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1 Introduction

Phases that spontaneously break translational invariance are collectively referred to as

Spatially Modulated (SM) phases and are widespread in Nature [1]. In condensed matter

systems [2] in particular, they manifest themselves in various forms with spin density waves

(SDW), and charge density waves (CDW) being the most common ones. Apart from the

richness of this class of phases, its potential correlation with the physics of the pseudogap

region of the high-Tc superconductors’ phase diagram [3] and the conjecture that the QCD

phase diagram at finite temperature and intermediate density is dominated by a chiral-

density wave state [4] have triggered a lot of interest in understanding these phases.

Holography provides a natural theoretical framework to explore the physics of these

phases at strong coupling. They are associated to black hole solutions that asymptote

to AdS and have spatially modulated horizons. Many examples of modulated holographic

phases have been discussed in the literature, starting with [5] and further explored in [6–11]

(for earlier related work see [12–14]). It should be pointed out that constructing inhomo-

geneous black objects is not a new concept, dating back to the non-uniform strings. Gre-

gory and Laflamme showed that the uniform black string, described by the product of a

Schwarzschild solution and a circle, becomes unstable to modes with wavenumber smaller

than a critical value. Since the critical deformation mode is static, they pointed out a new

family of black strings without translation invariance: the non-uniform strings [15–17].

This new branch of solutions was perturbatively constructed [18] and non-perturbatively

in [19]. However, it was shown that the non-uniform solutions have higher mass than the

uniform strings and thus they are not thermodynamically preferred in a sufficiently low

number of dimensions [20].
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The electrically charged AdS-RN black branes have been shown to suffer from spatially

modulated instabilities. Such instabilities have been investigated for a class of D = 5

gravity theories with a single gauge-field and a Chern-Simons coupling in [11, 13, 14] and

also for D = 4 Einstein-Maxwell theory coupled to a neutral pseudo-scalar field φ and

possibly an additional gauge field in [21]. The non-linear striped black branes, connected

to the zero modes of [21], have been constructed and studied in a series of papers [6–9].

It was shown that, depending on the non-linearities of the model, a second order phase

transitions occurs at some critical temperature Tc. Inhomogeneous solutions that break

translation invariance in two directions were studied in [22], where checkerboard black holes

with rectangular fundamental domain were constructed. In the same work [22], it was

also shown that the striped black holes are continuously connected to the checkerboard

black holes via rectangular lattice black holes. In [23], the electric stripes phase was

shown to survive the existence of non-vanishing external magnetic, B. The full three-

dimensional family of solutions corresponding to oblique lattices was discussed in [24] and

it was concluded that the free energy is minimised by a triangular lattice for B greater

than a critical value Bc. It was argued that this could be associated with minimal packing

of circles in the plane.

Spatially modulated phases of CFTs placed in magnetic field, in the absence of a

chemical potential, have been investigated in [25]. A big class of D dimensional bulk

theories coupled to a scalar field, φ and to one or two U(1) gauge fields was studied. It

was shown that, for particular choices of Lagrangian parameters, the dual field theory can

admit phases that spontaneously break translation invariance via current density waves.

In these models, the key feature of the instability is that the relevant mode preserves the

internal U(1) symmetries. The zero modes that appear at the onset of the instability have

been constructed in [25] and as we later explain, they modulate the magnetisation density

of the dual field theory. Furthermore, it was shown [26] that these instabilities exist around

magnetic branes solutions of N = 8 gauged supergravity in both D = 4 and D = 5. A

different class of instabilities has been considered in e.g. [26–28] involving charged degrees

of freedom, reminiscent of the instabilities discussed in [29]. In these case, the internal U(1)

under which the unstable fields are charged is spontaneously broken and the new phase

will necessarily break translation.

Here, we construct the backreacted geometries dual to the magnetisation density waves

found in [25]. This involves the numerical solution of a set of coupled partial differential

equations in two coordinates, employing the DeTurck trick for dynamical gauge fixing [30]

which was first used in a holographic set-up in [31]. For the specific model we examined,

we find a branch of spatially modulated solutions that extends to lower temperatures and

dominates the thermodynamic ensemble within our assumption of breaking translations

in only one direction. For this branch, we construct the complete two-dimensional space

of solutions, specified essentially by the temperature T and the periodicity scale k. By

minimising the free energy density, we determine the one dimensional branch of preferred

solutions k = k(T ). We show that the latter have the stress-energy tensor of a perfect fluid.

Down to the temperatures we explored, this branch seems to flow to a spatially modulated

ground state. It is interesting to mention that down to the temperatures for which we have
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constructed black holes, the entropy of the new phases remains parametrically large. The

existence of spatially modulated ground states with finite entropy density is a possibility

which we certainly plan to further explore in the future.

