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1 Introduction

Heavy-flavor three-body decays into light mesons provide a valuable source for Standard

Model tests and beyond. While they are driven, at short distances, by the weak inter-

actions, their rich kinematic structure accessible in Dalitz plot distributions makes them

a prime example for the application of modern tools of amplitude analysis [1]. A major

motivation for the investigation of heavy-flavor decays is the study of CP violation, which

manifests itself in the appearance of (weak) phases and requires the interference of different

amplitudes with, at the same time, different phases in the strong final-state interactions

(see, e.g., ref. [2] for an in-depth overview). In contrast to (quasi-)two-body decays oc-

curring at fixed total energies, three-body decays offer a resonance-rich environment with

rapidly varying strong phases throughout the phase space available, which may strongly

magnify the effects of CP violation in certain parts of the Dalitz plot.

Obviously, in order to turn the search for potentially very small CP -violating phases in

such complicated hadronic environments into a precision instrument, it is inevitable to con-

trol the strong dynamics in the final state as accurately as possible, in a model-independent
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fashion that, however, incorporates a maximum of theoretical and phenomenological con-

straints. The traditional approach to model Dalitz plots in terms of isobars, i.e. a series of

subsequent two-body decays, and describe the relevant line shapes in terms of Breit-Wigner

(or Flatté) functions, has clear limitations: it fails to describe in particular the phase mo-

tion of the broad S-wave resonances such as the f0(500) in pion-pion or the K∗0 (800) in

pion-kaon scattering (see e.g. refs. [3, 4] in the context of heavy-flavor decays), and neglects

corrections beyond two-body rescattering in an unquantified manner.

It has therefore been advocated to employ the framework of dispersion theory for ampli-

tude analyses [1], which is built on unitarity, maximal analyticity, and crossing symmetry.

The dispersive framework adapted to study three-body decays was originally introduced by

Khuri and Treiman for the decay K → 3π [5] and subsequently further developed [6–10].

The formalism has been resurrected in a modern form in refs. [11, 12]. The Khuri-Treiman

equations are based on elastic two-body unitarity and explicitly generate crossed-channel

rescattering between the three final-state particles. The equations are constructed by set-

ting up dispersion relations for the crossed scattering processes, with a subsequent analytic

continuation back into the decay region. This continuation is performed along the lines of

the continuation of the perturbative triangle graph and is extensively discussed in ref. [6].

Khuri-Treiman equations have been successfully applied to various low-energy meson

decays, like e.g. η → 3π [11–14], ω/φ → 3π [15, 16], or η′ → ηππ [17]. In this work, we

extend this formalism to three-body decays of open-charm mesons, analyzing the Cabibbo-

favored decays D+ → K−π+π+/K̄0π0π+. As input we solely rely on ππ and πK phase-shift

input. While these are not yet decay channels of major interest to study CP violation, the

final-state interactions are going to be similar for others that are, such as the Cabibbo-

suppressed decays D → 3π/πKK̄. For the decays at hand, inelastic effects are small in large

regions of the Dalitz plots, and therefore elastic unitarity provides a good approximation:

the ππ channel allows for isospin 1 and 2 only, but no isoscalar components, which would

necessitate a coupled-channel treatment, as a strong coupling to KK̄ occurs. The major

inelasticities in the πK channel are found to set in at the η′K threshold [18–20].

Thus with the high-statistics experimental data available [21–23], these decays provide

a good test case to establish this dispersive framework in higher energy regions and set the

path to Cabibbo-suppressed decays where traces of physics beyond the Standard Model

may be searched for. Besides, it allows for a further test of low-energy πK and ππ dynamics

as well as the importance of crossed-channel rescattering effects in three-body decays. It

may also provide an insight into scattering phase shifts at higher energies in the future.

The decay under consideration has been the subject of a number of previous theoretical

publications, focusing on different issues raised by the experimental results. One challenge

is the proper treatment of the isospin 1/2 S-wave with the very broad, non-Breit-Wigner-

shaped K∗0 (800) (or κ) resonance [24], and the inclusion of two scalar resonances K∗0 (800)

and K∗0 (1430) in a way that conserves unitarity. Furthermore, the width of the K∗0 (1430)

extracted from the experimental analyses in refs. [21, 22] is found to be inconsistent with

PDG values [25]. In addition, the explicit comparison of the πK partial-wave phases

extracted from these decays [23, 26] with πK scattering results [27] seems to indicate

deviations from Watson’s final-state theorem.
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Ref. [28] focuses on the isospin 1/2 S-wave final-state interactions, based on coupled-

channel partial waves for Kπ, Kη, and Kη′ constructed dispersively in ref. [18]. Decay and

scattering data could be reconciled, although no three-body rescattering effects, isospin 3/2

components, or ππ channel were included. Ref. [29] similarly observes mutual consistency

of πK scattering and the D-meson decay, using related input to take two-body final-state

interactions in the πK isospin 1/2 S- and P -wave into account in terms of the correspond-

ing scalar and vector form factors. Furthermore, the short-distance weak interactions are

described with the help of an effective Hamiltonian based on a factorization ansatz. Again,

weak repulsive partial waves (of isospin 3/2 and in the ππ system) as well as crossed-

channel rescattering are neglected. We mention that similar approaches, using dispersively

constructed form factors for two-body rescattering, but neglecting third-particle interac-

tions, have also been applied to B → Kππ decays [30, 31].

In ref. [32], a Faddeev-like equation is solved that builds up three-particle rescattering

effects. The underlying two-particle πK amplitudes are obtained form unitarized chiral per-

turbation theory fitted to experimental data. The decay amplitude is simplified to include

only the isospin 1/2 S-wave, aiming mainly at a study of the importance of rescattering

effects and the reproduction of the experimental S-wave phases [23, 26]. The model for

the weak vertex has subsequently been improved [33]. Ref. [34] applies a similar approach

with the addition of the isospin 3/2 πK S-wave, but is still restricted to S-waves only.

The only theoretical analysis known to us with all relevant partial waves, three-particle

rescattering effects, and effects of the intermediate state K̄0π0π+ included, is ref. [35]. The

author performs a full Dalitz plot analysis on pseudo data, which we will later compare to.

The outline of this article is as follows. Section 2 states some basic kinematical relations

and shows both isospin and partial-wave decomposition of the decay amplitude in question.

In section 3, we derive the coupled dispersive integral equations and discuss how to solve

these. Numerical results are shown in section 4 and compared to experimental Dalitz plot

data by the CLEO [21] and FOCUS [22] collaborations. We conclude our study in section 5.

Some technical details are relegated to the appendices.

2 Kinematics, isospin decomposition, partial-wave expansion

The Mandelstam variables of the D-meson decay

D+(pD)→ K̄(pK)π(p1)π+(p2) (2.1)

are given by s = (pD − p1)2, t = (pD − p2)2, and u = (pD − pK)2. The corresponding

scattering angles θ in the (crossed) scattering processes are given by

zs ≡ cos θs =
s(t− u)−∆

κ(s)
, zt ≡ cos θt =

t(s− u)−∆

κ(t)
, zu ≡ cos θu =

t− s
κu(u)

,

κ(x) = λ1/2(x,M2
K ,M

2
π)λ1/2(x,M2

D,M
2
π) , κu(u) = λ1/2(u,M2

D,M
2
K)

√
1− 4M2

π

u
, (2.2)

with ∆ =
(
M2
D −M2

π

)(
M2
K −M2

π

)
and the Källén function λ(x, y, z) = x2 + y2 + z2 −

2(xy + yz + xz).
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D+ K̄0/K−

Figure 1. Quark line diagrams of the D+ → K−π+π+/K̄0π0π+ decays: W+ as a spectator (a)

and internal W+ conversion (b).

We begin with the isospin and partial-wave decompositions of the decay amplitudes

M−++ (D+ → K−π+π+) andM0̄0+ (D+ → K̄0π0π+). We associate the isospin structure

of the strong final-state current in figure 1 with the D+ meson. Since one ūu/d̄d pair is

strongly produced, the associated isospin of the D meson is given by I = 3/2, Iz = 3/2.

Thus the isospin decomposition of the respective (crossed) scattering processes reads

s/t-channel u-channel

MD+π0→K̄0π+ =

√
3

5
F3/2 , MD+K0→π0π+ =

1

2
√

2

(
F2 −

√
3F1

)
,

MD+π−→K−π+ =

√
2

15
F3/2 − 1√

3
F1/2 , MD+K0→π+π0 =

1

2
√

2

(
F2 −

√
3F1

)
,

MD+π−→K̄0π0 =
2√
15
F3/2 +

1√
6
F1/2 , MD+K+→π+π+ = F2 , (2.3)

where FI denotes the amplitude with definite isospin I. The decay amplitudes are given

by

M−++(s, t, u) =MD+π−→K−π+(s, t, u) +MD+π−→K−π+(t, s, u) +MD+K+→π+π+(s, t, u),

M0̄0+(s, t, u) =MD+π0→K̄0π+(s, t, u) +MD+K0→π0π+(s, t, u) +MD+π−→K̄0π0(s, t, u) .

