft NLL resummation without Coulomb resummation and for µh = µf .

Our NNLL predictions for the LHC with
√
s = 13 (14 TeV) are provided as grids for

mq̃,mg̃ = 200–3000 GeV (200–3500 GeV) [1]. We also provide a Mathematica file with

interpolations of the cross sections. As an illustration, our results for the four squark and

gluino production processes at the LHC with
√
s = 13 TeV6 for equal squark and gluino

masses are shown in figure 3 in the form of K-factors beyond NLO,

KX =
σX

σNLO
. (3.2)

6Results at
√
s = 8 TeV have been presented in [19] for a slightly different setup using the running soft

scale prescription, the MSTW08 PDFs and omitting the annihilation contribution.
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Figure 3. Higher-order corrections relative to the NLO cross section for squark and gluino produc-

tion at the LHC with
√
s = 13 TeV for full NNLL resummation (solid blue), NNLL with fixed-order

Coulomb corrections (dotted red), approximate NNLO (dot-dashed pink), NLL (dashed orange)

and NLL soft (long-dashed green). The PDF4LHC15 nnlo 30 PDFs are used throughout.

Here X denotes one of the approximations NLL, NNLLfixed-C, NNLOapp and NNLL de-

fined above and σNLO is the fixed-order NLO result obtained using PROSPINO. We use the

PDF4LHC15 nnlo PDFs for all results, including the NLO normalization in (3.2), in order to

isolate the effects of the higher-order corrections to the partonic cross sections. The correc-

tions relative to NLO can become large for the full NNLL resummation, ranging from up

to 18% for squark-squark production to 90% for gluino pair production. Compared to the

NLL results, the NNLL corrections provide a shift of the cross section by 10–20% normal-

ized to the NLO prediction. This shows that a stabilization of the perturbative behaviour

is achieved by the resummation, in particular for the processes with large corrections such

as gluino-pair production. Note that this is only the case for the joint soft-Coulomb resum-

mation performed here and in [12, 16], whereas a large NNLL correction is observed relative

to the NLLs prediction that does not include Coulomb resummation. This observation is

consistent with the results of Mellin-space resummation [20]. The effect of Coulomb resum-

mation beyond NNLO and the bound-state effects can be seen by comparing the NNLL and

NNLLfixed-C results and is important in particular for squark-antisquark and gluino-pair

production. For squark-squark production, the effect of Coulomb resummation beyond
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Figure 4. NNLL K-factor for the total SUSY pair production rate at the LHC with
√
s = 13 TeV,

as a function of the squark mass mq̃ and gluino mass mg̃. The red, dashed line is the ATLAS

exclusion bound from searches at
√
s = 8 TeV in a simplified model with a massless neutralino [2].

NNLO is small. A similar behaviour was also observed for the NLL corrections beyond

NLO in [16] and originates from cancellations between the negative corrections arising from

the repulsive colour-sextet channel and the positive corrections arising from the attractive

colour-triplet channel. The comparison to the approximate NNLO results shows that cor-

rections beyond NNLO become sizeable beyond sparticle masses of about 1.5 TeV. The

NNLLfixed-C correction factors in figure 3 cannot be directly compared to the correspond-

ing results using the Mellin-space formalism [20] that are given using the MSTW2008 set

of PDFs. However, a comparison to our own earlier results for the NNLLfixed-C approxima-

tion at 8 TeV using the same PDFs [19] shows overall good agreement, which is reassuring

given the different methods used for the resummation. As already noted in [20], the largest

difference of order 10% appears for gluino pair-production at large masses, which is larger

than the estimated resummation uncertainty of approximately 5% of our result. Therefore,

a more detailed comparison of the two approaches will be useful.

Figure 4 shows the NNLL K-factor for the total SUSY production rate, i.e. the sum

of all squark and gluino pair production processes, at the 13 TeV LHC as a contour plot

in the (mg̃,mq̃)-plane. The NNLL corrections are larger in the region with mg̃ < mq̃

where squark-gluino and gluino-pair production with the corresponding larger K-factors

dominate the total SUSY production rate, see e.g. [16]. In contrast, for mq̃ ≤ mg̃ the

total rate is dominated by squark-squark production with a resulting smaller K-factor.

Since squark-antisquark production is suppressed compared to squark-squark production
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Figure 5. Total theoretical uncertainty (excluding PDF uncertainty) of the NLO approximation

(dotted black), NLL (dashed orange) and NNLL (solid blue) resummed results at the LHC with√
s = 13 TeV. The uncertainty estimate is given by the scale uncertainty, the resummation uncer-

tainty (for NLL and NNLL) and the estimate of missing higher-order corrections (for NNLL). All

cross sections are normalized to the one at the central value of the scales.

at the LHC unless mg̃ � mq̃, the large K-factor in this process has little impact on the

total SUSY production rate for the mass range considered in figure 4. For illustration, the

plot also shows a Run 1 ATLAS exclusion bound in a simplified model with a massless

neutralino [2] that shows that corrections larger than 40% arise in a region relevant for

current searches.

The estimate of the theory uncertainty of the NLO, NLL and NNLL approximations

is shown in figure 5, normalized to the central value of the respective prediction. Following

the discussion in section 3.1, the NLO uncertainty is estimated by the factorization scale

variation, the NLL uncertainty includes in addition the estimate of the resummation ambi-

guities and the NNLL uncertainty further includes the estimate of the two-loop constant.

The PDF+αs uncertainty is not included in the results shown in figure 5. One observes

that the uncertainty is reduced from up to 20% at NLO to the 10% level at NLL. While

a significant reduction of the uncertainty compared to the NLL results is observed for the

squark-antisquark production process at NNLL, only a slight reduction or even an increase

is observed for the other processes. We further investigate the different sources of uncer-
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tainties in figure 6 and table 7 below, where it is seen that this behaviour is due to the

scale uncertainty, while the resummation uncertainty is generally reduced at NNLL.

