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1 Introduction

In the standard textbook discussion of two-dimensional conformal field theories (CFTs),

one crucial ingredient is the celebrated Kac determinant formula [1, 2]. In light of recent ex-

citing developments in conformal bootstrap [3, 4] in higher dimensions,1 a natural question

is whether there is a generalization of the Kac determinant formula to higher-dimensional

CFTs, and if yes whether the formula is useful at all for the study of D > 2 CFTs.

The goal of this small note is to point out that the there is indeed such a formula for

a general semi-simple Lie algebra, and that it is relevant in the study of conformal blocks.

We also comment on possible generalizations to supersymmetric CFTs. The utility of the

determinant formulas (and more sophisticated Kazhdan-Lusztig theory [8]) is illustrated

further in a recent preprint [7] with J. Penedones and E. Trevisani.

This short note grew out of the author’s desire to bring higher-dimensional CFTs closer

in spirit to the textbook treatment of 2d CFTs, where significant part of the structure is

encoded in the representation theory of the Virasoro algebra. We believe that there are

a lot of rich mathematical structures yet to be uncovered in the representation theory of

parabolic Verma modules, and we would like to urge the representation-theory experts to

take this subject seriously (if they have not done so already). For example, very little seems

to be known about explicit expressions of null states,2 except for the three-dimensional

CFT case worked out in [7]. As commented later in section 3, a better understanding of

the representation theory of parabolic Verma modules will be a crucial ingredient in the

systematic study of general correlators (such as correlators of currents and stress-energy

tensors) for superconformal field theories in various dimensions and various amount of

supersymmetry.

1See [5, 6] for early pioneering papers, and references [5–26] of [7] for a more complete list.
2The null states give rise to conformal-invariant differential equations, and are identified with the so-

called partially massless fields in the AdS dual, see e.g. [9–11].
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2 Determinant formula

2.1 Parabolic Verma modules

The representation theory of the conformal (or superconformal) algebra has a long history

(see e.g. [12–17] for an incomplete list). We here highlight the importance of parabolic

Verma modules (also known as generalized Verma modules). This module can be regarded

as a higher-dimensional CFT counterpart of the well-known Verma module for the Virasoro

algebra.3 While known to experts, these Verma modules deserve more attention from a

wider spectrum of physicists interested in CFTs.

The conformal group in D dimensions is given by SO(D, 2) in Lorentzian signature,

which group is generated by dilatation D, translations Pµ, special conformal transfor-

mations Kµ, and rotations Jµν , with µ, ν = 1 . . . D. For our considerations (except the

discussion of the unitarity bound towards the end of this paper) the signature of the group

is not important,4 and we instead consider the group G = SO(D + 2). We denote the

associated semisimple Lie algebra by g = so(D + 2).

The conformal algebra g has the following decomposition

g = n+ ⊕ l⊕ n− , (2.1)

where the subalgebras l, n+ and n− are defined by

l := 〈D, Jµν〉 , n+ := 〈Kµ〉 , n− := 〈Pµ〉 . (2.2)

The subalgebra l = u(1)⊕ so(D), which is sometimes called the Levi subalgebra (hence the

notation), is a subalgebra which acts on the Hilbert space of the radially-quantized CFT.

The decomposition (2.1) satisfies

[l, l] ⊂ l , [l, n±] ⊂ n± , [n+, n−] ⊂ l . (2.3)

This in particular means that the decomposition (2.1) is preserved by an adjoint action of

an element of l. Of course, this is expected since l is a subalgebra generated by rotations

and the dilatation.

Given a decomposition (2.1), a conformal primary is specified by a representation Vλ

of l, where λ is a highest weight.5 If we choose a basis {|Ωa
λ〉}

dimVλ

a=1 of this representation,

we have

h|Ωa
λ〉 =

∑

b

mλ(h)
a
b|Ω

b
λ〉 , ∀h ∈ l , (2.4)

3Historically D.N. Verma in his thesis considered a Verma module for a semisimple Lie algebra, before

people started discussing Verma modules for the Virasoro algebras. Since the conformal group in higher

dimensions is finite-dimensional, the structure of the Verma module for a higher-dimensional conformal

group is on the one hand much simpler than in the two-dimensional conformal group involving an infinite-

dimensional algebra. One the other hand, higher-dimensional case is more complicated in that we are

interested in the generalized concept of the Verma module, namely a parabolic Verma module.
4Mathematically it is enough to have a complex form of g.
5Or lowest weight in more physics-oriented conventions.
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wheremλ is a matrix representation of Vλ. Note that the highest weight λ for the subalgebra

l in (2.2) is given by a pair (∆,~l), with ∆ specifying the operator dimension and the non-

negative integers ~l specifying the spins of the rotation group. The constraint (2.4) then says

that |Ωλ〉 is a state with a specific operator dimension ∆ (energy in radial quantization)

and spins ~l.