(2.4)

We can write down a symmetrized partial-wave expansion simultaneously in s-, t-, and

u-channels (the precise relation of which to proper partial waves in a single channel will be

discussed below). With the expansion in partial-wave amplitudes truncated at the D-wave

for πK final states and the P -wave for ππ, we obtain

M−++(s, t, u) = F2
0 (u) +

{
1√
3
F1/2

0 (s)−
√

2

15
F3/2

0 (s)

+
[
s(t− u)−∆

]( 1√
3
F1/2

1 (s)−
√

2

15
F3/2

1 (s)

)
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K i

πj

D+

π− π+

K−

Figure 2. The associated s-channel scattering diagram D+π− → K−π+ via the intermediate

states Kiπj . The gray vertex stands for the crossed decay amplitude D+π− → Kiπj denoted

by Mij+ and the white vertex the Kiπj → K−π+ scattering amplitude denoted by T ij,−+. The

dashed line gives the contribution to the discontinuity [41]. The other channels follow analogously.

+
1

2

[
3
(
s(t− u)−∆

)2 − κ2(s)
]( 1√

3
F1/2

2 (s)−
√

2

15
F3/2

2 (s)

)
+ (s↔ t)

}
,

M0̄0+(s, t, u) =
1

2
√

2

(
−F2

0 (u) +
√

3(t− s)F1
1 (u)

)
+

√
3

5
F3/2

0 (s)

+

√
3

5

[
s(t− u)−∆

]
F3/2

1 (s) +

√
3

2
√

5

[
3
(
s(t− u)−∆

)2 − κ2(s)
]
F3/2

2 (s)

−
(

2√
15
F3/2

0 (t) +
1√
6
F1/2

0 (t)

)
−
[
t(s− u)−∆

]( 2√
15
F3/2

1 (t) +
1√
6
F1/2

1 (t)

)
− 1

2

[
3
(
t(s− u)−∆

)2 − κ2(t)
]( 2√

15
F3/2

2 (t) +
1√
6
F1/2

2 (t)

)
, (2.5)

where the single-variable amplitudes FIL have definite isospin I and angular momentum

L in the channel associated with the Mandelstam variable featuring as their argument.

Note that the inclusion of D-waves is somewhat heuristic: in order to rigorously prove the

symmetrized decomposition (2.5) in the spirit of the so-called reconstruction theorem [12,

36–40], one needs to include a subtraction polynomial of higher order (i.e., a larger number

of unknown parameters) than what we will allow for below. We mainly want to retain the

πK D-wave to test the effect of the K∗2 (1430) resonance, which is kinematically accessible

in the decay phase space. The way we implement this approximately will be discussed in

section 3.3.

3 Dispersive formalism

3.1 Unitarity and Omnès solution

We begin with the dispersive treatment of the associated scattering processes linked to

the decay by crossing symmetry, D+π̄ → Kπ and D+K̄ → ππ. The D-meson mass is

artificially set to MD < MK + 2Mπ such that the corresponding decay is kinematically

forbidden. The simpler analytic structure of these scattering processes can be exploited to
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construct dispersion relations for the single-variable amplitudes valid for s, t > (MD+Mπ)2

and u > (MD + MK)2, respectively. The analytic continuation back to the physical D-

meson mass as well as into the kinematic region (MK + Mπ)2 < s, t < (MD − Mπ)2,

4M2
π < u < (MD −MK)2 yields the anticipated decay amplitudes [6].

We demonstrate the framework for the example of the s-channel processes; the t- and

u-channel amplitudes are constructed analogously. Elastic unitarity gives for the disconti-

nuity (see figure 2 for M−++)

discM−++(s, zs) =
i

2

∫
d4l

(2π)2

∑
(i,j)

Mij+(s, z′s)T ij,−+∗(s, z′′s )δ
(
l2 −M2

i

)
δ
(
(q − l)2 −M2

j

)
,

discM0̄0+(s, zs) =
i

2

∫
d4l

(2π)2

∑
(i,j)

Mij+(s, z′s)T ij,0̄0∗(s, z′′s )δ
(
l2 −M2

i

)
δ
(
(q − l)2 −M2

j

)
,

(3.1)

where T ij,−+(x, zx) (Kiπj → K−π+) and T ij,0̄0(x, zx) (Kiπj → K̄0π0) are the inter-

mediate-to-final-state scattering amplitudes. q = pK + p2 = (
√
s,0) defines the center-of-

mass frame, in which z′s = cos θ′s, the cosine of the angle between initial and intermediate

states, and z′′s = cos θ′′s , the cosine of the angle between intermediate and final state, are

evaluated. The intermediate-state summation runs over the tuple (i, j) ∈ {(−,+), (0̄, 0)}.
The partial-wave decompositions for the πK (ππ) amplitudes T ij,kl and full decay ampli-

tudes Mijk read

T ij,kl(s, zs) =
∑
I,L

aij,klI,L PL(zs) t
I
L(s) ,

Mijk(s, zs) =
∑
I,L

aijkI,L PL(zs) f
I
L(s) , (3.2)

where the sum runs over isospin and angular momentum components I and L. Further-

more we use the Clebsch-Gordan coefficients aI,L, Legendre polynomials PL(z), and the

corresponding partial waves tIL(s) and f IL(s).1 Exploiting the unitarity relation for elastic

πK and ππ scattering we obtain the following partial-wave unitarity relations

disc f IL(s) = 2i f IL(s) sin δIL(s)e−iδ
I
L(s)θ

(
s− sth

)
, (3.3)

where δIL(s) denotes the elastic final-state scattering phase shift. The thresholds in the

different channels are sth = tth = (MK + Mπ)2 for πK and uth = 4M2
π for ππ scattering,

respectively. Since the discontinuity of f IL and the according single-variable amplitude

κLFIL coincide on the right-hand cut, we have

disc f IL(s) = κL(s) discFIL(s)

⇒ f IL(s) = κL(s)
(
FIL(s) + F̂IL(s)

)
, (3.4)

1Note that in contrast to the definition of the single-variable amplitudes in eq. (2.5), we have not defined

the partial waves in eq. (3.2) to be free of kinematical zeros. This is independent of the singularities these

partial waves display at the corresponding pseudo-thresholds or upper limits of the physical decay region,

s = (MD −Mπ)2 or u = (MD −MK)2, which are well understood, see e.g. ref. [15] or the discussion in

ref. [42] in a perturbative context.
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where we have introduced the inhomogeneities F̂IL(s) that are free of discontinuities on the

right-hand cut by construction. They incorporate the left-hand cut contributions and will

be further discussed in section 3.2. From eqs. (3.4) and (3.3) we obtain

discFIL(s) = 2i
(
FIL(s) + F̂IL(s)

)
θ(s− sth) sin δIL(s)e−iδ

I
L(s) , (3.5)

which has the form of an inhomogeneous Hilbert-type equation. The homogeneous solution

F̂IL(s) = 0 is given by the so-called Omnès function ΩI
L(s) [43] times an analytic function

P IL(s),

FIL(s) = P IL(s)ΩI
L(s) , ΩI

L(s) = exp

{
s

π

∫ ∞
sth

ds′
δIL(s′)

s′(s′ − s)

}
. (3.6)

The inhomogeneous solution is obtained by a product ansatz

FIL(s) = ΩI
L(s)

{
P IL(s) +

sn

π

∫ ∞
sth

ds′

s′n
sin δIL(s′)F̂IL(s′)

|ΩI
L(s′)|(s′ − s)

}
, (3.7)

where P IL(s) is now a polynomial of order n−1, and the number of subtractions n is chosen

such that the convergence of the dispersion integral is guaranteed.

As our approach relies on elastic unitarity (see ref. [44] for a generalization of the

Khuri-Treiman formalism to coupled channels), the formalism breaks down when inelastic

channels become important. We assume that Watson’s theorem [45] is a good approxima-

tion up to the η′K threshold in the πK channel. Inelastic effects in the prominent πK

S-wave systems are found to become sizable above the η′K threshold [18–20]. The main in-

elastic contributions in the isospin 1/2 P -wave come from the πK∗ and ρK channels, which

become noticeable in the energy region where they couple to K∗(1410) and K∗(1690) [20].

In all exotic partial waves, i.e. the isospin 2 ππ system as well as I = 3/2 πK partial waves,

inelastic effects are assumed to be negligible.