Numerical predictions for the cross sections of squark and gluino production at the

LHC at
√
s = 13 TeV are presented in table 5 for a sample of squark and gluino masses

from 1–3 TeV. The corresponding results for
√
s = 14 TeV are shown in table 6 for the mass

range from 1.5–3.5 TeV. In these results, we included the theoretical uncertainty (scale,

resummation and higher-order uncertainty as in figure 5) and the PDF+αs uncertainty

determined as discussed in section 3.1. For the processes involving squarks, the PDF+αs
uncertainty is of the order of ±5–10% for lighter sparticle masses. For heavier sparticles,

the larger uncertainty in the gluon PDF becomes visible, which leads to a growth of the

PDF+αs uncertainty to ±30% for squark-gluino and over ±100% for squark-antisquark

production at
√
s = 14 TeV. For the gluino-pair production process the PDF uncertainty

grows from ±20% to over ±80% at the highest considered masses at
√
s = 14 TeV. For

the squark-squark production process, where the gluon PDF does not enter at tree level,

the relative PDF+αs uncertainty is smaller and remains below ±10% throughout the mass

range. Therefore the PDF uncertainty is smaller than the NLO scale uncertainty or compa-

rable at smaller masses, whereas the uncertainty due to the poorly determined gluon PDF

becomes very large at high masses, in particular for squark-antisquark and gluino-pair

production. It should be taken into account, however, that the largest PDF uncertainties

appear for cross sections of the order of 10−7 pb that are beyond the reach of even the

high-luminosity phase of the LHC. In general, the NLL resummation reduces the theory

uncertainty below the PDF uncertainty, apart from squark-squark production where the

PDF uncertainties are very small and typically below the theory uncertainties. Consistent

with figure 5, the NNLL resummation further reduces the theory uncertainty strongly for

squark-antisquark production, whereas the effect for the other processes is moderate. The

size of the NNLL corrections is consistent with figure 3, with corrections relative to NLO

of up to a factor of two for gluino pair production at the highest considered masses. Al-

though the PDF4LHC15 set combines the results of several PDF fits, it should be taken

into account, however, that different PDF sets can lead to results that are not covered by

the PDF4LHC15 error estimate, or have a much larger estimate of the PDF uncertainty, in

particular for processes involving the gluon PDF [17, 75, 80]. We refer to [81] for a recent

discussion of the effect of different sets of PDF fits on predictions with NLL soft-gluon

resummation. This includes a PDF set obtained using threshold-resummed cross sections

in the PDF fit [82] that is in principle appropriate for resummed calculations, but currently

has large uncertainties due to a reduced data set used in the fit. For squark and gluino

production, non-trivial changes on the central values were found for the resummed PDFs

that, however, lie inside of the uncertainty band of the standard PDF sets.

The scale dependence of various higher-order approximations is shown in figure 6.

In addition to the approximate NNLO corrections, the full NNLL result and the NNLL

soft resummation with fixed-order Coulomb corrections NNLLfixed-C, we also consider an

approximation NNLLsh where Coulomb corrections are set to zero in the resummation

formula and only included through the matching to NNLOapp. It is seen that soft resum-

mation in NNLLsh significantly affects the shape of the scale dependence and reduces the

scale uncertainty for squark-antisquark and squark-squark production. For the mass val-

ues considered here, the approximate NNLO cross section has a maximum near the default
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mq̃, mg̃ (TeV) s̃s̃′ σNLO(pb) σNLL(pb) σNNLL(pb) KNNLL

