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1 Introduction

The remarkable interaction between mathematics and physics around the turn of the cen-

tury has been to a large part spurred by the new mathematical structures underlying String

Theory [25, 29], leading to such interesting new mathematical concepts as Vertex Operator

Algebras [10, 21] and Modular Tensor Categories [1, 34]. These developments in turn were

strongly influenced by Monstrous Moonshine [14, 30, 31], the amazing connection between

the representation theory of the Monster M, the largest sporadic finite simple group, with

the classical theory of modular forms. Actually, VOA theory grew out from the need to

provide a conceptual explanation of Moonshine.

It has been recognized pretty early [17] that, to a large extent, the Moonshine conjec-

tures find a natural physics explanation by interpreting the relevant quantities as describing

string propagation in a suitable (rather exotic) background, the Moonshine orbifold, ob-

tained as the result of orbifolding [18] the Moonshine module by the Monster. From this

point of view, many strange-looking properties [28] of the Thompson-McKay series involved

in Moonshine follow from general physical principles, with one notable exception: the so-

called Hauptmodul property, which states (roughly speaking) that Thompson-McKay series

generate the field of meromorphic functions of suitable genus zero Riemann surfaces, does

not find any obvious interpretation from a physics perspective [22, 23].

There has been several attempts to remedy this situation and find a physics expla-

nation of the Hauptmodul property, see e.g. [19, 32, 33], but none proposed to this date

seems completely satisfactory. The aim of the present paper is to present a new approach

to the problem, based on the notion of character relations and replication identities, which

generalizes to arbitrary 2D Conformal Field Theories [9, 20], and which provides an equiva-

lent formulation of the Hauptmodul property in the special case of the Moonshine orbifold.

Roughly speaking, this approach relates the Hauptmodul property to symmetries of second

quantized string propagation [16] on the Moonshine orbifold. While the precise nature of

these symmetries is still unclear (because identifying them would require a thorough anal-

ysis of the higher symmetric products of the Moonshine orbifold, a pretty challenging task
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in view of the intricate computations involved), the above identification could prove to be

a first step in a better understanding of the problem. That the above approach can be

made to work is demonstrated in the comparatively much simpler case of the Ising model,

where the analysis can be explicitly performed (at least for low degrees), and the resulting

replication identities related precisely to actual symmetries of symmetric products.

2 Conformal characters, the modular representation and character rela-

tions

Among the important characteristics of a 2D CFT [9, 20], a prominent role is played by the

conformal characters of the ‘primaries’, the trace functions of irreducible modules in the

language of (C2-cofinite rational) Vertex Operator Algebras. As a consequence of conformal

symmetry, the chiral symmetry algebra contains the Virasoro algebra, whose zero mode L0

plays the role of (chiral) Hamiltonian. The commutation rules of the Virasoro generators

imply that, in each irreducible module separately, the eigenvalues of L0 are integrally

spaced, hence the spectrum of L0 can be characterized by specifying the lowest eigenvalue,

called the conformal weight of the primary, and the generating function of the eigenvalue

multiplicities. For a primary p of conformal weight hp, the conformal character reads

χp(q) = q
−c/24

∞∑
n=0

dnq
n+hp (2.1)

where dn denotes the multiplicity of n+hp as an eigenvalue of L0 and c the central charge of

the model. One can show that the above (fractional) power series is absolutely convergent

in the disk
∣∣q∣∣ < 1, hence defines an analytic function there.

Besides characterizing the spectrum of L0 in the irreducible modules, the conformal

characters also provide the basic building blocks of the torus partition function. In the

simplest case of diagonal theories, the torus partition function reads

Z(τ, τ) =
∑
p

∣∣χp(e2iπτ)∣∣2 (2.2)

where τ denotes the modular parameter of the torus, and the sum runs over all primaries;

more generally, the torus partition function is a sesquilinear combination of the conformal

characters. Combining this observation with the invariance [13] of the torus partition

function under modular transformations i.e. transformations of the modular parameter τ

that do not change the conformal equivalence class, one arrives at the conclusion that

the modular group SL2(Z) is represented on the linear span of the characters, i.e. for any(
a b
c d

