$\mathcal{N}=1$ superfield description of six-dimensional supergravity

Hiroyuki Abe, ${ }^{a}$ Yutaka Sakamura ${ }^{b, c}$ and Yusuke Yamada ${ }^{a}$

```
\({ }^{a}\) Department of Physics, Waseda University, Tokyo, 169-8555 Japan
\({ }^{b}\) KEK Theory Center, Institute of Particle and Nuclear Studies, KEK, Tsukuba, Ibaraki, 305-0801 Japan
\({ }^{c}\) Department of Particles and Nuclear Physics, SOKENDAI (The Graduate University for Advanced Studies), Tsukuba, Ibaraki, 305-0801 Japan
E-mail: abe@waseda.jp, sakamura@post.kek.jp, yuusuke-yamada@asagi.waseda.jp
```

AbStract: We express the action of six-dimensional supergravity in terms of four-dimensional $\mathcal{N}=1$ superfields, focusing on the moduli dependence of the action. The gauge invariance of the action in the tensor-vector sector is realized in a quite nontrivial manner, and it determines the moduli dependence of the action. The resultant moduli dependence is intricate, especially on the shape modulus. Our result is reduced to the known superfield actions of six-dimensional global SUSY theories and of five-dimensional supergravity by replacing the moduli superfields with their background values and by performing the dimensional reduction, respectively.

Keywords: Extended Supersymmetry, Superspaces, Supergravity Models

ArXiv EPRINT: 1507.08435

Contents

1 Introduction 1
2 6D global SUSY theory 3
2.1 Invariant action 3
2.2 Components of superfields 6
3 Extension to 6D SUGRA 6
3.1 Moduli superfields 7
3.2 Hypermultiplet sector 8
3.3 Vector-tensor sector 10
3.4 6D SUGRA action 12
4 Consistency checks 13
4.1 Gauge invariance 14
4.2 Dimensional reduction to 5D 16
5 Summary 19
A 6D and 4D superconformal algebras 20
B SUSY transformation of 6D Weyl multiplet 22
C Component expression of constraint (3.26) 23
D Derivation of eq. (4.22) 24

1 Introduction

Higher dimensional supergravity (SUGRA) theories provide interesting setups for supersymmetric (SUSY) models with extra dimensions, and are also regarded as effective theories of the superstring theory in some cases. For the purpose of analyzing SUSY extradimensional models, the $\mathcal{N}=1$ superfield description of the action is quite useful [1]-[10]. ${ }^{1}$ It makes the derivation of four-dimensional (4D) effective theories transparent since the Kaluza-Klein mode expansion can be performed keeping the $\mathcal{N}=1$ superspace structure. It also expresses the SUGRA action compactly, and allows us to work in general setups. In the global SUSY case, the $\mathcal{N}=1$ superfield description of SUSY Yang-Mills theories from five to ten dimensions are provided in ref. [2]. However, we have to work in the context

[^0]of SUGRA in order to treat the moduli, which are dynamical degrees of freedom corresponding to the "volume" or the "shape" of the compactified internal space. Such moduli often play important roles when we construct phenomenologically viable models. We also need to discuss the stabilization of the moduli to some finite values to obtain consistent extra-dimensional models.

Five-dimensional (5D) SUGRA provides the simplest setup for SUSY extra-dimensional models. The general action can be obtained by the superconformal formulation [11][18]. Based on this formulation, 5D SUGRA action with arbitrary numbers of hyper and vector multiplets has been expressed in terms of $\mathcal{N}=1$ superfields $[7,8]$. We have derived 4D effective theories of various 5D SUGRA models, and discussed their phenomenology [19]-[24].

The next simplest case is six-dimensional (6D) SUGRA [25, 26]. This has the smallest even extra-dimensions, and we can introduce magnetic flux that penetrates the compact space as a background. The shape modulus newly appears in addition to the volume modulus. These ingredients widen the possibility of model-building. Besides, we can also consider 6D SUGRA as a toy model of ten-dimensional superstring theories. With these reasons, 6D SUGRA is intriguing subject to investigate. As mentioned above, the $\mathcal{N}=1$ superfield description is useful to discuss it, as was provided in ref. [2] in the global SUSY case. However, 6D action in ref. [2] cannot be promoted to SUGRA straightforwardly. As discussed in refs. [27, 28], the off-shell description of 6D SUGRA necessarily contains a tensor multiplet, which was not introduced in ref. [2]. It contains a self-dual antisymmetric tensor $B_{M N}^{+}(M, N=0,1, \cdots, 5)$, and the 6 D superconformal Weyl multiplet contains an anti-self-dual tensor $T_{M N L}^{-}$. In general, the (anti-)self-dual condition is an obstacle to the Lagrangian formulation, similar to that for type IIB SUGRA. Fortunately, we can evade this difficulty in 6D SUGRA. By combining $T_{M N L}^{-}$with the field strength $F_{M N L}^{+} \equiv \partial_{[M} B_{N L]}^{+}$, we can define a new Weyl multiplet ${ }^{2}$ that contains an unconstrained tensor $B_{M N}$. This new tensor field couples to the vector multiplets [27, 28]. Therefore we need to know how the tensor and the vector multiplets couple to each other in the $\mathcal{N}=1$ superfield language.

In our previous work [30], we derived the $\mathcal{N}=1$ superfield description of the tensorvector couplings in 6D global SUSY theories, which is derived from the invariant action [29] in the projective superspace [31-33]. In this case, the tensor multiplet must be treated as external fields because we do not have the Weyl multiplet that contains $T_{M N L}^{-}$, and only have the constrained one $B_{M N}^{+}$. In this paper, we extend our result in ref. [30] to SUGRA. Since ref. [29] provides the projective superspace formulation of 6D SUGRA, we can in principle obtain its $\mathcal{N}=1$ superfield description by integrating out half of the Grassmannian coordinates, as we did in the global SUSY case [30]. However, the procedure is not so straightforward as that in the global SUSY case because we need to separately treat the 4 D part and the extra-dimensional part of the gravity sector that has a complicated structure in the projective superspace. Hence we adopt another strategy. We first identify the moduli superfields that originate from the extra-dimensional components of the 6 D Weyl multiplet. Then, we insert them into the action in the global SUSY case under the

[^1]following requirements.

1. The action is reduced to the global SUSY one if the moduli superfields are replaced with their background values.
2. It is consistent with the component field expression of the action.
3. It is invariant under the supergauge transformations.

The superfield action is uniquely determined by these requirements. As a nontrivial check, we show that our result reproduces the known superfield action of 5D SUGRA obtained in refs. $[7,8]$ after the dimensional reduction.

The paper is organized as follows. In the next section, we give a brief review of the superfield description of 6D global SUSY theories. In section 3, we promote it to the local SUSY case, and identify the desired superfield action of 6D SUGRA. In section 4, we explicitly show the gauge invariance of our result and the consistency with the known 5D SUGRA action through the dimensional reduction. Section 5 is devoted to the summary. We also collect some formulae and their derivation in the appendices.

2 6D global SUSY theory

Throughout the paper, we take the metric convention as $\eta_{M N}=\operatorname{diag}(-1,1,1,1,1,1)$, and follow the notation of ref. [34] for the 2-component spinors.

2.1 Invariant action

We consider 6D (1,0) SUSY theories. The spacetime coordinates $x^{M}(M=0,1, \cdots, 5)$ are decomposed into the 4 D ones $x^{\mu}(\mu=0,1,2,3)$ and the extra dimensional ones x^{m} $(m=4,5)$. Before discussing 6D SUGRA, let us begin with its global SUSY limit. In this case, it is convenient to use the complex coordinates $z \equiv \frac{s}{2}\left(x^{4}-i x^{5}\right)\left(s \equiv e^{-\frac{\pi}{4} i}\right)$ and its complex conjugate $\bar{z},^{3}$ instead of x^{m}. Originally, the $\mathcal{N}=1$ description of the action is provided in ref. [2]. For simplicity, we will consider Abelian gauge theories. The field content consists of hypermultiplets $\mathbb{H}^{A}(A=1,2, \cdots)$ and vector multiplets \mathbb{V}^{I} $(I=1,2, \cdots)$. They are decomposed into $\mathcal{N}=1$ superfields as

$$
\begin{equation*}
\mathbb{H}^{A}=\left(H^{2 A-1}, H^{2 A}\right), \quad \mathbb{V}^{I}=\left(V^{I}, \Sigma^{I}\right) \tag{2.1}
\end{equation*}
$$

where V^{I} is an $\mathcal{N}=1$ real vector superfield, while the others are chiral superfields. By using these $\mathcal{N}=1$ superfields, we can construct 6 D global SUSY action as [2]

$$
\begin{aligned}
S_{\text {global }}= & \int d^{6} x\left(\mathcal{L}_{\mathrm{V}}+\mathcal{L}_{\mathrm{H}}\right) \\
\mathcal{L}_{\mathrm{V}} \equiv & \left\{\int d^{2} \theta \frac{f_{I J}}{2} \mathcal{W}^{I} \mathcal{W}^{J}+\text { h.c. }\right\} \\
& +\int d^{4} \theta f_{I J}\left\{4\left(\bar{\partial} V^{I}-\bar{\Sigma}^{I}\right)\left(\partial V^{J}-\Sigma^{J}\right)-2 \bar{\partial} V^{I} \partial V^{J}\right\}
\end{aligned}
$$

[^2]\[

$$
\begin{align*}
\mathcal{L}_{\mathrm{H}} \equiv & \int d^{4} \theta 2\left(H_{\mathrm{odd}}^{\dagger} e^{V} H_{\mathrm{odd}}+H_{\mathrm{even}}^{\dagger} e^{-V} H_{\mathrm{even}}\right) \\
& -\left[\int d^{2} \theta\left\{H_{\mathrm{odd}}^{t}(\partial-\Sigma) H_{\mathrm{even}}-H_{\mathrm{even}}^{t}(\partial+\Sigma) H_{\mathrm{odd}}\right\}+\text { h.c. }\right] \tag{2.2}
\end{align*}
$$
\]

where $\partial \equiv \partial_{z}=\bar{s}\left(\partial_{4}+i \partial_{5}\right)=s^{-1} \partial_{4}-s \partial_{5}$, and $H_{\text {odd }}$ and $H_{\text {even }}$ are column vectors that consist of $H^{2 A-1}$ and $H^{2 A}$, respectively. The contracted indices I and J are understood as being summed, and

$$
\begin{equation*}
\mathcal{W}_{\alpha}^{I} \equiv-\frac{1}{4} \bar{D}^{2} D_{\alpha} V^{I} \tag{2.3}
\end{equation*}
$$

is the gauge-invariant field strength superfield. The coefficients $f_{I J}$ are real constants and $f_{I J}=f_{J I}$. The superfields without the indices V and Σ are defined as

$$
\begin{equation*}
V \equiv t_{I} V^{I}, \quad \Sigma \equiv t_{I} \Sigma^{I} \tag{2.4}
\end{equation*}
$$

where $t_{I}(I=1,2, \cdots)$ are generators for the corresponding Abelian gauge groups. The Lagrangian (2.2) is invariant under the following (super)gauge transformation.

$$
\begin{align*}
V^{I} & \rightarrow V^{I}+\Lambda^{I}+\bar{\Lambda}^{I}, & \Sigma^{I} & \rightarrow \Sigma^{I}+\partial \Lambda^{I} \\
H_{\mathrm{odd}} & \rightarrow e^{-\Lambda} H_{\mathrm{odd}}, & H_{\mathrm{even}} & \rightarrow e^{\Lambda} H_{\mathrm{even}} \tag{2.5}
\end{align*}
$$

where the transformation parameter Λ^{I} is a chiral superfield.
Unfortunately, (2.2) cannot be promoted to SUGRA straightforwardly. As mentioned in the introduction, a tensor multiplet $\mathbb{T}=\left\{B_{M N}^{+}, \cdots\right\}$ is necessary to describe 6D SUGRA. Thus we need to extend (2.2) including \mathbb{T} in order to promote the action to the SUGRA one. This extension was provided in our previous work [30], which is directly derived from the invariant action in the 6 D projective superspace [29]. We have to note that the tensor multiplet \mathbb{T} cannot be off-shell in the global SUSY case [35]. We found that it is expressed by two $\mathcal{N}=1$ superfields, i.e., a real linear superfield Φ_{T} and a chiral spinor superfield $\mathcal{W}_{T \alpha}$, which are subject to the constraints:

$$
\begin{align*}
D^{\alpha} \mathcal{W}_{T \alpha} & =-2 \bar{\partial} \Phi_{T} \\
\bar{D}^{2} D_{\alpha} \Phi_{T} & =-4 \partial \mathcal{W}_{T \alpha} \tag{2.6}
\end{align*}
$$

From these relations, we obtain

$$
\begin{equation*}
\left(\square_{4}+\partial \bar{\partial}\right) \Phi_{T}=\left(\square_{4}+\partial \bar{\partial}\right) \mathcal{W}_{T \alpha}=0 \tag{2.7}
\end{equation*}
$$

where $\square_{4} \equiv \eta^{\mu \nu} \partial_{\mu} \partial_{\nu}$. We have used that $\mathcal{P}_{T} \Phi_{T}=\Phi_{T}$ and $\bar{D}^{2} D^{2} \mathcal{W}_{T \alpha}=16 \square_{4} \mathcal{W}_{T \alpha}$, where $\mathcal{P}_{\mathrm{T}} \equiv-\bar{D}_{\dot{\alpha}} D^{2} \bar{D}^{\dot{\alpha}} /\left(8 \square_{4}\right)$. Namely, Φ_{T} and $\mathcal{W}_{T \alpha}$ are on-shell, and thus should be treated as external superfields. Using these superfields, \mathcal{L}_{V} in (2.2) is extended to

$$
\begin{align*}
\mathcal{L}_{\mathrm{VT}}= & -\left[\int d^{2} \theta f_{I J}\left\{2 \Sigma^{I} \mathcal{W}^{J} \mathcal{W}_{T}+\frac{1}{4} \bar{D}^{2}\left(\Phi_{T} D^{\alpha} V^{I} \mathcal{W}_{\alpha}^{J}+\partial V^{I} D^{\alpha} V^{J} \mathcal{W}_{T \alpha}\right)\right\}+\text { h.c. }\right] \\
& +\int d^{4} \theta 2 f_{I J} \Phi_{T}\left\{V^{I}\left(\square_{4} \mathcal{P}_{\mathrm{T}}+\partial \bar{\partial}\right) V^{J}+2\left(\bar{\partial} V^{I}-\bar{\Sigma}^{I}\right)\left(\partial V^{J}-\Sigma^{J}\right)\right\} \tag{2.8}
\end{align*}
$$

For later convenience, we rewrite this Lagrangian as

$$
\begin{align*}
\mathcal{L}_{\mathrm{VT}}=\int d^{4} \theta f_{I J}\left[\left\{-2 \Sigma^{I} D^{\alpha} V^{J} \mathcal{W}_{T \alpha}+\right.\right. & \left.\frac{1}{2}\left(\partial V^{I} D^{\alpha} V^{J}-\partial D^{\alpha} V^{I} V^{J}\right) \mathcal{W}_{T \alpha}+\text { h.c. }\right\} \\
+\Phi_{T} & \left\{D^{\alpha} V^{I} \mathcal{W}_{\alpha}^{J}+\bar{D}_{\dot{\alpha}} V^{I} \overline{\mathcal{W}}^{J \dot{\alpha}}+V^{I} D^{\alpha} \mathcal{W}_{\alpha}^{J}\right. \\
& \left.\left.+4\left(\bar{\partial} V^{I}-\bar{\Sigma}^{I}\right)\left(\partial V^{J}-\Sigma^{J}\right)-2 \bar{\partial} V^{I} \partial V^{J}\right\}\right] \tag{2.9}
\end{align*}
$$

where we have dropped total derivatives and used the first constraint in (2.6). As we have shown in ref. [30], this Lagrangian is invariant under the gauge transformation (2.5) ${ }^{4}$ up to total derivatives, and reduces to (2.2) in the limit of $\Phi_{T}=1$ and $\mathcal{W}_{T \alpha}=0$, which corresponds to the case where the tensor multiplet is absent.