1.3, 1.5 q̃ ¯̃q 2.81+0.36
−0.37

+0.18
−0.18 × 10−2 3.06+0.19

−0.11
+0.19
−0.19 × 10−2 3.49+0.13

−0.09
+0.20
−0.20 × 10−2 1.24

q̃q̃ 8.64+0.74
−0.90

+0.25
−0.25 × 10−2 8.76+0.76

−0.55
+0.25
−0.25 × 10−2 9.37+0.56

−0.53
+0.26
−0.26 × 10−2 1.08

q̃g̃ 7.25+0.62
−0.86

+0.50
−0.50 × 10−2 7.93+0.28

−0.37
+0.51
−0.51 × 10−2 8.49+0.43

−0.46
+0.52
−0.52 × 10−2 1.17

g̃g̃ 6.39+0.88
−1.01

+1.34
−1.34 × 10−3 8.03+0.81

−0.66
+1.37
−1.37 × 10−3 8.71+0.82

−0.89
+1.40
−1.40 × 10−3 1.36

1.5, 1.3 q̃ ¯̃q 9.33+1.23
−1.26

+0.70
−0.70 × 10−3 1.02+0.06

−0.04
+0.07
−0.07 × 10−2 1.17+0.05

−0.04
+0.08
−0.08 × 10−2 1.25

q̃q̃ 4.20+0.47
−0.50

+0.13
−0.13 × 10−2 4.25+0.46

−0.35
+0.13
−0.13 × 10−2 4.58+0.47

−0.44
+0.14
−0.14 × 10−2 1.09

q̃g̃ 8.70+0.97
−1.15

0.60
−0.60 × 10−2 9.59+0.35

−0.47
+0.61
−0.61 × 10−2 1.06+0.06

−0.05
+0.06
−0.06 × 10−1 1.22

g̃g̃ 2.45+0.38
−0.40

+0.42
−0.42 × 10−2 2.97+0.24

−0.19
+0.43
−0.43 × 10−2 3.36+0.22

−0.22
+0.45
−0.45 × 10−2 1.37

1.8, 2 q̃ ¯̃q 1.66+0.24
−0.24

+0.17
−0.17 × 10−3 1.87+0.12

−0.08
+0.18
−0.18 × 10−3 2.16+0.07

−0.05
+0.19
−0.19 × 10−3 1.30

q̃q̃ 9.61+0.99
−1.13

+0.34
−0.34 × 10−3 9.82+0.92

−0.68
+0.34
−0.34 × 10−3 1.06+0.07

−0.06
+0.04
−0.04 × 10−2 1.11

q̃g̃ 5.15+0.54
−0.69

+0.59
−0.59 × 10−3 5.86+0.27

−0.35
+0.60
−0.60 × 10−3 6.34+0.36

−0.39
+0.60
−0.60 × 10−3 1.23

g̃g̃ 3.18+0.51
−0.56

+1.05
−1.05 × 10−4 4.33+0.52

−0.45
+1.08
−1.08 × 10−4 4.71+0.50

−0.54
+1.12
−1.12 × 10−4 1.48

2, 1.8 q̃ ¯̃q 5.84+0.88
−0.87

+0.79
−0.79 × 10−4 6.62+0.42

−0.28
+0.80
−0.80 × 10−4 7.69+0.27

−0.23
+0.85
−0.85 × 10−4 1.32

q̃q̃ 4.68+0.58
−0.61

+0.19
−0.19 × 10−3 4.78+0.53

−0.40
+0.19
−0.19 × 10−3 5.23+0.49

−0.45
+0.19
−0.19 × 10−3 1.12

q̃g̃ 5.96+0.76
−0.86

+0.68
−0.68 × 10−3 6.82+0.28

−0.41
+0.69
−0.69 × 10−3 7.62+0.46

−0.44
+0.70
−0.70 × 10−3 1.28

g̃g̃ 1.07+0.19
−0.19

+0.30
−0.30 × 10−3 1.40+0.14

−0.11
+0.30
−0.30 × 10−3 1.60+0.13

−0.13
+0.32
−0.32 × 10−3 1.49

2.3, 2.5 q̃ ¯̃q 1.13+0.19
−0.18

+0.24
−0.24 × 10−4 1.32+0.09

−0.06
+0.25
−0.25 × 10−4 1.55+0.05

−0.04
+0.26
−0.26 × 10−4 1.37

q̃q̃ 1.18+0.14
−0.15

+0.06
−0.06 × 10−3 1.21+0.12

−0.09
+0.06
−0.06 × 10−3 1.33+0.09

−0.08
+0.06
−0.06 × 10−3 1.13

q̃g̃ 4.29+0.55
−0.65

+0.77
−0.77 × 10−4 5.13+0.30

−0.37
+0.78
−0.78 × 10−4 5.60+0.37

−0.39
+0.79
−0.79 × 10−4 1.31

g̃g̃ 1.88+0.36
−0.36

+0.93
−0.93 × 10−5 2.84+0.41

−0.36
+0.98
−0.98 × 10−5 3.11+0.38

−0.39
+1.04
−1.04 × 10−5 1.65

2.5, 2.3 q̃ ¯̃q 3.98+0.68
−0.64

+1.27
−1.27 × 10−5 4.72+0.30

−0.22
+1.29
−1.29 × 10−5 5.56+0.20

−0.15
+1.36
−1.36 × 10−5 1.40

q̃q̃ 5.55+0.77
−0.79

+0.33
−0.33 × 10−4 5.74+0.65

−0.48
+0.33
−0.33 × 10−4 6.36+0.56

−0.51
+0.33
−0.33 × 10−4 1.15

q̃g̃ 4.84+0.71
−0.77

+0.86
−0.86 × 10−4 5.83+0.31

−0.41
+0.88
−0.88 × 10−4 6.56+0.45

−0.43
+0.90
−0.90 × 10−4 1.36

g̃g̃ 6.07+1.25
−1.20

+2.56
−2.56 × 10−5 8.62+1.03

−0.85
+2.66
−2.66 × 10−5 1.00+0.10

−0.09
+0.28
−0.28 × 10−4 1.65

2.8, 3 q̃ ¯̃q 7.94+1.45
−1.33

+4.56
−4.56 × 10−6 9.69+0.63

−0.48
+4.65
−4.65 × 10−6 1.15+0.04

−0.03
+0.48
−0.48 × 10−5 1.45

q̃q̃ 1.41+0.19
−0.20

+0.11
−0.11 × 10−4 1.47+0.15

−0.11
+0.11
−0.11 × 10−4 1.64+0.11

−0.10
+0.11
−0.11 × 10−4 1.17

q̃g̃ 3.62+0.56
−0.61

+0.97
−0.97 × 10−5 4.62+0.32

−0.40
+0.99
−0.99 × 10−5 5.10+0.37

−0.41
+1.01
−1.01 × 10−5 1.41

g̃g̃ 1.15+0.25
−0.24

+0.82
−0.82 × 10−6 1.97+0.33

−0.31
+0.92
−0.92 × 10−6 2.18+0.29

−0.31
+1.01
−1.01 × 10−6 1.90

3, 2.8 q̃ ¯̃q 2.83+0.51
−0.47

+2.53
−2.53 × 10−6 3.50+0.22

−0.17
+2.56
−2.56 × 10−6 4.17+0.15

−0.12
+2.63
−2.63 × 10−6 1.47

q̃q̃ 6.28+0.98
−0.96

+0.60
−0.60 × 10−5 6.61+0.77

−0.56
+0.59
−0.59 × 10−5 7.43+0.61

−0.56
+0.59
−0.59 × 10−5 1.18

q̃g̃ 4.02+0.69
−0.71

+1.08
−1.08 × 10−5 5.16+0.34

−0.43
+1.10
−1.10 × 10−5 5.87+0.44

−0.44
+1.13
−1.13 × 10−5 1.46

g̃g̃ 3.70+0.88
−0.80

+2.27
−2.27 × 10−6 5.90+0.85

−0.73
+2.45
−2.45 × 10−6 6.94+0.78

−0.76
+2.70
−2.70 × 10−6 1.87

Table 5. Predictions for the LHC with
√
s = 13 TeV using the PDF4LHC15 nnlo 30 PDFs. The

first and second error refer to the theoretical uncertainty, defined as in figure 5, and the PDF+αs
uncertainty, respectively.
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mq̃, mg̃ (TeV) s̃s̃′ σNLO(pb) σNLL(pb) σNNLL(pb) KNNLL