From the field theory point of view, we will examine a particle-hole symmetric medium

which is charged under two different U(1)’s. The medium is magnetised with respect to

one of them, under the influence of a uniform magnetic field. At temperatures below a

critical value Tc, we will see that the magnetic densities become modulated giving rise

to spontaneous magnetisation current densities. While the connection with holography is

not direct, the magnetisation density is a natural variable to discuss SDWs in the context

of hydrodynamics [32]. One obvious difference with real systems exhibiting SDWs is the

fact that the system we are considering is diamagnetic in its normal phase. Paramagnetic

phases of holographic matter are certainly possible [23] and we expect that in a bottom-up

approach similar phases can be constructed.

The remaining of this paper is organised as follows. In section 2 we introduce the model

of interest and review the spatially modulated instabilities of the magnetically charged AdS-

RN black holes of [25]. In section 3 we describe in detail the numerical method used to

construct the back-reacted solutions and we report on the findings of this computation.

Finally, we conclude in section 4. We have also included two appendices were we discuss

in some detail the asymptotic expansion of our solutions and the numerical convergence of

the method we used to construct them.

2 The setup

We consider a four dimensional theory of gravity coupled to a scalar field, φ, and two gauge

fields, A and B gauging the corresponding symmetries U(1)A and U(1)B in the bulk. The

bulk dynamics will be described by the Lagrangian

L =
1

2
R− V (φ)− 1

2
(∂φ)2 − 1

4
ZA (φ) FµνF

µν

− 1

4
ZB(φ)GµνG

µν − 1

2
W (φ) FµνG

µν , (2.1)

where F = dA and G = dB. The above form is natural from the point of view of N = 2

supergravity in D = 4 [33, 34] which commonly appears in the context of SUSY consistent

truncations of D = 11 SUGRA (see e.g. [35–38]). Note that the wedge product terms

between the field strengths that appear in top-down models are not going to be an impor-

tant structural difference since they would be inactive for the solutions we consider in this

paper. The equations of motion deriving from (2.1) are given by

Rµν = V gµν + ∂µφ∂νφ+ ZA

(
FµρFν

ρ − 1

4
gµνFρσF

ρσ

)
+ ZB

(
GµρGν

ρ − 1

4
gµνGρσG

ρσ

)
+ 2W

(
G(µ

ρFν)ρ −
1

4
gµνGρσF

ρσ

)
,

∇µ (ZA F
µν +W Gµν) = 0 ,

∇µ (ZB G
µν +W Fµν) = 0 ,

∇2φ− V ′ − 1

4
Z ′A FµνF

µν − 1

4
Z ′B GµνG

µν − 1

2
W ′GµνF

µν = 0 . (2.2)
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The functions V,ZA, ZB and W are chosen to admit the following expansion

V (φ) = −6 +
1

2
m2
s φ

2 + · · · ,

ZA(φ) = 1− nφ2 + · · · ,
ZB(φ) = 1 + · · · ,
W (φ) = s φ+ · · · , (2.3)

around φ = 0, where ms, n and s are constants. The equations of motion (2.2) admit AdS4

of radius R2
AdS2

= 1/2 as a solution and will serve as the asymptotics of all the black hole

space times we are going to construct.

According to the scenario of the introduction, we now consider the deformation of

the boundary theory by a magnetic field β in the U(1)A. At high temperatures the bulk

geometry is going to be described by the magnetic AdS-RN black hole,

ds2 =
1

z2h z
2

(
−f dt2 +

z2h
f
dz2 + L2 dx2 + dy2

)
,

F = Lβ dx ∧ dy ,

f = z3
(

2

z3
+ z

β2z4h
2

)
− z3

(
2 +

β2z4h
2

)
, (2.4)

and φ, B trivial. This is a solution allowed by the choice (2.3) which lets us set the scalar φ

and the second gauge field B consistently to zero. We have also introduced a length-scale L

for later convenience when we fix the period of x. In this coordinate system the conformal

boundary is at z = 0 with

ds24 =
dε2

2 ε2
+

1

ε2
(−2 dt2 + L2 dx2 + dy2) , (2.5)

where we defined ε = z zh. The horizon of the black hole (2.4) is at z = 1 and its Hawking

temperature is T =
12−β2 z4h
8π zh

. The near horizon limit of the extremal solution with T = 0

reduces to

ds2 =
1

12
ds2 (AdS2) + dx̂2 + dŷ2,

F =
√

12 dx̂ ∧ dŷ , (2.6)

where ds2 (AdS2) is the metric on a unit radius AdS2 space and we have scaled the spatial

field theory coordinates according to e.g. x̂ = L (β/12)1/2 x.