)
∈ SL2(Z) there exists a unitary representation matrix M = ρ

(
a b
c d

)
such that

χp

(
aτ+b

cτ+d

)
=
∑
s

Mpsχs(τ) (2.3)

Two remarks are in order here: first, the modular representation is actually a ma-

trix representation, meaning that each individual modular matrix element has an invariant
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meaning. This is particularly clear when considering Verlinde’s celebrated formula [35]

expressing the fusion rules of the theory in terms of modular matrix elements, or its var-

ious generalizations [6, 27]. From a technical point of view, this means that the linear

space V affording the modular representation comes equipped with a distinguished basis

B = {bp} labeled by the primaries, and a different choice of basis would correspond to a

different theory.

The second observation is that the transformation rule eq. (2.3) does not always de-

termine the modular representation matrices. The reason for this is that the conformal

characters, as functions of the modular parameter τ , are not necessarily linearly indepen-

dent, i.e. there may exist nontrivial relations of the form∑
p

Rpχp(τ) = 0 (2.4)

with coefficients Rp independent of τ . The existence of such nontrivial character relations

is actually pretty common, e.g. the characters of charge conjugate primaries are automat-

ically equal

χp(τ) = χp(τ) (2.5)

As a consequence of the character relations, the linear span W of the characters is usually

only a subspace of V , and the individual modular matrix elements cannot be determined

from eq. (2.3), only suitable linear combinations of them. Actually, the example of charge

conjugation is a good indication for the origin of such character relations: they are the

reflections of (possibly hidden) global symmetries of the theory.1

To illustrate this last point, let us consider the orbifold line of c=1 theories [24]. It is

well known that, at compactification radii for which N=2r2orb is an integer, these theories

have exactly N+7 primary fields with conformal characters

u±(τ) =
1

2η(τ)
θ3(2Nτ)±

√
η

2θ2
(τ) =

1

2η(τ)

{
θ

[
0

0

]
(2Nτ)± θ4(2τ)

}
χk(τ) =

1

η(τ)
θ

[ k
2N

0

]
(2Nτ) for k=1, . . . , N − 1

φ±(τ) =
1

2η(τ)
θ2(2Nτ) =

1

2η(τ)
θ

[1
2

0

]
(2Nτ) (2.6)

σ±(τ) =
1

2

{√
η

θ4
(τ) +

√
η

θ3
(τ)

}
=

1

2η(τ)

{
θ2

(τ
2

)
+ e−

πi
24 θ2

(
τ+1

2

)}
τ±(τ) =

1

2

{√
η

θ4
(τ)−

√
η

θ3
(τ)

}
=

1

2η(τ)

{
θ2

(τ
2

)
− e−

πi
24 θ2

(
τ+1

2

)}
where

θ

[
a

b

]
(τ) =

∑
n∈Z

eiπτ(n−a)
2

e−2πibn (2.7)

1Indeed, character relations, as linear relations between suitable (chiral) correlators, may be considered

as Ward identities related to some global symmetry. Of course, the precise nature of the relevant symmetry

might be pretty hard to pin down.

– 3 –



J
H
E
P
1
0
(
2
0
1
6
)
0
2
0

and

η(τ) = q
1
24

∞∏
n=1

(1− qn) (2.8)

denotes Dedekind’s eta function (with q=e2iπτ ), while

θ2 = θ

[1
2

0

]
(τ) = 2q

1/8
∞∏
n=1

(1− qn) (1 + qn)2

θ3 = θ

[
0

0

]
(τ) =

∞∏
n=1

(1− qn)
(

1 + qn−
1/2
)2

θ4 = θ

[
0
1
2

]
(τ) =

∞∏
n=1

(1− qn)
(

1− qn−1/2
)2

are the classical theta functions of Jacobi.