1.8, 2 q̃ ¯̃q 2.82+0.40
−0.40

+0.26
−0.26 × 10−3 3.14+0.20

−0.13
+0.26
−0.26 × 10−3 3.61+0.12

−0.09
+0.28
−0.28 × 10−3 1.28

q̃q̃ 1.40+0.14
−0.16

+0.05
−0.05 × 10−2 1.43+0.13

−0.10
+0.05
−0.05 × 10−2 1.54+0.10

−0.09
+0.05
−0.05 × 10−2 1.10

q̃g̃ 8.61+0.85
−1.11

+0.86
−0.86 × 10−3 9.68+0.41

−0.53
+0.87
−0.87 × 10−3 1.04+0.06

−0.06
+0.09
−0.09 × 10−2 1.21

g̃g̃ 6.02+0.91
−1.01

+1.75
−1.75 × 10−4 7.97+0.91

−0.78
+1.80
−1.80 × 10−4 8.63+0.89

−0.96
+1.84
−1.84 × 10−4 1.44

2., 1.8 q̃ ¯̃q 1.06+0.15
−0.15

+0.12
−0.12 × 10−3 1.19+0.07

−0.05
+0.12
−0.12 × 10−3 1.37+0.05

−0.04
+0.13
−0.13 × 10−3 1.29

q̃q̃ 7.20+0.85
−0.90

+0.26
−0.26 × 10−3 7.34+0.80

−0.59
+0.26
−0.26 × 10−3 7.98+0.75

−0.70
+0.27
−0.27 × 10−3 1.11

q̃g̃ 9.94+1.20
−1.39

+0.99
−0.99 × 10−3 1.12+0.04

−0.06
+0.10
−0.10 × 10−2 1.25+0.07

−0.07
+0.10
−0.10 × 10−2 1.26

g̃g̃ 1.91+0.32
−0.33

+0.47
−0.47 × 10−3 2.43+0.22

−0.18
+0.48
−0.48 × 10−3 2.77+0.21

−0.21
+0.50
−0.50 × 10−3 1.45

2.3, 2.5 q̃ ¯̃q 2.28+0.36
−0.35

+0.38
−0.38 × 10−4 2.62+0.17

−0.12
+0.38
−0.38 × 10−4 3.05+0.10

−0.07
+0.41
−0.41 × 10−4 1.34

q̃q̃ 1.96+0.22
−0.25

+0.09
−0.09 × 10−3 2.02+0.20

−0.14
+0.09
−0.09 × 10−3 2.20+0.14

−0.13
+0.09
−0.09 × 10−3 1.12

q̃g̃ 8.31+0.99
−1.20

+1.27
−1.27 × 10−4 9.75+0.52

−0.65
+1.29
−1.29 × 10−4 1.06+0.07

−0.07
+0.13
−0.13 × 10−3 1.28

g̃g̃ 4.21+0.74
−0.78

+1.81
−1.81 × 10−5 6.08+0.83

−0.72
+1.88
−1.88 × 10−5 6.64+0.77

−0.79
+1.97
−1.97 × 10−5 1.58

2.5, 2.3 q̃ ¯̃q 8.62+1.40
−1.34

+1.96
−1.96 × 10−5 1.00+0.06

−0.04
+0.20
−0.20 × 10−4 1.18+0.04

−0.03
+0.21
−0.21 × 10−4 1.36

q̃q̃ 9.89+1.30
−1.34

+0.50
−0.50 × 10−4 1.02+0.11

−0.08
+0.05
−0.05 × 10−3 1.12+0.10

−0.09
+0.05
−0.05 × 10−3 1.13

q̃g̃ 9.38+1.29
−1.43

+1.43
−1.43 × 10−4 1.11+0.05

−0.07
+0.15
−0.15 × 10−3 1.24+0.08

−0.08
+0.15
−0.15 × 10−3 1.32

g̃g̃ 1.27+0.24
−0.24

+0.46
−0.46 × 10−4 1.74+0.19

−0.16
+0.48
−0.48 × 10−4 2.00+0.18

−0.17
+0.50
−0.50 × 10−4 1.58

2.8, 3 q̃ ¯̃q 1.91+0.34
−0.31

+0.73
−0.73 × 10−5 2.29+0.15

−0.11
+0.74
−0.74 × 10−5 2.70+0.09

−0.06
+0.78
−0.78 × 10−5 1.41

q̃q̃ 2.77+0.36
−0.38

+0.18
−0.18 × 10−4 2.88+0.29

−0.22
+0.18
−0.18 × 10−4 3.19+0.21

−0.19
+0.18
−0.18 × 10−4 1.15

q̃g̃ 8.41+1.19
−1.35

+1.91
−1.91 × 10−5 1.04+0.07

−0.08
+0.19
−0.19 × 10−4 1.14+0.08

−0.09
+0.20
−0.20 × 10−4 1.36

g̃g̃ 3.13+0.64
−0.63

+1.91
−1.91 × 10−6 5.05+0.79

−0.72
+2.07
−2.07 × 10−6 5.56+0.70

−0.75
+2.23
−2.23 × 10−6 1.78

3., 2.8 q̃ ¯̃q 7.24+1.27
−1.18

+4.15
−4.15 × 10−6 8.78+0.55

−0.42
+4.22
−4.22 × 10−6 1.04+0.04

−0.03
+0.44
−0.44 × 10−5 1.44

q̃q̃ 1.34+0.20
−0.20

+0.10
−0.10 × 10−4 1.40+0.16

−0.12
+0.10
−0.10 × 10−4 1.56+0.13

−0.12
+0.10
−0.10 × 10−4 1.16

q̃g̃ 9.34+1.48
−1.56

+2.12
−2.12 × 10−5 1.16+0.07

−0.09
+0.21
−0.21 × 10−4 1.31+0.09

−0.10
+0.22
−0.22 × 10−4 1.41

g̃g̃ 9.30+2.05
−1.92

+4.90
−4.90 × 10−6 1.40+0.19

−0.16
+0.52
−0.52 × 10−5 1.64+0.17

−0.17
+0.56
−0.56 × 10−5 1.76