The superfields Φ_{T} and $\mathcal{W}_{T \alpha}$ are expressed as

$$
\begin{align*}
\Phi_{T} & =-2 i D^{\alpha} \bar{D}^{2} Y_{\alpha}+2 i \bar{D}_{\dot{\alpha}} D^{2} \bar{Y}^{\dot{\alpha}} \\
\mathcal{W}_{T \alpha} & =i \bar{D}^{2}\left(D_{\alpha} \bar{X}+4 \bar{\partial} Y_{\alpha}\right) \tag{2.10}
\end{align*}
$$

where X and Y_{α} are complex superfields that are related through

$$
\begin{equation*}
\bar{D}^{2}\left(D_{\alpha} X+4 \partial Y_{\alpha}\right)=0 \tag{2.11}
\end{equation*}
$$

This relation indicates that Y_{α} cannot be a general superfield. The first constraint in (2.6) is automatically satisfied if (2.11) is satisfied. Thus, independent constraints are (2.11) and the second constraint in (2.6). Note that Φ_{T} and $\mathcal{W}_{T \alpha}$ are the field strength superfields of the "gauge potentials" X and Y_{α}, and are invariant under

$$
\begin{equation*}
X \rightarrow X+\partial V_{G}-\Sigma_{G}, \quad Y_{\alpha} \rightarrow Y_{\alpha}-\frac{1}{4} D_{\alpha} V_{G} \tag{2.12}
\end{equation*}
$$

where the transformation parameters V_{G} and Σ_{G} are $\mathcal{N}=1$ real vector and chiral superfields, and form a 6D vector multiplet. The transformation (2.12) is the SUSY extension of the gauge transformation: $B_{M N}^{+} \rightarrow B_{M N}^{+}+\partial_{M} \lambda_{N}-\partial_{N} \lambda_{M}\left(\lambda_{M}\right.$: real transformation parameter).

Here we decompose X as

$$
\begin{equation*}
X=s^{-1} X_{4}-s X_{5} \tag{2.13}
\end{equation*}
$$

where X_{4} and X_{5} are real superfields. Then the second equation in (2.10) and (2.11) are rewritten as

$$
\begin{equation*}
\mathcal{W}_{T \alpha}=\bar{D}^{2}\left\{s^{-1} D_{\alpha} X_{4}+s D_{\alpha} X_{5}+4\left(s^{-1} \partial_{4}+s \partial_{5}\right) Y_{\alpha}\right\} \tag{2.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{D}^{2}\left(s^{-1} D_{\alpha} X_{4}-s D_{\alpha} X_{5}+4 \partial Y_{\alpha}\right)=0 \tag{2.15}
\end{equation*}
$$

Using the constraint (2.15), $\mathcal{W}_{T \alpha}$ is also expressed as

$$
\begin{align*}
\mathcal{W}_{T \alpha} & =2 s^{-1} \bar{D}^{2}\left(D_{\alpha} X_{4}+4 \partial_{4} Y_{\alpha}\right)=s^{-1} \mathcal{W}_{4 \alpha}+8 s^{-1} \partial_{4} \bar{D}^{2} Y_{\alpha} \\
& =2 s \bar{D}^{2}\left(D_{\alpha} X_{5}+4 \partial_{5} Y_{\alpha}\right)=s \mathcal{W}_{5 \alpha}+8 s \partial_{5} \bar{D}^{2} Y_{\alpha} \tag{2.16}
\end{align*}
$$

[^3]where
\[

$$
\begin{equation*}
\mathcal{W}_{4 \alpha} \equiv 2 \bar{D}^{2} D_{\alpha} X_{4}, \quad \mathcal{W}_{5 \alpha} \equiv 2 \bar{D}^{2} D_{\alpha} X_{5} \tag{2.17}
\end{equation*}
$$

\]

Thus, the tensor multiplet \mathbb{T} is described by two constrained superfields X_{4} (or X_{5}) and Y_{α}.

2.2 Components of superfields

Each $\mathcal{N}=1$ superfield has the following components. Here we focus on the bosonic fields, for simplicity.

Hyperscalars $\left(\mathcal{A}_{i}^{2 A-1}, \mathcal{A}_{i}^{2 A}\right)$ in \mathbb{H}^{A}, where $i=1,2$ is an $\mathrm{SU}(2)_{\mathbf{U}}$-doublet-index, ${ }^{5}$ are embedded into $H^{2 A-1}$ and $H^{2 A}$ as

$$
\begin{equation*}
H^{2 A-1}=\mathcal{A}_{2}^{2 A-1}+\mathcal{O}(\theta), \quad H^{2 A}=\mathcal{A}_{2}^{2 A}+\mathcal{O}(\theta) \tag{2.18}
\end{equation*}
$$

A 6 D vector field A_{M}^{I} in \mathbb{V}^{I} is embedded into V^{I} and Σ^{I} as

$$
\begin{equation*}
V^{I}=-\left(\theta \sigma^{\mu} \bar{\theta}\right) A_{\mu}+\mathcal{O}\left(\theta^{3}\right), \quad \Sigma^{I}=\left(s^{-1} A_{4}-s A_{5}\right)+\mathcal{O}(\theta) \tag{2.19}
\end{equation*}
$$

A 6D tensor field $B_{M N}^{+}$and its scalar partner σ in \mathbb{T} are embedded into Φ_{T} and $\mathcal{W}_{T \alpha}$ as

$$
\begin{align*}
\Phi_{T} & =\sigma+\left(\theta \sigma^{\mu} \bar{\theta}\right) \epsilon_{\mu \nu \rho \lambda} \partial^{\nu} B^{+\rho \lambda}-\frac{1}{4} \theta^{2} \bar{\theta}^{2} \square_{4} \sigma+\cdots \\
\mathcal{W}_{T \alpha} & =\theta_{\alpha} \bar{\partial} \sigma+\left(\sigma^{\mu \nu} \theta\right)_{\alpha}\left(\bar{\partial} B_{\mu \nu}^{+}+\partial_{\mu} C_{\nu}-\partial_{\nu} C_{\mu}\right)+\cdots, \tag{2.20}
\end{align*}
$$

where $C_{\mu} \equiv-i\left(s^{-1} B_{\mu 4}^{+}+s B_{\mu 5}^{+}\right)$, and $B_{M N}^{+}$satisfies the self-dual condition:

$$
\begin{align*}
\epsilon_{\mu \nu \rho \lambda} \partial^{\nu} B^{+\rho \lambda} & =-2\left\{\partial_{\mu} B_{45}^{+}-\operatorname{Im}\left(\partial C_{\mu}\right)\right\}, \\
\bar{\partial} B_{\mu \nu}^{+}+\partial_{\mu} C_{\nu}-\partial_{\nu} C_{\mu} & =\frac{i}{2} \epsilon_{\mu \nu \rho \lambda}\left(\bar{\partial} B^{+\rho \lambda}+\partial^{\rho} C^{\lambda}-\partial^{\lambda} C^{\rho}\right) . \tag{2.21}
\end{align*}
$$

The expressions in (2.20) are realized when X and Y_{α} have the following components:

$$
\begin{align*}
X & =\frac{1}{4}\left(\theta \sigma^{\mu} \bar{\theta}\right) \bar{C}_{\mu}-\frac{1}{8} \theta^{2} \bar{\theta}^{2}\left(B_{45}^{+}+\frac{i}{2} \sigma\right)+\cdots \\
Y_{\alpha} & =\frac{1}{16} \theta_{\alpha} \bar{\theta}^{2}\left(B_{45}^{+}+\frac{i}{2} \sigma\right)+\frac{i}{16}\left(\sigma^{\mu \nu} \theta\right)_{\alpha} \bar{\theta}^{2} B_{\mu \nu}^{+}+\cdots, \tag{2.22}
\end{align*}
$$

where $\bar{C}_{\mu}=s^{-1} B_{\mu 4}^{+}-s B_{\mu 5}^{+}$. The B_{45}^{+}-dependence is determined from the transformation property under (2.12).

3 Extension to 6D SUGRA

Now we extend the action in the previous section to the local SUSY case. Since we are interested in the moduli-dependence of the action, we focus on $e_{m} \frac{n}{n}(m, n=4,5)$ among the sechsbein $e_{M} \frac{N}{}$, and treat the other components as a background, ${ }^{6}$ i.e., $e_{\mu}{ }^{\underline{\nu}}=\delta_{\mu}{ }^{\nu}$ and $e_{\mu}^{\underline{n}}=e_{m}^{\underline{\nu}}=0$. Therefore, we do not discriminate the curved index μ from the flat index $\underline{\mu}$ for the 4D part in the following.

[^4]
3.1 Moduli superfields

First we identify the $\mathcal{N}=1$ superfields constructed from the extra-dimensional components of the 6 D Weyl multiplet $\mathbb{E}=\left(e_{M} \frac{N}{M}, \Psi_{M \underline{\alpha}}^{i}, V_{M}^{i j}, \cdots\right)$ (see appendix B). Notice that if a complex scalar \mathcal{A} is the lowest component of a chiral superfield, it transforms under consecutive SUSY transformations as

$$
\begin{equation*}
\delta_{\epsilon} \delta_{\eta} \mathcal{A}=2 i\left(\eta \sigma^{\mu} \bar{\epsilon}\right) \partial_{\mu} \mathcal{A}+\cdots \tag{3.1}
\end{equation*}
$$

and if a real scalar ϕ is the lowest component of a real general superfield, it transforms as

$$
\begin{equation*}
\delta_{\epsilon} \delta_{\eta} \phi=i\left(\eta \sigma^{\mu} \bar{\epsilon}-\epsilon \sigma^{\mu} \bar{\eta}\right) \partial_{\mu} \phi+\cdots \tag{3.2}
\end{equation*}
$$

where the 2-component spinors ϵ_{α} and η_{α} are the transformation parameters, and the ellipses denote terms involving other fields. In order to identify combinations of $e_{m} \frac{n}{m}$ that belong to $\mathcal{N}=1$ superfields, we focus on the $\mathcal{N}=1$ SUSY transformations at linearized level in the fluctuations $\tilde{e}_{m} \frac{n}{r}$. Then, from (B.1), we obtain

$$
\begin{equation*}
\delta_{\epsilon} \delta_{\eta} u=\frac{1}{2\left\langle e^{(2)}\right\rangle}\left(\eta \sigma^{\mu} \bar{\epsilon}\right)\langle\mathcal{M}\rangle \partial_{\mu} u+\text { c.c. }+\cdots \tag{3.3}
\end{equation*}
$$

where $e^{(2)} \equiv \operatorname{det}\left(e_{m} \frac{n}{n}\right)=e_{4}{ }^{\frac{4}{}} e_{5}{ }^{\underline{5}}-e_{4}{ }^{\underline{5}} e_{5}{ }^{\frac{4}{}}$ and $u \equiv\left(\tilde{e}_{4}{ }^{\frac{4}{}}, \tilde{e}_{4}{ }^{\frac{5}{5}}, \tilde{e}_{5}{ }^{\frac{4}{}}, \tilde{e}_{5}{ }^{\frac{5}{}}\right)^{t}$. The matrix \mathcal{M} is defined as

$$
\mathcal{M} \equiv\left(\begin{array}{cccc}
\mathcal{M}_{11} & \mathcal{M}_{12} & -E_{4} e_{4}{ }^{\frac{4}{4}}-E_{4} e_{4}{ }^{\frac{5}{5}} \tag{3.4}\\
-i \mathcal{M}_{11} & -i \mathcal{M}_{12} & i E_{4} e_{4}{ }^{4} & i E_{4} e_{4}{ }^{\frac{5}{5}} \\
E_{5} e_{5}{ }^{4} & E_{5} e_{5}^{5} & \mathcal{M}_{33} & \mathcal{M}_{34} \\
-i E_{5} e_{5}{ }^{\frac{4}{4}}-i E_{5} e_{5}{ }^{5} & -i \mathcal{M}_{33} & -i \mathcal{M}_{34}
\end{array}\right),
$$

where $E_{m} \equiv e_{m}{ }^{\frac{4}{2}}+i e_{m}{ }^{\frac{5}{2}}$, and

$$
\begin{align*}
& \mathcal{M}_{11} \equiv 2 E_{5} e_{4}{ }^{4}-E_{4} e_{5}{ }^{\frac{4}{4}}, \quad \mathcal{M}_{12} \equiv 2 E_{5} e_{4}{ }^{\frac{5}{5}}-E_{4} e_{5}{ }^{\frac{5}{5}}, \\
& \mathcal{M}_{33} \equiv E_{5} e_{4}{ }^{4}-2 E_{4} e_{5}{ }^{\frac{4}{4}}, \quad \mathcal{M}_{34} \equiv E_{5} e_{4}{ }^{\frac{5}{5}}-2 E_{4} e_{5}{ }^{\frac{5}{5}} \text {. } \tag{3.5}
\end{align*}
$$

There are three eigenvectors $v_{a}(a= \pm, 0)$ that satisfy $v_{a}\langle\mathcal{M}\rangle=\lambda_{a} v_{a}$ and $v_{a}\langle\mathcal{M}\rangle^{*}=\lambda_{a}^{\prime} v_{a}$ simultaneously ($\lambda_{a}, \lambda_{a}^{\prime}$: eigenvalues).

$$
\begin{array}{rll}
\left(\lambda_{-}, \lambda_{-}^{\prime}\right)=\left(0,-4 i\left\langle e^{(2)}\right\rangle\right): & v_{-}=\left(\left\langle\bar{E}_{5}\right\rangle,-i\left\langle\bar{E}_{5}\right\rangle,-\left\langle\bar{E}_{4}\right\rangle, i\left\langle\bar{E}_{4}\right\rangle\right), \\
\left(\lambda_{0}, \lambda_{0}^{\prime}\right)=\left(2 i\left\langle e^{(2)}\right\rangle,-2 i\left\langle e^{(2)}\right\rangle\right): & v_{0}=\left(\left\langle e_{5}^{\underline{5}}\right\rangle,-\left\langle e_{5}^{\underline{4}}\right\rangle,-\left\langle e_{4}{ }^{\frac{5}{y}}\right\rangle,\left\langle e_{4}^{\frac{4}{4}}\right\rangle\right), \\
\left(\lambda_{+}, \lambda_{+}^{\prime}\right)=\left(4 i\left\langle e^{(2)}\right\rangle, 0\right): & v_{+}=\left(\left\langle E_{5}\right\rangle, i\left\langle E_{5}\right\rangle,-\left\langle E_{4}\right\rangle,-i\left\langle E_{4}\right\rangle\right) . \tag{3.6}
\end{array}
$$

Thus, we obtain

$$
\begin{align*}
\delta_{\epsilon} \delta_{\eta}\left(v_{-} \cdot u\right) & =-2 i\left(\epsilon \sigma^{\mu} \bar{\eta}\right) \partial_{\mu}\left(v_{-} \cdot u\right)+\cdots \\
\delta_{\epsilon} \delta_{\eta}\left(v_{0} \cdot u\right) & =i\left(\eta \sigma^{\mu} \bar{\epsilon}-\epsilon \sigma^{\mu} \bar{\eta}\right) \partial_{\mu}\left(v_{0} \cdot u\right)+\cdots \\
\delta_{\epsilon} \delta_{\eta}\left(v_{+} \cdot u\right) & =2 i\left(\eta \sigma^{\mu} \bar{\epsilon}\right) \partial_{\mu}\left(v_{+} \cdot u\right)+\cdots \tag{3.7}
\end{align*}
$$

Therefore, we infer that $v_{+} \cdot u=\left\langle E_{5}\right\rangle \tilde{E}_{4}-\left\langle E_{4}\right\rangle \tilde{E}_{5}$ is the lowest component of a chiral superfield, and $v_{0} \cdot u=\left\langle e_{5}{ }^{\frac{5}{}}\right\rangle \tilde{e}_{4}{ }^{\frac{4}{}}-\left\langle e_{5}{ }^{\frac{4}{4}}\right\rangle \tilde{e}_{4}{ }^{\underline{5}}-\left\langle e_{4}{ }^{\frac{5}{}}\right\rangle \tilde{e}_{5}{ }^{4}+\left\langle e_{4}{ }^{\frac{4}{}}\right\rangle \tilde{e}_{5}{ }^{5}$ is the lowest component of
a real general superfield. ${ }^{7}$ Note that $v_{+} \cdot u$ and $v_{0} \cdot u$ are the linear parts of E_{4} / E_{5} and $e^{(2)}$ in the fluctuations, respectively. In fact, we can show that

$$
\begin{align*}
& \left(\delta_{\epsilon} \delta_{\eta}-\delta_{\eta} \delta_{\epsilon} \frac{E_{4}}{E_{5}}=2 i\left(\eta \sigma^{\mu} \bar{\epsilon}-\epsilon \sigma^{\mu} \bar{\eta}\right) \partial_{\mu}\left(\frac{E_{4}}{E_{5}}\right),\right. \\
& \left(\delta_{\epsilon} \delta_{\eta}-\delta_{\eta} \delta_{\epsilon}\right) e^{(2)}=2 i\left(\eta \sigma^{\mu} \bar{\epsilon}-\epsilon \sigma^{\mu} \bar{\eta}\right) \partial_{\mu} e^{(2)}, \tag{3.8}
\end{align*}
$$

at the full order in the fluctuation. Thus the correct SUSY algebra is realized on them, and they can be the components of the superfields. Namely, we find that the extra-dimensional components of the 6 D Weyl multiplet \mathbb{E} form a chiral superfield, ${ }^{8}$

$$
\begin{equation*}
S_{E}=\sqrt{\frac{E_{4}}{E_{5}}}+\mathcal{O}(\theta), \tag{3.9}
\end{equation*}
$$

and a real general superfield,

$$
\begin{equation*}
V_{E}=e^{(2)}+\mathcal{O}(\theta) \tag{3.10}
\end{equation*}
$$

In the superconformal formulation of 4D SUGRA [36]-[39], each superconformal multiplet is characterized by the Weyl weight w and the chiral weight n, which are the charges of the dilatation and the automorphism $\mathrm{U}(1)_{A}$ of the superconformal algebra, respectively. From (A.6), we can see that $E_{m}(m=4,5)$ have $(w, n)=(-1,-1)$. Thus, noting that $e^{(2)}=\operatorname{Im}\left(\bar{E}_{4} E_{5}\right)$, we find that S_{E} and V_{E} have $(w, n)=(0,0)$ and $(-2,0)$, respectively. This is consistent with the fact that they are a chiral and a real general superfields [36]. From their forms of the lowest components, we can see that V_{E} and S_{E} correspond to the "volume" and the "shape" of the compact space.