Let’s restrict our attention to the models with even N . Since charge conjugation is

trivial in this case, the obvious character relations

φ− = φ+

σ− = σ+ (2.9)

τ− = τ+

must have a different origin: they are a manifestation of the dihedral D4 symmetry under-

lying these models [24], which follows from the fact that the orbifold line may be obtained

as the conformal limit of Ashkin-Teller models, i.e. two Ising spins coupled locally via

their energy density. Clearly, the transformations that flip each Ising spin separately, to-

gether with the one that exchanges the two, form a D4 symmetry group, explaining the

above character relations. In case N = 4 (corresponding to the 4-state Potts model) this

symmetry is extended to a full S4, resulting in the extra character relations

φ± = u−

χ1 = σ± (2.10)

χ3 = τ±

Another interesting case is that of N=16, when the generic character relations eq. (2.9)

get supplemented by

χ8 − φ± = u−

χ2 + χ14 = σ± (2.11)

χ6 + χ10 = τ±

More generally, such extra character relations occur whenever N is the square of an even
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integer, N=(2n)2, when one has

n−1∑
k=1

(−1)k−1χ4nk − (−1)nφ± = u−

[n−1
2 ]∑

k=0

{
χn(8k+1) + χn(8k+7)

}
= σ± (2.12)

[n−1
2 ]∑

k=0

{
χn(8k+3) + χn(8k+5)

}
= τ±

as a consequence of the general identity

N−1∑
k=0

e2iπ
kb
N θ

[
a+ k

N

0

]
(τ) = θ

[
−Na
b
N

]( τ

N2

)
(2.13)

valid for integer b and N , as well as the theta relations2

θ4(2τ) =
√
θ3(τ) θ4(τ)

θ2

(τ
2

)
=
√

2θ2(τ) θ3(τ) (2.14)

θ2

(
τ+1

2

)
= e

iπ
16

√
2θ2(τ) θ4(τ)

The origin of these extra relations eq. (2.12) may be traced back to the fact that the

corresponding models may be constructed as dihedral orbifolds of the compactified boson

at radius r=1/
√
2 [24].

From a technical point of view, nontrivial character relations indicate that the modular

representation ρ is reducible. Indeed, as a consequence of the τ independence of the

coefficients Rp in eq. (2.4), the linear span W of the characters (considered as a subspace

of V ) is invariant under ρ. In particular, this means that in order to fully characterize the

modular properties of the characters, it is not enough to specify the matrix representation ρ,

but one should amend this by a description of the invariant subspace W (e.g. by specifying a

basis of it). Formally, one could think that this last step can be avoided by directly reducing

the modular representation to the invariant subspace W : after all, this subspace is the linear

span of the conformal characters, thus it contains all the physically relevant information.

But this is far from being true. For example, application of Verlinde’s formula [27, 35], one

of the cornerstones of the whole theory, necessitates the consideration of the full modular

representation, with all individual matrix elements. Similarly, computation of Frobenius-

Schur indicators [2], or the application of the trace identities of [6] require the knowledge

of each matrix element separately.

2An interesting consequence of eq. (2.12) is that in this case the characters of the orbifold can be

expressed as linear combinations of the characters of the original theory, i.e. the compactified boson at

radius r=
√

2n.

– 5 –



J
H
E
P
1
0
(
2
0
1
6
)
0
2
0

3 Symmetric products and replication identities

Consider a system made up of n identical subsystems, each described by the same CFT

C. The whole system will be still conformally invariant, described by the n-fold tensor

power of C, and any permutation of the identical subsystems will leave the whole system

invariant. Consequently, for any permutation group Ω<Sn of degree n, one could consider

the permutation orbifold3 C oΩ obtained by orbifolding the tensor power by the twist group

Ω [3, 11, 26]. Because of the universal nature of the action of Ω, all relevant quantities (like

correlation and partition functions, fusion rules, modular matrix elements, etc.) of CoΩ may

be expressed in terms of the relevant quantities of C, namely as polynomial expressions

of these quantities evaluated on suitable n-sheeted covering surfaces of the world sheet,

see [4, 5] for details. In particular, the conformal characters of the permutation orbifold

are completely determined by those of C and the twist group Ω [3]. We note that all

relevant relations can be subsumed under a general group theoretic construct, the orbifold

transform, described in detail in [8].