3.3, 3.5 q̃ ¯̃q 1.68+0.31
−0.28

+1.66
−1.66 × 10−6 2.07+0.13

−0.10
+1.68
−1.68 × 10−6 2.46+0.08

−0.06
+1.73
−1.73 × 10−6 1.47

q̃q̃ 3.68+0.54
−0.55

+0.38
−0.38 × 10−5 3.89+0.41

−0.30
+0.37
−0.37 × 10−5 4.35+0.28

−0.26
+0.37
−0.37 × 10−5 1.18

q̃g̃ 8.18+1.37
−1.44

+2.68
−2.68 × 10−6 1.08+0.08

−0.10
+0.27
−0.27 × 10−5 1.20+0.09

−0.10
+0.28
−0.28 × 10−5 1.47

g̃g̃ 2.28+0.53
−0.50

+1.90
−1.90 × 10−7 4.19+0.74

−0.69
+2.26
−2.26 × 10−7 4.65+0.66

−0.69
+2.55
−2.55 × 10−7 2.04

3.5, 3.3 q̃ ¯̃q 6.72+1.20
−1.11

+9.60
−9.60 × 10−7 8.32+0.52

−0.39
+9.65
−9.65 × 10−7 9.93+0.35

−0.28
+9.82
−9.82 × 10−7 1.48

q̃q̃ 1.68+0.27
−0.27

+0.21
−0.21 × 10−5 1.78+0.21

−0.15
+0.20
−0.20 × 10−5 2.02+0.16

−0.14
+0.20
−0.20 × 10−5 1.20

q̃g̃ 8.98+1.63
−1.63

+2.93
−2.93 × 10−6 1.19+0.09

−0.11
+0.30
−0.30 × 10−5 1.36+0.11

−0.11
+0.31
−0.31 × 10−5 1.52

g̃g̃ 6.89+1.72
−1.53

+5.02
−5.02 × 10−7 1.17+0.18

−0.16
+0.57
−0.57 × 10−6 1.38+0.16

−0.16
+0.64
−0.64 × 10−6 2.01

Table 6. Predictions for the LHC with
√
s = 14 TeV. The errors are defined as in table 5.
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Figure 6. Cross section for squark and gluino production at the LHC with
√
s = 13 TeV for

full NNLL resummation (solid blue), NNLL with fixed-order Coulomb corrections (dotted red),

NNLLsh (dashed orange) and approximate NNLO (dot-dashed pink), as a function of the ratio of

the factorization scale and average produced mass.

scale µf = M , so the variation of the factorization scale alone leads to an asymmetrical

error estimate, whereas the soft resummation leads to a more symmetrical behaviour. The

inclusion of soft-Coulomb interference in the NNLLfixed-C prediction further reduces the

uncertainty for the case of squark-antisquark and squark-squark production, while it is

increased for gluino-pair and squark-gluino production. This observation is consistent with

the results obtained in the Mellin-space approach for gluino-pair production [20]. The fur-

ther resummation of Coulomb corrections in the NNLL prediction provides an overall shift

of the cross section while the scale dependence is qualitatively similar to the NNLLfixed-C

approximation.

In table 7 we provide numerical results for the higher-order approximations NLL,

NLLOapp, NNLLfixed−C and NNLL defined above. In order to study the contributions of

the different sources of uncertainties, the scale uncertainty is shown separately from the

remaining theoretical uncertainties. The results are shown for the same mass values as in

table 5. The magnitude of the corrections from the successive improvement in accuracy is

consistent with that seen in figure 3. The difference between the approximate NNLO re-

sults and the resummed predictions is moderate at smaller masses but grows more sizeable
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mq̃,mg̃(TeV) s̃s̃′ σNLL(pb) σNNLOapp(pb) σNNLLfixed−C
(pb) σNNLL(pb)