In the following, we identify how these superfields appear in the 6D SUGRA action. We construct the action in such a way that it is reduced to the global SUSY one if the moduli superfields V_{E} and S_{E} are replaced with constant values 1 and $s=e^{-\frac{\pi}{4} i}$, respectively. These values correspond to the background values of the case that $\left\langle e_{4}{ }_{4}^{4}\right\rangle=\left\langle e_{5}{ }^{5}\right\rangle=1$ and $\left\langle e_{4}{ }^{\frac{5}{5}}\right\rangle=\left\langle e_{5}{ }^{4}\right\rangle=0$.

3.2 Hypermultiplet sector

Here we extend \mathcal{L}_{H} in (2.2) to the SUGRA version. In this case, we need to introduce the n_{C} compensator hypermultiplets in addition to the n_{P} physical ones. Thus, besides the dependence on S_{E} and V_{E}, the Lagrangian in this sector is written as

$$
\begin{align*}
\mathcal{L}_{\mathrm{H}}= & -\int d^{4} \theta 2\left(H_{\text {odd }}^{\dagger} \tilde{d} e^{V} H_{\text {odd }}+H_{\text {even }}^{\dagger} \tilde{d} e^{-V} H_{\text {even }}\right) \\
& +\left[\int d^{2} \theta\left\{H_{\text {odd }}^{t} \tilde{d}(\partial-\Sigma) H_{\text {even }}-H_{\text {even }}^{t} \tilde{d}(\partial+\Sigma) H_{\text {odd }}\right\}+\text { h.c. }\right] \tag{3.11}
\end{align*}
$$

where $\tilde{d}=\operatorname{diag}\left(\mathbf{1}_{n_{C}},-\mathbf{1}_{n_{P}}\right)$ is the metric for the space spanned by the hyperscalars, and discriminates the compensators from the physical ones.

[^5]Now we consider the moduli dependence of the Lagrangian. Since V_{E} cannot appear in the chiral superspace, $H_{\text {odd }}$ and $H_{\text {even }}$ must have $w=n=3 / 2$. However, the 6 D hyperscalars $\mathcal{A}_{i}^{2 A-1}$ and $\mathcal{A}_{i}^{2 A}$ have $w=n=2$. Hence the component identification in (2.18) must be modified. Since we have to keep the condition $w=n$ for a chiral superfield, we need to adjust the weights by using $E_{m}=e_{m}^{\frac{4}{n}}+i e_{m}^{\frac{5}{n}}(m=4,5)$ that has $w=n=-1$. We find that (2.18) should be modified as

$$
\begin{align*}
H^{2 A-1} & =E_{4}^{p} E_{5}^{1 / 2-p} \mathcal{A}_{2}^{2 A-1}+\mathcal{O}(\theta) \\
H^{2 A} & =E_{4}^{q} E_{5}^{1 / 2-q} \mathcal{A}_{2}^{2 A}+\mathcal{O}(\theta) \tag{3.12}
\end{align*}
$$

where p and q are arbitrary real numbers. We can always set $p=q=1 / 4$ by redefining the above chiral superfields as $S_{E}^{1 / 2-2 p} H^{2 A-1} \rightarrow H^{2 A-1}$ and $S_{E}^{1 / 2-2 q} H^{2 A} \rightarrow H^{2 A}$. Hence, in the following, we identify the lowest components of these chiral superfields as

$$
\begin{align*}
H^{2 A-1} & =\left(E_{4} E_{5}\right)^{1 / 4} \mathcal{A}_{2}^{2 A-1}+\mathcal{O}(\theta) \\
H^{2 A} & =\left(E_{4} E_{5}\right)^{1 / 4} \mathcal{A}_{2}^{2 A}+\mathcal{O}(\theta) \tag{3.13}
\end{align*}
$$

Next we promote the derivative ∂ to the SUGRA version ∂_{E} that depends on S_{E}. (This is independent of V_{E} because it cannot appear in the chiral superspace.) In order to reproduce the correct 6 D kinetic terms for the hyperscalars after eliminating the F terms of $H_{\text {odd,even }}$, the lowest component of ∂_{E} should be proportional to $\partial_{\underline{4}}+i \partial_{\underline{5}}$ because $\left|\left(\partial_{\underline{4}}+i \partial_{\underline{5}}\right) \mathcal{A}\right|^{2}=\partial^{m} \mathcal{A}^{\dagger} \partial_{m} \mathcal{A}$. Since

$$
\begin{equation*}
\partial_{\underline{4}}+i \partial_{\underline{5}}=-\frac{i \sqrt{E_{4} E_{5}}}{e^{(2)}}\left(\sqrt{\frac{E_{5}}{E_{4}}} \partial_{4}-\sqrt{\frac{E_{4}}{E_{5}}} \partial_{5}\right) \tag{3.14}
\end{equation*}
$$

we define ∂_{E} as

$$
\begin{equation*}
\partial_{E} \equiv \frac{1}{S_{E}} \partial_{4}-S_{E} \partial_{5} \tag{3.15}
\end{equation*}
$$

Then, its lowest component is

$$
\begin{equation*}
\partial_{E} \left\lvert\,=\frac{i e^{(2)}}{\sqrt{E_{4} E_{5}}}\left(\partial_{\underline{4}}+i \partial_{\underline{5}}\right)\right. \tag{3.16}
\end{equation*}
$$

Here and hereafter, the symbol | denotes the lowest component of a superfield. This promoted derivative ∂_{E} is certainly reduced to the global SUSY one ∂ if we replace S_{E} with its background value s.

From the counting of the Weyl and chiral weights, (3.11) should be modified as

$$
\begin{align*}
\mathcal{L}_{\mathrm{H}}= & -\int d^{4} \theta 2 V_{E}^{1 / 2} U_{E}\left(S_{E}, \bar{S}_{E}\right)\left(H_{\mathrm{odd}}^{\dagger} \tilde{d} e^{V} H_{\mathrm{odd}}+H_{\mathrm{even}}^{\dagger} \tilde{d} e^{-V} H_{\mathrm{even}}\right) \\
& +\left[\int d^{2} \theta\left\{H_{\mathrm{odd}}^{t} \tilde{d}\left(\partial_{E}-\Sigma\right) H_{\text {even }}-H_{\text {even }}^{t} \tilde{d}\left(\partial_{E}+\Sigma\right) H_{\mathrm{odd}}\right\}+\text { h.c. }\right] \tag{3.17}
\end{align*}
$$

where $U_{E}\left(S_{E}, \bar{S}_{E}\right)$ is a real function. From (3.9), (3.10) and (3.13), the lowest component of the integrand in the $d^{4} \theta$-integral is read off as

$$
\begin{align*}
C & \equiv V_{E}^{1 / 2} U_{E}\left(S_{E}, \bar{S}_{E}\right)\left(H_{\mathrm{odd}}^{\dagger} \tilde{d} e^{V} H_{\text {odd }}+H_{\text {even }}^{\dagger} \tilde{d} e^{-V} H_{\text {even }}\right) \mid \\
& =\sqrt{e^{(2)}} U_{E}\left(\sqrt{\frac{E_{4}}{E_{5}}}, \sqrt{\frac{\bar{E}_{4}}{\bar{E}_{5}}}\right) \cdot\left|\left(E_{4} E_{5}\right)^{1 / 4}\right|^{2}\left(\mathcal{A}_{\text {odd }}^{\dagger} \tilde{d} \mathcal{A}_{\text {odd }}+\mathcal{A}_{\text {even }}^{\dagger} \tilde{d} \tilde{\mathcal{A}}_{\text {even }}\right), \tag{3.18}
\end{align*}
$$

where $\mathcal{A}_{\text {odd }}$ and $\mathcal{A}_{\text {even }}$ are column vectors that consist of $\mathcal{A}_{2}^{2 A-1}$ and $\mathcal{A}_{2}^{2 A}$, respectively. Note that \boldsymbol{C} appears in front of the Ricci scalar when the $d^{4} \theta$-integral is promoted to the D-term action formula [36]. From the component expression of 6D SUGRA [27], on the other hand, the coefficient of the Ricci scalar should be $e^{(2)}\left(\mathcal{A}_{\text {odd }}^{\dagger} \tilde{d} \mathcal{A}_{\text {odd }}+\mathcal{A}_{\text {even }}^{\dagger} \tilde{d} \mathcal{A}_{\text {even }}\right) \cdot{ }^{9}$ Thus the function $U_{E} \mid$ is determined as

$$
\begin{align*}
U_{E}^{2} \left\lvert\,=\frac{e^{(2)}}{\left|E_{4} E_{5}\right|}\right. & =-\frac{i}{2\left|E_{4} E_{5}\right|}\left(\bar{E}_{4} E_{5}-E_{4} \bar{E}_{5}\right) \\
& =-\frac{i}{2}\left(\sqrt{\frac{\bar{E}_{4} E_{5}}{E_{4} \bar{E}_{5}}}-\sqrt{\frac{\bar{E}_{5} E_{4}}{E_{5} \bar{E}_{4}}}\right)=\operatorname{Im} \frac{\bar{S}_{E}}{S_{E}} \tag{3.19}
\end{align*} .
$$

Therefore, we obtain

$$
\begin{equation*}
U_{E}\left(S_{E}, \bar{S}_{E}\right)=\left(\operatorname{Im} \frac{\bar{S}_{E}}{S_{E}}\right)^{1 / 2} \tag{3.20}
\end{equation*}
$$

In fact, substituting (3.20) into (3.17) and eliminating the F-terms of $H_{\text {odd,even }}$, we obtain the correct kinetic terms.

$$
\begin{equation*}
\mathcal{L}_{\mathrm{H}}=2 e^{(2)}\left\{\partial^{M} \mathcal{A}_{\text {odd }}^{\dagger} \tilde{\partial} \partial_{M} \mathcal{A}_{\text {odd }}+\partial^{M} \mathcal{A}_{\text {even }}^{\dagger} \tilde{d} \partial_{M} \mathcal{A}_{\text {even }}\right\}+\cdots \tag{3.21}
\end{equation*}
$$

Correspondingly to the promotion: $\partial \rightarrow \partial_{E},(2.19)$ is also modified as

$$
\begin{align*}
V & =-\left(\theta \sigma^{\mu} \bar{\theta}\right) A_{\mu}+\mathcal{O}\left(\theta^{3}\right), \\
\Sigma & =\left(\sqrt{\frac{E_{5}}{E_{4}}} A_{4}-\sqrt{\frac{E_{4}}{E_{5}}} A_{5}\right)+\mathcal{O}(\theta) \\
& =\frac{i e^{(2)}}{\sqrt{E_{4} E_{5}}}\left(A_{\underline{4}}+i A_{\underline{5}}\right)+\mathcal{O}(\theta) . \tag{3.22}
\end{align*}
$$

3.3 Vector-tensor sector

Next we consider the vector-tensor sector. The definition of the tensor (field-strength) superfield Φ_{T} is unchanged from (2.10),

$$
\begin{equation*}
\Phi_{T} \equiv-2 i D^{\alpha} \bar{D}^{2} Y_{\alpha}+2 i \bar{D}_{\dot{\alpha}} D^{2} \bar{Y}^{\dot{\alpha}} \tag{3.23}
\end{equation*}
$$

[^6]while that of $\mathcal{W}_{T \alpha}$ is now modified from (2.14) as
\[

$$
\begin{equation*}
\mathcal{W}_{T \alpha} \equiv \bar{D}^{2}\left(\frac{1}{S_{E}} D_{\alpha} X_{4}+S_{E} D_{\alpha} X_{5}+4 S_{E} \mathcal{O}_{E} Y_{\alpha}\right) \tag{3.24}
\end{equation*}
$$

\]

where X_{4} and X_{5} are real superfields, and

$$
\begin{equation*}
\mathcal{O}_{E} \equiv \frac{1}{S_{E}^{2}} \partial_{4}+\partial_{5} . \tag{3.25}
\end{equation*}
$$

The constraint (2.15) is promoted to the SUGRA version:

$$
\begin{equation*}
\bar{D}^{2}\left(\frac{1}{S_{E}} D_{\alpha} X_{4}-S_{E} D_{\alpha} X_{5}+4 \partial_{E} Y_{\alpha}\right)=0 . \tag{3.26}
\end{equation*}
$$

Under this constraint, $\mathcal{W}_{T \alpha}$ can be rewritten as

$$
\begin{align*}
\mathcal{W}_{T \alpha} & =\frac{1}{S_{E}} \mathcal{W}_{4 \alpha}+\frac{8}{S_{E}} \partial_{4} \bar{D}^{2} Y_{\alpha} \\
& =S_{E} \mathcal{W}_{5 \alpha}+8 S_{E} \partial_{5} \bar{D}^{2} Y_{\alpha} \tag{3.27}
\end{align*}
$$

which is the SUGRA version of (2.16). The field strength superfields $\mathcal{W}_{4 \alpha}$ and $\mathcal{W}_{5 \alpha}$ are defined as (2.17). The superfields $\Phi_{T}, \mathcal{W}_{T \alpha}$ and the constraint (3.26) are invariant under the gauge transformation:

$$
\begin{align*}
\delta X_{4} & =\partial_{4} V_{G}-\operatorname{Re}\left(S_{E} \Sigma_{G}\right), \quad \delta X_{5}=\partial_{5} V_{G}+\operatorname{Re}\left(\frac{\Sigma_{G}}{S_{E}}\right), \\
\delta Y_{\alpha} & =-\frac{1}{4} D_{\alpha} V_{G} \tag{3.28}
\end{align*}
$$

where the transformation parameters V_{G} and Σ_{G} are a real and a chiral superfields that form a 6D vector multiplet. From the expressions in (3.23) and (3.27), we can show that

$$
\begin{equation*}
D^{\alpha}\left(U_{E}^{2} \mathcal{W}_{T \alpha}\right)=-2 \bar{\partial}_{E} \Phi_{T}+\frac{i \bar{D}_{\dot{\alpha}} \bar{S}_{E}}{\bar{S}_{E}} \overline{\mathcal{W}}_{T}^{\dot{\alpha}} \tag{3.29}
\end{equation*}
$$

which is the SUGRA extension of the first constraint in (2.6). From the gauge invariance of the action, the second constraint in (2.6) should be modified as

$$
\begin{equation*}
\bar{D}^{2} D_{\alpha}\left(V_{E} \Phi_{T}\right)=-4\left\{\partial_{E} \mathcal{W}_{T \alpha}-\left(\mathcal{O}_{E} S_{E}\right) \mathcal{W}_{T \alpha}\right\} \tag{3.30}
\end{equation*}
$$

(See section 4.1.) The bosonic components of X_{4}, X_{5} and Y_{α} are given by

$$
\begin{align*}
& X_{4}=\frac{1}{4}\left(\theta \sigma^{\mu} \bar{\theta}\right) B_{\mu 4}+\cdots, \quad X_{5}=\frac{1}{4}\left(\theta \sigma^{\mu} \bar{\theta}\right) B_{\mu 5}+\cdots, \\
& Y_{\alpha}=\frac{1}{16} \theta_{\alpha} \bar{\theta}^{2}\left(B_{45}+\frac{i}{2} \sigma\right)+\frac{i}{16}\left(\sigma^{\mu \nu} \theta\right)_{\alpha} \bar{\theta}^{2} B_{\mu \nu}+\cdots, \tag{3.31}
\end{align*}
$$

where $B_{M N}$ is an unconstrained tensor field.
As explained in appendix C, the constraint (3.26) can be satisfied for arbitrary unconstrained superfields Y_{α} and X_{4} by adjusting S_{E} and X_{5}. This indicates that the latter two
superfields are not independent. In fact, we can express the action without X_{5} by adopting the first equation in (3.27) as the definition of $\mathcal{W}_{T \alpha}$. This reflects the fact that X_{5} can be gauged away by (3.28). Of course, we can choose Y_{α} and X_{5} as independent superfields.