A particularly interesting case is when the twist group Ω is maximal, i.e. when Ω is

the full symmetric group Sn of degree n: the resulting permutation orbifold CoSn is called

the n-th symmetric product of C, and plays an important role in the description of second

quantized strings [7, 15, 16]. The analysis of symmetric products is greatly simplified by the

exponential identity [8], a general combinatorial identity satisfied by the orbifold transform,

which provides closed expressions for the characteristic quantities of symmetric products.

According to the general theory [3], the conformal characters (evaluated at some spe-

cific modulus τ) of the n-fold symmetric product C o Sn may be expressed as polynomial

expressions of the conformal characters of C evaluated on the different n-sheeted (un-

branched) coverings of a torus with modulus τ . But all theses coverings have genus 1,

hence each connected component is itself a torus of modulus

aτ + b

d
(3.1)

for suitable non-negative integers a, b, d characterizing the relevant covering. The precise

form of the polynomial expressions is irrelevant at this point, the only thing to note is

that all possible coverings occur in the process. This means that a character relation of

the symmetric product C o Sn is nothing but a polynomial relation between quantities of

the form

χp

(
aτ + b

d

)
We shall call such relations replication identities, because in the specific case of the Moon-

shine orbifold they yield precisely the replication formulas satisfied by the generalized

Thompson-McKay series. It should be emphasized that the above notion of replication

identities is pretty general, far from being confined to derivatives of the Moonshine module

or to rational conformal models.

As explained in the previous section, character relations for a given CFT are usually

reflections of outer symmetries relating different irreducible modules of the chiral algebra.

3The origin of the wreath product notation for permutation orbifolds is explained in [3].
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Consequently, one may view replication identities as an indication to the existence of

suitable symmetries of the higher symmetric products. To illustrate the above ideas, let us

consider the Ising model, i.e. the Virasoro minimal model of central charge c=1/2. In this

case there are three primary fields, 0, ε and σ, of respective conformal weights 0, 1/2 and
1/16, with conformal characters

χ0 =
1

2

(√
θ3
η

+

√
θ4
η

)

χε =
1

2

(√
θ3
η
−

√
θ4
η

)
(3.2)

χσ =

√
θ2
2η

Note that √
θ3
η

= q-1/48
∞∏
n=0

(
1 + qn+

1
2

)
=

η(τ)2

η
(
τ
2

)
η(2τ)√

θ4
η

= q-1/48
∞∏
n=0

(
1− qn+

1
2

)
=
η
(
τ
2

)
η(τ)

(3.3)√
θ2
2η

= q1/24
∞∏
n=1

(1 + qn) =
η(2τ)

η(τ)

The modular representation, characterized by the matrix

S =
1

2

 1 1
√

2

1 1 −
√

2√
2 −
√

2 0

 (3.4)

is irreducible, hence has no non-trivial invariant subspace; consequently, the conformal

characters of Ising are linearly independent.

As a consequence of the identities√
θ4(2τ)

η(2τ)
=

√
θ3(τ) θ4(τ)

η(τ)√
θ2
(
τ
2

)
η
(
τ
2

) =

√
θ2(τ) θ3(τ)

η(τ)
(3.5)

e−
πi
24

√
θ2
(
τ+1
2

)
η
(
τ+1
2

) =

√
θ2(τ) θ4(τ)

η(τ)

that follow easily from eqs. (2.14), one gets that

χ0(2τ)− χε(2τ) = χ0(τ)2 − χε(τ)2

χσ

(τ
2

)
=
χ0(τ)+χε(τ)

2
χσ(τ) (3.6)

χσ

(
τ+1

2

)
= e

πi
24
χ0(τ)−χε(τ)

2
χσ(τ)
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These are prime examples of replication identities, involving values of characters on dif-

ferent covering surfaces. Consequently, they should be related to character relations, and

ultimately to symmetries of symmetric products of the Ising model. Let’s see how this

comes about!