1.3,1.5 q̃q̃ 3.06+0.14
−0.02

+0.12
−0.11 × 10−2 3.32+0.09

−0.18
+0.07
−0.07 × 10−2 3.39+0.08

−0.04
+0.12
−0.09 × 10−2 3.49+0.09

−0.03
+0.09
−0.08 × 10−2

q̃q̃ 8.76+0.75
−0.55

+0.09
−0.07 × 10−2 9.31+0.31

−0.53
+0.46
−0.46 × 10−2 9.38+0.21

−0.19
+0.48
−0.46 × 10−2 9.37+0.32

−0.25
+0.46
−0.47 × 10−2

q̃g̃ 7.93+0.20
−0.02

+0.21
−0.37 × 10−2 8.27+0.00

−0.26
+0.06
−0.06 × 10−2 8.38+0.39

−0.42
+0.07
−0.09 × 10−2 8.49+0.42

−0.46
+0.06
−0.08 × 10−2

g̃g̃ 8.03+0.55
−0.32

+0.59
−0.58 × 10−3 7.97+0.00

−0.25
+0.41
−0.41 × 10−3 8.14+0.55

−0.61
+0.41
−0.42 × 10−3 8.71+0.69

−0.77
+0.44
−0.44 × 10−3

1.5,1.3 q̃q̃ 1.02+0.05
−0.01

+0.04
−0.04 × 10−2 1.11+0.04

−0.07
+0.04
−0.04 × 10−2 1.13+0.02

−0.01
+0.05
−0.04 × 10−2 1.17+0.02

−0.01
+0.04
−0.04 × 10−2

q̃q̃ 4.25+0.46
−0.34

+0.04
−0.04 × 10−2 4.55+0.26

−0.34
+0.39
−0.39 × 10−2 4.59+0.20

−0.15
+0.40
−0.39 × 10−2 4.58+0.26

−0.19
+0.39
−0.39 × 10−2

q̃g̃ 9.59+0.23
−0.00

+0.27
−0.47 × 10−2 1.02+0.00

−0.03
+0.02
−0.02 × 10−1 1.05+0.05

−0.05
+0.03
−0.03 × 10−1 1.06+0.06

−0.05
+0.02
−0.03 × 10−1

g̃g̃ 2.97+0.12
−0.03

+0.20
−0.19 × 10−2 3.08+0.02

−0.12
+0.08
−0.08 × 10−2 3.14+0.15

−0.13
+0.10
−0.09 × 10−2 3.36+0.19

−0.19
+0.10
−0.10 × 10−2

1.8,2 q̃q̃ 1.87+0.08
−0.02

+0.08
−0.08 × 10−3 2.02+0.09

−0.14
+0.04
−0.04 × 10−3 2.08+0.04

−0.01
+0.08
−0.06 × 10−3 2.16+0.04

−0.01
+0.05
−0.05 × 10−3

q̃q̃ 9.82+0.91
−0.67

+0.12
−0.13 × 10−3 1.05+0.05

−0.07
+0.05
−0.05 × 10−2 1.06+0.03

−0.02
+0.06
−0.06 × 10−2 1.06+0.04

−0.03
+0.05
−0.06 × 10−2

q̃g̃ 5.86+0.19
−0.05

+0.19
−0.34 × 10−3 6.07+0.00

−0.15
+0.04
−0.04 × 10−3 6.23+0.33

−0.35
+0.05
−0.08 × 10−3 6.34+0.36

−0.38
+0.04
−0.08 × 10−3

g̃g̃ 4.33+0.38
−0.27

+0.36
−0.37 × 10−4 4.14+0.00

−0.16
+0.23
−0.23 × 10−4 4.35+0.35

−0.38
+0.23
−0.23 × 10−4 4.71+0.43

−0.48
+0.25
−0.24 × 10−4

2.,1.8 q̃q̃ 6.62+0.28
−0.07

+0.31
−0.27 × 10−4 7.15+0.35

−0.53
+0.20
−0.20 × 10−4 7.39+0.11

−0.04
+0.31
−0.24 × 10−4 7.69+0.14

−0.04
+0.23
−0.22 × 10−4

q̃q̃ 4.78+0.53
−0.39

+0.05
−0.07 × 10−3 5.16+0.32

−0.42
+0.40
−0.40 × 10−3 5.24+0.22

−0.17
+0.41
−0.40 × 10−3 5.23+0.28

−0.21
+0.40
−0.40 × 10−3

q̃g̃ 6.82+0.17
−0.01

+0.22
−0.41 × 10−3 7.20+0.02

−0.26
+0.13
−0.13 × 10−3 7.48+0.42

−0.39
+0.15
−0.17 × 10−3 7.62+0.44

−0.41
+0.13
−0.17 × 10−3

g̃g̃ 1.40+0.08
−0.03

+0.11
−0.11 × 10−3 1.41+0.01

−0.08
+0.04
−0.04 × 10−3 1.47+0.09

−0.08
+0.05
−0.05 × 10−3 1.60+0.12

−0.12
+0.05
−0.05 × 10−3

2.3,2.5 q̃q̃ 1.32+0.06
−0.01

+0.07
−0.06 × 10−4 1.41+0.09

−0.12
+0.03
−0.03 × 10−4 1.48+0.02

−0.01
+0.06
−0.04 × 10−4 1.55+0.03

−0.01
+0.04
−0.03 × 10−4

q̃q̃ 1.21+0.12
−0.09

+0.02
−0.02 × 10−3 1.31+0.07

−0.10
+0.07
−0.07 × 10−3 1.33+0.04

−0.03
+0.07
−0.07 × 10−3 1.33+0.05

−0.04
+0.07
−0.07 × 10−3

q̃g̃ 5.13+0.23
−0.08

+0.19
−0.36 × 10−4 5.23+0.00

−0.19
+0.03
−0.03 × 10−4 5.49+0.34

−0.35
+0.04
−0.09 × 10−4 5.60+0.37

−0.38
+0.04
−0.09 × 10−4

g̃g̃ 2.84+0.32
−0.24

+0.26
−0.27 × 10−5 2.59+0.01

−0.14
+0.12
−0.12 × 10−5 2.82+0.28

−0.29
+0.13
−0.13 × 10−5 3.11+0.35

−0.36
+0.14
−0.14 × 10−5

2.5,2.3 q̃q̃ 4.72+0.17
−0.03

+0.25
−0.22 × 10−5 5.03+0.31

−0.42
+0.12
−0.12 × 10−5 5.29+0.09

−0.04
+0.22
−0.17 × 10−5 5.56+0.13

−0.05
+0.16
−0.14 × 10−5

q̃q̃ 5.74+0.65
−0.47

+0.08
−0.11 × 10−4 6.22+0.44

−0.55
+0.44
−0.44 × 10−4 6.38+0.27

−0.20
+0.46
−0.45 × 10−4 6.36+0.34

−0.24
+0.44
−0.45 × 10−4

q̃g̃ 5.83+0.22
−0.04

+0.22
−0.41 × 10−4 6.05+0.05

−0.28
+0.09
−0.09 × 10−4 6.42+0.41

−0.38
+0.12
−0.15 × 10−4 6.56+0.44

−0.40
+0.09
−0.15 × 10−4

g̃g̃ 8.62+0.72
−0.39

+0.74
−0.76 × 10−5 8.38+0.19

−0.56
+0.24
−0.24 × 10−5 9.07+0.71

−0.65
+0.30
−0.27 × 10−5 1.00+0.09

−0.09
+0.03
−0.03 × 10−4

2.8,3 q̃q̃ 9.69+0.32
−0.03

+0.54
−0.47 × 10−6 1.02+0.07

−0.09
+0.02
−0.02 × 10−5 1.09+0.02

−0.01
+0.04
−0.03 × 10−5 1.15+0.03

−0.01
+0.03
−0.02 × 10−5

q̃q̃ 1.47+0.15
−0.11

+0.02
−0.04 × 10−4 1.59+0.10

−0.14
+0.08
−0.08 × 10−4 1.64+0.05

−0.04
+0.09
−0.08 × 10−4 1.64+0.07

−0.05
+0.08
−0.08 × 10−4

q̃g̃ 4.62+0.25
−0.14

+0.20
−0.38 × 10−5 4.61+0.03

−0.24
+0.03
−0.03 × 10−5 4.97+0.34

−0.36
+0.04
−0.10 × 10−5 5.10+0.37

−0.39
+0.03
−0.10 × 10−5

g̃g̃ 1.97+0.26
−0.22

+0.20
−0.22 × 10−6 1.68+0.02

−0.13
+0.08
−0.08 × 10−6 1.93+0.22

−0.23
+0.08
−0.09 × 10−6 2.18+0.27

−0.30
+0.10
−0.09 × 10−6

3.,2.8 q̃q̃ 3.50+0.09
−0.01

+0.20
−0.17 × 10−6 3.68+0.25

−0.34
+0.08
−0.08 × 10−6 3.93+0.08

−0.05
+0.17
−0.12 × 10−6 4.17+0.10

−0.07
+0.11
−0.10 × 10−6

q̃q̃ 6.61+0.76
−0.54

+0.11
−0.16 × 10−5 7.19+0.58

−0.70
+0.47
−0.47 × 10−5 7.45+0.31

−0.23
+0.50
−0.48 × 10−5 7.43+0.39

−0.28
+0.48
−0.48 × 10−5

q̃g̃ 5.16+0.25
−0.09

+0.23
−0.42 × 10−5 5.24+0.07

−0.32
+0.07
−0.07 × 10−5 5.71+0.40

−0.39
+0.10
−0.14 × 10−5 5.87+0.43

−0.42
+0.07
−0.14 × 10−5

g̃g̃ 5.90+0.63
−0.42

+0.57
−0.60 × 10−6 5.43+0.20

−0.46
+0.16
−0.16 × 10−6 6.16+0.58

−0.56
+0.21