We now turn our attention to the instabilities of the magnetic AdS-RN black hole (2.4)

towards phases with broken translations that were discussed in [25]. These can be under-

stood as near horizon instabilities by examining the perturbation

φ = δφ (xα) cos (k x̂) , B = δB (xα) sin (k x̂) dy , (2.7)

around the background solution (2.6). The functions that appear in (2.7) depend on

the coordinates of AdS2 and k is a constant. The linearised equations of motion (2.2)
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around (2.6) take the form

�2v −
1

12
M2v = 0 , (2.8)

where v = (δφ, δB) and the Laplacian is with respect to the AdS2 metric. The mass matrix

is given by

M2 =

(
m̃2
s + k2 2

√
3 s k

2
√

3 s k k2

)
, (2.9)

with m̃2
s ≡ m2

s − 12n. It can be easily checked that depending on the choices of n and

s, the eigenvalues of the above matrix can violate the BF bound signalling an instability.

Interestingly, the lightest mode appears generically at a finite value of k.

The finite temperature zero modes related to the above instabilities have been con-

structed in [25] for m2
s = −4 and various values of n, s. These were constructed by exam-

ining perturbations around the geometry of the black holes (2.4). The operator Oφ, dual

to the scalar field φ, was chosen to have scaling dimension ∆ = 1 and it was shown that

the zero modes appear along a curve T (k), specified by the parameters n and s. At each

point on that curve, a new branch of broken phase black hole solutions is expected appear

for the corresponding fixed value of k. The maximum of this curve reveals the critical

temperature in the case of a continuous transition. In figure 1 we plot T (k) for the case

(n, s) = (−1, 2), which corresponds to (Tc, kc) = β1/2 (0.08, 1.26).

The appearance of the bulk gauge field B in the mode (2.7) and the fact the instability

shows up at a finite value of k, suggest that the broken phase will develop an inhomogeneous

current density. As we explain in section 3.2, these currents can be seen as magnetisation

currents due to the modulation of the field theory magnetisation density. At the same time,

the operator dual to the bulk scalar φ will take a modulated VEV with the remaining fields

backreacting at second order in perturbation theory close to the critical temperature Tc.

In this note, we go beyond perturbation theory constructing the backreacted geome-

tries by solving the non-linear equations of motion (2.2). As expected, the full functional

dependence of V,ZA, ZB and W on φ is going to be relevant. The model we are going to

consider has

V (φ) = −6− 2φ2 + φ4,

ZA(φ) = 1 + φ2 ,

ZB(φ) = 1 ,

W (φ) = 2 (φ− φ3) . (2.10)

The choice (2.10) has m2
s = −4, n = −1 and s = 2. The zero modes appearing in

this model correspond to the bell curve shown in figure 1. Furthermore, note that the

model (2.10) exhibits a Z2 symmetry with B → −B and φ → −φ simultaneously. This

discrete symmetry becomes important at the non-linear level, relating the two branches

of solutions expected to emerge at the critical temperature Tc. If the Z2 is not present,

the two branches will be distinct and they will therefore have different thermodynamic

properties.
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Figure 1. Plots of critical temperatures T versus k for the existence of normalisable zero modes

about the D = 4 magnetically charged AdS-RN black hole solutions with n = −1 and s = 2.

3 The broken phase black holes

In this section we discuss the construction and properties of the non-linear solutions cor-

responding to the new branches of black holes proposed to exist in [25] and reviewed in

section 2. In section 3.1 we describe the boundary value problem relevant to the present

physical situation and the numerical methods we used to solve it. In section 3.2 we discuss

the thermodynamics as well as the local magnetisation properties of the field theory states

dual to the newly constructed black holes. In section 3.3 we discuss the numerical solutions

we constructed along with some of their properties.

3.1 The ansatz and the method used

We consider the following ansatz for the back-reacted solutions

ds2 =
1

z2h z
2

[
−f Qtt dt2 +

z2hQzz
f

dz2 +Qxx (Ldx+ z2Qzxdz)2 +Qyy dy
2

]
,

A = (βLx+ ay)dy ,

B = bydy ,

φ = z h , (3.1)

where Qtt, Qzz, Qxx, Qyy, Qzx, ay, by and h are functions of the radial coordinate, z, and

x. Furthermore, we require that these functions obey periodic boundary conditions in

the x direction, with period given by L. The function f(z) is the same with the one in

equation (2.4). Note that this ansatz is generic enough to capture both the normal phase so-

lution (2.4), corresponding to Qtt = Qzz = Qxx = Qyy = 1, Qzx = Qtx = h = ay = by = 0,

as well as the static zero modes considered at linearised level in [25]. In terms of the

functions appearing in the non-linear ansatz (3.1), this mode takes the form

δh(z, x) = H(z) cos(2πx) ,

δby(z, x) = By(z) sin(2πx) . (3.2)

– 6 –
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The PDEs obtained when the equations of motions are evaluated on this ansatz are

weakly elliptic, meaning that they are elliptic only for the physical degrees of freedom,

and thus are unsuitable for numerics without gauge fixing. In this work, we employ the