According to the general theory [3], the 2-fold symmetric product of Ising has central

charge c=1 (twice the central charge of the Ising model) and a total of 3(3+7)
2 =15 primary

fields, whose conformal characters read

φ〈p,q〉(τ) = χp(τ)χq(τ) for p 6= q

u(±)
p (τ) =

1

2

{
χp(τ)2 ± χp(2τ)

}
(3.7)

t(±)p (τ) =
1

2

{
χp

(τ
2

)
± e−iπ(hp−

1/48)χp

(
τ+1

2

)}
for p, q∈{0, ε,σ}, with hp denoting the conformal weight of the primary p. By inspecting

the q-expansions of these characters, one arrives at the character relations

u(−)
0 (τ) = u(−)

ε (τ)

φ〈0,σ〉(τ) = t(+)σ (τ) (3.8)

φ〈ε,σ〉(τ) = t(−)σ (τ)

which reduce to

χ0(τ)2 − χ0(2τ) = χε(τ)2 − χε(2τ)

χσ

(τ
2

)
+ e−

πi
24χσ

(
τ+1

2

)
= χ0(τ)χσ(τ) (3.9)

χσ

(τ
2

)
− e−

πi
24χσ

(
τ+1

2

)
= χε(τ)χσ(τ)

upon taking into account the expressions eqs. (3.7). Clearly, these are equivalent to the

replication identities eqs. (3.6), and we see that, indeed, the latter are nothing but character

relations for the second symmetric product. What remains to do is to find out which

symmetries are responsible for this.

Since the full moduli space of c= 1 conformal models is known, it is a simple matter

to identify the second symmetric product of the Ising model: it lies on the orbifold line at

radius rorb =2, i.e. at N =8. Furthermore, it is an easy exercise to identify the respective

primary fields, in particular one gets

u+ ↔ u(+)
0 χ2 ↔ u(+)

σ χ5 ↔ t(−)ε φ+ ↔ u(−)
0 φ− ↔ u(−)

ε

u− ↔ u(+)
ε χ3 ↔ t(+)ε χ6 ↔ u(−)

σ σ+ ↔ φ〈0,σ〉 σ− ↔ t(+)σ (3.10)

χ1 ↔ t(+)0 χ4 ↔ φ〈0,ε〉 χ7 ↔ t(−)0 τ+ ↔ φ〈ε,σ〉 τ− ↔ t(−)σ

But, as explained in the previous section, this model exhibits a dihedral D4 symmetry as

a consequence of its Ashkin-Teller origin, leading to the character relations eqs. (2.9), which,

– 8 –
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taking into account the field identifications eq. (3.10), yield precisely eqs. (3.8). In this case

the analysis of the relevant symmetries is relatively easy thanks to the identification of the

symmetric product as an Ashkin-Teller model, but the underlying idea should be clear.

The third symmetric product of Ising has central charge c= 3/2, and can be identified

with an isolated N=1 superconformal model [12], which has a total of 49 primaries. This

superconformal model has 9 independent character relations, but it turns out that all of

these follow from the replication identities (3.6). New replication identities could come from

the character relations of the 4-fold symmetric product: unfortunately, this latter model of

central charge c=2 has 171 different primary fields, with 59 independent relations between

their characters, whose connection to the symmetries of the model is far from being easy

to determine.

4 Outlook and conclusion

Trying to find a physics interpretation of the Hauptmodul property of Monstrous Moon-

shine, we considered the question of character relations and replication identities in Con-

formal Field Theory. Character relations play an important role in understanding the

structure of specific models, and should be viewed as one of the basic ingredients (besides

the modular representation) to fully specify their modular properties, while replication

identities are nothing but character relations for symmetric products. Since character re-

lations can be traced back ultimately to suitable symmetries of the model under study,

replication identities should correspond to symmetries of its symmetric products.

The Hauptmodul property of Monstrous Moonshine is a consequence of the replication

identities obeyed by the (generalized) Thompson-McKay series. Based on this, we suggest

that it is actually a manifestation of the inherent symmetries of second quantized string

propagation on the Moonshine orbifold, the string background obtained by orbifolding the

Moonshine module by the Monster, and whose primary characters are linear combinations

of the Thompson-McKay series. Let us stress that this approach does not give us an

alternate proof of the Hauptmodul property, just a possible physics interpretation for it.