3.2 Inhomogeneities

With the scattering phase shifts given as fixed input, the only quantities left in the disper-

sion integrals eqs. (3.7) are the inhomogeneities F̂IL, which are determined as the projections

of the crossed-channel amplitudes onto the considered channel. They can be re-expressed

in terms of the single-variable amplitudes FIL(x), such that we obtain integral equations

that can be solved for the FIL(x). With the aid of eq. (3.4) we find

f IL(x) =
2L+ 1

2aijkI,L

∫
dzxMIx

ijk(x, zx)PL(zx) = κL(x)
(
FIL(x) + F̂IL(x)

)
⇒ F̂IL(x) =

2L+ 1

2aijkI,L κ
L(x)

∫ 1

−1
dzxMIx

ijk(x, zx)PL(zx)−F IL(x) , (3.8)

where MIx
ijk(x, zx) denotes the projection of the full decay amplitude Mijk(x, zx) onto

isospin Ix eigenfunctions in the x-channel. One term of the projection integral over

MIx
ijk(x, zx) is always FIL(x), such that the right-hand-cut discontinuity is canceled. The

inhomogeneities are then indeed free of discontinuities on the right-hand cut as anticipated.

The resulting inhomogeneities are given in appendix A.

– 7 –
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The interpretation of eq. (3.8) as an angular integration is valid in the scattering region

and needs to be analytically continued into the unphysical and decay regions. Performing

the angular integration naively in the decay region results in crossing the unitarity cut.

The prescription on how to perform the continuation has been extensively discussed in

ref. [6], motivated by the continuation of the (perturbative) triangle graph into the decay

region. It ultimately leads to the prescription M2
D →M2

D + iε, which allows one to derive

an integration path that avoids the unitarity cut.

3.3 Number of subtraction constants

The minimal number of subtractions needed is dictated by the asymptotic behavior of the

integrands in eqs. (3.7). The decay amplitude and thus the inhomogeneities are assumed to

grow at most linearly asymptotically, loosely based on the Froissart bound [46]. Assuming

the phase shifts to approach constant values δIL(∞) for large energies, the Omnès functions

ΩI
L(x) behave like ∝ x−δ

I
L(∞)/π asymptotically. With the following assumption for the

phase shifts δIL at high energies:

lim
x→∞

δ
1/2
0 (x) = 2π , lim

x→∞
δ

1/2
1 (x) = π , lim

x→∞
δ

1/2
2 (x) = π ,

lim
x→∞

δ
3/2
0 (x) = 0 , lim

x→∞
δ

3/2
1 (x) = 0 , lim

x→∞
δ

3/2
2 (x) = 0 ,

lim
x→∞

δ2
0(x) = 0 , lim

x→∞
δ1

1(x) = π , (3.9)

we need two subtractions for F2
0 , F1

1 , and F3/2
0 , four subtractions for F1/2

0 , and one sub-

traction for F1/2
1 to obtain convergent dispersion integrals. Note that the difference in the

number of subtractions for F1
1 and F1/2

1 , despite identical phase asymptotics, is due to the

different kinematic prefactors for P -waves with equal and unequal masses, see eq. (2.5).

F3/2
1 needs no subtraction, but as the πK isospin 3/2 P -wave phase shift is very small and

assumed to vanish at high energies, we neglect it altogether. Similarly, also the I = 3/2

D-wave is put to zero.

The inclusion of the D-wave F1/2
2 is delicate. Formally it requires no subtractions,

but the kinematical pre-function corresponding to the L = 2 Legendre polynomial, mul-

tiplied with the required momentum factors to make it free of kinematical singularities,

see eq. (2.5), violates the assumed high-energy behavior of the decay amplitude and thus

of all inhomogeneities. Therefore we will follow a “hybrid approach” for the D-wave: we

will only consider the projections of S- and P -waves of other channels in order to gener-

ate the D-wave inhomogeneity, but will exclude D-wave projections, thus eschewing the

need for further subtractions. This is loosely motivated by analogous observations in low-

energy processes calculated in chiral perturbation theory, where higher partial waves are

dominated by crossed-channel loop diagrams that correspond to low partial waves in those

crossed channels.

In total we have eleven subtraction constants. However, the resulting representations

of the decay amplitudes eqs. (2.5) are not unique due to the linear dependence of the

Mandelstam variables s, t, and u: one can construct polynomial contributions to the

single-variable amplitudes that leave the complete decay amplitudes M−++(s, t, u) and

– 8 –
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M0̄0+(s, t, u) invariant; this is obvious in a standard dispersive representation, however

slightly less trivial to demonstrate in the Omnès representations discussed above [47]. The

polynomial coefficients can be tuned such that a maximal number of subtraction constants

is eliminated to obtain a linearly independent set. These polynomials span the so-called

invariance group of the decay amplitudes. Details are discussed in appendix B. We choose

to eliminate the subtraction constants in the nonresonant I = 3/2 πK and I = 2 ππ

S-waves, the rationale being solely to retain them in presumably large, resonant partial

waves. This leaves seven linearly independent complex subtraction constants,

F2
0 (u) = Ω2

0(u)
u2

π

∫ ∞
uth

du′

u′2
F̂2

0 (u′) sin δ2
0(u′)∣∣Ω2

0(u′)
∣∣(u′ − u)

,

F1
1 (u) = Ω1

1(u)

{
c0 + c1u+

u2

π

∫ ∞
uth

du′

u′2
F̂1

1 (u′) sin δ1
1(u′)∣∣Ω1

1(u′)
∣∣(u′ − u)

}
,

F1/2
0 (s) = Ω

1/2
0 (s)

{
c2 + c3s+ c4s

2 + c5s
3 +

s4

π

∫ ∞
sth

ds′

s′4
F̂1/2

0 (s′) sin δ
1/2
0 (s′)∣∣Ω1/2

0 (s′)
∣∣(s′ − s)

}
,

F3/2
0 (s) = Ω

3/2
0 (s)

{
s2

π

∫ ∞
sth

ds′

s′2
F̂3/2

0 (s′) sin δ
3/2
0 (s′)∣∣Ω3/2

0 (s′)
∣∣(s′ − s)

}
,

F1/2
1 (s) = Ω

1/2
1 (s)

{
c6 +

s

π

∫ ∞
sth

ds′

s′
F̂1/2

1 (s′) sin δ
1/2
1 (s′)∣∣Ω1/2

1 (s′)
∣∣(s′ − s)

}
,

F1/2
2 (s) = Ω

1/2
2 (s)

1

π

∫ ∞
sth

ds′
F̂1/2

2 (s′) sin δ
1/2
2 (s′)∣∣Ω1/2

2 (s′)
∣∣(s′ − s) . (3.10)

The subtraction constants cannot be determined in the framework of dispersion theory

and have to be obtained either by matching to a more fundamental dynamical theory, or,

as in this work, by a fit to experimental data. The solution space of the coupled system

eq. (3.10) has thus dimension seven, corresponding to the seven complex subtraction con-

stants. Since the equations depend linearly on the subtraction constants, it is convenient

to choose seven independent basis sets and solve the equations for each of these sets. We

call those solutions basis functions. In particular, we choose for the ith basis function

Mi(s, t, u) the set of subtraction constants cj = δij with i, j = 0 . . . 6. The full solution

M(s, t, u) is then obtained by

M(s, t, u) =
∑
i

ciMi(s, t, u) . (3.11)

The basis functions are entirely determined by the phase shift input, as well as the masses

of all particles involved (taken from ref. [25]). The phase shifts are obtained from solutions

of the ππ Roy equations by both the Bern [48–50] and the Madrid-Kraków [51] groups, as

well as the Roy-Steiner equations for πK scattering solved by the Orsay group [52].

3.4 Solution strategy

In this section we discuss different solution strategies of the Khuri-Treiman-type equa-

tions (3.10), their issues, and present our new solution strategy.
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The standard solution strategy for the linear coupled double integral equations (3.10)

has been an iteration procedure as performed for example in refs. [13, 15, 17] or numerically

faster with the introduction of integral kernels in ref. [53]. Starting with an arbitrary in-

put for the single-variable amplitudes (e.g. just the Omnès functions), the inhomogeneities

are evaluated; with these the dispersion integrals are determined to obtain a new set of

single-variable amplitudes. This cycle is repeated until satisfactory convergence is reached.

Unfortunately, the convergence of this iterative procedure is not always guaranteed, de-

pending on the mass of the decaying particle and the number of subtractions: for larger

decay masses and more subtractions applied, the corrections in each iteration step can be

too large to reach the fixed-point solution. We find this to be the case in the D-meson

decays considered here.

This necessitates a different solution strategy. Since the set of integral equations is

linear in the single-variable amplitudes it is convenient to set it up in the form of a matrix

equation instead. Provided that the matrix is invertible a unique solution exists. One

such inversion strategy is known as the Pasquier inversion [9] (see ref. [54] for a recent

comparison of Pasquier inversion and iterative solution), where a method to reduce the

double integral equation to a single integral equation is introduced. The procedure involves

the deformation of the integral contours of both integrals, allowing one to interchange the

order of integrations such that a unique kernel function is obtained. The coupled single

integral equations thus obtained do allow for a direct solution via matrix inversion.