DeTurck method to resolve this issue [30, 31]. According to this method, instead of solv-

ing the Einstein equations, one solves the Einstein-DeTurck equations which are obtained

from (2.2) after making the following shift

Rµν → Rµν +∇µξν , (3.3)

where ξµ = gνλ(Γµνλ(g) − Γ̄µνλ(ḡ)). Here ḡ denotes a reference metric (which is required

to have the same asymptotic behaviour as g) and Γ̄ is the Christoffel connection of ḡ;

we choose this to be the AdS-RN black hole metric (2.4). The resulting PDEs are then

strictly elliptic and, with appropriate boundary conditions, can be solved numerically using

a relaxation method.

In more detail, one discretises the coordinates of the PDEs to form a lattice. Our

coordinates span z ε[0, 1] and x ε[0, 1). To approximate the derivatives of our functions at

each grid point, we use a Fourier expansion in the periodic direction x. The treatment of the

z direction is a more delicate one since our functions are non-analytic close to the boundary

of AdS4 at z = 0 as we explain in appendix A. We have used both spectral methods on a

Chebyshev collocation grid as well as a fourth order finite difference scheme to cross check

our results finding essentially the same outcomes within our numerical precision. We have

included a convergence test in appendix B showing power law convergence for the spectral

method in the z direction with a power compatible with the non-analytic terms in our

expansion. A brief discussion on why spectral methods are preferred in this calculation

over fintite differences and a quantitative comparison of the results of the two methods can

be found in appendix B.

After fixing a discretisation scheme, the problem then reduces to solving a set of non-

linear algebraic equations for the values of our functions on the grid described above. This

is done using the Newton-Raphson method where one starts with an initial guess for the

unknown functions at each lattice point, which presumably does not solve the PDEs. The

solution is then iteratively improved using Newton’s method in order to obtain functions

that solve the PDEs to a better and better approximation. Provided a well posed boundary

value problem, this procedure leads to a countable set of (locally unique) solutions to the

modified equations of motion. As we will later discuss, in the context of spontaneously

broken translations, this involves the fixing a Goldstone mode. A question that naturally

arises is whether these solutions are also solutions of the initial equations (2.2). This is

true when ξ2 = 0,1 i.e. when solutions corresponding to Ricci solitons are discarded. For

this reason, after generating the solutions, we have performed convergence tests to verify

that ξ2 smoothly converges to zero within numerical precision at all grid points. This point

is further discussed in appendix B.

1Since ξµ is spacelike, ξµ = 0 is equivalent to ξ2 = 0.
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As we explain in more detail in appendix A, a set boundary conditions at z = 0 which

are appropriate for AdS4 asymptotics are

Qtt(0, x) = Qxx(0, x) = Qyy(0, x) = 1 ,

Qzx(0, x) = ay(0, x) = by(0, x) =
∂h(0, x)

∂z
= 0 . (3.4)

On the other end of our computational domain, located at z = 1 we need to impose bound-

ary conditions which guarantee a smooth Killing horizon of temperature T =
12−β2 z4h
8π zh

. This

boils down to demanding that the functions, F(z, x) that parametrise our ansatz (3.1), ad-

mit an analytic expansion of the form

F = F(1, x)− (1− z)∂zF + . . . . (3.5)

The equations of motion impose constraints on the coefficients of the power series (3.5).

In order for the Euclidean signature metric to have a smooth fixed point at z = 1 we

must have Qzz(1, x) = Qtt(1, x). By expanding the equations of motion at z = 1 we find

another seven relations describing Robin boundary conditions imposed on that surface.

Throughout the calculation, the magnetic field will be set to β = 1 while zh will be tuning

the temperature.

A final point we need to address is the Goldstone mode associated with the spontaneous

nature of the way we break translations. More concretely, if F(z, x) is a solution, then

F(z, x + c) is also a solution of the boundary value problem for any constant c. Because

of this, we should impose a condition in order to mod out these solutions from the moduli

space. It is enough to impose this condition at one point and for the specific solutions we

constructed, we imposed by(1, 0) = 0. In fact, periodicity in the x coordinate guarantees

the existence of a discrete number of points at which the partial derivative with respect

to x of our functions vanish at any fixed z > 0. The model we are considering has a Z2

symmetry of the type discussed at the end of section 2. In this case, setting to zero the

even Fourier modes (including the zero mode) of by and h is consistent. In the absence of

these modes for by, we can simply choose to set by(1, 0) = 0.