However, if correct, it could have interesting consequences even from a purely mathematical

perspective, e.g. providing suitably generalized versions of the replication identities for

higher genus analogues of the Thompson-McKay series.

While the arguments leading to the above could seem straightforward, the actual

implementation, i.e. the identification of the relevant symmetries might be far from simple.

The proliferation of character relations in higher symmetric products makes the analysis

pretty difficult even for the Ising model, and one should expect worse in more complicated

cases. But there are various arguments suggesting that, notwithstanding all computational

difficulties involved, the identification of the relevant symmetries might be nevertheless

carried out.

The first observation is that, for any two permutation groups Ω1 and Ω2 such that Ω1

is a subgroup of Ω2, the character relations of the Ω1 permutation orbifold are inherited

by the Ω2 permutation orbifold. This is actually the reason why it is sufficient to look

only at symmetric products when considering replication identities. Combining this with

– 9 –
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the obvious embeddings of wreath products into symmetric groups and the transitivity

property of permutation orbifolds [3, 5], one can see that many of the replication identities

of a given degree are trivial consequences of lower degree ones, and in particular of character

relations, which are nothing but replication identities of degree one. As a result, it is

enough to understand the ‘primitive’ identities that do not follow from identities coming

from lower degrees, and these are clearly much less abundant, hopefully forming a set that

can be dealt with.

The second point is that one does not even need the precise identification of all of

the symmetries responsible for the primitive identities, it is enough to identify only a

generating set, which can turn out to be pretty small. Since all replication identities for

Moonshine are known, this should simplify the job to a large extent. Of course, even in case

of a few generators the actual identification of the relevant symmetries could require some

ingenuity, but one could expect that special properties of the Monster and the Moonshine

module should allow the use of ad hoc techniques to solve this problem: after all, such

considerations allow the determination of the character table of the Monster (with cca.

1054 elements), while a brute force computation for a group with only a few million of

elements is already a time and resource consuming task.

Even if the above program can be completed and all relevant symmetries responsible

for the replication identities of the Moonshine orbifold identified, there would still remain

the question of what is so special about this particular model. After all, while non-trivial

replication identities are not uncommon for rational models, they are usually not restric-

tive enough to force the chiral characters to be actually Hauptmoduls; this seems to be

connected with a particularly high degree of symmetry inherent to symmetric products

of the Moonshine orbifold. It would be interesting to find out other models that show

similar features, and whether this could be linked with other approaches [19, 32] to the

Hauptmodul property of Moonshine. We believe that further elaboration of these issues

could lead to a better understanding of the whole subject.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[20] P. Di Francesco, P. Mathieu and D. Sénéchal, Conformal field theory, Springer, Germany

(1997).

[21] I. Frenkel, J. Lepowsky and A. Meurman, Vertex operator algebras and the Monster, Pure

and Applied Mathematics volume 134, Academic Press, New York U.S.A. (1988).

[22] T. Gannon, Monstrous Moonshine: the first twenty-five years, Bull. London Math. Soc. 38

(2005) 1 [math/0402345].

[23] T. Gannon, The algebraic meaning of being a hauptmodul, in Moonshine — The first quarter

century and beyond, J. McKay et al. eds., Lecture Note Series volume 371, Cambridge

University Press, Cambridge U.K. (2010).

[24] P. Ginsparg, Curiosities at c = 1, Nucl. Phys. B 295 (1988) 153.

