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Abstract: With the upcoming run of the Large Hadron Collider (LHC) at much higher

center of mass energies, the search for Beyond Standard Model (BSM) physics will again

take center stage. New colored particles predicted in many BSM scenarios are expected to

be produced with large cross sections thus making them interesting prospects as a doorway

to hints of new physics. We consider the resonant production of such a colored particle, the

diquark, a particle having the quantum number of two quarks. The diquark can be either

a scalar or vector. We focus on the vector diquark which has much larger production cross

section compared to the scalar ones. In this work we calculate the next-to-leading order

(NLO) QCD corrections to the on-shell vector diquark production at the LHC produced

through the fusion of two quarks as well as the NLO corrections to its decay width. We

present full analytic results for the one-loop NLO calculation and do a numerical study

to show that the NLO corrections can reduce the scale uncertainties in the cross sections

which can be appreciable and therefore modify the expected search limits for such particles.

We also use the dijet result from LHC to obtain current limits on the mass and coupling

strengths of the vector diquarks.
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1 Introduction

After the successful running of the Large Hadron Collider (LHC) at CERN with 7 and

8 TeV center of mass energies, the data released by the two experiments, ATLAS and CMS

have not only improved on the limits set by the Tevatron experiments on any new physics

scenario, but has also started giving some insights into the TeV scale. In addition to the

observation of a scalar resonance at 125 GeV [1, 2] consistent with that of the Standard

Model (SM) like Higgs boson, the results are also in very good agreement with predic-

tions from the SM, with not much deviation. This means that the LHC data is already

pushing the energy frontier of any Beyond Standard Model (BSM) physics predictions.

However with the upgraded run of LHC at center of mass energy of 13 TeV and subse-

quently 14 TeV, the search for new physics is expected to be more robust and as envisaged

for the LHC run. As expected and observed from the previous LHC runs, the data would

be most sensitive to the strongly interacting sector through production of new colored

states. Since the initial states at hadron colliders such as the LHC are colored particles,
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the most dominant contributions would be through new colored resonances. Such colored

particles are predicted in many class of BSM theories. Resonant s-channel production at

LHC can happen for squarks in R-Parity violating supersymmetric theories [3], diquarks

in super-string inspired E6 grand unification models [4] or models with extended gauge

symmetries [5–7], color-octet vectors such as axigluons [8, 9] and colorons [10–14], models

with color-triplet [15], color-sextet [16–18] or color-octet scalars [19, 20]. The absence of

any such observation in the existing data put strong limits on such particle masses, from

pair production of such states, or more strongly from resonant searches of new physics

exchanged in the s-channel [21].

These resonant colored states are most likely to decay to two light jets leading to

not only the modification of the dijet differential cross section at large invariant mass

but also show up as a bump in its invariant mass distribution. Such a signal will not go

unnoticed and will be fairly very distinct at large invariant mass values, as the significantly

huge QCD background falls rapidly for large dijet invariant mass. Both ATLAS and CMS

Collaborations have looked at the dijet signal and already put strong constraints on the

mass of such resonances [22–27]. We should however note that the production of such

colored particles will be beset with significant contributions from QCD corrections, and

therefore it becomes important to understand how much the leading order (LO) rates

might change once these corrections are included. One finds that there have been significant

efforts in this direction to study the next-to-leading order (NLO) QCD effects on production

of some of the new colored particles [28–30] arising in BSM at the LHC. Here we are

interested in particular with particles of the “diquark” type which carry non-zero baryon

number and couple to a pair of quarks or anti-quarks. The fact that LHC being a proton-

proton collider will have valence quarks in much abundance compared to the anti-quarks,

helps in producing the diquark as a resonance through qq fusion. A lot of studies carried

out at LO exist in the literature for such diquarks and their resonant effects in the dijet

signal [31–38], pair production of top quarks [39–42] and single top quark production at the

LHC [43, 44]. The one-loop NLO correction for scalar diquark production was considered

in ref. [28]. We focus on the case of vector diquarks which are either antitriplets or sextets

of SU(3)C . Such particles will also be copiously produced as s-channel resonances with

much larger cross section compared to the scalar ones. Once produced, the vector diquark

will decay and would thus contribute to the dijet final state or to final states involving the

third-generation quarks.