Now we promote $\mathcal{L}_{\mathrm{VT}}$ in (2.9) to SUGRA by replacing ∂ with ∂_{E} and inserting V_{E} to match the Weyl weight of the integrand to 2 , and obtain

$$
\begin{align*}
& \mathcal{L}_{\mathrm{VT}}=\int d^{4} \theta f_{I J}\left[\left\{-2 \Sigma^{I} D^{\alpha} V^{J} \mathcal{W}_{T \alpha}+\frac{1}{2}\left(\partial_{E} V^{I} D^{\alpha} V^{J}-\partial_{E} D^{\alpha} V^{I} V^{J}\right) \mathcal{W}_{T \alpha}+\text { h.c. }\right\}\right. \\
&+\Phi_{T} V_{E}\left(D^{\alpha} V^{I} \mathcal{W}_{\alpha}^{I}+\bar{D}_{\dot{\alpha}} V^{I} \overline{\mathcal{W}}^{J \dot{\alpha}}+V^{I} D^{\alpha} \mathcal{W}_{\alpha}^{J}\right) \\
&\left.+\frac{\Phi_{T}}{U_{E}^{2}}\left\{4\left(\bar{\partial}_{E} V^{I}-\bar{\Sigma}^{I}\right)\left(\partial_{E} V^{J}-\Sigma^{J}\right)-2 \bar{\partial}_{E} V^{I} \partial_{E} V^{J}\right\}\right] \tag{3.32}
\end{align*}
$$

The factor U_{E}^{-2} is necessary in order to obtain the correct component expression of the Lagrangian. Note that the third line in (3.32) provides the extra-dimensional components of the kinetic terms for the 6 D vector fields. The lowest component of U_{E}^{-2} cancels the unwanted factor in (3.16).

In order for the Lagrangian to be gauge-invariant, we need to add the following terms to (3.32). (See section 4.1.)

$$
\begin{equation*}
\mathcal{L}_{\Sigma^{2}}^{(S G)}=\int d^{4} \theta 2 f_{I J} \frac{\Phi_{T}}{U_{E}^{2}}\left(\frac{S_{E}}{\bar{S}_{E}} \Sigma^{I} \Sigma^{J}+\frac{\bar{S}_{E}}{S_{E}} \bar{\Sigma}^{I} \bar{\Sigma}^{J}\right) . \tag{3.33}
\end{equation*}
$$

Note that this vanishes if V_{E} and S_{E} are replaced with their background values.

3.4 6D SUGRA action

In summary, the 6D SUGRA action is expressed as

$$
\begin{align*}
& S^{(\mathrm{SG})}= \int d^{6} x\left(\mathcal{L}_{\mathrm{H}}^{(\mathrm{SG})}+\mathcal{L}_{\mathrm{VT}}^{(\mathrm{SG})}\right), \\
& \mathcal{L}_{\mathrm{H}}^{(\mathrm{SG})}=-\int d^{4} \theta 2 V_{E}^{1 / 2} U_{E}\left(S_{E}, \bar{S}_{E}\right)\left(H_{\mathrm{odd}}^{\dagger} \tilde{d} e^{V} H_{\mathrm{odd}}+H_{\text {even }}^{\dagger} \tilde{d} e^{-V} H_{\text {even }}\right) \\
&+\left[\int d^{2} \theta\left\{H_{\mathrm{odd}}^{t} \tilde{d}\left(\partial_{E}-\Sigma\right) H_{\text {even }}-H_{\text {even }}^{t} \tilde{d}\left(\partial_{E}+\Sigma\right) H_{\mathrm{odd}}\right\}+\text { h.c. }\right] \\
& \begin{aligned}
\mathcal{L}_{\mathrm{VT}}^{(\mathrm{SG})}= & \int d^{4} \theta f_{I J}\left[\left\{-2 \Sigma^{I} D^{\alpha} V^{J} \mathcal{W}_{T \alpha}+\frac{1}{2}\left(\partial_{E} V^{I} D^{\alpha} V^{J}-\partial_{E} D^{\alpha} V^{I} V^{J}\right) \mathcal{W}_{T \alpha}+\text { h.c. }\right\}\right. \\
& +\Phi_{T} V_{E}\left(D^{\alpha} V^{I} \mathcal{W}_{\alpha}^{J}+\bar{D}_{\dot{\alpha}} V^{I} \overline{\mathcal{W}}^{J \dot{\alpha}}+V^{I} D^{\alpha} \mathcal{W}_{\alpha}^{J}\right)
\end{aligned} \\
&+\frac{\Phi_{T}}{U_{E}^{2}}\left\{4\left(\bar{\partial}_{E} V^{I}-\bar{\Sigma}^{I}\right)\left(\partial_{E} V^{J}-\Sigma^{J}\right)-2 \bar{\partial}_{E} V^{I} \partial_{E} V^{J}\right. \\
&\left.\left.\quad \frac{2 S_{E}}{\bar{S}_{E}} \Sigma^{I} \Sigma^{J}+\frac{2 \bar{S}_{E}}{S_{E}} \bar{\Sigma}^{I} \Sigma^{J}\right\}\right]
\end{align*}
$$

This certainly reproduces the global SUSY action in the previous section when $V_{E}=1$ and $S_{E}=s$.

Here we comment on the constraints (3.26) and (3.30). They can be released by introducing the following terms.

$$
\begin{align*}
\mathcal{L}_{\mathrm{LM}}^{(\mathrm{SG})}= & \int d^{4} \theta i \tilde{Z}^{\alpha} \bar{D}^{2}\left(\frac{1}{S_{E}} D_{\alpha} X_{4}-S_{E} D_{\alpha} X_{5}+4 \partial_{E} Y_{\alpha}\right) \\
& +\int d^{4} \theta 2 i \tilde{Y}^{\alpha}\left[\bar{D}^{2} D_{\alpha}\left(V_{E} \Phi_{T}\right)+4\left\{\partial_{E} \mathcal{W}_{T \alpha}-\left(\mathcal{O}_{E} S_{E}\right) \mathcal{W}_{T \alpha}\right\}\right]+\text { h.c. } \tag{3.35}
\end{align*}
$$

where the Lagrange multipliers \tilde{Z}^{α} and \tilde{Y}^{α} are unconstrained superfields. ${ }^{10}$ These terms can be rewritten as

$$
\begin{align*}
\mathcal{L}_{\mathrm{LM}}^{(\mathrm{SG})}= & \int d^{4} \theta i\left\{D^{\alpha} \bar{D}^{2}\left(S_{E} \tilde{Z}_{\alpha}\right)-\bar{D}_{\dot{\alpha}} D^{2}\left(\bar{S}_{E} \overline{\tilde{Z}}^{\dot{\alpha}}\right)\right\} X_{5} \\
& +\int d^{4} \theta\left\{i\left(S_{E} \tilde{Z}^{\alpha}\right)\left(\frac{1}{2 S_{E}^{2}} \mathcal{W}_{4 \alpha}+\frac{4}{S_{E}} \partial_{E} \bar{D}^{2} Y_{\alpha}\right)+\text { h.c. }\right\} \\
& +\int d^{4} \theta\left\{V_{E} \Phi_{T} \tilde{\Phi}_{T}-8 i \partial_{E} \tilde{Y}^{\alpha} \mathcal{W}_{T \alpha}+8 i \bar{\partial}_{E} \overline{\tilde{Y}}_{\dot{\alpha}} \overline{\mathcal{W}}_{T}^{\dot{\alpha}}\right\} \tag{3.36}
\end{align*}
$$

where $\tilde{\Phi}_{T} \equiv-2 i D^{\alpha} \bar{D}^{2} \tilde{Y}_{\alpha}+2 i \bar{D}_{\dot{\alpha}} D^{2} \overline{\tilde{Y}}^{\dot{\alpha}}$. We have dropped total derivatives. If we adopt the first equation in (3.27) as the definition of $\mathcal{W}_{T \alpha}$, a real superfield X_{5} only appears in the first line of (3.36) and thus is regarded as a Lagrange multiplier. Then its equation of motion provides

$$
\begin{equation*}
D^{\alpha} \bar{D}^{2}\left(S_{E} \tilde{Z}_{\alpha}\right)=\bar{D}_{\dot{\alpha}} D^{2}\left(\bar{S}_{E} \overline{\tilde{Z}}^{\dot{\alpha}}\right) \tag{3.37}
\end{equation*}
$$

which is understood as the Bianchi identity. Thus, this can be solved as

$$
\begin{equation*}
S_{E} \tilde{Z}_{\alpha}=\frac{1}{2} D_{\alpha} V_{Z} \tag{3.38}
\end{equation*}
$$

where V_{Z} is a real superfield. Therefore, (3.36) is rewritten as
where $\mathcal{W}_{Z \alpha} \equiv-\frac{1}{4} \bar{D}^{2} D_{\alpha} V_{Z}$. Note that all the superfields are now unconstrained in this expression. Needless to say, we can choose X_{4} instead of X_{5} as the Lagrange multiplier, and adopt the second equation in (3.27) as the definition of $\mathcal{W}_{T \alpha}$.

4 Consistency checks

In this section, we show that our result (3.34) is gauge-invariant, and is reduced to the known superfield expression of 5D SUGRA after the dimensional reduction.

[^7]
4.1 Gauge invariance

The (super)gauge transformation is given by

$$
\begin{align*}
V_{E} & \rightarrow V_{E}, & S_{E} & \rightarrow S_{E}, \\
H_{\text {odd }} & \rightarrow e^{-\Lambda} H_{\text {odd }}, & H_{\text {even }} & \rightarrow e^{\Lambda} H_{\text {even }}, \\
V^{I} & \rightarrow \Lambda^{I}+\bar{\Lambda}^{I}, & \Sigma^{I} & \rightarrow \Sigma^{I}+\partial_{E} \Lambda^{I}, \\
Y_{\alpha} & \rightarrow Y_{\alpha}, & X_{4} & \rightarrow X_{4},
\end{align*} \quad X_{5} \rightarrow X_{5} . \quad \begin{array}{lll}
& \tag{4.1}
\end{array}
$$

Under this transformation, $\mathcal{L}_{\mathrm{H}}^{(\mathrm{SG})}$ is manifestly invariant, while the invariance of the remaining part $\mathcal{L}_{\mathrm{VT}}^{(\mathrm{SG})}$ is quite nontrivial because it is invariant only up to total derivatives. In the following, we neglect total derivative terms. Note that the following formulae hold.

$$
\begin{align*}
\left(\partial_{E} A\right) B & =-A \partial_{E} B+\left(\mathcal{O}_{E} S_{E}\right) A B \\
D^{\alpha} \partial_{E} A & =\partial_{E} D^{\alpha} A-\left(D^{\alpha} S_{E}\right) \mathcal{O}_{E} A \tag{4.2}
\end{align*}
$$

The variation of $\mathcal{L}_{\mathrm{VT}}^{(\mathrm{SG})}$ is

$$
\begin{align*}
& \delta \mathcal{L}_{\mathrm{VT}}^{(\mathrm{SG})}=\int d^{4} \theta f_{I J}\left[\left\{-2 \partial_{E} \Lambda^{I} D^{\alpha} V^{J} \mathcal{W}_{T \alpha}-2 \Sigma^{I} D^{\alpha} \Lambda^{J} \mathcal{W}_{T \alpha}\right.\right. \\
& +\frac{1}{2}\left\{\partial_{E}\left(\Lambda^{I}+\bar{\Lambda}^{I}\right) D^{\alpha} V^{J}+\partial_{E} V^{I} D^{\alpha} \Lambda^{J}-\partial_{E} D^{\alpha} \Lambda^{I} V^{J}\right. \\
& \left.\left.-\partial_{E} D^{\alpha} V^{I}\left(\Lambda^{J}+\bar{\Lambda}^{J}\right)\right\} \mathcal{W}_{T \alpha}+\text { h.c. }\right\} \\
& +\Phi_{T} V_{E}\left\{D^{\alpha} \Lambda^{I} \mathcal{W}_{\alpha}^{J}+\bar{D}_{\dot{\alpha}} \bar{\Lambda}^{I} \overline{\mathcal{W}}^{J \dot{\alpha}}+\left(\Lambda^{I}+\bar{\Lambda}^{I}\right) D^{\alpha} \mathcal{W}_{\alpha}^{J}\right\} \\
& +\frac{\Phi_{T}}{U_{E}^{2}}\left\{4 \bar{\partial}_{E} \Lambda^{I}\left(\partial_{E} V^{J}-\Sigma^{J}\right)+4\left(\bar{\partial}_{E} V^{I}-\bar{\Sigma}^{I}\right) \partial_{E} \bar{\Lambda}^{J}\right. \\
& -2 \bar{\partial}_{E}\left(\Lambda^{I}+\bar{\Lambda}^{I}\right) \partial_{E} V^{J}-2 \bar{\partial}_{E} V^{I} \partial_{E}\left(\Lambda^{J}+\bar{\Lambda}^{J}\right) \\
& \left.\left.+\frac{4 S_{E}}{\bar{S}_{E}} \partial_{E} \Lambda^{I} \Sigma^{J}+\frac{4 \bar{S}_{E}}{S_{E}} \bar{\partial}_{E} \bar{\Lambda}^{I} \bar{\Sigma}^{J}\right\}\right] \\
& =\int d^{4} \theta f_{I J}\left[\frac { 1 } { 2 } \left\{\partial_{E}\left(-3 \Lambda^{I}+\bar{\Lambda}^{I}\right) D^{\alpha} V^{J}+D^{\alpha} \Lambda^{I} \partial_{E} V^{J}\right.\right. \\
& \left.-\partial_{E} D^{\alpha} \Lambda^{I} V^{J}-\left(\Lambda^{I}+\bar{\Lambda}^{I}\right) \partial_{E} D^{\alpha} V^{J}\right\} \mathcal{W}_{T \alpha} \\
& +\Phi_{T} V_{E}\left(D^{\alpha} \Lambda^{I} \mathcal{W}_{\alpha}^{J}+\Lambda^{I} D^{\alpha} \mathcal{W}_{\alpha}^{J}\right) \\
& \left.+\frac{2 \Phi_{T}}{U_{E}^{2}} \bar{\partial}_{E}\left(\Lambda^{I}-\bar{\Lambda}^{I}\right) \partial_{E} V^{J}+\text { h.c. }\right] . \tag{4.3}
\end{align*}
$$

At the second equality, we have used the following equation:

$$
\begin{align*}
\int d^{4} \theta \frac{\Phi_{T}}{U_{E}^{2}} \frac{\bar{S}_{E}}{S_{E}} \partial_{E} \Lambda^{I} \Sigma^{J} & =\int d^{4} \theta \frac{\Phi_{T}}{U_{E}^{2}} \frac{\bar{S}_{E}}{S_{E}}\left(\frac{1}{S_{E}} \partial_{4}-S_{E} \partial_{5}\right) \Lambda^{I} \Sigma^{J} \\
& =\int d^{4} \theta \frac{\Phi_{T}}{U_{E}^{2}}\left\{\left(2 i U_{E}^{2}+\frac{S_{E}}{\bar{S}_{E}}\right) \frac{1}{S_{E}} \partial_{4} \Lambda^{I}-\bar{S}_{E} \partial_{5} \Lambda^{I}\right\} \Sigma^{J} \\
& =\int d^{4} \theta \Phi_{T} \bar{\partial}_{E} \Lambda^{I} \Sigma^{J} \tag{4.4}
\end{align*}
$$

The last equality holds because of the property of Φ_{T} as a linear superfield. By means of (4.2), we can show that

$$
\begin{align*}
& \frac{1}{2}\left\{\partial_{E}\left(-3 \Lambda^{I}+\bar{\Lambda}^{I}\right) D^{\alpha} V^{J}+D^{\alpha} \Lambda^{I} \partial_{E} V^{J}-\partial_{E} D^{\alpha} \Lambda^{I} V^{J}-\left(\Lambda^{I}+\bar{\Lambda}^{I}\right) \partial_{E} D^{\alpha} V^{J}\right\} \\
& =\frac{1}{2}\left\{\partial_{E} D^{\alpha}\left(\bar{\Lambda}^{I}-\Lambda^{I}\right) V^{J}+\partial_{E}\left(\bar{\Lambda}^{I}-\Lambda^{I}\right) D^{\alpha} V^{J}\right. \\
& \left.\quad \quad-D^{\alpha}\left(\bar{\Lambda}^{I}-\Lambda^{I}\right) \partial_{E} V^{J}-\left(\bar{\Lambda}^{I}-\Lambda^{I}\right) \partial_{E} D^{\alpha} V^{J}\right\}-\partial_{E} \Lambda^{I} D^{\alpha} V^{J}-\Lambda^{I} \partial_{E} D^{\alpha} V^{J} \\
& =\frac{1}{2} D^{\alpha}\left\{\partial_{E}\left(\bar{\Lambda}^{I}-\Lambda^{I}\right) V^{J}-\left(\bar{\Lambda}^{I}-\Lambda^{I}\right) \partial_{E} V^{J}\right\} \\
& \quad+\frac{D^{\alpha} S_{E}}{2}\left\{\mathcal{O}_{E}\left(\bar{\Lambda}^{I}-\Lambda^{I}\right) V^{J}-\left(\bar{\Lambda}^{I}-\Lambda^{I}\right) \mathcal{O}_{E} V^{J}\right\}-\partial_{E}\left(\Lambda^{I} D^{\alpha} V^{J}\right) \tag{4.5}
\end{align*}
$$