– 11 –

http://dx.doi.org/10.1016/S0550-3213(02)00198-0
https://arxiv.org/abs/hep-th/9910079
http://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B633,365%22
http://dx.doi.org/10.1016/S0393-0440(03)00024-X
https://arxiv.org/abs/hep-th/0007164
http://dx.doi.org/10.1023/A:1024453119772
http://dx.doi.org/10.1023/A:1024453119772
https://arxiv.org/abs/hep-th/0004025
http://inspirehep.net/search?p=find+J+%22Lett.Math.Phys.,63,209%22
http://dx.doi.org/10.1007/s11005-007-0216-5
https://arxiv.org/abs/0705.2323
http://inspirehep.net/search?p=find+EPRINT+arXiv:0705.2323
http://dx.doi.org/10.1016/0550-3213(84)90052-X
http://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B241,333%22
http://dx.doi.org/10.1142/S0217751X98000044
http://dx.doi.org/10.1142/S0217751X98000044
http://dx.doi.org/10.1088/1126-6708/2002/08/039
https://arxiv.org/abs/hep-ph/0206102
http://inspirehep.net/search?p=find+J+%22JHEP,0208,039%22
http://dx.doi.org/10.1016/0550-3213(86)90552-3
http://dx.doi.org/10.1016/0550-3213(86)90552-3
http://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B270,186%22
http://dx.doi.org/10.1112/blms/11.3.308
http://dx.doi.org/10.1112/blms/11.3.308
https://arxiv.org/abs/hep-th/9912101
http://inspirehep.net/search?p=find+EPRINT+hep-th/9912101
http://dx.doi.org/10.1007/s002200050087
https://arxiv.org/abs/hep-th/9608096
http://inspirehep.net/search?p=find+J+%22Comm.Math.Phys.,185,197%22
http://dx.doi.org/10.1007/BF01217740
http://inspirehep.net/search?p=find+J+%22Comm.Math.Phys.,119,221%22
http://dx.doi.org/10.1016/0550-3213(85)90593-0
http://dx.doi.org/10.1016/0550-3213(85)90593-0
http://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B261,678%22
https://arxiv.org/abs/1004.4195
http://dx.doi.org/10.1112/S0024609305018217
http://dx.doi.org/10.1112/S0024609305018217
https://arxiv.org/abs/math/0402345
http://dx.doi.org/10.1016/0550-3213(88)90249-0


J
H
E
P
1
0
(
2
0
1
6
)
0
2
0

[25] M. Green, J. Schwarz and E. Witten, Superstring theory, Cambridge University Press,

Cambridge U.K. (1987).

[26] A. Klemm and M.G. Schmidt, Orbifolds by cyclic permutations of tensor product conformal

field theories, Phys. Lett. B 245 (1990) 53.

[27] G. Moore and N. Seiberg, Classical and quantum conformal field theory, Commun. Math.

Phys. 123 (1989) 177.

[28] S.P. Norton, Generalized Moonshine, Proc. Sympos. Pure Math. 47 (1987) 208.

[29] J. Polchinski, String theory, Cambridge University Press, Cambridge U.K. (1995).

[30] J.G. Thompson, Finite groups and modular functions, Bull. Lond. Math. Soc. 11 (1979) 347.

[31] J.G. Thompson, Some numerology between the Fischer-Griess Monster and the elliptic

modular function, Bull. Lond. Math. Soc. 11 (1979) 352.

[32] M. Tuite, On the relationship between monstrous moonshine and the uniqueness of the

moonshine module, Commun. Math. Phys. 166 (1995) 495.

[33] M. Tuite, Monstuous and generalized moonshine and permutation orbifolds, in Moonshine —

The first quarter century and beyond, J. McKay et al. eds., Lecture Note Series volume 371,

Cambridge University Press, Cambridge U.K. (2010).

[34] V.G. Turaev, Quantum invariants of knots and 3-manifolds, Studies in Mathematics volume

18, de Gruyter, Berlin, Germany (1994).

[35] E. Verlinde, Fusion rules and modular transformations in 2d conformal field theory, Nucl.

Phys. 300 (1988) 360.

– 12 –

http://dx.doi.org/10.1016/0370-2693(90)90164-2
http://dx.doi.org/10.1007/BF01238857
http://dx.doi.org/10.1007/BF01238857
http://dx.doi.org/10.1112/blms/11.3.347
http://dx.doi.org/10.1112/blms/11.3.352
http://dx.doi.org/10.1007/BF02099885
http://dx.doi.org/10.1016/0550-3213(88)90603-7
http://dx.doi.org/10.1016/0550-3213(88)90603-7

	Introduction
	Conformal characters, the modular representation and character relations
	Symmetric products and replication identities
	Outlook and conclusion