So far there is a representation only of l, and we wish to extend this to a representation

of the full algebra g. Now the crucial point is that we need to impose the primary constraint:

n+|Ω
a
λ〉 = 0 . (2.5)

Starting with the conformal primary |Ωλ〉 we can consider its descendants. These are

generated by the action of the subalgebra n−, which spans the parabolic Verma module:

Mp(λ) := span
{

g1g2 . . . gk|Ω
a
λ〉

∣

∣ g1, g2, . . . , gk ∈ n−
}

. (2.6)

(We will comment on the meaning of the index p momentarily.) In our case at hand, this

is nothing but the conformal family of the primary |Ωλ〉:

Mp

(

λ = (∆,~l)
)

:= span
{

Pµ1Pµ2 . . . Pµk

∣

∣

∣Ωa

λ=(∆,~l)

〉}

. (2.7)

We study this parabolic Verma module Mp(λ) in the rest of this paper.

Here are some supplementary remarks. First, let us explain the reason for the name

“parabolic” (and the notation Mp). From the decomposition (2.1) we can define a parabolic

subalgebra p by6

p := n+ ⊕ l . (2.8)

The primary constraints ((2.4) and (2.5)) then imply that |Ωλ〉 is a representation of p.

Given such a representation Vλ (whose highest weight we denote by λ), we can define the

associated parabolic Verma module by7

Mp(λ) = Mp(Vλ) := U(g)⊗U(p) Vλ , (2.9)

where U(g) and U(p) are the universal enveloping algebras for g and p, respectively, and Vλ

here is naturally regarded as a representation of the universal enveloping algebra U(p). We

can verify that this general definition reduces to our previous definition of the parabolic

Verma module Mp(λ) for the conformal algebra. Let us note that compared with the

general discussion of parabolic Verma modules, our discussion of conformal algebras is

simpler, in that both n+ and n− are Abelian, and that Vλ is a trivial representation of n+.
8

Second, instead of the decomposition (2.2) we can consider the triangular decompo-

sition of the Lie algebra, with l given by the Cartan subalgebra. The parabolic Verma

6This decomposition is known as the Levi decomposition of a parabolic subalgebra.
7This is an example of an induced representation, and is sometimes denoted by Indg

p(Vλ).
8In fact, by abuse of notation we are using the same symbol λ for the highest weight, both for a

representation of p and for that of l.
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module then reduces to the ordinary Verma module, and the parabolic subalgebra p co-

incides with the Borel subalgebra. This case is familiar from the representation theory of

the Virasoro algebra, in which case the decomposition (2.1) reads

n+ = 〈Ln>0〉 , l = 〈Ln=0〉 , n− = 〈Ln<0〉 , (2.10)

where Ln (n ∈ Z) are the generators of the Virasoro algebra.9

For physical considerations it is important that the parabolic Verma module Mp(λ) is

equipped with an inner product (the so-called contravariant form). This can be done spec-

ifying the conjugation in the sense of radial quantization (the so-called BPZ conjugation)

D† = D , (Pµ)
† = Kµ , (Jµν)

† = Jµν , (2.11)

and canonically normalizing the primary state |Ωλ〉. More generally, we can define an inner

product on Mp(λ) by a suitable anti-involution σ exchanging n+ and n−, and choosing an

inner product to satisfy 〈g · u|v〉 = 〈u|σ(g) · v〉.

Once we have an inner product in Mp(λ), we can define the determinant. While

Mp(λ) in itself is an infinite-dimensional representation (and has an ill-defined determi-

nant), Mp(λ) naturally decomposes into a sum (an infinite sum) of finite-dimensional rep-

resentations (with highest weight µ) of p (or rather l for our discussion of the conformal

group)

Mp(λ) =
⊕

µ

Mp(λ)
µ . (2.12)

Let us impose the condition that the inner product is zero between two states with different

µ’s. This condition is satisfied for the the conjugation of (2.11). The determinant then

factorizes into a product of the determinant in each of these summands, where the latter

can be defined by choosing a basis {|v1〉, |v2〉, . . .} of Mp(λ)µ:

detMp(λ)
µ = det

i,j
(〈vi|vj〉) . (2.13)

Note also that we are primarily interested in the zeros of the determinant, which are not

affected by the choice of the basis in (2.13).