Thus (4.3) is rewritten as

$$
\begin{align*}
& \delta \mathcal{L}_{\mathrm{VT}}^{(\mathrm{SG})}=\int d^{4} \theta f_{I J}\left[\frac{1}{2} D^{\alpha}\right.\left\{\partial_{E}\left(\bar{\Lambda}^{I}-\Lambda^{I}\right) V^{J}-\left(\bar{\Lambda}^{I}-\Lambda^{I}\right) \partial_{E} V^{J}\right\} \mathcal{W}_{T \alpha} \\
&+\frac{D^{\alpha} S_{E}}{2}\left\{\mathcal{O}_{E}\left(\bar{\Lambda}^{I}-\Lambda^{I}\right) V^{J}-\left(\bar{\Lambda}^{I}-\Lambda^{I}\right) \mathcal{O}_{E} V^{J}\right\} \mathcal{W}_{T \alpha} \\
&-\partial_{E}\left(\Lambda^{I} D^{\alpha} V^{J}\right) \mathcal{W}_{T \alpha}+V_{E} \Phi_{T} D^{\alpha}\left(\Lambda^{I} \mathcal{W}_{\alpha}^{J}\right) \\
&\left.+\frac{2 \Phi_{T}}{U_{E}^{2}} \bar{\partial}_{E}\left(\Lambda^{I}-\bar{\Lambda}^{I}\right) \partial_{E} V^{J}+\text { h.c. }\right] \\
&=\int d^{4} \theta f_{I J}\left[\frac{1}{2}\left\{\partial_{E}\left(\Lambda^{I}-\bar{\Lambda}^{I}\right) V^{J}-\left(\Lambda^{I}-\bar{\Lambda}^{I}\right) \partial_{E} V^{J}\right\} D^{\alpha} \mathcal{W}_{T \alpha}\right. \\
& \quad-\frac{D^{\alpha} S_{E}}{2}\left\{\mathcal{O}_{E}\left(\Lambda^{I}-\bar{\Lambda}^{I}\right) V^{J}-\left(\Lambda^{I}-\bar{\Lambda}^{I}\right) \mathcal{O}_{E}^{\alpha} V^{J}\right\} \mathcal{W}_{T \alpha} \\
&\left.+\frac{2 \Phi_{T}}{U_{E}^{2}} \bar{\partial}_{E}\left(\Lambda^{I}-\bar{\Lambda}^{I}\right) \partial_{E} V^{J}+\text { h.c. }\right] . \tag{4.6}
\end{align*}
$$

At the second equality, we have used that

$$
\begin{align*}
-\partial_{E} & \left(\Lambda^{I} D^{\alpha} V^{J}\right) \mathcal{W}_{T \alpha}+V_{E} \Phi_{T} D^{\alpha}\left(\Lambda^{I} \mathcal{W}_{\alpha}^{J}\right) \\
& =\Lambda^{I} D^{\alpha} V^{J}\left\{\partial_{E} \mathcal{W}_{T \alpha}-\left(\mathcal{O}_{E} S_{E}\right) \mathcal{W}_{T \alpha}\right\}-D^{\alpha}\left(V_{E} \Phi_{T}\right) \Lambda^{I} \mathcal{W}_{\alpha}^{J} \\
& =\frac{1}{4} \Lambda^{I} D^{\alpha} V^{J}\left\{\bar{D}^{2} D_{\alpha}\left(V_{E} \Phi_{T}\right)+4\left(\partial_{E} \mathcal{W}_{T \alpha}-\left(\mathcal{O}_{E} S_{E}\right) \mathcal{W}_{T \alpha}\right)\right\}=0 \tag{4.7}
\end{align*}
$$

where (3.30) is used at the last step.
Using (3.27), we find that

$$
\begin{aligned}
& \frac{1}{2} \partial_{E}\left(\Lambda^{I}-\bar{\Lambda}^{I}\right) V^{J} D^{\alpha} \mathcal{W}_{T \alpha}+\text { h.c. } \\
&= \frac{1}{2 S_{E}} \partial_{4}\left(\Lambda^{I}-\bar{\Lambda}^{I}\right) V^{J} D^{\alpha}\left\{S_{E}\left(\mathcal{W}_{5 \alpha}+8 \partial_{5} \bar{D}^{2} Y_{\alpha}\right)\right\} \\
&-\frac{S_{E}}{2} \partial_{5}\left(\Lambda^{I}-\bar{\Lambda}^{I}\right) V^{J} D^{\alpha}\left\{\frac{1}{S_{E}}\left(\mathcal{W}_{4 \alpha}+8 \partial_{4} \bar{D}^{2} Y_{\alpha}\right)\right\}+\text { h.c. }
\end{aligned}
$$

$$
\begin{align*}
= & \frac{D^{\alpha} S_{E}}{2} \mathcal{O}_{E}\left(\Lambda^{I}-\bar{\Lambda}^{I}\right) V^{J} \mathcal{W}_{T \alpha} \\
& +\frac{1}{2} \partial_{4}\left(\Lambda^{I}-\bar{\Lambda}^{I}\right) V^{J} D^{\alpha}\left(\mathcal{W}_{5 \alpha}+8 \partial_{5} \bar{D}^{2} Y_{\alpha}\right) \\
& -\frac{1}{2} \partial_{5}\left(\Lambda^{I}-\bar{\Lambda}^{I}\right) V^{J} D^{\alpha}\left(\mathcal{W}_{4 \alpha}+8 \partial_{4} \bar{D}^{2} Y_{\alpha}\right)+\text { h.c. } \\
= & \left\{\frac{D^{\alpha} S_{E}}{2} \mathcal{O}_{E}\left(\Lambda^{I}-\bar{\Lambda}^{I}\right) V^{J} \mathcal{W}_{T \alpha}+\text { h.c. }\right\} \\
& +2 i \partial_{4}\left(\Lambda^{I}-\bar{\Lambda}^{I}\right) V^{J} \partial_{5} \Phi_{T}+2 i \partial_{5}\left(\Lambda^{I}-\bar{\Lambda}^{I}\right) V^{J} \partial_{4} \Phi_{T} \tag{4.8}
\end{align*}
$$

Similarly, we obtain

$$
\begin{align*}
-\frac{1}{2}\left(\Lambda^{I}-\bar{\Lambda}^{I}\right) \partial_{E} V^{J} D^{\alpha} \mathcal{W}_{T \alpha}+\text { h.c. }= & \left\{-\frac{D^{\alpha} S_{E}}{2}\left(\Lambda^{I}-\bar{\Lambda}^{I}\right) \mathcal{O}_{E} V^{J} \mathcal{W}_{T \alpha}+\text { h.c. }\right\} \\
& -2 i\left(\Lambda^{I}-\bar{\Lambda}^{I}\right)\left\{\partial_{4} V \partial_{5} \Phi_{T}-\partial_{5} V \partial_{4} \Phi_{T}\right\} . \tag{4.9}
\end{align*}
$$

Furthermore, we can see that

$$
\begin{align*}
& \frac{2 \Phi_{T}}{U_{E}^{2}} \Phi_{T} \bar{\partial}_{E}\left(\Lambda^{I}-\bar{\Lambda}^{I}\right) \partial_{E} V^{J}+\text { h.c. } \\
& \quad=4 i \Phi_{T}\left\{\left(\Lambda^{I}-\bar{\Lambda}^{I}\right) \partial_{5} V^{J}-\partial_{5}\left(\Lambda^{I}-\bar{\Lambda}^{I}\right) \partial_{4} V^{J}\right\} \tag{4.10}
\end{align*}
$$

By means of these equations, we find that

$$
\begin{align*}
& \delta \mathcal{L}_{\mathrm{VT}}^{(\mathrm{SG})}= \int d^{4} \theta f_{I J}\left[2 i V^{I}\left\{\partial_{4}\left(\Lambda^{J}-\bar{\Lambda}^{J}\right) \partial_{5} \Phi_{T}-\partial_{5}\left(\Lambda^{J}-\bar{\Lambda}^{J}\right) \partial_{4} \Phi_{T}\right\}\right. \\
&-2 i\left(\Lambda^{I}-\bar{\Lambda}^{I}\right)\left(\partial_{4} V^{J} \partial_{5} \Phi_{T}-\partial_{5} V^{J} \partial_{4} \Phi_{T}\right) \\
&\left.+4 i \Phi_{T}\left\{\partial_{4}\left(\Lambda^{I}-\bar{\Lambda}^{I}\right) \partial_{5} V^{J}-\partial_{5}\left(\Lambda^{I}-\bar{\Lambda}^{I}\right) \partial_{4} V^{J}\right\}\right] \\
&=\int d^{4} \theta f_{I J}\left[-2 i \Phi_{T}\left\{\partial_{5} V^{I} \partial_{4}\left(\Lambda^{J}-\bar{\Lambda}^{J}\right)-\partial_{4} V^{I} \partial_{5}\left(\Lambda^{J}-\bar{\Lambda}^{J}\right)\right\}\right. \\
&+2 i \Phi_{T}\left\{\partial_{5}\left(\Lambda^{I}-\bar{\Lambda}^{I}\right) \partial_{4} V^{J}-\partial_{4}\left(\Lambda^{I}-\bar{\Lambda}^{I}\right) \partial_{5} V^{J}\right\} \\
&\left.+4 i \Phi_{T}\left\{\partial_{4}\left(\Lambda^{I}-\bar{\Lambda}^{I}\right) \partial_{5} V^{J}-\partial_{5}\left(\Lambda^{I}-\bar{\Lambda}^{I}\right) \partial_{4} V^{J}\right\}\right]
\end{align*}
$$

Namely, the 6D SUGRA action (3.34) is gauge-invariant.

4.2 Dimensional reduction to 5D

Here we show that the our result (3.34) reproduces the known 5D SUGRA action after the dimensional reduction. We drop the x^{5}-dependence of the superfields in (3.34). ${ }^{11}$ Then the differential operators become

$$
\begin{equation*}
\partial_{E} \rightarrow \frac{1}{S_{E}} \partial_{4}, \quad \mathcal{O}_{E} \rightarrow \frac{1}{S_{E}^{2}} \partial_{4} . \tag{4.12}
\end{equation*}
$$

[^8]Hence the hyper-sector Lagrangian $\mathcal{L}_{\mathrm{H}}^{(\mathrm{SG})}$ in (3.34) becomes

$$
\begin{align*}
\mathcal{L}_{\mathrm{H}}^{(5 \mathrm{D})}= & -\int d^{4} \theta 2 V_{E}^{1 / 2} U_{E}\left(H_{\text {odd }}^{\dagger} \tilde{d} e^{V} H_{\text {odd }}+H_{\text {even }}^{\dagger} \tilde{d} e^{-V} H_{\text {even }}\right) \\
& +\left[\int d^{2} \theta\left\{H_{\text {odd }}^{t} \tilde{d}\left(\frac{1}{S_{E}} \partial_{4}-\Sigma\right) H_{\text {even }}-H_{\text {even }}^{t} \tilde{d}\left(\frac{1}{S_{E}} \partial_{4}+\Sigma\right) H_{\text {odd }}\right\}+\text { h.c. }\right] \\
= & -\int d^{4} \theta 2 \hat{V}_{E}\left(\hat{H}_{\text {odd }}^{\dagger} \tilde{d} e^{V} \hat{H}_{\text {odd }}+\hat{H}_{\text {even }}^{\dagger} \tilde{d} e^{-V} \hat{H}_{\text {even }}\right) \\
& +\left[\int d^{2} \theta\left\{\hat{H}_{\text {odd }}^{t} \tilde{d}\left(\partial_{4}-\hat{\Sigma}\right) \hat{H}_{\text {even }}-\hat{H}_{\text {even }}^{t} \tilde{d}\left(\partial_{4}+\hat{\Sigma}\right) \hat{H}_{\text {odd }}\right\}+\text { h.c. }\right] \tag{4.13}
\end{align*}
$$

where

$$
\begin{align*}
\hat{V}_{E} & \equiv V_{E}^{1 / 2} U_{E}\left|S_{E}\right|, & \hat{\Sigma}^{I} & \equiv S_{E} \Sigma^{I}, \\
\hat{H}_{\text {odd }} & \equiv S_{E}^{-1 / 2} H_{\text {odd }}, & \hat{H}_{\text {even }} & \equiv S_{E}^{-1 / 2} H_{\text {even }} . \tag{4.14}
\end{align*}
$$

Next we consider the vector-tensor sector Lagrangian $\mathcal{L}_{\mathrm{VT}}^{(\mathrm{SG})}$. From (3.27), $\mathcal{W}_{T \alpha}$ becomes

$$
\begin{equation*}
\mathcal{W}_{T \alpha} \rightarrow S_{E} \mathcal{W}_{5 \alpha} . \tag{4.15}
\end{equation*}
$$

Then, $\mathcal{L}_{\mathrm{VT}}^{(\mathrm{SG})}$ becomes

$$
\begin{align*}
& \mathcal{L}_{\mathrm{VT}}^{(5 \mathrm{D})}=\int d^{4} \theta f_{I J}[\{ \left.-2 \Sigma^{I} D^{\alpha} V^{J} S_{E} \mathcal{W}_{5 \alpha}+\frac{1}{2}\left(\partial_{4} V^{I} D^{\alpha} V^{J}-\partial_{4} D^{\alpha} V^{I} V^{J}\right) \mathcal{W}_{5 \alpha}+\text { h.c. }\right\} \\
&+\Phi_{T} V_{E}\left(D^{\alpha} V^{I} \mathcal{W}_{\alpha}^{J}+\bar{D}_{\dot{\alpha}} V^{I} \overline{\mathcal{W}}^{J \dot{\alpha}}+V^{I} D^{\alpha} \mathcal{W}_{\alpha}^{J}\right) \\
&+\frac{\Phi_{T}}{U_{E}^{2}\left|S_{E}\right|^{2}}\left\{4\left(\partial_{4} V^{I}-\bar{S}_{E} \bar{\Sigma}^{I}\right)\left(\partial_{4}-S_{E} \Sigma^{J}\right)-2 \partial_{4} V^{I} \partial_{4} V^{J}\right. \\
&=\int d^{4} \theta f_{I J}\left[\left\{\begin{array}{l}
\left.-2 \hat{\Sigma}^{I} D^{\alpha} V^{J} \mathcal{W}_{5 \alpha}+\frac{1}{2}\left(\partial_{4} V^{I} D^{\alpha} V^{J}-\partial_{4} D^{\alpha} V^{I} V^{J}\right) \mathcal{W}_{5 \alpha}+\text { h.c. }\right\} \\
\\
\\
+V_{E} \Phi_{T}\left(D^{\alpha} V^{I} \mathcal{W}_{\alpha}^{J}+\bar{D}_{\dot{\alpha}} V^{I} \overline{\mathcal{W}}^{J \dot{\alpha}}+V^{I} D^{\alpha} \mathcal{W}_{\alpha}^{J}\right) \\
\\
\\
+\frac{2 V_{E} \Phi_{T}}{\hat{V}_{E}^{2}}\left\{\bar{\Sigma}_{4} V^{I} \partial_{4} V^{J}-2 \partial_{4} V^{I}\left(\hat{\Sigma}^{J}+\overline{\hat{\Sigma}}^{J}\right)+2 \overline{\hat{\Sigma}}^{I} \hat{\Sigma}^{J}\right.
\end{array}\right.\right. \\
&\left.\left.\quad+\hat{\Sigma}^{I} \hat{\Sigma}^{J}+\overline{\bar{\Sigma}}^{I} \overline{\hat{\Sigma}}^{J}\right\}\right]
\end{align*}
$$

where we have used (4.14). Here, note that the constraint (3.30) is now

$$
\begin{align*}
\bar{D}^{2} D_{\alpha}\left(V_{E} \Phi_{T}\right) & =-\frac{4}{S_{E}}\left\{\partial_{4}\left(S_{E} \mathcal{W}_{5 \alpha}\right)-\partial_{4} S_{E} \mathcal{W}_{5 \alpha}\right\} \\
& =-4 \partial_{4} \mathcal{W}_{5 \alpha}=-8 \partial_{4} \bar{D}^{2} D_{\alpha} X_{5} \tag{4.17}
\end{align*}
$$

This can be solved as

$$
\begin{equation*}
V_{E} \Phi_{T}=\partial_{4} V_{5}-\Sigma_{5}-\bar{\Sigma}_{5}, \tag{4.18}
\end{equation*}
$$

where $V_{5} \equiv-8 X_{5},{ }^{12}$ and Σ_{5} is a chiral superfield. Substituting this into (4.16), we obtain

$$
\left.\begin{array}{rl}
\mathcal{L}_{\mathrm{VT}}^{(5 \mathrm{D})}=\int d^{4} \theta f_{I J}\left[\left\{-2 \hat{\Sigma}^{I} D^{\alpha} V^{J} \mathcal{W}_{5 \alpha}+\frac{1}{2}\left(\partial_{4} V^{I} D^{\alpha} V^{J}-\partial_{4} D^{\alpha} V^{I} V^{J}\right) \mathcal{W}_{5 \alpha}+\text { h.c. }\right\}\right.
\end{array}\right\} \begin{aligned}
& +\left(\partial_{4} V_{5}-\Sigma_{5}-\bar{\Sigma}_{5}\right)\left(D^{\alpha} V^{I} \mathcal{W}_{\alpha}^{J}+\bar{D}_{\dot{\alpha}} V^{I} \overline{\mathcal{W}}^{J \dot{\alpha}}+V^{I} D^{\alpha} \mathcal{W}_{\alpha}^{J}\right) \\
& \left.+\frac{2\left(\partial_{4} V_{5}-\Sigma_{5}-\bar{\Sigma}_{5}\right)}{\hat{V}_{E}^{2}}\left(\partial_{4} V^{I}-\hat{\Sigma}^{I}-\overline{\hat{\Sigma}}^{I}\right)\left(\partial_{4} V^{J}-\hat{\Sigma}^{J}-\overline{\hat{\Sigma}}^{J}\right)\right]
\end{aligned}
$$

Notice that the "shape-modulus" superfield S_{E} completely disappears from the Lagrangian by the field redefinition (4.14).