We will follow a slightly modified strategy, constructing a matrix equation without

performing a Pasquier inversion. In this context it is beneficial to solve for the inhomo-

geneities instead of the single-variable amplitudes, the advantage being that the inhomo-

geneities need to be evaluated only on the right-hand-cuts. The single-variable amplitudes

themselves can be obtained in the whole complex plain in a straightforward manner by

performing the dispersion integral over the inhomogeneities once.

To illustrate the solution strategy we limit ourselves to one hypothetical inhomogeneity

equation without any loss of generality,

F̂L(s) =
1

2

∫ 1

−1
dzs z

m
s F

(
t(s, zs)

)
, (3.12)

and focus on the functions F̃(s) ≡ F̂L(s)κ2L+1(s) that are free of singularities at the

pseudo-threshold or upper limit of the kinematically accessible decay region (which is a

zero in κ(s)). Inserting eq. (3.7) into eq. (3.12) yields

F̃(s) =
κ2L+1(s)

2

∫ 1

−1
dzs z

m
s Ω

(
t(s, zs)

){
P
(
t(s, zs)

)
+
t(s, zs)

n

π

∫ ∞
sth

dx

xn
F̃(x) sin δ(x)

|Ω(x)|κ2L+1(x)
(
x− t(s, zs)

)}
≡ A(s) +

1

π

∫ ∞
sth

F̃(x)K(s, x)dx . (3.13)
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The function A(s) contains the dependence on the subtraction polynomial, while the inte-

gration kernel K(s, x) is independent of any subtraction constants:

A(s) =
κ2L+1(s)

2

∫ 1

−1
dzs z

m
s P

(
t(s, zs)

)
Ω
(
t(s, zs)

)
,

K(s, x) = κ2L+1(s)
sin δ(x)

xn|Ω(x)|κ2L+1(x)

∫ 1

−1
dzs

t(s, zs)
n

2

zms Ω
(
t(s, zs)

)
x− t(s, zs)

. (3.14)

Equation (3.13) is thus a linear integral equation for F̃ (s), to be solved for a given set of

subtraction constants. Discretizing eq. (3.13) yields

A(si) =
∑
j

(
δij −

∫ sj+1

sj

K(si, x) dx

)
F̃(sj) , (3.15)

which is solved by matrix inversion; the numerical treatment is relegated to appendix C.

4 Numerical results and experimental comparison

Solving the coupled integral eqs. (3.10) with the algorithm presented in the previous section,

we obtain the single-variable basis functions (FIL)i depicted in figures 3 and 4. The vector

resonances K∗(892) (in F1/2
1 ) and ρ(770) (in F1

1 ) as well as the πK D-wave resonance

K∗2 (1430) (in F1/2
2 ) are clearly visible. The F1/2

0 basis functions include the effects of the

scalar states K∗0 (800) and K∗0 (1430), while the exotic F2
0 and F3/2

0 basis functions are free

of resonances.

The error bands in figures 3 and 4 are determined by a conservative error estimate of

the phase shifts: for the S-wave πK and ππ phases the error is assumed to rise linearly

from zero at threshold to ±20◦ at 2 GeV. Beyond 2 GeV the error is fixed to ±20◦. The

πK isospin 1/2 P - and D-wave phase errors and ππ P -wave phase errors are similarly

obtained, with the only difference that the linear rise of the error sets in after the K∗(892),

K∗2 (1430), and ρ(770) resonances, respectively. In the ππ P -wave case we additionally vary

between the phase-shift data from refs. [48–51].

In the following we compare our theoretical decay amplitude to the experimental D+ →
K−π+π+ Dalitz plot data from the CLEO [21] and FOCUS [22] collaborations. Exploiting

the symmetry of the process under the interchange of the two pions, we can restrict the com-

parison to the region s < t by mirroring the remaining half of the Dalitz plot into this region.

The experimental events are collected in equidistant bins of size 0.044 GeV2 ×
0.044 GeV2. Bins which overlap with the phase space boundary are discarded, result-

ing in 493 bins over the considered fit region (s < t < (MK +Mη′)
2). The following event

distribution function was used for the fit analogously to the experimental analyses

P(si, ti) =

∫ ti+δ

ti−δ

∫ si+δ

si−δ

[
fsigNS |M−++(s, t, u)|2ε(s, t) + (1− fsig)NBB(s, t)

]
ds dt , (4.1)

with (si, ti) being the center of the corresponding bin and 2δ the bin width, ε(s, t) the

efficiency parametrization, B(s, t) the background parametrization, Nsig and NB normal-

ization constants such that the background and signal term are normalized to unity, and

the signal fraction fsig.
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Figure 3. Real (red) and imaginary (blue) parts of the single-variable functions (FIL)i for i =

0, . . . , 3. The vertical dashed lines denote the kinematical limits of the decay region.

– 12 –



J
H
E
P
1
0
(
2
0
1
5
)
1
4
2

0

1

-2

0

2

-4

-2

0

2

0 0.5 1 1.5

-0.5

0

0.5

0 0.5 1 1.5

-2

0

2

0 0.5 1 1.5

-1

0

1

-4

0

4

8

-10

-5

0

5

10

15

-4

0

4

8

12

-0.6

-0.3

0

0.3

-1

0

1

-0.1

0

0.1

-1

0

1

-3

0

3

-10

0

10

20

0 0.5 1 1.5 2

0

0.1

0 0.5 1 1.5 2

-0.2

0

0.2

0.4

0 0.5 1 1.5 2

-1

-0.5

0

0.5

F2
0

F1
1

F1/2
0

F3/2
0

F1/2
1

F1/2
2

√
s [GeV]

4 5 6

Figure 4. Real (red) and imaginary (blue) parts of the single-variable functions (FIL)i for i =

4, . . . , 6. The vertical dashed lines denote the kinematical limits of the decay region.
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We minimize the following χ2,

χ2 =

492∑
i=0

[
NP(si, ti)− (#events/bin)i

]2
(#events/bin)i

, (4.2)

where N is the number of events, the sum runs over the number of bins and the error

on the binned data is assumed to be purely statistical. In addition to the full dispersive

representation eq. (3.10), we also fit a simplified decay amplitude to data, which is given

by a sum of Omnès functions multiplied by polynomials:

M−++(s, t, u) = c′0Ω2
0(u)−

√
2

15
c′1Ω

3/2
0 (s) +

1√
3

(
c′2 + c′3s+ c′4s

2 + c′5s
3
)
Ω

1/2
0 (s)

+
c′6√

3

[
s(t− u)−∆

]
Ω

1/2
1 (s) +

c′7
2
√

3

[
3
(
s(t− u)−∆

)2 − κ2(s)
]
Ω

1/2
2 (s)

+ (t↔ s) , (4.3)

where the c′i are again complex fit constants. Equation (4.3) emulates a dispersively im-

proved isobar model that neglects any crossed-channel rescattering effects. The number of

polynomial fit constants is chosen to resemble the number of degrees of freedom in the full

dispersive result eq. (3.10) as far as possible; with certain caveats that preclude an immedi-

ate quantification of three-particle rescattering effects in the same straightforward way as

performed for φ→ 3π decays in ref. [15]. In eq. (3.10), two subtraction constants c0 and c1

are contained in the ππ P -wave, which only contributes indirectly via the intermediate state

K̄0π0π+ to the decay and thus does not show up in the pure Omnès amplitude eq. (4.3).

In addition, every Omnès function in eq. (4.3) needs at least a normalization constant to

adjust the strength of individual amplitudes, while some single-variable amplitudes do not

have any subtraction constants. Finally, once the D-wave is included we have one additional

complex fit parameter c′7 in the pure Omnès fits. For that reason we consider both Omnès

and the full dispersive fits without (Omnès 1, full 1) and with D-wave (Omnès 2, full 2).

We have the freedom to fix one subtraction constant, as both the overall normalization

and the overall phase are arbitrary and factorized out; we choose c2 = c′2 = 1. This leaves

13 (15) real fit constants for the full / Omnès fits.