2.2 Determinant formula and simplicity criterion

The paper by Jantzen [18], which seems to be little-known in the physics literature, gives

an explicit form of the determinant (2.13) (see also [19]).

The formula, stated for our parabolic Verma module Mp(λ), reads [18, Satz 2]:

detMp(λ)
µ = const.

∏

β∈∆n

∏

n>0

(

〈λ+ ρ, β∨〉 − n
)chMp(λ−nβ)µ . (2.14)

Let us explain the symbols in this formula. First, the only important thing to know

about the (λ-dependent, but µ-independent) constant in front of the determinant is that

it is always non-zero.

9In two dimensions, parabolic Verma modules have been studied in the context of logarithmic CFTs.
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Let us next explain the symbol ∆n. For the semisimple Lie algebra g let us denote by

∆ the set of simple roots, and by ∆+ the set of positive roots (with respect to a certain

basis of ∆). Let us denote by Πl the roots of ∆ whose corresponding element of g (in the

Weyl-Cartan basis) are in the subalgebra l. We then define ∆l := ZΠl ∪∆.10 We further

define the positive part by ∆+
l = ∆+ ∩∆l. Finally, we define ∆n := ∆+\∆l ⊂ ∆+.

Next, for a root β ∈ h∗ the co-root β∨ ∈ h is defined by the condition

〈λ, β∨〉 := 2
(λ, β)

(β, β)
, (2.15)

for all λ ∈ h∗, where (−,−) is the canonical non-degenerate bilinear form of g, and 〈−,−〉

is the canonical pairing between elements of h and h∗. The symbol ρ denotes the Weyl

vector

ρ :=
1

2

∑

α∈∆+

α . (2.16)

The power of (2.14) is defined as the µ-component of the character chMp(λ), the

character of our parabolic Verma module Mp(λ):

chMp(λ) =:
∑

µ

chMp(λ)
µeµ . (2.17)

where eµ is a formal generator (with µ running over integral weights), whose linear combi-

nation gives a character. This character is related to the character chM(λ) of the ordinary

Verma module by [18, Lemma 1]11

chMp(λ) =
∑

w∈Wl

det(w) chM(w · λ) . (2.18)

Here Wl is the Weyl group of the subalgebra l.

In general, the argument of chMp in the determinant formula (2.14), namely λ− nβ,

is not a highest weight of the rotation group l. In those cases we can use the right hand

side of (2.18) as the definition of chMp.
12 Consequently chMp(λ−nβ) in general contains

negative entries when expanded in terms of the basis eµ.

From the determinant formula (2.14), we can derive the simplicity criterion of

Jantzen [18, Satz 3]. First, the parabolic Verma module clearly has no null states if the set

Ψ+
λ :=

{

β ∈ ∆n

∣

∣nβ := 〈λ+ ρ, β∨〉 ∈ Z>0

}

(2.19)

is empty. If this set is not empty, then β ∈ Ψ+
λ potentially contributes to the zero of the

determinant. However, there can still be cancellations for the powers in (2.14). In order

10Note that l is not semi-simple (l = so(D) ⊕ so(2)), and ∆l defined this way contains the roots in g

corresponding to the Abelian part of l, namely the root for the dilatation generator D. Note also that we

choose the basis of ∆l as a subset of the basis for ∆.
11Mp here is denoted by M ′ in [18].
12For this reason it is mathematically more precise to use a different symbol for the right hand side

of (2.18), and not the symbol chMp. Since this paper is primarily intended for applications I chose to use

the same symbol here for simplicity.
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for this to happen, we need to have the sum of the exponents to vanish:

∑

β∈Ψ+

λ

chMp(λ− nββ)
µ = 0

(2.20)

for each µ. Since λ− nββ is a Weyl reflection sβ of λ by β

λ− nββ = λ− 〈λ+ ρ, β〉β =: sβ · λ (2.21)

and since we have (2.17), we come to the following result [18, Satz 3]: our parabolic Verma

module is simple (i.e. contains no null states) if and only if

∑

β∈Ψ+

λ

chMp(sβ · λ) = 0 . (2.22)

While this criterion (determining the positions of the zeros of the determinant) is sufficient

for many purposes, the determinant formula (2.14) contains also the information of the

multiplicities of the zeros.