For our study of estimating the NLO corrections to the on-shell production of a vector

diquark at the LHC, we follow in part the methodology used in ref. [28] to present our

results. In section 2 we present the formalism and give the basic interaction Lagrangian

relevant for our study and in section 3 we discuss the on-shell production cross section of

the vector diquark, and present our calculations and analytic expressions for the NLO QCD

results. In section 4 we give results for the one-loop corrections to the decay width of the

vector diquark. In section 5 we give our numerical results for the NLO cross sections and

its dependence on the choice of scale for the production of the vector diquark in different

channels at the LHC. We also consider its effect on the experimental limits for such particles

and finally in section 6 we give our conclusions with future outlook. Some relevant formulas

are collected as an appendix.
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2 Formalism

We are interested in new colored particles that couple to a pair of quarks directly and

carry exotic baryon number. With the LHC being a proton-proton machine, the initial

states comprised of the the valence quarks (u, d) would lead to enhanced flux in the parton

distributions for the collision between a pair of valence quarks such as uu, dd or ud. Any

new particle that couples to these pairs would carry a baryon number B =
2

3
and will be

charged under the SM color gauge group SU(3)C . Such states are generally referred to

as diquarks. These colored diquarks can be either color antitriplets or sextets of SU(3)C .

We can describe the vector diquarks following ref. [44] according to color representation

(3̄, 6) and electric charge (4/3, 2/3, 1/3) as V ND
2U , V ND

U , V ND
D , where the subscripts 2U ,U ,

and D in the fields indicate their electric charge |Q| of two up type quarks, one up and

one down type quark respectively, while ND(= 3 (6)) is the dimension of the antitriplet

(sextet) representation. The relevant interactions of the quarks with the different vector

diquarks is given by the Lagrangian

LVqqD = Kj
ab

[
λ2U
αβ√

1 + δαβ
V jµ

2U UcαaγµPτUβb +
λUαβ√

1 + δαβ
V jµ
U DcαaγµPτDβb

+ λDαβV
jµ
D UcαaγµPτDβb

]
+ h.c.

(2.1)

where Pτ = 1
2(1±γ5) with τ = L,R representing left and right chirality projection operators

and superscript µ is the Lorentz four vector index. The Kj
ab are SU(3)C Clebsch-Gordan

coefficients with the quark color indices a, b = 1−3, and the diquark color index j = 1−ND,

C denotes charge conjugation, while α, β are the fermion generation indices. The color

factor Kj
ab is symmetric (antisymmetric) under ab for the 6 (3̄) representation. A more

general form of the Lagrangian can be found in ref. [36]. A factor of 1/
√

2 in the interaction

terms involving same quark flavors is introduced to keep the expressions for the production

cross section as well as the decay width same for both different flavor and same flavor cases.

To calculate the QCD corrections to the diquark production, we also need to know how

the vector diquark (V µ
i ) interacts with the gluons, which is given by the Lagrangian,1

LVGDD = −1

2
(Viµν)†(V µν

i )− igs V †iµT
A
ij VjνG

A,µν (2.2)

where,

V µν
i = Dµ

ijV
ν
j −Dν

ijV
µ
j (2.3)

GAµν = ∂µG
A
ν − ∂νGAµ + gsf

ABCGBµG
C
ν (2.4)

Dµ,ij ≡ δij∂µ − igs GAµTAij . (2.5)

The indices i and j again run from 1 → ND, where ND is the dimension of the diquark

representation. The index A runs from 1 → 8 and TAij are the SU(3)C generators in the

1There may exist anomalous terms in the Lagrangian allowed by gauge invariance, similar to that for

vector leptoquarks [45]. For simplicity, we have neglected such anomalous contributions in the gluon-

diquark-diquark interaction.
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diquark representation. Note that we have suppressed the electric charge index (2U ,U ,D)

for the diquark as we are interested only in the QCD corrections. The Feynman rules for

three-point vertices involving vector diquark are given in appendix A.

The diquark can couple to the initial state valence partons coming from both the

protons, and the production of the diquark would get significant enhancement due to the

large flux of the valence quarks in the proton. Therefore the production rates are only

constrained by its coupling strength to the pair of initial quarks and its mass, which are

the two free parameters in our analysis. Moreover, it is also equally probable that the

vector diquarks have generation dependent couplings following eq. (2.1). Therefore the

couplings (λ2U , λU , λD) involved in eq. (2.1) are completely arbitrary and can in principle

be large. Note that most of them are tightly constrained by flavor physics as they might

mediate light meson or hadron decays [3, 28]. Therefore the constraints on the interaction

of the vector diquark with the lighter quarks (first and second generation) are much more

stronger, which means that vector diquark production at the LHC can have different allowed

interaction strengths depending on the initial quarks participating in the production. To

make our analysis more general we therefore choose to present our results normalized

to the coupling strength. Where applicable, we would also assume that we work in the

minimal flavor violating (MFV) scheme [46] for the couplings involving both the left- and

right-chiral quarks with the vector diquark. It is worth noting that these colored states

do not have direct coupling to a pair of gluons and thus the production cross section for

diquark is limited by the flux of the initial partons in the proton at the LHC. However large

QCD corrections can significantly alter the rates and modify the existing constraints on

the mass and interaction strengths of such colored states. In this work we have chosen to

ignore any electroweak corrections as interactions of the vector diquark to the electroweak

gauge bosons might be model dependent.