Following experimental custom, we will employ so-called fit fractions to characterize

the relative importance of various single-variable functions. These are defined in the

following way

FFIJ =

∫
|PJ(x(s, t))FIJ(x(s, t))|2 ds dt∫
|M−++(s, t, u)|2 ds dt

, (4.4)

where the PJ denote the angular prefactors of the corresponding single-variable amplitudes

in the total amplitude. The integration runs over the fitted Dalitz plot region. In general

these fit fractions are not unique due to the freedom of adding an element of the invariance

group eq. (B.1); the projections onto partial-wave amplitudes then will lead to different

fit fractions.
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Full 1 Full 2 Omnès 1 Omnès 2

|c0| ×GeV2 2.7± 0.8 1.2± 0.2 |c′0| 0.9± 0.3 0.9± 0.7

|c1| ×GeV4 3.8± 1.2 2.2± 0.5 |c′1| 3.0± 1.5 4.0± 1.3

c2 1 (fixed) 1 (fixed) c′2 1 (fixed) 1 (fixed)

|c3| ×GeV2 2.8± 0.4 2.2± 0.1 |c′3| ×GeV2 1.9± 0.2 2.0± 0.2

|c4| ×GeV4 2.0± 0.5 1.4± 0.1 |c′4| ×GeV4 0.9± 0.1 1.1± 0.1

|c5| ×GeV6 0.7± 0.3 0.4± 0.1 |c′5| ×GeV6 0.13± 0.3 0.19± 0.02

|c6| × 102GeV4 4± 3 6± 2 |c′6| ×GeV4 0.11± 0.05 0.10± 0.03

|c′7| × 103GeV8 — 6± 4

arg c0 0.1± 0.2 1.1± 0.3 arg c′0 0.2± 0.8 0.4± 0.4

arg c1 0.3± 0.2 1.2± 0.3 arg c′1 −0.8± 0.3 −0.4± 0.2

arg c3 −0.2± 0.1 0.0± 0.1 arg c′3 0.2± 0.2 0.3± 0.2

arg c4 −0.5± 0.1 0.0± 0.1 arg c′4 0.4± 0.2 0.2± 0.2

arg c5 −0.1± 0.1 0.1± 0.1 arg c′5 0.2± 0.4 0.0± 0.3

arg c6 −0.3± 1.2 −0.9± 0.2 arg c′6 0.0± 0.1 0.0± 0.3

arg c′7 — 0.4± 0.3

χ2/d.o.f. 1.18± 0.03 1.10± 0.02 1.30± 0.06 1.08± 0.02

Table 1. Fit to CLEO data: numerical fit results for the subtraction constants ci and c′i and the

corresponding χ2/d.o.f.. Four fit scenarios are considered: the full dispersive fit, without D-wave

(full 1) and with D-wave (full 2), and the Omnès fits of eq. (4.3), without D-wave (Omnès 1) and

with D-wave (Omnès 2). The errors on the parameters are evaluated by varying the basis functions

within their error bands.

Fit FF2
0 2× FF

1/2
0 2× FF

1/2
1 2× FF

3/2
0 2× FF

1/2
2

Full 1 (37± 23)% (190± 60)% (11± 3)% (65± 35)% —

Full 2 (8± 3)% (72± 12)% (10± 2)% (16± 3)% (0.1± 0.05)%

Omnès 1 (48± 16)% (178± 22)% (7± 1)% (395± 35)% —

Omnès 2 (9.5± 8)% (91± 22)% (8± 0.5)% (240± 40)% (0.13± 0.03)%

Table 2. Fit fractions CLEO: the resulting fit fractions of eq. (4.4) for the different fit scenarios;

the errors on the parameters are evaluated by varying the basis functions within their error bands.

The fit fractions for the πK amplitudes are multiplied by two to account for the s↔ t symmetry.
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Figure 5. From top to bottom: the experimental data from CLEO [21] depicted in a binned Dalitz

plot. Below that the theoretical Dalitz plot fitted to the data (fit 2). The dashed line denotes

the η′K threshold. The lowest plots show slices through the Dalitz plot. The red and blue curves

correspond to the full fits 1 and 2, respectively.
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4.1 Comparison to the CLEO data

The Dalitz plot measured by the CLEO collaboration [21] contains 140793 events. The

efficiency and background parametrizations are given explicitly.2 Our fit results are sum-

marized in table 1, together with the fit fractions in table 2. In the full dispersive fits

(full fits 1/2), the resulting values for the subtraction constants in table 1 have similar

order of magnitude with the exception c6, which is rather small. This can be understood

by the large F1/2
1 single-variable amplitude in this particular basis function (see figure 4).

Furthermore the phases of the F1
1 subtraction constants (c0, c1) nearly agree modulo π.

The same holds for the F1/2
0 subtraction constants (c2 to c5) especially for the full fit 2.

This suggests that with overall phases factorized, the subtraction constants for the F1
1 and

likewise the F1/2
0 amplitude are almost real. The differences of the single-variable ampli-

tude phases to the elastic phase shifts depicted in figure 7 are thus predominantly due to

the dispersion integrals, i.e. the crossed-channel rescattering effects.

Including the D-wave improves the χ2/d.o.f. slightly from 1.18 ± 0.03 to 1.10 ± 0.02.

Note that in the full dispersive representation, no additional fit constants are introduced

when the D-wave is added. The inclusion of the D-wave does not change the phases of most

subtraction constants beyond their uncertainties, with the exception of c6; the magnitudes,

in contrast, change significantly for almost all subtractions. Considering the fit fractions

in table 2, we observe that the inclusion of the D-wave in the full fit 2 reduces the highly

destructive interference between the two S-wave amplitudes in the πK channel. We wish

to point out that also in ref. [22], a large cancellation between the isospin 1/2 and isospin

3/2 S-wave components of −164% is seen, with individual fit fractions of (207± 24)% and

(40± 9)%, respectively, which show a comparable behavior to our full fit 1. Although the

fit fraction of the D-wave itself is very small, it thus has a rather large impact on the S-

and P -waves. A similar phenomenon is seen in ref. [21] where the fit quality deteriorates

considerably when removing the small D-wave. Although we do not fit the whole Dalitz

plot, the fit fractions for the resonant single-variable amplitudes for F1/2
0 , F1/2

1 and F1/2
2

agree well with the results from refs. [21, 22]. The F2
0 fit fraction corresponds to the isospin

2 ππ S-wave component of FF ≈ (9.8 . . . 15.5)% found in ref. [21] within different fit models,

and together with the fit fraction of F3/2
0 agrees with the nonresonant contribution found

in ref. [22] of FF ≈ (29.7± 4.5)%.

Although the Omnès fits (Omnès 1, 2) yield overall similar χ2 results, the strengths of

the individual amplitudes shown in table 2 are highly implausible and probably sufficient to

reject this model. In particular the contribution of the nonresonant isospin 3/2 πK S-wave

is vastly beyond all reasonable expectations, and cannot be justified. In contrast to the full

fit, this situation is not ameliorated significantly by including the D-wave. We conclude

that crossed-channel rescattering effects are essential to obtain sensible fit fractions.

2The threshold factors T (x) used in there read [55]

T (x) =

{
sin
(
πEth,x|x− xmax|

)
, for 0 < Eth,x|x− xmax| < 1/2 ,

1, for Eth,x|x− xmax| ≥ 1/2 .
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Fit constant Full 1 Full 2 Omnès 1 Omnès 2

|c0| ×GeV2 3.0± 0.8 0.6± 0.3 |c′0| 0.4± 0.2 0.6± 0.3

|c1| ×GeV4 3± 1 0.9± 0.3 |c′1| 1.9± 0.8 2.2± 0.5

c2 1 (fixed) 1 (fixed) c′2 1 (fixed) 1 (fixed)

|c3| ×GeV2 2.8± 0.8 1.9± 0.1 |c′3| ×GeV2 1.7± 0.2 1.8± 0.2

|c4| ×GeV4 2.5± 0.6 1.1± 0.1 |c′4| ×GeV4 0.9± 0.2 1.0± 0.2

|c5| ×GeV6 0.4± 0.2 0.3± 0.1 |c′5| ×GeV6 0.1± 0.2 0.3± 0.1

|c6| ×GeV4 0.2± 0.1 0.0± 0.1 |c′6| ×GeV4 0.1± 0.4 0.1± 0.1

|c′7| × 103GeV8 — 7± 4

arg c0 0.5± 0.3 0.9± 0.3 arg c′0 0.7± 0.5 0± 1

arg c1 0.6± 0.4 1.1± 0.2 arg c′1 −1.1± 0.4 0.2± 0.3

arg c3 0.0± 0.2 0.0± 0.1 arg c′3 0.4± 0.2 0.2± 0.2

arg c4 −0.2± 0.3 0.0± 0.1 arg c′4 0.6± 0.2 0.2± 0.3

arg c5 0.2± 0.3 0.0± 0.1 arg c′5 0.8± 0.2 0.2± 0.3

arg c6 −0.6± 0.7 −1.0± 0.4 arg c′6 −0.7± 0.3 −0.9± 0.3

arg c′7 — −1.1± 0.5

χ2/d.o.f. 1.20± 0.01 1.21± 0.02 1.25± 0.02 1.17± 0.01

Table 3. Fit to FOCUS data: numerical fit results for the subtraction constants ci and c′i and the

corresponding χ2/d.o.f.. The same four fit scenarios as in table 1 are considered. The errors on the

parameters are evaluated by varying the basis functions within their error bands.

The resulting Dalitz plot as well as a one-dimensional representation in terms of slices

through it are displayed in figure 5. The bin numbering for the latter is organized in terms

of t-slices for constant s, subsequently glued together with the next slice of higher s. We

evaluate the event distribution function eq. (4.1) over each bin and compare to experimental

data. The rather small error band on the fit results suggests that the uncertainty in the basis

functions is largely compensated by interference effects between the different single-variable

amplitudes, as well as by corresponding variations in the fitted subtraction constants.