Since it follows that

$$
\begin{align*}
&\left(\partial_{4} V_{5}-\Sigma_{5}-\bar{\Sigma}_{5}\right)\left(D^{\alpha} V^{I} \mathcal{W}_{\alpha}^{J}+\bar{D}_{\dot{\alpha}} V^{I} \overline{\mathcal{W}}^{J \dot{\alpha}}+V^{I} D^{\alpha} \mathcal{W}_{\alpha}^{J}\right) \\
&= \partial_{4} V_{5} D^{\alpha} V^{I} \mathcal{W}_{\alpha}^{J}+\frac{1}{2} \partial_{4} V_{5} V^{I} D^{\alpha} \mathcal{W}_{\alpha}^{J}-\Sigma_{5}\left(D^{\alpha} V^{I} \mathcal{W}_{\alpha}^{J}+\bar{D}_{\dot{\alpha}} V^{I} \overline{\mathcal{W}}^{J \dot{\alpha}}+V^{I} D^{\alpha} \mathcal{W}_{\alpha}^{J}\right)+\text { h.c. } \\
&= \partial_{4} V_{5} D^{\alpha} V^{I} \mathcal{W}_{\alpha}^{J}-\frac{1}{2} D^{\alpha}\left(\partial_{4} V_{5} V^{I}\right) \mathcal{W}_{\alpha}^{J}-\Sigma_{5} D^{\alpha} V^{I} \mathcal{W}_{\alpha}^{J} \\
&+\Sigma_{5} V^{I} \bar{D}_{\dot{\alpha}} \overline{\mathcal{W}}^{J \dot{\alpha}}-\Sigma_{5} V^{I} D^{\alpha} \mathcal{W}_{\alpha}^{J}+\text { h.c. } \\
&= \frac{1}{2}\left(\partial_{4} V_{5} D^{\alpha} V^{I}-\partial_{4} D^{\alpha} V_{5} V^{I}\right) \mathcal{W}_{\alpha}^{J}-\Sigma_{5} D^{\alpha} V^{I} \mathcal{W}_{\alpha}^{J}+\text { h.c. } \tag{4.20}
\end{align*}
$$

the above Lagrangian is rewritten as

$$
\begin{align*}
\mathcal{L}_{\mathrm{VT}}^{(5 \mathrm{D})}=\int d^{4} \theta f_{I J}\left[\left\{-2 \hat{\Sigma}^{I} D^{\alpha} V^{J} \mathcal{W}_{5 \alpha}+\frac{1}{2}\left(\partial_{4} V^{I} D^{\alpha} V^{J}-\partial_{4} D^{\alpha} V^{I} V^{J}\right) \mathcal{W}_{5 \alpha}\right.\right.
\end{aligned} \quad \begin{aligned}
& \left.\quad-\Sigma_{5} D^{\alpha} V^{I} \mathcal{W}_{\alpha}^{J}+\frac{1}{2}\left(\partial_{4} V_{5} D^{\alpha} V^{I}-\partial_{4} D^{\alpha} V_{5} V^{I}\right) \mathcal{W}_{\alpha}^{J}+\text { h.c. }\right\} \\
& \\
& \tag{4.21}\\
& \left.+\frac{2\left(\partial_{4} V_{5}-\Sigma_{5}-\bar{\Sigma}_{5}\right)}{\hat{V}_{E}^{2}}\left(\partial_{4} V^{I}-\hat{\Sigma}^{I}-\overline{\hat{\Sigma}}^{I}\right)\left(\partial_{4} V^{J}-\hat{\Sigma}^{J}-\overline{\hat{\Sigma}}^{J}\right)\right]
\end{align*}
$$

As shown in appendix D, we find that

$$
\begin{align*}
f_{I J} & \left\{\left(\partial_{4} V^{I} D^{\alpha} V^{J}-\partial_{4} D^{\alpha} V^{I} V^{J}\right) \mathcal{W}_{5 \alpha}+\left(\partial_{4} V_{5} D^{\alpha} V^{I}-\partial_{4} D^{\alpha} V_{5} V^{I}\right) \mathcal{W}_{\alpha}^{J}\right\}+\text { h.c. } \\
& =2 f_{I J}\left(\partial_{4} V^{I} D^{\alpha} V_{5}-\partial_{4} D^{\alpha} V^{I} V_{5}\right) \mathcal{W}_{\alpha}^{J}+\text { h.c.. } \tag{4.22}
\end{align*}
$$

[^9]By means of this relation, (4.21) is further rewritten as

$$
\begin{align*}
\mathcal{L}_{\mathrm{VT}}^{(5 \mathrm{D})}= & \int d^{4} \theta f_{I J}\left[\left\{-2 \hat{\Sigma}^{I} D^{\alpha} V^{J} \mathcal{W}_{5 \alpha}-\Sigma_{5} D^{\alpha} V^{I} \mathcal{W}_{\alpha}^{J}+\frac{1}{3}\left(\partial_{4} V^{I} D^{\alpha} V^{J}-\partial_{4} D^{\alpha} V^{I} V^{J}\right) \mathcal{W}_{5 \alpha}\right.\right. \\
& \left.+\frac{1}{3}\left(\partial_{4} V_{5} D^{\alpha} V^{I}-\partial_{4} D^{\alpha} V_{5} V^{I}\right) \mathcal{W}_{\alpha}^{J}+\frac{1}{3}\left(\partial_{4} V^{I} D^{\alpha} V_{5}-\partial_{4} D^{\alpha} V^{I} V_{5}\right) \mathcal{W}_{\alpha}^{J}+\text { h.c. }\right\} \\
& \left.+\frac{2\left(\partial_{4} V_{5}-\Sigma_{5}-\bar{\Sigma}_{5}\right)}{\hat{V}_{E}^{2}}\left(\partial_{4} V^{I}-\hat{\Sigma}^{I}-\overline{\hat{\Sigma}}^{I}\right)\left(\partial_{4} V^{J}-\hat{\Sigma}^{J}-\overline{\hat{\Sigma}}^{J}\right)\right] \tag{4.23}
\end{align*}
$$

Here we relabel $\left(V_{5}, \Sigma_{5}\right)$ as $\left(V^{0}, \Sigma^{0}\right)$. Then this Lagrangian is expressed as

$$
\begin{align*}
\mathcal{L}_{\mathrm{VT}}^{(5 \mathrm{D})}= & {\left[-\int d^{2} \theta C_{I J K} \Sigma^{I} \mathcal{W}^{J} \mathcal{W}^{K}+\text { h.c. }\right] } \\
& +\int d^{4} \theta \frac{C_{I J K}}{3}\left\{\left(\partial_{4} V^{I} D^{\alpha} V^{J}-\partial_{4} D^{\alpha} V^{I} V^{J}\right) \mathcal{W}_{\alpha}^{K}+\text { h.c. }\right\} \\
& +\int d^{4} \theta \frac{2 C_{I J K}}{3 \hat{V}_{E}^{2}} \mathcal{V}^{I} \mathcal{V}^{J} \mathcal{V}^{K} \tag{4.24}
\end{align*}
$$

where the indices I, J, K now run from 0 , the completely symmetric constant tensor $C_{I J K}$ is defined as $C_{I J 0}=f_{I J}(I, J \neq 0)$ and the other components are zero, and

$$
\begin{equation*}
\mathcal{V}^{I} \equiv \partial_{4} V^{I}-\Sigma^{I}-\bar{\Sigma}^{I} \tag{4.25}
\end{equation*}
$$

which is the extra-dimensional component of the field strength superfield.
The 5D Lagrangians (4.13) and (4.24) perfectly agree with the $\mathcal{N}=1$ superfield description of 5D SUGRA derived in refs. [7, 8].

5 Summary

We have found the $\mathcal{N}=1$ superfield description of 6D SUGRA, and clarified how the moduli superfields appear in the action. We identified the combinations of the bosonic component fields that form $\mathcal{N}=1$ superfields. By acting the SUSY transformations on them, we can identify the fermionic components of the superfields, which are expected to have complicated forms. Our result (3.34) reproduces the action in the global SUSY case by replacing the moduli superfields V_{E} and S_{E} with their constant background values. We have also shown that it is gauge-invariant both under (3.28) and (4.1), and is consistent with the known superfield action of 5D SUGRA through the dimensional reduction.

Compared to 5D SUGRA, the existence of the tensor multiplet and the "shape" modulus S_{E} make the construction of the action complicated. In the global SUSY limit, the tensor multiplet is described by on-shell superfields that are subject to the constraints in (2.6). When the theory is promoted to SUGRA, this multiplet becomes off-shell and the superfields X_{4} (or X_{5}) and Y_{α} can be treated as unconstrained independent superfields. As shown in section 4.1, the gauge invariance of the action in the vector-tensor sector is realized in a quite nontrivial manner because the Lagrangian is invariant only up to total
derivatives. The gauge invariance strictly restricts the S_{E}-dependence of the action. It appears in the action through ∂_{E} and $U_{E}\left(S_{E}, \bar{S}_{E}\right)$ defined in (3.15) and (3.20), respectively. We should also note that the S_{E}-dependence is absorbed by the field redefinition and completely disappears when one of the extra dimensions is reduced. This is another nontrivial check for our result.

In this work, we have neglected the fluctuation modes of $e_{\mu}^{\underline{\nu}}, e_{\mu}{ }^{\underline{n}}$ and $e_{m}^{\frac{\nu}{\alpha}}(\mu, \nu=$ $0,1,2,3 ; m, n=4,5)$. As mentioned in the footnote 6 , the fluctuations of $e_{\mu}{ }^{\underline{\nu}}$ can be taken into account by using the invariant action formulae in the superconformal formulation of 4D SUGRA. As for the "off-diagonal" components $e_{\mu}^{\underline{n}}$ and $e_{m}{ }^{\underline{\nu}}$, further effort is necessary. However, we expect that it is not very difficult to incorporate them at linear order by means of the linearized SUGRA formulation [40-42], just like the 5D SUGRA case discussed in refs. $[6,10]$.

Our superfield description is useful to derive 4D effective theories of various 6D SUGRA models, as we did in the 5D SUGRA case [19-21]. Especially, we can treat a case that there exists the background magnetic flux penetrating the compact space or that the compact space has nonvanishing curvature. An explicit derivation of 4D effective theory will be discussed in a subsequent paper.

Acknowledgements

H.A., Y.S. and Y.Y. are supported in part by Grant-in-Aid for Young Scientists (B) (No. 25800158), Grant-in-Aid for Scientific Research (C) (No. 25400283), and Research Fellowships for Young Scientists (No. 26-4236), respectively, which are from Japan Society for the Promotion of Science.

A 6D and 4D superconformal algebras

The 6D superconformal algebra consists of the translation $P_{A}(A=0,1, \cdots, 5)$, the local Lorentz transformation $M_{A B}$, the dilatation D, the special conformal transformation K_{A}, the $\operatorname{SU}(2)_{\mathbf{U}}$ automorphism $U^{i j}$, SUSY $Q_{\underline{\alpha}}^{i}$ and the conformal SUSY $S_{\underline{\alpha}}^{i}{ }^{13}$ Here, $\underline{\alpha}=$ $1,2,3,4$ is the 6 D Weyl spinor index, and $i=1,2$ is the $\mathrm{SU}(2)_{\mathbf{U}}$-doublet index. They satisfy the following algebra.

$$
\begin{align*}
{\left[M_{A B}, M_{C D}\right] } & =i\left(\eta_{B C} M_{A D}-\eta_{A C} M_{B D}-\eta_{B D} M_{A C}+\eta_{A D} M_{B C}\right) \\
{\left[M_{A B}, P_{C}\right] } & =i\left(\eta_{B C} P_{A}-\eta_{A C} P_{B}\right) \\
{\left[M_{A B}, K_{C}\right] } & =i\left(\eta_{B C} K_{A}-\eta_{A C} K_{B}\right), \\
{\left[M_{A B}, D\right] } & =0, \quad\left[D, P_{A}\right]=i P_{A}, \quad\left[D, K_{A}\right]=-i K_{A} \\
{\left[P_{A}, K_{B}\right] } & =2 i\left(\eta_{A B} D+M_{A B}\right) \tag{A.1}
\end{align*}
$$

[^10]and
\[

$$
\begin{align*}
{\left[M_{A B}, Q_{\underline{\alpha}}^{i}\right] } & =\frac{i}{2}\left(\gamma_{A B} Q^{i}\right)_{\underline{\alpha}}, \quad\left[D, Q_{\underline{\alpha}}^{i}\right]=\frac{i}{2} Q_{\underline{\alpha}}^{i}, \\
{\left[P_{A}, Q_{\underline{\alpha}}^{i}\right] } & =0, \quad\left[K_{A}, Q_{\underline{\alpha}}^{i}\right]=\left(\gamma_{A} S^{i}\right)_{\underline{\alpha}}, \\
{\left[M_{A B}, S^{i \underline{\alpha}}\right] } & =\frac{i}{2}\left(\tilde{\gamma}_{A B} S^{i}\right)^{\underline{\alpha}}, \quad\left[D, S^{i \underline{\alpha}}\right]=-\frac{i}{2} S^{i \underline{\alpha}}, \\
{\left[P_{A}, S^{i \underline{\alpha}}\right] } & =\left(\tilde{\gamma}_{A} Q^{i}\right)^{\underline{\alpha}}, \quad\left[K_{A}, S^{i \underline{\alpha}}\right]=0, \\
\left\{Q_{\underline{\alpha}}^{1}, Q_{\underline{\beta}}^{2}\right\} & =2\left(\gamma^{A} C^{-1}\right)_{\underline{\alpha} \underline{\beta}} P_{A}, \\
\left\{Q_{\underline{\alpha}}^{i}, S^{j \underline{\beta}}\right\} & =-i \epsilon^{i j}\left\{\left(\gamma^{A B} \tilde{C}^{-1}\right)_{\underline{\alpha}}^{\underline{\beta}} M_{A B}-2\left(\tilde{C}^{-1}\right)_{\underline{\alpha}}^{\underline{\beta}} D\right\}+8\left(\tilde{C}^{-1}\right)_{\underline{\alpha}}^{\underline{\beta}} U^{i j}, \\
\left\{S^{1 \underline{\alpha}}, S^{2 \underline{\beta}}\right\} & =2\left(\tilde{\gamma}^{A} \tilde{C}^{-1}\right)^{\underline{\alpha} \underline{\beta}} K_{A}, \\
{\left[U^{i j}, U^{k l}\right] } & =\epsilon^{l i} U^{k j}-\epsilon^{j k} U^{i l}, \\
{\left[U^{i j}, Q_{\underline{\alpha}}^{k}\right] } & =-\epsilon^{j k} Q_{\underline{\alpha}}^{i}-\frac{1}{2} \epsilon^{i j} Q_{\underline{\alpha}}^{k}, \quad\left[U^{i j}, S^{k \underline{\alpha}}\right]=-\epsilon^{j k} S^{i \underline{\alpha}}-\frac{1}{2} \epsilon^{i j} S^{k \underline{\alpha}} . \tag{A.2}
\end{align*}
$$
\]