−0.19 × 10−6 6.94+0.75

−0.73
+0.21
−0.20 × 10−6

Table 7. Different higher-order approximations for the LHC with
√
s = 13 TeV. The first error

denotes the scale variation while the second error refers to the estimate of the remaining theoretical

uncertainty. The latter is given by the resummation uncertainty (NLL), the variation of the two-loop

constant (NNLOapp), while for the two NNLL results the two errors are added in quadrature.
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for heavy sparticles. The higher-order Coulomb corrections and bound-state effects only

included in the full NNLL results become important in particular for squark-antisquark and

gluino-pair production at high masses, whereas the corrections are moderate for squark-

gluino production and small for squark-squark production. The uncertainty from resum-

mation ambiguities and missing higher-order corrections is strongly reduced from NLL to

NNLL for all processes with the exception of squark-squark production. It is seen that

this uncertainty is dominated by the two-loop constant variation, which is identical for

NNLOapp and the two NNLL implementations. The scale uncertainty alone is usually

reduced for the NNLOapp approximation, but can be very asymmetric as seen already

in figure 6. For a more realistic uncertainty estimate at this order, the renormalization

scale should be varied independently. The scale uncertainty is further reduced at NNLL

for squark-antisquark and squark-squark production but increased for squark-gluino and

gluino-pair production, consistent with figure 5.

4 Conclusions

We performed a combined NNLL resummation of soft-gluon and Coulomb corrections for all

squark- and gluino-pair production channels at the LHC based on the method developed for

top-quark pair production [51], extending an earlier NLL study [16]. Grids with our NNLL

predictions for the LHC with
√
s = 13 and 14 TeV for mq̃,mg̃ = 200–3000 GeV and 200–

3500 GeV, respectively, are publicly available [1]. We furthermore completed the result for

the NNLO threshold expansion of the total cross section [53] by deriving the spin-dependent

non-Coulomb corrections and the process-specific annihilation contributions, which both

give rise to a single-logarithmic NNLO correction.

Our NNLL results show generally moderate corrections to the NLL predictions with

combined soft-Coulomb corrections [16], which shows that the combined resummation is

the adequate method to control the QCD corrections in the region of large sparticle masses,

where both the NLO SQCD and the NLL soft-gluon and Coulomb corrections can become

very large, especially for gluino-pair production. Corrections beyond NNLO included in

the resummed results become sizeable for sparticle masses above 1.5 TeV. We carefully

estimated uncertainties due to scale choices and ambiguities of the resummation formalism

and found that the total theoretical uncertainty of the squark and gluino pair production

processes due to missing higher-order corrections is reduced to the 10% level. We also

compared different scale-setting procedures for the soft scale in the momentum-space for-

malism for soft-gluon resummation and found a better agreement compared to the NLL

calculation. The NNLL calculation leaves the PDF uncertainties as the dominant source

of uncertainties, which can hopefully be reduced in the future using constraints from mea-

surements at the LHC.

Note added. In the final stages of this work we became aware of related work on the

combined soft-Coulomb resummation in the Mellin-space formalism [83], where a detailed

comparison to our results from [19] is performed.
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A Explicit formulae

A.1 Expansion of the NNLL cross section

In this appendix we collect the expansions of the NNLL correction factors to O(αs) and

O(α2
s), respectively. The expansion to NLO accuracy yields all threshold-enhanced NLO

terms and the constant term,

f
NNLL(1)
pp′,i = −2π2DRα

β

√
2mr

M
+ 4Crr′

[
L2
E + 6 ln 2 LE

]
−4(CRα + 4Crr′)LE + C

(1)
pp′,i(µ) +O(β). (A.1)

Here and in the following we use the notation

Lx = ln

(
x

µf

)
, (A.2)

and the sum of the two quadratic Casimir operators of the colour representation of the

incoming partons has been defined as

Crr′ = Cr + Cr′ . (A.3)

The constant term can be expressed in terms of the one-loop hard coefficient in (2.12) by

the relation

C
(1)
pp′,i(µ) = h

(1)
i (µ) + 4Crr′

[
9 ln2 2− 12 ln 2 + 8− 11π2

24

]
− 12CR [ln 2− 1] . (A.4)

The expansion to NNLO accuracy reads

f
NNLL(2)
pp′,i =

4π4D2
Rα

3β2

2mred

M
+

2π2DRα

β

√
2mred

M

{
−4Crr′

(
L2

2E + Lµh(Lµh − 2L2M )− π2

8

)
+ L2E(β0 + 4CRα)− 2Lµh

(
2CRα + γ

(0)
rr′ − 2β0

)
+ β0L4mred

− a1 − 4CRα − h
(i)
1 (µh)