There are several remarks on the formula (2.14).

First, let us consider the case of the ordinary Verma module. In this case, we have

chMp(λ) = chM(λ) =
∑

µ

P (µ) eλ−µ , (2.23)

where the Kostant function P (µ) is defined to be the number of ways we can express µ as

a sum of positive roots with positive coefficients. In particular P (µ) is zero whenever the

we have negative coefficients in the expansion of µ in terms of positive roots. This gives

the formulas of [20, 21] (the Jantzen-Shapovalov determinant formula):

detM(λ)µ = const.
∏

β∈∆+

∏

n>0

(

〈λ+ ρ, β∨〉 − n
)P (λ−µ−nβ)µ . (2.24)

This formula is better-known in the literature. We stress, however, that for general discus-

sion of CFTs we need the more general formula of (2.14).

Second, the meaning of the abstract definition of ∆+
n becomes clearer when we consider

the example of the conformal algebra. In this case, ∆+ is the set of the positive roots for

the whole conformal algebra, and in particular contains the roots corresponding to the

momentum Pµ as well as the lowering operators of the rotation group (J− for D = 3 in the

standard notation; let us here use the notation ~J− for general D). For an ordinary Verma

module the l is a Cartan subalgebra, and hence ∆l is empty and ∆n,+ = ∆+ is given by

these roots, explaining the appearance of ∆+ in (2.24): Pµ as well as the rotation raising

operators ~J− generates descendants.

However, we know that this is not what we do in CFTs, and that Pµ and ~J− play

rather different roles. Since we are interested in the representations with a fixed spin, any

state should be annihilated by ~J−’s, if repeated sufficiently many times. The Pµ’s, how-

ever, generates conformal descendants (derivatives of the operators in the state-operator

correspondence), and repeated application of the Pµ’s never annihilates the state (unless

– 6 –
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we decouple a null state in the conformal descendant). The descendants should be labeled

by the roots for Pµ only, and we should mod out by the action of ~J−, which only changes

the states inside the same representation of the rotation group (for D = 3, J− changes

eigenvalues of J3 in the standard notation). This points to the conclusion that for discus-

sions of descendants we should really consider the roots in ∆n = ∆+\∆l, explaining the

appearance of the set ∆n in (2.14).

The null states could still be at the location labeled by positive linear combinations of

the elements of ∆n, say at the location Z>0α1 +Z>0α2 for two elements α1, α2 ∈ ∆+
n . The

surprise in the formula (2.14) is that this does not happen, and the null states can and do

indeed appear at Z>0α for a single element α ∈ ∆n, and not anywhere else. It would be

nice to provide simple intuitive explanation for this remarkable fact.

Finally, let us make one small consistency check of (2.14). Since λ is the highest weight

for a representation of p (or rather l for the case of the conformal algebra), w ·λ for w ∈ Wl

has a weight smaller than λ, unless w = 1, which gives the weight λ. This in particular

means that chMp(λ)
µ = 0 when µ > λ. This ensures that chMp(λ − nα)λ = 0 for n > 0,

which makes sense since µ = λ is a primary state in itself and hence should not admit any

null states.

2.3 Conjecture for superalgebras

It is straightforward to generalize the concept of a parabolic Verma module to the case of

Lie superalgebras. This is needed for the discussion of the superconformal algebras [22–24].

The formula is very similar to the bosonic case, so we here comment briefly on some

changes. The superconformal algebra now contain fermionic generators of supersymmetry

QI
α, fermionic superconformal generators SI

α, as well as bosonic R-symmetry generators

RIJ , with R-symmetry indices denoted by I, J, . . . . For spinors the details of the reality

conditions of the spinors vary from dimension to dimension, and we here schematically

denoted them by α. For example, in four spacetime dimensions (D = 4) α here in more

standard notation represents both the dotted and un-dotted spinor indices, α and α̇.

Most of the stories works in parallel, replacing the representation of the bosonic Lie

algebra by that of the super Lie algebra. For example, the supersymmetric version of the

decomposition (2.1) now reads

l = 〈D, Jµν , R
IJ〉 , n+ = 〈Kµ, S

I
α〉 , n− = 〈Pµ, Q

I
α〉 . (2.25)

and a conformal primary is replaced by a superconformal primary, which is annihilated

both by Kµ and SI
α. For the definition of the inner product and the conjugation we add

(QI
α)

† = SI
α , (RIJ)† = RIJ . (2.26)

The parabolic Verma module is spanned by superconformal descendants

Mp(λ) = span
{

QI1
α1

. . . QIl
αl
Pµ1Pµ2 . . . Pµk |Ωa

λ〉
}

. (2.27)

From mathematical standpoint this is not the most general parabolic Verma module: l

does not contain fermionic/odd elements.