Here we decompose the 4 -component spinors into 2 -component ones as

$$
\begin{array}{ll}
Q_{\underline{\alpha}}^{1}=\binom{Q_{\alpha}^{1}}{-\bar{Q}^{2 \dot{\alpha}}}, & Q_{\underline{\alpha}}^{2}=\binom{Q_{\alpha}^{2}}{\bar{Q}^{1 \dot{\alpha}}}, \\
S^{1 \underline{\alpha}}=\binom{S^{1 \alpha}}{-\bar{S}_{\dot{\alpha}}^{2}}, & S^{2 \underline{\alpha}}=\binom{S^{2 \alpha}}{\bar{S}_{\dot{\alpha}}^{1}} . \tag{A.3}
\end{array}
$$

The $\operatorname{SU}(2)_{\mathbf{U}}$ generators $U^{i j}$ are also expressed as

$$
\begin{equation*}
U^{i}{ }_{j}=\epsilon_{j k} U^{i k}=\sum_{a=1}^{3} u^{a}\left(\sigma^{a}\right)^{i}{ }_{j} . \tag{A.4}
\end{equation*}
$$

From (A.2), we obtain

$$
\begin{align*}
{\left[M_{\mu \nu}, Q_{\alpha}^{1}\right] } & =i\left(\sigma^{\mu \nu} Q^{1}\right)_{\alpha}, \quad\left[M_{\mu \nu}, S_{\alpha}^{2}\right]=i\left(\sigma^{\mu \nu} S^{2}\right)_{\alpha}, \\
{\left[M_{45}, Q_{\alpha}^{1}\right] } & =-\frac{1}{2} Q_{\alpha}^{1}, \quad\left[M_{45}, S_{\alpha}^{2}\right]=\frac{1}{2} S_{\alpha}^{2} \\
{\left[D, Q_{\alpha}^{1}\right] } & =\frac{i}{2} Q_{\alpha}^{1}, \quad\left[D, S_{\alpha}^{2}\right]=-\frac{i}{2} S_{\alpha}^{2} \\
{\left[K_{\mu}, Q_{\alpha}^{1}\right] } & =\left(\sigma_{\mu} \bar{S}^{2}\right)_{\alpha}, \quad\left[P_{\mu}, S_{\alpha}^{2}\right]=\left(\sigma_{\mu} \bar{Q}^{1}\right)_{\alpha} \\
\left\{Q_{\alpha}^{1}, \bar{Q}_{\dot{\beta}}^{1}\right\} & =-2 \sigma_{\alpha \dot{\beta}}^{\mu} P_{\mu}, \quad\left\{S_{\alpha}^{2}, \bar{S}_{\dot{\beta}}^{2}\right\}=-2 \sigma_{\alpha \dot{\beta}}^{\mu} K_{\mu} \\
\left\{Q_{\alpha}^{1}, S^{2 \beta}\right\} & =2 i\left(\sigma^{\mu \nu}\right)_{\alpha}{ }^{\beta} M_{\mu \nu}-2{\delta_{\alpha}{ }^{\beta}\left(M_{45}-4 u^{3}+i D\right),}_{\left[u^{3}, Q_{\alpha}^{1}\right]}=-\frac{1}{2} Q_{\alpha}^{1}, \quad\left[u^{3}, S_{\alpha}^{2}\right]=\frac{1}{2} S_{\alpha}^{1}
\end{align*}
$$

in the 2 -component-spinor notation. This is the $4 \mathrm{D} \mathcal{N}=1$ superconformal algebra, and we can identify the generator of the $\mathrm{U}(1)_{A}$ automorphism as

$$
\begin{equation*}
\mathcal{Q}_{A}=M_{45}-4 u^{3} . \tag{A.6}
\end{equation*}
$$

We have normalized \mathcal{Q}_{A} so that Q_{α}^{1} and S_{α}^{2} have the charges $3 / 2$ and $-3 / 2$, respectively.

B SUSY transformation of 6D Weyl multiplet

The 6D Weyl multiplet consists of the sechsbein $e_{M} \frac{N}{}$, the gravitino $\Psi^{i}{ }_{M \alpha}$, the gauge fields for the dilatation b_{M} and for the $\operatorname{SU}(2)_{\mathbf{U}}$ automorphism $V_{M}^{a}(a=1,2,3)$, the anti-selfdual tensor $T_{M N L}^{-}$, and some auxiliary fields. The SUSY transformations of the (extra-dimensional-components of) 6D Weyl multiplet [14, 27] are expressed in the 2-component spinor notation as follows. ${ }^{14}$

$$
\begin{align*}
\delta_{\epsilon} e_{m}^{4}= & 2\left(\epsilon^{1} \psi_{m}^{2}-\epsilon^{2} \psi_{m}^{1}\right)+\text { h.c. }, \\
\delta_{\epsilon} e_{m}{ }^{\frac{5}{n}}= & -2 i\left(\epsilon^{1} \psi_{m}^{2}-\epsilon^{2} \psi_{m}^{1}\right)+\text { h.c. }, \\
\delta_{\epsilon} \psi_{m}^{1}= & \left\{\partial_{m}+\frac{1}{2} b_{m}-\frac{1}{2}\left(\omega_{m}^{\mu \nu} \sigma_{\mu \nu}+i \omega_{m}^{45}\right)-i V_{m}^{3}+\frac{e_{m}^{\frac{4}{2}}-i e_{m}^{5}}{4}\left(T_{\mu \nu \underline{4}}+i T_{\mu \nu \underline{5}}\right) \sigma^{\mu \nu}\right\} \epsilon^{1} \\
& -i\left(V_{m}^{1}-i V_{m}^{2}\right) \epsilon^{2} \\
& +\left\{\frac{i}{2}\left(\omega_{m}^{\mu \underline{4}}+i \omega_{m}^{\mu \underline{5}}\right) \sigma_{\mu}-\frac{e_{m}^{\frac{4}{2}}+i e_{m}^{\frac{5}{2}}}{24} \epsilon^{\mu \nu \rho \lambda} T_{\mu \nu \rho}^{-} \sigma_{\lambda}+6 T_{\mu \underline{5}}^{-} \sigma^{\mu}\right\} \bar{\epsilon}^{2}, \\
\delta_{\epsilon} \psi_{m}^{2}= & \left\{\partial_{m}+\frac{1}{2} b_{m}-\frac{1}{2}\left(\omega_{m}^{\mu \nu} \sigma_{\mu \nu}+i \omega_{m}^{45}\right)+i V_{m}^{3}+\frac{e_{m}^{\frac{4}{2}}-i e_{m}^{\underline{5}}}{4}\left(T_{\mu \nu \underline{4}}+i T_{\mu \nu \underline{5}}\right) \sigma^{\mu \nu}\right\} \epsilon^{2} \\
& -\left\{\frac{i}{2}\left(\omega_{m}^{\mu 4}+i \omega_{m}^{\mu \underline{5}}\right) \sigma_{\mu}-\frac{e_{m}^{\frac{4}{2}}+i e_{m}^{\frac{5}{3}}}{24}\left(\epsilon^{\mu \nu \rho \lambda} T_{\mu \nu \rho}^{-} \sigma_{\lambda}+6 T_{\mu \underline{5}}^{-} \sigma^{\mu}\right)\right\} \bar{\epsilon}^{1} \\
& -i\left(V_{m}^{1}+i V_{m}^{2}\right) \epsilon^{1}, \tag{B.1}
\end{align*}
$$

where the 2 -component spinors $\psi_{m}^{i}(i=1,2)$ are embedded into the 4 -component ones as

$$
\begin{equation*}
\Psi_{m \underline{\alpha}}^{1}=\binom{\psi_{m \alpha}^{1}}{-\bar{\psi}_{m}^{2 \dot{\alpha}}}, \quad \Psi_{m \underline{\alpha}}^{2}=\binom{\psi_{m \alpha}^{2}}{\bar{\psi}_{m}^{1 \dot{\alpha}}}, \tag{B.2}
\end{equation*}
$$

which have positive 6 D chiralities. In section 3.1, we focus on a half of the whole SUSY parameterized by ϵ_{α}^{1} and $\bar{\epsilon}_{\dot{\alpha}}^{1}$.

[^11]
C Component expression of constraint (3.26)

Here we express the constraint (3.26) in terms of the component fields, and clarify the independent degrees of freedom. Note that (3.26) is rewritten as

$$
\begin{equation*}
\bar{D}^{2}\left(D_{\alpha} X_{5}+4 \partial_{5} Y_{\alpha}\right)=\frac{1}{S_{E}^{2}} \bar{D}^{2}\left(D_{\alpha} X_{4}+4 \partial_{4} Y_{\alpha}\right) . \tag{C.1}
\end{equation*}
$$

Since $\bar{D}^{2} D_{\alpha} X_{m}(m=4,5)$ are field strength superfields, $4 \partial_{m} \bar{D}^{2} Y_{\alpha}$ are chiral spinor superfields and $1 / S_{E}^{2}$ is a chiral scalar superfield, they are expanded as

$$
\begin{align*}
\bar{D}^{2} D_{\alpha} X_{m} & =\lambda_{m \alpha}+\theta_{\alpha} D_{m}+i\left(\sigma^{\mu \nu} \theta\right)_{\alpha} v_{m \mu \nu}-i \theta^{2}\left(\sigma^{\mu} \partial_{\mu} \bar{\lambda}_{m}\right)_{\alpha}, \\
4 \partial_{m} \bar{D}^{2} Y_{\alpha} & =\omega_{m \alpha}+\theta_{\alpha} K_{m}+i\left(\sigma^{\mu \nu} \theta\right)_{\alpha} K_{m \mu \nu}+\theta^{2} \tau_{m \alpha}, \\
\frac{1}{S_{E}^{2}} & =a+\theta \psi+\theta^{2} F, \tag{C.2}
\end{align*}
$$

where D_{m} is a real scalar, $v_{m \mu \nu} \equiv \partial_{\mu} v_{m \nu}-\partial_{\nu} v_{m \mu}$ is a field strength, K_{m} is a complex scalar and $K_{m \mu \nu}$ is a real antisymmetric tensor. Then, we calculate

$$
\begin{align*}
4 \partial_{5} \bar{D}^{2} Y_{\alpha}= & \frac{1}{S_{E}^{2}} \bar{D}^{2}\left(D_{\alpha} X_{4}+4 \partial_{4} Y_{\alpha}\right)-\bar{D}^{2} D_{\alpha} X_{5} \\
= & a\left(\lambda_{4}+\omega_{4}\right)_{\alpha}-\lambda_{5 \alpha} \\
& +\theta_{\alpha}\left\{a\left(D_{4}+K_{4}+\frac{1}{2} \psi\left(\lambda_{4}+\omega_{4}\right)\right)-D_{5}\right\} \\
& +i\left(\sigma^{\mu \nu} \theta\right)_{\alpha}\left(\frac{1}{2} \epsilon_{\mu \nu \rho \lambda} C_{4 \mathrm{R}}^{\rho \lambda}+C_{4 I \mu \nu}-v_{5 \mu \nu}\right) \\
& +\theta^{2}\left\{F\left(\lambda_{4}+\omega_{4}\right)_{\alpha}-\frac{1}{2} \psi_{\alpha}\left(D_{4}+K_{4}\right)-\frac{i}{2}\left(\sigma^{\mu \nu} \psi\right)_{\alpha}\left(v_{4 \mu \nu}+K_{4 \mu \nu}\right)\right. \\
& \left.+a\left(\tau_{4}-i \sigma^{\mu} \partial_{\mu} \bar{\lambda}_{4}\right)_{\alpha}+i\left(\sigma^{\mu} \partial_{\mu} \bar{\lambda}_{5}\right)_{\alpha}\right\}, \tag{C.3}
\end{align*}
$$

where

$$
\begin{align*}
C_{4 \mathrm{R} \mu \nu} & \equiv(\operatorname{Re} a)\left(v_{4 \mu \nu}+K_{4 \mu \nu}\right)-\operatorname{Re}\left\{\frac{a}{2} \psi \sigma_{\mu \nu}\left(\lambda_{4}+\omega_{4}\right)\right\}, \\
C_{4 \mathrm{I} \mu \nu} & \equiv(\operatorname{Im} a)\left(v_{4 \mu \nu}+K_{4 \mu \nu}\right)-\operatorname{Im}\left\{\frac{a}{2} \psi \sigma_{\mu \nu}\left(\lambda_{4}+\omega_{4}\right)\right\} . \tag{C.4}
\end{align*}
$$

We have used that

$$
\begin{align*}
(\theta \psi) \tilde{\lambda}_{\alpha} & =\frac{1}{2}\left\{(\psi \tilde{\lambda}) \theta_{\alpha}-\left(\psi \sigma^{\mu \nu} \tilde{\lambda}\right)\left(\sigma_{\mu \nu} \theta\right)_{\alpha}\right\}, \\
\left(C_{4 \mathrm{R} \mu \nu}+i C_{4 \mathrm{I} \mu \nu}\right)\left(\sigma^{\mu \nu} \theta\right)_{\alpha} & =i\left(\frac{1}{2} \epsilon_{\mu \nu \rho \lambda} C_{4 \mathrm{R}}^{\rho \lambda}+C_{4 \mathrm{I} \mu \nu}\right)\left(\sigma^{\mu \nu} \theta\right)_{\alpha} \tag{C.5}
\end{align*}
$$

where $\tilde{\lambda}_{\alpha} \equiv \lambda_{4 \alpha}+\omega_{4 \alpha}$.
From (C.3), we can see that the constraint (3.26) can be satisfied for a given X_{4} and Y_{α} by adjusting X_{5} and S_{E}. Specifically, for given values of $\bar{D}^{2} D_{\alpha} X_{4}$ and $4 \partial_{4} \bar{D}^{2} Y_{\alpha}$, we
can realize any values for $\omega_{5 \alpha}, K_{5}, K_{5 \mu \nu}$ and $\tau_{5 \alpha}$ in $4 \partial_{5} \bar{D}^{2} Y_{\alpha}$ by tuning $\lambda_{5 \alpha}, D_{5}$ and $a, v_{5 \mu}$ and two real degrees of freedom in ψ_{α}, and F and the remaining degrees of freedom in ψ_{α}, respectively.

D Derivation of eq. (4.22)

Here we derive the relation (4.22). We neglect total derivatives. Then we obtain

$$
\begin{align*}
A & \equiv f_{I J}\left(\partial_{4} V_{5} D^{\alpha} V^{I}-\partial_{4} D^{\alpha} V_{5} V^{I}\right) \mathcal{W}_{\alpha}^{J}+\text { h.c. } \\
& =-f_{I J}\left(V_{5} \partial_{4} D^{\alpha} V^{I}-D^{\alpha} V_{5} \partial_{4} V^{I}\right) \mathcal{W}_{\alpha}^{J}+B+\text { h.c. } \tag{D.1}
\end{align*}
$$

where

$$
\begin{equation*}
B \equiv-f_{I J}\left(V_{5} D^{\alpha} V^{I}-D^{\alpha} V_{5} V^{I}\right) \partial_{4} \mathcal{W}_{\alpha}^{J} . \tag{D.2}
\end{equation*}
$$

We can show that

$$
\begin{align*}
B+\text { h.c. } & =\frac{f_{I J}}{4} \bar{D}^{2}\left(V_{5} D^{\alpha} V^{I}-D^{\alpha} V_{5} V^{I}\right) \partial_{4} D_{\alpha} V^{J}+\text { h.c. } \\
& =f_{I J} \mathcal{W}_{5}^{\alpha} V^{I} \partial_{4} D_{\alpha} V^{J}+C+\text { h.c. } \tag{D.3}
\end{align*}
$$

where

$$
\begin{align*}
& C \equiv \frac{f_{I J}}{4}\left(\bar{D}^{2} V_{5} D^{\alpha} V^{I}+2 \bar{D}_{\dot{\alpha}} V_{5} \bar{D}^{\dot{\alpha}} D^{\alpha} V^{I}+V_{5} \bar{D}^{2} D^{\alpha} V^{I}\right. \\
&\left.+2 \bar{D}_{\dot{\alpha}} D^{\alpha} V_{5} \bar{D}^{\dot{\alpha}} V^{I}-D^{\alpha} V_{5} \bar{D}^{2} V^{I}\right) \partial_{4} D_{\alpha} V^{J} . \tag{D.4}
\end{align*}
$$