4.2 Comparison to the FOCUS data

The FOCUS Dalitz plot data [22] includes 52460 ± 245 signal and 1897 ± 39 background

events. With the resulting signal fraction of ∼ 96.5% we perform the full and Omnès fits

as above. Table 3 summarizes the fit results together with the fit fractions in table 4. The

overall picture is very similar to the CLEO fit results with a slightly bigger χ2/d.o.f. ≈ 1.2.

The Omnès fits again result in nonphysical fit fractions (see table 4), and from here on we
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Figure 6. From top to bottom: the experimental data from FOCUS [22] depicted in a binned Dalitz

plot. Below that the theoretical Dalitz plot fitted to the data (fit 2). The dashed line denotes the

η′K threshold. The lowest plots show slices through the Dalitz plot. The red and blue curves

correspond to the full fits 1 and 2, respectively.
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Fit FF2
0 2× FF

1/2
0 2× FF

1/2
1 2× FF

3/2
0 2× FF

1/2
2

Full 1 (12± 4)% (59± 25)% (7.5± 2.5)% (39± 27)% —

Full 2 (5± 3)% (67± 10)% (12± 1)% (8± 6)% (0.17± 0.07)%

Omnès 1 (33± 17)% (91± 37)% (9± 1)% (215± 135)% —

Omnès 2 (89± 42)% (20± 12)% (11± 1)% (180± 60)% (0.4± 0.05)%

Table 4. Fit fractions FOCUS: the resulting fit fractions of eq. (4.4) for the different fit scenarios;

the errors on the parameters are evaluated by varying the basis functions within their error bands.

The fit fractions for the πK amplitudes are multiplied by two to account for the s↔ t symmetry.

will only compare the full fits of both experimental data sets. Starting with the fit without

D-wave (full fit 1) we observe similar moduli of the subtraction constants compared to the

CLEO results, however the phases do differ. The fit does not show the large destructive

interference effects between the isospin 1/2 and isospin 3/2 S-wave that we find in the

CLEO fit.

No improvement in the χ2/d.o.f. is observed when we include the D-wave (full fit 2).

However the contribution from the nonresonant amplitudes, the isospin 2 and isospin 3/2

S-waves, are reduced (see table 4). The fit fractions of the full fit 2 differ slightly from the

CLEO fits; in particular the nonresonant S-waves contribute less in the FOCUS data.

In the full fit 2 the phases of the F1
1 subtraction constants persist to nearly agree

modulo π; the same holds for F1/2
0 subtraction constants. It is reassuring that the overall

picture of the phases of various subtraction constants is consistent in the full fit 2 results

for both CLEO and FOCUS.

In figure 7, we compare moduli and phases of the resulting single-variable amplitudes

as fitted to the two data sets; the phases are also compared to the input phase shifts used

in the Omnès functions. The resulting phase motions largely agree in the two analyses

within uncertainties, with the possible exception of some deviations in F1/2
0 in the region

of the K∗0 (800) resonance, where the phase extracted from the CLEO fit rises more quickly.

There are significant deviations from the input phase shifts throughout: there is no naive

realization of Watson’s theorem in the presence of three-body rescattering effects, see e.g.

recent discussions in refs. [54, 56]. This is also the explanation for the observed discrepancy

of the πK I = 1/2 S-wave phase as extracted from these decays by the E791 [23] and

FOCUS [26] collaborations, compared to the scattering phase-shift analyses [27]: while

the phase shift rises to about 67◦–97◦ at
√
s = 1.3 GeV [52], the experimental analyses of

D-decay data suggest an increase in the phase from threshold by about 133◦–164◦ (read

off via ref. [32]). Figure 7 shows that in the dispersive formalism, the phase at 1.3 GeV is

about 182◦–198◦ (CLEO) or 170◦–183◦ (FOCUS) — even larger than found in refs. [23, 26].

We emphasize that these results are based on a formalism that uses the scattering phase

shifts [52] as input: the deviations in the decay amplitude S-wave are due to complex

phases induced by three-body rescattering effects.

– 20 –



J
H
E
P
1
0
(
2
0
1
5
)
1
4
2

0 0.5 1 1.5
0

0.2

0.4

0 0.5 1 1.5

0

4

8

0 0.5 1 1.5
0

1

0.5 1 1.5
0

2

4

6

0 0.5 1 1.5
0

1

1

0

2

4

6

0 0.5 1 1.5
0

1

0.5 1 1.5

0

2

4

0 0.5 1 1.5
0

0.02

0.5 1 1.5
0

2

4

F2
0

F1/2
0

F3/2
0

F1/2
1

F1/2
2

√
s [GeV]

Figure 7. Left column: absolute values of the single-variable amplitude in arbitrary units of full

fit 2 (CLEO in red, FOCUS in blue). The overall normalization is chosen such that the absolute

values in the K∗(892) peak agree. Right column: phases of the single-variable amplitudes (CLEO:

red, FOCUS: blue) and input scattering phases (black) in radiant. The phases are fixed to zero

at the two-particle (ππ, πK) thresholds. The dotted lines visualize the fitted area; for the πK

amplitudes from threshold to the η′K threshold and the full phase space for the ππ amplitudes.

In general, the corrections compared to input phase shifts are smallest for narrow reso-

nances, in particular in the I = 1/2 πK P - and D-waves. The largest phase differences are

observed in the nonresonant amplitudes, where the phases of F2
0 and F3/2

0 show a 2π rise

due to zeros in imaginary or real parts close to threshold in individual basis functions. Note

how these seemingly drastic differences are accompanied by very small absolute magnitudes

of the amplitudes in question: in view of the aim to control the phase behavior of the com-

plete, combined decay amplitude accurately, these specific deviations are still rather small.
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Turning to the moduli of the single-variable amplitudes, the relative strength of the

K∗(892) resonance (in F1/2
1 ) compared with the K∗2 (1430) (in F1/2

2 ) agrees between CLEO

and FOCUS fits. However the dip in the F1/2
0 amplitude is shifted to higher energies in

the FOCUS fit and slightly more pronounced. The moduli of the nonresonant amplitudes

F3/2
0 and F2

0 turn out to be smaller in the FOCUS fit, which is also underlined by the fit

fractions (compare tables 2 and 4).

4.3 Comparison to other approaches

So far the only theoretical approach known to us that includes all relevant partial waves,

three-particle rescattering effects, and the isospin coupled intermediate state K̄0π0π+ is

ref. [35]. The treatment is based on a unitary coupled-channel framework. The two-particle

rescattering contributions are fixed by the πK and ππ scattering data, phases, and moduli.

Three-body rescattering effects are generated by solving a Faddeev equation. In addition

to the three-body rescattering a three-body potential, based on hidden local symmetry,

is introduced modeling vector meson exchanges. The author studies the influence of in-

dividual rescattering contributions by considering different fit scenarios; crossed-channel

rescattering effects and three-body potential turned off (isobar fit), three-body potential

turned off (Z fit), and the full fit. An additional contact term breaking unitarity is allowed

for, which in the full fit turns out to be negligible. The decay amplitude depends on 27 to

39 degrees of freedom depending on the considered fit model, which is more than twice the

number of parameters included in our full fit.

To compare the fit fractions obtained in ref. [35], we note that the isobar fit theoretically

compares closest to our Omnès fits, while the Z fit does to our full fits. However the

isobar fit has a large contribution from the unitarity-breaking contact term (considered

as a “background” contribution) of 17.7%, such that a direct comparison is not sensible.

Concerning the full and the Z fit, a large destructive interference between the isospin 1/2

and isospin 3/2 S-waves is seen, similar to our CLEO fit 1 configuration. The isospin

1/2 P -waves are of similar size, ∼ 15% compared to our 10 − 14%, but the ππ S-wave

contribution is smaller (1.8− 3.8%) than our contributions in either full fit 1 or CLEO full

fit 2. It agrees only with the FOCUS full fit 2. — Concerning this comparison, we should

stress once more that in contrast to ref. [35], we do not fit the full Dalitz plot.

Unfortunately the improvement due to crossed-channel rescattering cannot be quanti-

fied in a simple way in ref. [35] either. The improvement going from the isobar to the Z

and then further to the full model can also be due to the introduction of further degrees

of freedom; as discussed above, we encounter a similar problem in our analysis. However

the background term, which gives an indication for missing physics, reduces dramatically

once the crossed-channel rescattering effects and the coupled intermediate state K̄0π0π+

are included. This is a similar conclusion as drawn from the dispersive analysis of φ→ 3π

Dalitz plots [15], which rendered phenomenological contact terms [57, 58] superfluous.
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5 Conclusion

In this paper we have analyzed the D+ → K−π+π+ decay with a dispersive framework

based on the Khuri-Treiman formalism that satisfies analyticity, unitarity, crossing sym-

metry, and includes crossed-channel rescattering among the three final-state particles.