3.2 Thermodynamics and magnetisation currents

To analyse the thermodynamics of our black hole solutions, we need to regularise our bulk

action by adding appropriate surface terms [39, 40]. For our bulk theory (2.1), this can be

achieved by adding a surface term S∂ to the bulk action

Sreg = S + S∂ , (3.6)

which includes both the Gibbons-Hawking term as well as the necessary counterterms that

render the total action finite. More specifically,2

S∂ =

∫
dτd3x

√
−g∞

(
K +

1√
2

(4− φ2) + φ ηµ∂µφ+ · · ·
)
. (3.7)

2The specific choice of scalar field counterterms is certainly compatible with the ∆ = 1 choice for the

boundary operator. However, when supersymmetry is involved a more careful treatment is required as

pointed out in [41].
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Here K = gµν∇µnν is the trace of the extrinsic curvature of a z = const surface close

to the boundary, with nµ the dual of the outward pointing normal unit vector and g∞
being the determinant of the projection of the bulk metric on that surface. The ellipsis

refers to terms which will not be relevant for the ansatz and boundary conditions that we

are considering.

Following [39, 40], we now compute the expectation value of the boundary stress-energy

tensor. The relevant terms are given by

〈Tµν〉 = lim
z→0

1

(z zh)5

[
Kµν −K gµν∞ −

1√
2

(
4− φ2

)
gµν∞ − φ ηρ∂ρφ gµν∞ + · · ·

]
, (3.8)

where we have included an appropriate power of zh since we are interested in the CFT

one-point functions with respect to the metric

ds23 = γµν dx
µ dxν = −2 dt2 + L2 dx2 + dy2 .

In order to express this in terms of our asympotic data, we need to plug in the expansion

of our fields close to the z = 0 boundary. Using the expansion (A.4) given in appendix A,

we obtain

〈T tt〉 = − 1

2
√

2 z3h
(4 + β2 z4h − 6Q

(3)
tt ) ,

〈T xx〉 =
1

4
√

2 z3h
(4 + β2 z4h + 12Q(3)

xx ) ,

〈T yy〉 =
1

4
√

2 z3h
(4 + β2 z4h + 12Q(3)

yy ) , (3.9)

and as we discuss in appendix A, the equations of motion imply that 〈Tµν〉 is traceless.

Defining the unit-norm timelike vector u = 2−1/2 ∂t on the boundary, we can express the

free energy w̄, mass m̄ and entropy S̄ averaged densities in terms of our numerical data

w̄ = m̄− T S̄ ,

m̄ = L−1
∫ 1

0

√
−γ uµuν〈Tµν〉dx ,

S̄ = 2π z−2h

∫ 1

0
dx
√
Qxx(1, x)Qyy(1, x) . (3.10)

We now turn our attention to the electric currents of the dual field theory. Varying

the on-shell action with respect to the asymptotic value of the gauge fields we obtain

their VEVs

〈JµA〉 = − lim
z→0

1

(z zh)3
nρ [ZA F

ρµ +W Gρµ · · · ] ,

〈JµB〉 = − lim
z→0

1

(z zh)3
nρ [ZB G

ρµ +W F ρµ · · · ] . (3.11)

for which the expansion (A.4) gives

〈JyA〉 =
√

2 z−1h ja , 〈JyB〉 =
√

2 z−1h jb , (3.12)
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for the non-zero components. As a comment, the only non-trivial component of the stress

tensor continuity equation

Q(3)
xx
′ =

2

3
z2hβ L ja , (3.13)

is satisfied provided that ξµ = 0 on the background. This consists another check we

performed on our numerics.

For a fixed period L, the first law of thermodynamics gives

δw̄ = −S̄ δT − M̄A δβ , (3.14)

where M̄A is the thermodynamic magnetisation corresponding to U(1)A. For the back-

grounds we construct in this paper, the magnetisation densities of both U(1)’s are inhomo-

geneous. Our black holes are bulk duals of equilibrium states and one would expect that

the currents of the boundary theory should be a total derivative of a periodic antisymmet-

ric rank two magnetisation tensor resulting in zero net transport of charge. To show this

from the bulk [42], we integrate the gauge field equations of motion (2.2) over the radial

coordinate z. Using regularity on the horizon and the definition (3.11) we can express√
−γ 〈J iA,B〉 = ∂jM

ij
A,B with Mxy

A,B = −Myx
A,B = MA,B and

MA = −
∫ 1

0
dz
√
−g(ZA F

x y +W Gx y) ,

MB = −
∫ 1

0
dz
√
−g(ZB G

x y +W F x y) . (3.15)

Note that the definition of the magnetisation through the current density leaves us with

a constant unfixed. We fix this constant by demanding that the thermodynamic magneti-

sation, defined through (3.14), is equal to the average of the local magnetisation. This is

achieved by the choice we make when we write equation (3.15).