Here, it follows that

$$
\begin{align*}
& C+\text { h.c. }=-\frac{f_{I J}}{4} D^{\alpha}\left(\bar{D}^{2} V_{5} D_{\alpha} V^{I}+2 \bar{D}_{\dot{\alpha}} V_{5} \bar{D}^{\dot{\alpha}} D_{\alpha} V^{I}+V_{5} \bar{D}^{2} D_{\alpha} V^{I}\right. \\
& \left.+2 \bar{D}_{\dot{\alpha}} D_{\alpha} V_{5} \bar{D}^{\dot{\alpha}} V^{I}-D_{\alpha} V_{5} \bar{D}^{2} V^{I}\right) \partial_{4} V^{J}+\text { h.c. } \\
& =-\frac{f_{I J}}{4}\left(D^{\alpha} \bar{D}^{2} V_{5} D_{\alpha} V^{I}-2 \bar{D}_{\dot{\alpha}} V_{5} D^{\alpha} \bar{D}^{\dot{\alpha}} D_{\alpha} V^{I}+D^{\alpha} V_{5} \bar{D}^{2} D_{\alpha} V^{I}\right. \\
& \left.+V_{5} D^{\alpha} \bar{D}^{2} D_{\alpha} V^{I}+2 D^{\alpha} \bar{D}_{\dot{\alpha}} D_{\alpha} V_{5} D_{\alpha} V^{I}+D_{\alpha} V_{5} D^{\alpha} \bar{D}^{2} V^{I}\right) \partial_{4} V^{J}+\text { h.c. } \\
& =-\frac{f_{I J}}{4}\left(\bar{D}^{2} D^{\alpha} V_{5} D_{\alpha} V^{I}+4 i \sigma_{\alpha \dot{\alpha}}^{\mu} \partial_{\mu} \bar{D}^{\dot{\alpha}} V_{5} D^{\alpha} V^{I}+2 \bar{D}_{\dot{\alpha}} V_{5} D^{2} \bar{D}^{\dot{\alpha}} V^{I}\right. \\
& -4 i \sigma_{\alpha \dot{\alpha}}^{\mu} \bar{D}^{\dot{\alpha}} V_{5} \partial_{\mu} D^{\alpha} V^{I}+V_{5} D^{\alpha} \bar{D}^{2} D_{\alpha} V^{I}-2 D^{2} \bar{D}_{\dot{\alpha}} V_{5} \bar{D}^{\dot{\alpha}} V^{I} \\
& \left.-4 i \sigma_{\alpha \dot{\alpha}}^{\mu} \partial_{\mu} D^{\alpha} V_{5} \bar{D}^{\dot{\alpha}} V^{I}+4 i \sigma_{\alpha \dot{\alpha}}^{\mu} D^{\alpha} V_{5} \partial_{\mu} \bar{D}^{\dot{\alpha}} V^{I}\right) \partial_{4} V^{J}+\text { h.c. } \\
& =f_{I J}\left(-\mathcal{W}_{5}^{\alpha} D_{\alpha} V^{I}+2 \bar{D}_{\dot{\alpha}} V_{5} \overline{\mathcal{W}}^{I \dot{\alpha}}+V_{5} D^{\alpha} \mathcal{W}_{\alpha}^{I}\right) \partial_{4} V^{J}+\text { h.c. } \\
& =f_{I J}\left[-D^{\alpha} V^{I} \partial_{4} V^{J} \mathcal{W}_{5 \alpha}+\left\{2 D^{\alpha} V_{5} \partial_{4} V^{I}-D^{\alpha}\left(V_{5} \partial_{4} V^{I}\right)\right\} \mathcal{W}_{\alpha}^{J}\right]+\text { h.c. } \\
& =f_{I J}\left\{-D^{\alpha} V^{I} \partial_{4} V^{J} \mathcal{W}_{5 \alpha}+\left(D^{\alpha} V_{5} \partial_{4} V^{I}-V_{5} \partial_{4} D^{\alpha} V^{I}\right) \mathcal{W}_{\alpha}^{J}\right\}+\text { h.c. } . \tag{D.5}
\end{align*}
$$

We have used the commutation relations:

$$
\begin{equation*}
\left\{D_{\alpha}, \bar{D}_{\dot{\alpha}}\right\}=-2 i \sigma_{\alpha \dot{\alpha}}^{\mu} \partial_{\mu}, \quad\left[D_{\alpha}, \bar{D}^{2}\right]=-4 i \sigma_{\alpha \dot{\alpha}}^{\mu} \partial_{\mu} \bar{D}^{\dot{\alpha}} \tag{D.6}
\end{equation*}
$$

Therefore, (D.1) is calculated as

$$
\begin{align*}
A= & -f_{I J}\left(V_{5} \partial_{4} D^{\alpha} V^{I}-D^{\alpha} V_{5} \partial_{4} V^{I}\right) \mathcal{W}_{\alpha}^{J}+f_{I J} \mathcal{W}_{5}^{\alpha} V^{I} \partial_{4} D_{\alpha} V^{J} \\
& -f_{I J} D^{\alpha} V^{I} \partial_{4} V^{J} \mathcal{W}_{5 \alpha}+f_{I J}\left(D^{\alpha} V_{5} \partial_{4} V^{I}-V_{5} \partial_{4} D^{\alpha} V^{I}\right) \mathcal{W}_{\alpha}^{J}+\text { h.c. } \\
= & 2 f_{I J}\left(\partial_{4} V^{I} D^{\alpha} V_{5}-\partial_{4} D^{\alpha} V^{I} V_{5}\right) \mathcal{W}_{\alpha}^{J} \\
& -f_{I J}\left(\partial_{4} V^{I} D^{\alpha} V^{J}-\partial_{4} D^{\alpha} V^{I} V^{J}\right) \mathcal{W}_{5 \alpha}+\text { h.c.. } \tag{D.7}
\end{align*}
$$

Namely, we obtain

$$
\begin{align*}
& f_{I J}\left\{\left(\partial_{4} V^{I} D^{\alpha} V^{J}-\partial_{4} D^{\alpha} V^{I} V^{J}\right) \mathcal{W}_{5 \alpha}+\left(\partial_{4} V_{5} D^{\alpha} V^{I}-\partial_{4} D^{\alpha} V_{5} V^{I}\right) \mathcal{W}_{\alpha}^{J}\right\}+\text { h.c. } \\
&=2 f_{I J}\left(\partial_{4} V^{I} D^{\alpha} V_{5}-\partial_{4} D^{\alpha} V^{I} V_{5}\right) \mathcal{W}_{\alpha}^{J}+\text { h.c.. } \tag{D.8}
\end{align*}
$$

Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

[1] N. Marcus, A. Sagnotti and W. Siegel, Ten-dimensional Supersymmetric Yang-Mills Theory in Terms of Four-dimensional Superfields, Nucl. Phys. B 224 (1983) 159 [inSPIRE].
[2] N. Arkani-Hamed, T. Gregoire and J.G. Wacker, Higher dimensional supersymmetry in $4 D$ superspace, JHEP 03 (2002) 055 [hep-th/0101233] [inSPIRE].
[3] D. Marti and A. Pomarol, Supersymmetric theories with compact extra dimensions in $N=1$ superfields, Phys. Rev. D 64 (2001) 105025 [hep-th/0106256] [INSPIRE].
[4] A. Hebecker, 5d super Yang-Mills theory in 4d superspace, superfield brane operators and applications to orbifold GUTs, Nucl. Phys. B 632 (2002) 101 [hep-ph/0112230] [INSPIRE].
[5] H. Abe, T. Kobayashi, H. Ohki and K. Sumita, Superfield description of $10 D$ SYM theory with magnetized extra dimensions, Nucl. Phys. B 863 (2012) 1 [arXiv:1204.5327] [inSPIRE].
[6] W.D. Linch III, M.A. Luty and J. Phillips, Five-dimensional supergravity in $N=1$ superspace, Phys. Rev. D 68 (2003) 025008 [hep-th/0209060] [inSPIRE].
[7] F. Paccetti Correia, M.G. Schmidt and Z. Tavartkiladze, Superfield approach to 5 D conformal SUGRA and the radion, Nucl. Phys. B 709 (2005) 141 [hep-th/0408138] [INSPIRE].
[8] H. Abe and Y. Sakamura, Superfield description of $5 D$ supergravity on general warped geometry, JHEP 10 (2004) 013 [hep-th/0408224] [INSPIRE].
[9] S.M. Kuzenko and W.D. Linch III, On five-dimensional superspaces, JHEP 02 (2006) 038 [hep-th/0507176] [INSPIRE].
[10] Y. Sakamura, Superfield description of gravitational couplings in generic $5 D$ supergravity, JHEP 07 (2012) 183 [arXiv:1204.6603] [inSPIRE].
[11] M. Zucker, Minimal off-shell supergravity in five-dimensions, Nucl. Phys. B 570 (2000) 267 [hep-th/9907082] [inSPIRE].
[12] M. Zucker, Gauged $N=2$ off-shell supergravity in five-dimensions, JHEP 08 (2000) 016 [hep-th/9909144] [inSPIRE].
[13] M. Zucker, Supersymmetric brane world scenarios from off-shell supergravity, Phys. Rev. D 64 (2001) 024024 [hep-th/0009083] [INSPIRE].
[14] T. Kugo and K. Ohashi, Supergravity tensor calculus in $5 D$ from $6 D$, Prog. Theor. Phys. 104 (2000) 835 [hep-ph/0006231] [inSPIRE].
[15] T. Kugo and K. Ohashi, Off-shell $D=5$ supergravity coupled to matter Yang-Mills system, Prog. Theor. Phys. 105 (2001) 323 [hep-ph/0010288] [INSPIRE].
[16] T. Fujita, T. Kugo and K. Ohashi, Off-shell formulation of supergravity on orbifold, Prog. Theor. Phys. 106 (2001) 671 [hep-th/0106051] [INSPIRE].
[17] T. Kugo and K. Ohashi, Superconformal tensor calculus on orbifold in 5D, Prog. Theor. Phys. 108 (2002) 203 [hep-th/0203276] [INSPIRE].
[18] T. Kugo and K. Ohashi, Gauge and nongauge tensor multiplets in 5D conformal supergravity, Prog. Theor. Phys. 108 (2003) 1143 [hep-th/0208082] [INSPIRE].
[19] H. Abe and Y. Sakamura, Roles of Z_{2}-odd $N=1$ multiplets in off-shell dimensional reduction of 5D supergravity, Phys. Rev. D 75 (2007) 025018 [hep-th/0610234] [INSPIRE].
[20] H. Abe and Y. Sakamura, Flavor structure with multi moduli in 5D supergravity, Phys. Rev. D 79 (2009) 045005 [arXiv:0807.3725] [inSPIRE].
[21] H. Abe, H. Otsuka, Y. Sakamura and Y. Yamada, SUSY Flavor Structure of Generic $5 D$ Supergravity Models, Eur. Phys. J. C 72 (2012) 2018 [arXiv:1111.3721] [InSPIRE].
[22] Y. Sakamura, One-loop Kähler potential in 5D gauged supergravity with generic prepotential, Nucl. Phys. B 873 (2013) 165 [Erratum ibid. B 873 (2013) 728] [arXiv:1302.7244] [INSPIRE].
[23] Y. Sakamura and Y. Yamada, Impacts of non-geometric moduli on effective theory of $5 D$ supergravity, JHEP 11 (2013) 090 [Erratum ibid. 01 (2014) 181] [arXiv:1307.5585] [inSPIRE].
[24] Y. Sakamura and Y. Yamada, Natural realization of a large extra dimension in $5 D$ supersymmetric theory, Prog. Theor. Exp. Phys. 2014 (2014) 093B02 [arXiv:1401.1921] [inSPIRE].
[25] H. Nishino and E. Sezgin, Matter and Gauge Couplings of $N=2$ Supergravity in Six-Dimensions, Phys. Lett. B 144 (1984) 187 [InSPIRE].
[26] A. Salam and E. Sezgin, Chiral Compactification on Minkowski $\times S^{2}$ of $N=2$ Einstein-Maxwell Supergravity in Six-Dimensions, Phys. Lett. B 147 (1984) 47 [inSPIRE].
[27] E. Bergshoeff, E. Sezgin and A. Van Proeyen, Superconformal Tensor Calculus and Matter Couplings in Six-dimensions, Nucl. Phys. B 264 (1986) 653 [Erratum ibid. B 598 (2001) 667] [INSPIRE].
[28] F. Coomans and A. Van Proeyen, Off-shell $\mathcal{N}=(1,0), D=6$ supergravity from superconformal methods, JHEP 02 (2011) 049 [Erratum ibid. 01 (2012) 119] [arXiv:1101.2403] [INSPIRE].
[29] W.D. Linch III and G. Tartaglino-Mazzucchelli, Six-dimensional Supergravity and Projective Superfields, JHEP 08 (2012) 075 [arXiv:1204.4195] [INSPIRE].
[30] H. Abe, Y. Sakamura and Y. Yamada, $N=1$ superfield description of vector-tensor couplings in six dimensions, JHEP 04 (2015) 035 [arXiv:1501.07642] [INSPIRE].
[31] A. Karlhede, U. Lindström and M. Roček, Selfinteracting Tensor Multiplets in $N=2$ Superspace, Phys. Lett. B 147 (1984) 297 [InSPIRE].
[32] U. Lindström and M. Roček, New HyperKähler Metrics and New Supermultiplets, Commun. Math. Phys. 115 (1988) 21 [inSPIRE].
[33] U. Lindström and M. Roček, $N=2$ Super Yang-Mills Theory in Projective Superspace, Commun. Math. Phys. 128 (1990) 191 [inSPIRE].
[34] J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press, Princeton U.S.A. (1992).
[35] E. Sokatchev, Off-shell Six-dimensional Supergravity in Harmonic Superspace, Class. Quant. Grav. 5 (1988) 1459 [InSPIRE].
[36] T. Kugo and S. Uehara, Conformal and Poincaré Tensor Calculi in $N=1$ Supergravity, Nucl. Phys. B 226 (1983) 49 [inSPIRE].
[37] M. Kaku, P.K. Townsend and P. van Nieuwenhuizen, Superconformal Unified Field Theory, Phys. Rev. Lett. 39 (1977) 1109 [inSPIRE].
[38] M. Kaku, P.K. Townsend and P. van Nieuwenhuizen, Gauge Theory of the Conformal and Superconformal Group, Phys. Lett. B 69 (1977) 304 [inSPIRE].
[39] M. Kaku and P.K. Townsend, Poincaré supergravity as broken superconformal gravity, Phys. Lett. B 76 (1978) 54 [inSPIRE].
[40] S. Ferrara and B. Zumino, Structure of Conformal Supergravity, Nucl. Phys. B 134 (1978) 301 [INSPIRE].
[41] W. Siegel and S.J. Gates Jr., Superfield Supergravity, Nucl. Phys. B 147 (1979) 77 [inSPIRE].
[42] Y. Sakamura, Direct relation of linearized supergravity to superconformal formulation, JHEP 12 (2011) 008 [arXiv:1107.4247] [inSPIRE].

[^0]: ${ }^{1}$ " $\mathcal{N}=1$ " denotes SUSY with four supercharges in this paper.

[^1]: ${ }^{2}$ This is called the "Weyl 2 multiplet" in ref. [28], and the "type-II Weyl multiplet" in ref. [29].

[^2]: ${ }^{3}$ The definition of z is different from that of ref. [30]. As we will see in the next section, this choice is convenient for the promotion to SUGRA.

[^3]: ${ }^{4}$ The tensor multiplet $\left(\Phi_{T}, \mathcal{W}_{T \alpha}\right)$ is invariant under the gauge transformation.

[^4]: ${ }^{5} \mathrm{SU}(2)_{\mathbf{U}}$ is an automorphism of 6 D superconformal algebra (see appendix A).
 ${ }^{6}$ The fluctuation modes of the 4 D gravity multiplet can be easily taken into account by promoting the $d^{4} \theta$ - and $d^{2} \theta$-integrals to the D-term and the F-term action formulae [36], respectively, in the superconformal formulation of 4D SUGRA [37-39].

[^5]: ${ }^{7} v_{-} \cdot u=\left(v_{+} \cdot u\right)^{*}$ is the lowest component of an anti-chiral superfield.
 ${ }^{8}$ When E_{4} / E_{5} is the lowest component of a chiral superfield, so is $\left(E_{4} / E_{5}\right)^{p}$ (p : real number). We choose $p=1 / 2$ just for convenience.

[^6]: ${ }^{9}$ Note that $\operatorname{det}\left(e^{\frac{N}{M}}\right)=e^{(2)}$ under our assumption.

[^7]: ${ }^{10}$ If we identify \tilde{Y}_{α} as a superfield coming from another 6 D tensor multiplet, we can understand the second line of (3.35) as the $\mathcal{N}=1$ superfield description of (3.53) of ref. [29], which is described in the projective superspace.

[^8]: ${ }^{11}$ The case that the x^{4}-dependence is dropped is essentially the same.

[^9]: ${ }^{12}$ Thus, $\mathcal{W}_{5 \alpha}$ is expressed as $\mathcal{W}_{5 \alpha}=-\frac{1}{4} \bar{D} \bar{D}^{2} D_{\alpha} V_{5}$.

[^10]: ${ }^{13}$ Note that $Q_{\underline{\alpha}}^{i}$ and $S^{i \underline{\alpha}}$ are $\mathrm{SU}(2) \mathbf{U}$-Majorana-Weyl spinors. We follow the notation of ref. [30] for 6 D spinors.

[^11]: ${ }^{14}$ Since we neglect the fluctuations of $e_{\mu}{ }^{\underline{\nu}}, e_{\mu}{ }^{\underline{n}}$ and $e_{m}{ }^{\frac{\nu}{n}}$, we do not discriminate the curved indices from the flat ones for the 4 D part.