The theoretical decay amplitude depends on seven complex subtraction constants, one

of which can be absorbed into overall phase and normalization of the amplitude. The re-

maining parameters are fitted to the experimental Dalitz plot data from the CLEO [21] and

FOCUS [22] collaborations, restricting the kinematic region to below the η′K threshold,

where the elastic approximation is assumed to work well. We have considered different

fit scenarios with (full) and without crossed-channel rescattering effects (Omnès), as well

as with and without the πK isospin 1/2 D-wave. Although the Omnès fits give reason-

able χ2/d.o.f., we obtain large destructive interferences between single-variable amplitudes,

which manifest themselves in unphysical fit fractions. The full fits result in good χ2/d.o.f.

around 1.1 for the CLEO data (1.2 for the FOCUS data), with sensible fit fractions through-

out. Including the πK isospin 1/2 D-wave does not significantly improve the χ2/d.o.f.,

however the fit fractions of the nonresonant waves are reduced, giving small interference

effects between the single-variable amplitudes. We have shown that we can describe the

D+ → K−π+π+ Dalitz plot data in the region where we deem elastic unitarity to hold

approximately, solely relying on ππ and πK scattering phase shift input and exploiting the

constraints of dispersion theory.

Three-body rescattering effects suspends any strict relation between the phase of the

decay partial waves and scattering phase shifts: we have shown that the significantly

stronger rise of the πK S-wave phases, as observed in analyses of these D-meson decays [23,

26] in comparison to phase shift data, can be understood at least qualitatively in the

framework of Khuri-Treiman equations.

We have simultaneously constructed the formalism for the decay D+ → K̄0π0π+, which

is directly related to D+ → K−π+π+ by charge exchange and can be constructed from

different linear combinations of the same (isospin) amplitudes. This second decay channel

has recently been measured by the BESIII collaboration [59]. A simultaneous analysis of

both Dalitz plots will further exploit the predictive power of the dispersive formalism; due

to the direct contribution of the ππ P -wave in the π0π+ (as opposed to the π+π+) final

state, we expect to find stronger constraints on the subtraction constants featuring directly

in the corresponding amplitude. The pertinent investigation is in progress [60].
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A Inhomogeneities

In this appendix the inhomogeneities are calculated from eq. (3.8). To demonstrate the

procedure we will perform the calculation explicitly in the case of f
I=1/2
L (s),

f
1/2
L (s) =

√
3M1/2,L

−++ (s) = κL(s)
(
F1/2
L (s) + F̂1/2

L (s)
)
. (A.1)

We start with the projection of the decay amplitude M−++, eq. (2.5), onto isospin eigen-

states in the s-channel. We introduce the following crossing matrices:

M I
s ≡

∑
I′

XII′
st M

I′
t , M I

t ≡
∑
I′

XII′
tu M

I′
u (A.2)

and so on, where M I
x is the isospin I eigenstate in the x-channel and XII′

xy the crossing

matrix for the transition from channel y to x, where I and I ′ are the matrix component

indices. We obtain the following explicit forms:

Xst =
1

3

(
2 −

√
10

−
√

5
2 −2

)
= Xts , Xus =

1

3

(
1
√

10
√

3 −
√

6
5

)
. (A.3)

The t-channel and u-channel single-variable amplitudes can be split, with the aid of the

crossing matrices, into Is = 1/2 and Is = 3/2 contributions,

F1/2
L (t)√

3
−
√

2

15
F3/2
L (t) =

2

3
√

3

(
F1/2
L (t)−

√
5

2
F3/2
L (t)

)
︸ ︷︷ ︸

Is=1/2

+
1

3
√

30

(√
10F1/2

L (t) + 4F3/2
L (t)

)
︸ ︷︷ ︸

Is=3/2

,

F2
0 (u) =

1

6

(√
3(t− s)F1

1 (u) + 5F2
0 (u)

)
︸ ︷︷ ︸

Is=1/2

−1

6

(√
3(t− s)F1

1 (u)−F2
0 (u)

)
︸ ︷︷ ︸

Is=3/2

,

(A.4)

with L ∈ {0, 1}. Retaining the I = 1/2 pieces only, we have

MIs=1/2
−++ (s, t, u) =

1√
3
F1/2

0 (s) +
2

3
√

3

(
F1/2

0 (t)−
√

5

2
F3/2

0 (t)

)
+

1√
3

[
s(t− u)−∆

]
F1/2

1 (s)

+
2

3
√

3

[
t(s− u)−∆

](
F1/2

1 (t)−
√

5

2
F3/2

1 (t)

)
+

1

6

(√
3(t− s)F1

1 (u) + 5F2
0 (u)

)
. (A.5)

Since there is no isospin 1 component in the u-channel amplitudes ofM−++, the projections

onto this specific component yield zero and therefore provide an additional cross-check.

Similarly no Is = 1/2 component should appear in M0̄0+. We are left with the angular

momentum projection. For a compact notation we define the angular average integration by

〈znM〉xy(y) ≡ 1

2

∫ 1

−1
dzy z

n
yM(x(y, zy)) . (A.6)
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We immediately obtain

〈znf〉us = 〈znf〉ut , 〈z
nf〉ts = 〈znf〉st , and 〈znf〉tu = (−1)n 〈znf〉su . (A.7)

The angular average integration is straightforwardly performed in the scattering region.

The continuation to the decay region, where the naive integration would cross the right-

hand cut, has been discussed extensively before [6, 15]. We now perform the partial-wave

projection

MIs=1/2,L
−++ (s, t, u) ≡ 2L+ 1

2

∫ 1

−1
dzsPL(zs)MIs=1/2

−++

(
s, t(s, zs), u(s, zs)

)
, (A.8)

with the Legendre polynomials PL(zs). For the S-wave we obtain

√
3M1/2,0

−++(s) =
5
√

3

6

〈
F2

0

〉
us

+
1

2

〈(
Asz +Ds

)
F1

1

〉
us

+ F1/2
0 (s) +

1

3

[〈
2F1/2

0 −
√

10F3/2
0

〉
ts

+
〈(
A2
sz

2 +Bsz + Cs
)(

2F1/2
1 −

√
10F3/2

1

)〉
ts

]
, (A.9)

where

Ax =
κ(x)

2x
, Bx =

κ(x)(x2 + ∆)

2x2
,

Cx =
(x2 −∆)2 − x2(Σ0 − 2x)2

4x2
, Dx = −3x2 −∆− xΣ0

2x
, (A.10)

with Σ0 = M2
D + M2

K + 2M2
π , x ∈ {s, t}. Thus from eq. (A.9), the inhomogeneity can be

immediately read off from the relation
√

3M1/2,0
−++(s) = F1/2

0 (s) + F̂1/2
0 (s). The full set of

inhomogeneities is given in terms of the angular averages

F̂2
0 (u) =

2√
3

[〈
F1/2

0 −
√

2

5
F3/2

0

〉
su

−
〈(
Auz

2 −Buz − Cu
)
z2

(
F1/2

1 −
√

2

5
F3/2

1

)〉
su

]
,

F̂1
1 (u) =

2

κu(u)

[〈
z
(
F1/2

0 +
√

10F3/2
0

)〉
su

−
〈(
Auz

3 −Buz2 − Cuz
)(
F1/2

1 +
√

10F3/2
1

)〉
su

]
,

F̂1/2
0 (s) =

5
√

3

6

〈
F2

0

〉
us

+
1

2

〈(
Asz +Ds

)
F1

1

〉
us

+
1

3

[〈
2F1/2

0 −
√

10F3/2
0

〉
ts

+
〈(
A2
sz

2 +Bsz + Cs
)(

2F1/2
1 −

√
10F3/2

1

)〉
ts

]
,

F̂1/2
1 (s) =

1

κ(s)

[
5
√

3

2

〈
zF2

0

〉
us

+
3

2

〈(
Asz

2 +Dsz
)
F1

1

〉
us

+
〈

2zF1/2
0 −

√
10zF3/2

0

〉
ts

+
〈(
A2
sz

3 +Bsz
2 + C2z

)(
2F1/2

1 −
√

10F3/2
1

)〉
ts

]
,
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F̂3/2
0 (s) = −

√
5

2
√

6

〈
F2

0

〉
us

+

√
5

2
√

2

〈(
Asz +Ds

)
F1

1

〉
us

− 1

6

[〈√
10F1/2

0 + 4F3/2
0

〉
ts

+
〈(
A2
sz

2 +Bsz + Cs
)(√

10F1/2
1 + 4F3/2

1

)〉
ts

]
.