Following the arguments of [43], we find that the variation of the average free energy

density with respect to the period L is given by

− Lδw̄
δL

= w̄ + β M̄A + T̄ xx . (3.16)

Even though the solutions we construct numerically break translations in the x direction

only, an identical statement is true regarding the variation of the free energy with respect

to the period of the y direction. However, since our solutions don’t depend on y, for all

the solutions we construct here

w̄ + β M̄A + T̄ yy = 0 . (3.17)

From the above we conclude that for the black holes holes which locally minimise their free

energy as a function of L, we have

w̄min = −βMA − P, T̄ xx = T̄ yy = P (3.18)

and Txy = 0 by construction. For these solutions, we see that the averaged stress tensor

corresponds to a perfect fluid.
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Scaling invariance of the dual CFT constrains further the various thermodynamic

quantities we have discussed. In particular, the free energy has to be expressible according

to w̄ = β3/2 f(T/
√
β, L
√
β) with f a dimensionless function. This symmetry therefore

constrains the thermodynamic magnetisation according to

β M̄A = −β ∂w̄
∂β

= −3

2
w̄ − 1

2
T S̄ +

1

2
L
δw̄

δL
. (3.19)

Moreover, equations (3.10) and (3.19) imply that T̄tt = 4P in agreement with the stronger

requirement on the stress tensor being traceless locally.

For the normal phase black hole solution (2.4) we can simply evaluate the thermody-

namic magnetisation and susceptibility [23] in terms of T and β. Using (3.15) we find

MA = −β zh(T, β), MB = 0 , (3.20)

χA ≡
∂M̄A

∂β
= −1

3
zh

12 + β2 z4h
4 + β2 z4h

, (3.21)

where the minus sign in the susceptibility points out that the normal phase describes a

diamagnet with respect to U(1)A. It is easy to see from the leading mode (3.2), that close

to Tc the broken phase black holes will have a modulated U(1)B magnetisation density

according to

δMB ≈M0
B (1− T/Tc)1/2 cos(2πx) , (3.22)

with higher order corrections away from Tc. The effects of inhomogeneity on the magnti-

sation of U(1)A will be second order. We show numerical evidence for this behaviour in

the next section where we discuss the backreacted solutions.

3.3 Numerical solutions

In this section we present the solutions constructed for the model fixed by (2.10). Due to its

Z2 symmetry we expect to find only one distinct branch of solutions. From the numerics we

see that this branch extends to lower temperatures, T < Tc, covering the two-dimensional

region below the bell-curve T (k) shown in figure 1. We present the profiles of some of the

functions in figure 2, for a representative solution with T = 0.5Tc and kc = k.

In figure 3, we show a 3D plot of the free energy difference between the normal and the

modulated phase, δw, as a function of T and k and we see that through out the moduli, the

modulated solutions dominate. To specify the thermodynamically preferred branch branch

of black holes one needs to minimise the free energy w with respect to k for fixed T . Doing

this numerically yields the red line in figure 3. Various properties of the preferred branch

are displayed in figure 4: panel (a) shows the value of the wavenumber k along the preferred

branch as a function of the temperature T , and panel (b) and (c) show the free energy

and entropy of the preferred solutions. We see that at zero temperature, we approach a

ground state with a finite wavenumber k. As we discussed in the introduction, the entropy

density remains parametrically large down to temperatures T/β1/2 ≈ 2 · 10−2. Moreover,

in figure 5 we display the the free energy and the averaged stress tensor for T = 0.5Tc as

– 11 –
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Figure 2. The scalar field, h, and the gauge field by for T = 0.5Tc and kc = k. Nx = 40, Nz = 40.

Figure 3. The difference between the free energy of the normal and the modulated phase for the

whole moduli space of solutions.

functions of k. We see that for the preferred branch, at the minimum of the red curve, the

green and the blue curves intersect showing that the averaged stress tensor reduces to the

one for a isotropic ideal fluid. Moreover, the minimum averaged entropy given by the pink

curve is slightly to the right of the preferred k at that temperature. This suggests that

the free energy decreaaes faster at that value of k with increasing temperature. This is

certainly compatible with the fact that the thermodynamically preferred k changes with T .

In figure 6 we plot the magnetisation densities MA and MB for the broken phase

solution corresponding to (T, k) = (0.5Tc, kc). As we discussed in section 3.1 the leading

mode of the instability concerns the magnetisation of U(1)B and figure 6 agrees with

expectation that the modulation of MB is a leading order effect. We can use equation (3.20)

to find MA at the same temperature, in the normal phase. For T = 0.5Tc = 0.04β1/2 we

find that MA ≈ −1.787 and a comparison with the top left of figure 6 demonstrates that

the modulation in MA is a higher order effect when compared to that of MB.
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Figure 4. Properties of the preferred branch.