}
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+ 8π2DRα

(
CA − 2DRα(1 + νSspin)− 1

2

4m2
red

M2
νRα,Sann

)
ln
E

M

+ 8C2
rr′
(
L4

8E − L4
8Es + L4

µh

)
− 16Crr′

(
β0

6
+ 4Crr′ + CRα

)(
L3

8E − L3
8Es

)
− 8Crr′

[
4Crr′L2M +

8β0

3
− γ(0)

rr′ − 2CRα

]
L3
µh

+

{
C2
rr′

(
384− 70π2

3

)
+ 4Crr′

(
4β0 + 28CRα +

(
67

3
− π2 −

20nfTF
9

))

+ 4CRα(β0 + 2CRα)

}(
L2

8E − L2
8Es

)
+

{
16C2

rr′

(
L2

8E − 4L8E + 2L2
2M −

11π2

24
+ 8

)
+ Crr′

[
−16CRαL8E + 48CRα −

80nfTF
9

− 4π2 +
268

3

+
(

40β0 − 16γ
(0)
rr′ − 32CRα

)
L2M

]
+ 12β2

0 − 10β0(γ
(0)
rr′ + 2CRα) + 2(γ

(0)
rr′ + 2CRα)2

}
L2
µh

+

{
C2
rr′

(
448ζ(3)− 1536 +

280π2

3

)
+ Crr′

[(
11π2

3
− 64

)
β0

+

(
70π2

3
− 448

)
CRα + 84ζ(3) +

59π2

3
− 4024

9
+ nfTF

(
1184

27
− 4π2

9

)]

+ CRα

(
−24β0 − 24ζ(3) + 4π2 −

588− 80nfTF
9

)
− 48C2

Rα

}
(L8E − L8Es)

+

{
4Crr′

(
L2

8E − 4L8E + L2
µh
− 11π2

24
+ 8

)

− 4CRα (L8E − 3)− 2Lµh

[
4Crr′L2M − 2CRα + 3β0 − γ(0)

rr′

]}
h

(i)
1 (µh)

+

{(
4Crr′L2M + 2β0 − γ(0)

rr′ − 2CRα

)(
−8Crr′L

2
8E + 8(4Crr′ + CRα)L8E

− 64Crr′ +
11π2Crr′

3
− 24CRα

)
− Crr′

(
536

3
−

160nfTF
9

− 8π2

)
L2M

+ Crr′

(
808

9
− 11π2

3
− 84ζ(3)−

(
224

27
− 4π2

9

)
nfTF

)
+ 2γ

(1)
rr′ + CRα

(
24ζ(3) +

588− 80nfTF
9

− 4π2

)
− 4β1

}
Lµh + C

(2)
pp′,i. (A.5)

Here we further defined L8Es = ln
(

8E
µs

)
. The two-loop beta-function coefficient is given

by β1 = 34
3 C

2
A −

20
3 CATFnf − 4CFTFnf . The anomalous-dimension coefficients appearing
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in this formula are related to the incoming partons and are defined as

γ
(n)
rr′ = γφ,r(n) + γφ,r

′(n), (A.6)

with

γφ,3(0) = 3CF , (A.7)

γφ,3(1) = C2
F

(
3

2
− 2π2 + 24ζ3

)
+ CACF

(
17

6
+

22π2

9
− 12ζ3

)
−CFTFnf

(
2

3
+

8π2

9

)
, (A.8)

γφ,8(0) = β0 =
11

3
CA −

4

3
TFnf , (A.9)

γφ,8(1) = 4C2
A

(
8

3
+ 3ζ3

)
− 16

3
CATFnf − 4CFTFnf . (A.10)

A.2 Analytic NNLL result for fixed-order Coulomb corrections

If the Coulomb corrections are treated at fixed NNLO accuracy through the factor (2.52),

the ω-convolution in the resummed cross section (2.10) can be performed explicitly, result-

ing in an analytic expression:

σ̂res
pp′(ŝ, µ) =

∑
i

σ
(0)
pp′,i(µ)URα(µh, µs, µf )

(
2M

µs

)−2η

s̃Rαi (∂η, µs) CNNLO
hC (E,µh, µs, µf ),

(A.11)

with the Laplace transform of the NLO soft function (2.11) and where the function CNNLO
hC

is given by

CNNLO
hC (E,µh, µs, µf ) =

(
2Ee−γE

µs

)2η 2∑
n=0

(αs
4π

)n
C(n)

hC (E,µh, µs, µf ), (A.12)

C(0)
hC(E,µh, µs, µf ) =

√
π

2Γ(2η + 3
2)
, (A.13)

C(1)
hC(E,µh, µs, µf ) =− (2π2DRα)

Γ(2η + 1)

√
2mred

E
+

√
π

2Γ(2η + 3
2)
h

(1)
i (µh), (A.14)

C(2)
hC(E,µh, µs, µf ) =

√
π(2π2DRα)2

3Γ(2η + 1
2)

(
2mred

E

)
− (2π2DRα)

Γ(2η + 1)

√
2mred

E

×
[
h

(i)
1 (µh) + a1 − β0

(
ln

(
8Emred

µ2

)
− ψ(0)(2η + 1)− γE

)]
+

2
√
π(2π2DRα)

Γ(2η + 3
2)

(
CA − 2DRα(vspin + 1)− νRα,Sann

2

4m2
red

M2

)

×
(

ln

(
E

M

)
− ψ(0)

(
2η +

3

2

)
− γE + 2− 2 ln 2

)
+

√
π

2Γ(2η + 3
2)
h

(1)
i (µh) (−2β0) ln

(
µh
µf

)
, (A.15)

with the digamma function ψ(0)(x) = d ln Γ(x)
dx . It is straightforward to evaluate the action

of the derivative with respect to η in (A.11) on the factors (A.13)–(A.15).
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[37] D. Gonçalves-Netto, D. López-Val, K. Mawatari, T. Plehn and I. Wigmore, Automated

Squark and Gluino Production to Next-to-Leading Order, Phys. Rev. D 87 (2013) 014002

[arXiv:1211.0286] [INSPIRE].

[38] D. Goncalves, D. Lopez-Val, K. Mawatari and T. Plehn, Automated third generation squark

production to next-to-leading order, Phys. Rev. D 90 (2014) 075007 [arXiv:1407.4302]

[INSPIRE].
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