F̂1/2
2 (s) =

1

κ2(s)

[
25

2
√

3

〈
(3z2 − 1)F2

0

〉
us

+
5

2

〈(
Asz +Ds

)(
3z2 − 1

)
F1

1

〉
us

+
10

3

〈
(3z2 − 1)F1/2

0

〉
ts
− 15

√
10

3

〈
(3z2 − 1)F3/2

0

〉
ts

+
10

3

〈(
A2
sz

2 +Bsz + Cs
)
(3z2 − 1)F1/2

1

〉
ts

]
, (A.11)

where in addition to eq. (A.10) we have used

Au =
1

4
κu(u)2 , Bu =

1

2
uκu(u) , Cu =

(Σ0 − 2u)2 − u2

4
−∆ . (A.12)

B Invariance group matching

In this appendix, we study the polynomial ambiguities in the decomposition of the total

decay amplitudes eq. (2.5) into single-variable functions, dubbed “invariance group”. We

wish to determine the polynomial at most linear in the Mandelstam variables that can

be added to the different single-variable amplitudes, leaving the total decay amplitudes

eq. (2.5) invariant. For this purpose, we make use of the relation s + t + u = 3s0 =

M2
D + M2

K + 2M2
π . It is easy to check that adding the following terms to the various

S-waves as well as the ππ P -wave:

F2
0

inv
(u) = a0 + b0u , F1

1
inv

(u) = − 5√
3
b0 + 2d0 ,

F1/2
0

inv
(s) = c0 + d0s , F3/2

0

inv
(s) =

√
5

2
√

2

(√
3
[
a0 + b0(3s0 − 2s)

]
+ 2(c0 + d0s)

)
, (B.1)

leaves both M−++(s, t, u) and M0̄0+(s, t, u) unchanged. The most general full decay am-

plitudes are therefore obtained by

FIL
new

(s) = FIL(s) + FIL
inv

(s) , (B.2)

which, according to eq. (B.1), has a four-parameter gauge freedom built in.

Following ref. [47], we rewrite the polynomial representations of FIL
inv

(s) eq. (B.1) into

the Omnès representation FIL
inv

Ω (s) in order to match to eq. (3.7):

FIL
inv

Ω (s) ≡ ΩI
L(s)

{
πIL(s) +

sn

π

∫ ∞
sth

dx

xn
sin δIL(x)F̂IinvL

|ΩI
L(x)|(x− s)

}
, (B.3)

with the subtraction polynomials πIL(s). As the invariance polynomials FIL
inv

(s) do not have

discontinuities, it immediately follows that F̂IinvL (s) = −FIL
inv

(s), which is also confirmed
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by a straightforward calculation. We determine the subtraction polynomials by equating

the polynomial and Omnès representations of the invariance group. We obtain

πIL(s) =
FIL

inv
(s)

ΩI
L

+
sn

π

∫ ∞
sth

dx

xn
sin δIL(x)FIL

inv

|ΩI
L(x)|(x− s) . (B.4)

The next step is to rewrite the inverse Omnès function into a dispersion relation. Its

discontinuity is given by

disc
1

ΩI
L(s)

= −2i
sin δIL(x)

|ΩI
L(x)| , (B.5)

which thus yields

1

ΩI
L(s)

= P ILΩ(s)− sn

π

∫ ∞
sth

dx

xn
sin δIL(x)

|ΩI
L(x)|(x− s) , (B.6)

with the subtraction polynomial P ILΩ(s) = 1 +
∑n−1

i=1 (ωIL)is
i. The subtraction constants

(ωIL)i are given by the following sum rules, provided that the dispersion integrals converge:

(ωIL)i = − 1

π

∫ ∞
sth

dx

xi+1

sin δIL(x)

|ΩI
L(x)| . (B.7)

Therefore eq. (B.4) yields

πIL(s) = P ILΩ(s)FIL
inv

(s) +
sn

π

∫ ∞
sth

dx

xn
sin δIL(x)

(
FIinvL (x)−F ILinv(s)

)
|ΩI
L(x)|(x− s) . (B.8)

As an example we will study the single-variable amplitude F2
0 with F2inv

0 (s) = a0 + b0s.

We obtain

π2
0(s) = a0 +

[
b0 + a0(ω2

0)1

]
s+

(
(ω2

0)1 −
1

π

∫ ∞
sth

dx

x2

sin δIL(x)

|ΩI
L(x)|

)
b0s

2 . (B.9)

Using the sum rule value for (ω2
0)1 we find

π2
0(s) = a0 +

[
b0 + a0(ω2

0)1

]
s . (B.10)

The other subtraction polynomials are obtained in an analogous way and read

π2
0(s) = a0 + (b0 + a0(ω2

0)1)s , π1
1(s) = − 5√

3
b0 + 2d0 ,

π
1/2
0 (s) = c0 +

[
d0 + (ω

1/2
0 )1

]
s+

[
d0(ω

1/2
0 )1 + c0(ω

1/2
0 )2

]
s2 +

[
d0(ω

1/2
0 )2 + c0(ω

1/2
0 )3

]
s3

π
3/2
0 (s) =

√
5

2
√

2

{√
3(a0 + 3b0s0) + 2c0

+
[
(ω

3/2
0 )1

(√
3(a0 + 3b0s0) + 2c0

)
− 2

(√
3b0 − d0

) ]
s

}
, (B.11)

with no contributions to the πK P - and D-waves. Polynomial terms with higher order

than the subtraction polynomials of the corresponding amplitudes (see section 3.3) have

been omitted.
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As we have argued above that a choice of the constants a0, . . . , d0 corresponds to a

mere “gauge” choice and is unobservable, we can decide to fix them by requiring the (linear)

subtraction polynomials in the nonresonant S-waves (I = 2 ππ and I = 3/2 πK) to vanish.

Equation (B.11) proves that this is feasible: we can eliminate all subtraction constants in

F2
0 by the appropriate choice of a0 and b0, and all constants in F3/2

0 by adjusting c0 and

d0. The result is the system eq. (3.10) in the main text, which is thus free of ambiguities.

C Numerical treatment

In this appendix we discuss the numerical treatment of the double integral in eq. (3.13),

i.e. the part independent of the subtraction constants. In the following we will restrict

ourselves to the s-channel case for illustration. We rewrite the term zms in eq. (3.13) as

zms (s, t) = ζm(s, t)/κm(s), with ζ(s, t) =
(
2ts−3s0s+s2−∆

)
and 3s0 = M2

D+M2
K +2M2

π ,

such that the double integral adopts the form

F̃(s) = s κ2L−m(s)

∫ ∞
sth

F̃(x) sin δ(x)

xn|Ω(x)|κ2L+1(x)

∫ t+(s)

t−(s)
tn
ζm(s, t)Ω(t)

x− t dt dx , (C.1)

with t±(s) = t(s,±1). First we study the case s > (MD −Mπ)2. The angular integral can

directly be performed as the two integral paths do not cross each other. We may simply

use

s κ2L−m(s)

∫ ∞
sth

F̃(x) sin δ(x)

xn|Ω(x)|κ2L+1(x)
W (s, x) dx , W (s, x) ≡

∫ t+(s)

t−(s)
tn
ζm(s, t)Ω(t)

x− t dt ,

(C.2)

where W (s, x) can be determined numerically in a straightforward way. The discretized

integral reads∫ ∞
sth

F̃(x) sin δ(x)

xn|Ω(x)|κ2L+1(x)
W (s, x) dx =

∑
j

F̃(sj)

∫ sj+1

sj

cj0(s) + cj1(s)x

κ2L+1(x)
dx , (C.3)

where cj0(s) + cj1(s)x is the linear interpolation of W (s, x) sin δ(x)/xn|Ω(x)| in the interval

[sj , sj+1] for a fixed s. Note that the resulting integrals can be performed analytically

with the singularities moved into the upper complex plane to obtain the correct (physical)

branch.

For the case s < (MD −Mπ)2 the Cauchy singularity needs to be handled carefully, as

the integration paths meet. We rewrite∫ ∞
sth

F̃(x)
sin δ(x)

xn|Ω(x)|κ2L+1(x)

∫ t+(s)

t−(s)
tn
ζm(s, t)Ω(t)

x− t dt dx

=

∫ ∞
sth

F̃(x) sin δ(x)

xn|Ω(x)|κ2L+1(x)

∫ t+(s)

t−(s)
ζm(s, t)

tnΩ(t)− xnΩ(x)

x− t dt dx

+

∫ ∞
sth

∫ t+(s)

t−(s)

F̃(x)eiδ(x) sin δ(x)

κ(x)2L+1(x− t) dt dx . (C.4)
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The first summand is treated as above in eq. (C.3). For the second summand we obtain∫ ∞
sth

∫ t+(s)

t−(s)

F̃(x)eiδ(x) sin δ(x)

κ2L+1(x)(x− t) dt dx =
∑
j

F̃(sj)

∫ sj+1

sj

∫ t+(s)

t−(s)

aj0 + aj1x

κ2L+1(x)(x− t) dt dx ,

(C.5)

where now aj0 + aj1x is the linear interpolation of eiδ(x) sin δ(x) in the interval [sj , sj+1].
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