We have also included a log-log plot of the first four non-trivial Fourier modes Mn
B

of the magnetisation density MB as functions of 1 − T/Tc. Using simple perturbative

reasoning, one can argue that the behaviour of these should be

Mn
B(T, k) = Mn

B(k)

(
1− T

Tc

)n
2

+ · · · , (3.23)

which certainly conforms with our findings shown in the bottom plot of figure 6. In par-

ticular, we find that due to the Z2 symmetry of our theory, the only non-trivial modes

switched on are for n = 1, 3, 5, . . ..

4 Discussion

In this paper we have constructed numerically a two-parameter family of inhomogeneous

AdS black brane solutions by backreacting on the instabilities of [25], for a particular

model. These geometries describe a spatially modulated phase of the dual field theory,

held at finite temperature and external magnetic field. Below a critical temperature Tc the

modulated phase becomes thermodynamically preferred over the unbroken one. We have

shown substantial numerical evidence that the transition is second order.

– 13 –



J
H
E
P
1
0
(
2
0
1
6
)
0
3
8

0.8 1.0 1.2 1.4 1.6 1.8 2.0

-0.15

-0.10

-0.05

0.00

k�Β1�2

∆Ty
y�Β

3�2

∆Tx
x�Β

3�2

∆Tt
t�Β

3�2

∆S�Β

10
2 ∆w�Β3�2
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Figure 6. Magnetisation densities of U(1)A (top left) and U(1)B (top right) for (T, k) = (0.5Tc, kc).

Field theory direction Fourier modes of the magnetisation density of U(1)B as a function of T and

for k = kc (bottom).

By exploring the thermodynamics of the entire parameter space of these solutions we

find that the preferred solutions has a temperature-dependent periodicity for the modula-

tion, in accordance with [5, 9, 10]. In contrast with previously constructed examples, we

find that the periodicity is a monotonically decreasing function of temperature. Analysing

our low temperature solutions, we find indications that the system approaches an inhomo-

geneous ground state with non-zero entropy. However, this picture could change as soon
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as we achieve even lower temperatures. It would be interesting to try to construct the

corresponding ground states directly by considering T = 0.

An obvious question to be addressed in the future is to relax the assumption of trans-

lational invariance in the one of the directions and construct the corresponding three-

parameter family of solutions. The present work has not excluded the possibility that

these solutions could dominate the ensemble. In the context of inhomogeneous phases of

field theories at finite temperature and chemical potential, these solutions have been con-

structed in [22, 24] and a competition between phases with modulation in one and two

directions was found with the triangular configurations being preferred [24].

A more ambitious direction we plan to pursuit in the future is the fate of the instabilities

of top-down models discussed in [26]. We expect a vast number of ground state geometries

in these models with the finite temperature phase diagram exhibiting competing orders.3

Among these ground states, of particular interest are the supersymmetric ones [26, 46] and

in particular the ones which will be modulated [26].
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A Boundary conditions

To construct the boundary expansion we start by determining the scaling dimensions of

the operators in the dual conformal field theory. To do this, we consider the following

perturbations around the AdS4 solution

Qii = 1 + δQii(z, x) , i = {t, z, x, y} ,
Qz x = 0 + δQz x(z, x) ,

h = 0 + δh(z, x),

ay = 0 + δay(z, x) ,

by = 0 + δby(z, x) . (A.1)

After substituting into the equations of motion, at first order in the perturbation we find

that we need to solve a set of second order linear PDEs for the variations. We proceed

by looking for solutions where the eight function variation, as a vector, are of the form

~v rδ where v is a constant vector and δ is a constant that is related to a scaling dimension

in the three-dimensional conformal field theory dual to the AdS4 solution. The system of

3Note that some of the normal phase solutions in these models are known in closed form [35, 44]. More

recently these solutions have been used to generate dyonic solutions of theories different from the STU

model [45].
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equations then takes the form M · v = 0 where M is an 8 × 8 matrix that depends on δ.

Demanding that non-trivial values of v exist implies that detM = 0 and this specifies the

possible values of δ. The solutions come in 8 pairs. Apart from the usual modes,

δ1 = {0, 1}, δ2 = {0, 1}, δ3 = {0, 1},
δ4 = {0, 3}, δ5 = {0, 3}, δ6 = {−3, 2}, (A.2)

corresponding to the scalar, the 2 gauge fields and the metric respectively, we also obtain

two modes with scaling dimensions

δ±7,8 =
1

2
(3±

√
33) , (A.3)

that appear in the variations of the metric functions. These modes appear only in

the Einstein-De Truck equations and are manifestations of the dynamical gauge fixing

procedure.