– 7 –
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A determinant formula for a generalized Verma module for a superalgebra does not

seem to be known in the literature, at least in the explicit form as stated above for the

bosonic case.13 The formula question should be a natural generalization of (2.14). Our

conjecture for the determinant formula, for the case where l does not contain fermionic

generators, and for g being one of the finite-dimensional superconformal algebras classified

in [24], is

detM(λ)µ = const.
∏

β∈∆n,0

∏

n>0

(

〈λ+ ρ, β∨〉 −
n

2

)chMp(λ−nβ)µ

×
∏

β∈∆+
1
, (β,β) 6=0

∏

n>0

(

〈λ+ ρ, β∨〉 −
2n− 1

2

)chMp,β(λ−(2n−1)β)µ

×
∏

α∈∆+
1
, (β,β)=0

(λ+ ρ, β)chMp(λ−β)µ .

(2.28)

Here we denoted by ∆+ the set of positive roots, which are decomposed into the set of

positive bosonic roots ∆+
0 and that of positive fermionic roots ∆+

1 : ∆+ = ∆+
0 ∪ ∆+

1 .

Otherwise ∆0,n is defined in a similar manner to ∆n for the bosonic case. We then define

its subspace ∆0,n by

∆0,n := {β ∈ ∆0,n , β/2 /∈ ∆1} . (2.29)

In the determinant formula the product is over the set ∆0,n, and not over the whole of

∆0,n. This is because for a fermionic root β ∈ ∆1 with (β, β) 6= 0, 2β is a bosonic root,

and we need to avoid over-counting.

We modified the definition of the Weyl vector to be

ρ =
1

2





∑

α∈∆+
0

α−
∑

α∈∆−

1

α



 , (2.30)

The character chMp,β is chMp with the contribution from the fermionic root β removed.

More precisely, the general definition, generalizing (2.18), is given by

chMp,β(λ) :=
∑

w∈Wl

det(w) chMw·β(w · λ) . (2.31)

with chMβ(λ) being the (ordinary) Verma module character with contributions from the

fermionic root β removed:

chMβ(λ) := chM(λ) (1 + e−β) . (2.32)

One justification for our conjecture is that for a Verma module this formula reduces

to the formula by Kac [27].14 We can also check that this formula reduces to the previous

formula (2.14) for a bosonic Lie algebra.15

13See however [25, 26] for recent discussions on orthosymplectic Lie superalgebras.
14The determinant formula for a (non-parabolic, i.e. ordinary) Verma module, which was first written

down by Kac in [1, 28], turned out to be incorrect. Kac himself later corrected his formula in [27].
15Note added on revision: this conjecture was subsequently proven by Y. Oshima and the author [29].
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In (2.28), the fermionic roots play rather different roles depending on whether or not

the root has zero norm or not.

3 Remarks on applications

One application of the determinant formula is that it places severe constraints on the possi-

ble singularities of the conformal blocks, as functions of intermediate operator dimensions.

For concreteness let us consider a 4-point functions of four scalar operators O1(x1), . . . ,

O4(x4) with operator dimensions ∆1, . . . ,∆4. Conformal symmetry constraints the 4-point

function to be of the form

〈O1(x1)O2(x2)O3(x3)O4(x4)〉 =
∑

O∈O1×O2

λ2
OO1O2

1

x
2(∆1+∆2−∆)
12 x

2(∆3+∆4−∆)
34

G
∆,~l

(u, v) ,

(3.1)

where xij := xi − xj , λOO1O2
are OPE structure coefficients, and u, v are the conformal

cross-ratios defined by

u :=
x212x

2
34

x213x
2
24

, v :=
x214x

2
23

x213x
2
24

. (3.2)

The sum in (3.1) is over all the conformal primaries O (with dimension ∆ and spin ~l) in

the OPE of the operators O1 and O2. The function G
∆,~l

(u, v) is the conformal block for

the scalar four-point function, and once we know this function we could start exploring

the constraints from crossing symmetry and unitarity, as has been done recently in the

literature.