We then proceed in constructing the actual expansion

Qtt = 1− 1

4
φ21(x) z2 +Q

(3)
tt (x)z3 +Q

(4)
tt (x)z4 + g1(x)z(3+

√
33)/2 +O(z5 log(z)) ,

Qzz = 1 +Q
(4)
tt (x)z4 + g2(x)z(3+

√
33)/2 +O(z5 log(z)) ,

Qxx = 1− 1

4
φ21(x) z2 +Q(3)

xx (x)z3 +Q(4)
xx (x)z4 + g1(x)z(3+

√
33)/2 +O(z5 log(z)) ,

Qyy = 1− 1

4
φ21(x) z2 +Q(3)

yy (x)z3 +Q(4)
yy (x)z4 + g1(x)z(3+

√
33)/2 +O(z5 log(z)) ,

Qzx =
z2h
8L
φ1(x)φ′1(x) z +Q(2)

zx (x)z2 −
z2h z

2 ln(z)

5L

(
Q(3)′
xx (x) + Lz2h β ja(x)

)
+O(z3 log(z)) ,

h = φ1(x) +O(z2) ,

ay = ja(x)z +O(z2) ,

by = jb(x)z +O(z2) , (A.4)

where the functions Q
(4)
µµ(x) are fixed in terms of φ1, ja and jb. The expansion (A.4) bares

a lot of similarities with the expansions that appeared in [24, 47] in related topics. As we

said above, we choose the operator dual to the scalar field to have scaling dimension ∆ = 1,

which gives φ1 the interpretation of the vacuum expectation value and φ2 is the source.

We want the breaking of translation invariance to be spontaneous and thus, we require the

sources of all the operator, except of the background magnetic field, to vanish. For this

reason, we impose φ2 = µa = µb = 0. The expansion (A.4), is then specified in terms of

nine coefficients {Q(3)
tt , Q

(3)
xx , Q

(3)
yy , Q

(2)
zx , φ1(x), ja(x), jb(x), g1(x), g2(x)} that will be fixed by

solving the PDEs subject to the constraint

Q
(3)
tt (x) +Q(3)

xx (x) +Q(3)
yy (x) = 0 , (A.5)

which reflects the fact that the energy-momentum tensor of the dual field theory is traceless,

〈Tµµ〉 = 0. Demanding that ξ2 = 0 poses extra constraints, namely that g2 = −1
2 (3 +

√
33) g1 and the Ward identity given by Q

(3)′
xx (x) = 2

3 Lz
2
h β ja(x). Note that in the solutions
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Figure 7. (a) Test of the first law of thermodynamics on the branch with k = kc for various

temperatures. (b) Convergence of |ξ|2max as function of Nz for T = 0.5Tc, k = kc and Nx = 50.

Both figures correspond to model (2.10).

we will construct in the remaining of this paper the coefficients g1, g2 are non-trivial, but

they can be removed by a gauge transformation. However, even though they are pure

gauge, these terms do leave an imprint on our numerics as, together with the logarithmic

terms, they compromise the convergence rate.

B Numerical tests

In this appendix we discuss two tests we performed in order to check the quality of our

numerics. The first one is to check the first law of thermodynamics, while the second one

involves the convergence of ξ2.

From the differential form of the first law (3.14) we conclude that along a fixed k branch

of solutions the quantity W = S̄+∂T w̄ must vanish. In particular, using the values of w for

equally spaced values of temperature T to construct an interpolating polynomial of degree

4 and evaluate ∂T w̄. Indeed, in figure 7(a) we see that, for model (2.10), this condition is

met along the set of solutions with k = kc, where the temperature step between successive

points used for the interpolation was ∆T ∼ 10−3 β1/2. The change in the behaviour of W

at T = 0.05β1/2 is justified by the fact the we changed our grid resolution at that point

from Nz = 40 to Nz = 60 as we lowered the temperature.

One should also illustrate numerical convergence as the number of grid points is varied.

For the DeTurck quantity, ξ, defined in section 3.1, we compute its maximum value on the

grid, denoted by |ξ|2max. In figure 7(b) we present the convergence of |ξ|2max with the number

of grid points in the z coordinate, Nz, for a representative solution with temperature

T = 0.5Tc and momenta k = kc in the model (2.10). The convergence to zero is power

law, N−8.4z , and not exponential as one would naively expect for spectral methods. This is

due to the appearance of non-analytic terms with leading power z8.7 in the UV boundary

expansion of ξ2.

It is worth commenting on how the fourth order finite differences scheme compares to

the spectral methods for the discretisation of the radial direction. The finite differences
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solution at T = 0.5Tc and k = kc with Nz = 150 and Nx = 50 required 60GB of RAM

to be constructed using our sparse solver. The corresponding solution based on spectral

methods had Nz = 90 and Nx = 50 required 20GB of RAM. The finite differences solution

yielded |ξ|2max ≈ 10−11 while the solution based on spectral methods had |ξ|2max ≈ 10−20.

Therefore, at these relatively low resolutions, the spectral methods proved to be much more

efficient in terms of memory requirement. At these resolutions, the difference of the free

energy from the normal phase solution only differed by 0.3% yielding essentially the same

result for all practical purposes.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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