We are interested in the poles of the conformal blocks as a function of the operator

dimension ∆. The fact that the conformal block, and hence the 4-point function, has poles

can be seen from the following representation of the 4-point function

〈O1(x1)O2(x2)O3(x3)O4(x4)〉

=
∑

α=O,PµO,..., ;O∈O1×O2

〈O1(x1)O2(x2)|α〉〈α|O3(x3)O4(x4)〉

〈α|α〉
,

(3.3)

where the sum is now over all the descendants α = Pµ1 · · ·PµnO of the conformal primary

O. This equation represents the fact that the set of conformal primaries (O’s), as well as

their descendants, span a complete basis of states. This is the case for a generic value of ∆.

We find from (3.3) that the divergence can arise when the norm of α is zero, namely

when α is a null state (singular vector).16 This happens precisely when the value of

the operator dimension ∆ is fine-tuned (to a value, say, ∆ = ∆⋆) such that one of the

determinants (for a generalized Verma module determined for given ∆ and ~l) vanishes (for

some value of µ). Note that in general such singularities are generically order one poles,

but in general can be higher orders poles.

16As in (3.1), the four-point function diverges in the OPE limit where a pair of xi’s coincide. Here we

are discussing divergence which arise with fixed values of the coordinates xi’s.
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For such fine-tuned values of ∆, the presence of the null states means that the parabolic

Verma module is reducible as a representation of the (super)conformal algebra, and that

it decomposes into the null descendants, and the rest with the null descendants decoupled

(namely, the quotient of the parabolic Verma module modulo null descendants). This fact

has a counterpart in the conformal blocks. The conformal block at ∆ generic is singular at

∆ = ∆⋆ and is not smoothly connected with that for ∆ = ∆⋆, which is defined from (3.3)

with null descendants removed from α. The singular behavior as ∆ → ∆⋆ is governed by

null descendants, and this fact is the basis for the recursion relation of [7].

As the discussions above makes clear, we reach the same conclusion if we have 4-point

functions of more general operators with arbitrary spins. This places a rather stringent

constraint on the analytic behavior of the conformal blocks, we can derive this constraint

purely from the representation-theoretic analysis.

One cautionary remark is that the inverse of the preceding statement does not hold:

namely, even when ∆ is chosen such that the determinant formula vanishes, the conformal

block might not have a singularity in general. For example, the coefficient coming from

the three-point function (i.e. residue) could still be zero, for example by representation-

theoretic reasons. A good example for this is the discussion of the scalar conformal blocks

in [7], where the poles for the type IV states are absent from the conformal block for the

four scalar operators. Even when it has a singularity, we could have double and higher-

order poles. Indeed, the four-dimensional scalar conformal block discussed in [30] does

contain such double poles.

Once we know the positions of poles of conformal blocks, we can also try to study the

residues of the conformal blocks. As illustrated in [7], this requires an explicit form of the

null states, about which little seems to be known at present (except for the cases studied

in [7]). Once we know the poles and residues we can in addition analyze the behavior

∆ → ∞, to derive recursion relations for conformal blocks [7].17 This procedure, however,

could in general be complicated by the presence of double poles and higher order poles.

We also note that the determinant formula is useful for the systematic derivations of

the unitarity bounds (see [7]). The constraint of the unitarity is that the norm of the all

states are positive, and when this fails as we change the parameters some of the states

will necessarily have zero norm. In other words, we can derive unitarity bound from the

absence of the null states.

In the literature we often derive the unitarity bound by working out the absence of the

null states in the first level descendant of the primary. However, for a complete derivation

of the unitarity bound we need to make sure that no stronger constraints arise from the

further descendants, and it is rather non-trivial to show that this is indeed the case.18 Note

that the classic paper of [16] discuss the unitarity bound using the Kac’s criterion [28].

However, the representations discussed in [28] are the (non-parabolic, i.e. ordinary) Verma

17The recursion relation for the scalar block was first obtained in [31]. See also [32, 33] for recent

related work.
18See [34] for D = 3 and [12] for D = 4, see also [35] for more recent related work. However, the proofs

for D = 3, 4 are rather involved, and do not generalize easily for general D. Our determinant formula, by

contrast, is applicable to general D.
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modules for the Cartan subalgebra, and as we have seen what is relevant for our discussion

of conformal blocks is a more general parabolic Verma module.

Finally, instead of avoiding the null states one can try to taking advantage of them.

Just as in the case of two dimensions, we might eliminate the null states and define a

higher-dimensional counterparts of the minimal models.
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