3 Production cross section at next-to-leading order

We shall work in the “narrow-width” approximation where we can write the cross section

as a product of the on-shell production and decay of the vector diquark (VD) in a particular

channel (XX) as

σ (pp→ XX) ' σ (pp→ VD)× Γ(VD → XX)

Γ(VD → all)
(3.1)

Thus σ (pp→ VD) gives the cross section for the production of the diquark resonance. The

leading order or Born contribution to the on-shell vector diquark production comes from

quark-quark initial states. The relevant Feynman diagram is shown in figure 1. For the

diquark of mass MD, the parton-level cross section at the LO is given by

σ̂B =
σ̂0

ŝ
δ(1− τ), (3.2)

where

σ̂0 =
λ2πND

2N2
C

. (3.3)
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q

q

VD

Figure 1. Feynman diagram at Born level for the process qq → VD.

In the above, ŝ is the partonic center of mass energy, NC = 3 is the color factor of the

quarks and τ = M2
D/ŝ. It is useful to rewrite the LO cross section in n = 4−2ε dimensional

form as this n-dimensional result will be used in the NLO calculation. Thus eq. (3.3) can

be put in the form

σ̂0 =
(n− 2)πNDλ

2(µ2)µ2ε

4N2
C

. (3.4)

Here λ(µ2) represents the running coupling parameter and µ defines the scale introduced

to make the coupling dimensionless. From here onwards we shall drop the various indices

from the coupling parameter introduced in the Lagrangian 2.1. The corresponding hadronic

cross section at colliders can be obtained by convoluting the parton-level cross section

with the parton distribution functions (PDF) of the initial quarks participating in the

production, i.e.

σLO =
σ̂0

s
(q ⊗ q)(τ0), (3.5)

where s is the hadronic center of mass energy and τ0 = M2
D/s. We have used the notation

for convolution of two functions, defined by

(f1 ⊗ f2)(x0) =

∫ 1

0
dx1

∫ 1

0
dx2 δ(x1x2 − x0)f1(x1)f2(x2). (3.6)

Although the LO process involves colored particles only, the interaction strength does

not involve the strong coupling gs but only the coupling strengths given by the free param-

eter λ. Therefore the one-loop QCD corrections at NLO are in leading order of αs = g2s
4π .

The O(αs) QCD correction to the vector diquark production involves:

• Virtual corrections due to one-loop gluon contributions.

• Real corrections due to the gluon emission from initial state quarks and final state

diquark.

• For the complete O(αs) correction, one also needs to consider quark-gluon initiated

diquark production with a jet.

We use dimensional regularization (DR) to regulate the ultraviolet (UV) and infrared (IR)

singularities that may appear in these corrections. The renormalization of UV singularity
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Figure 2. Feynman diagrams for virtual gluon correction to the process qq → VD.

and factorization of collinear singularity is carried out in the MS scheme. We have per-

formed various checks, including the gauge invariance check with respect to the gluon at

the amplitude and amplitude-squared levels, to ensure the correctness of our calculations.

3.1 Virtual corrections

The virtual corrections at O(αs) come from the interference of Born and one-loop ampli-

tudes. The one-loop diagrams contributing to virtual corrections are displayed in figure 2.

These diagrams are both UV and IR divergent. The required one-loop computation is

carried out following the standard method of one-loop tensor reduction in n = 4 − 2ε

dimensions. We have listed all the one-loop scalar functions that we have used in the cal-

culation, in appendix B. The virtual cross section coming from vertex correction diagrams

is given by,2

σ̂V = σ̂B
αsCε
2π

[
CD

{
8

3

1

εUV
− 2π2

3
+

77

18

}
+ CF

{
1

εUV
− 2

ε2IR
− 4

εIR
+ π2 − 8

}]
. (3.7)

The overall factor Cε = 1
Γ(1−ε)

(
4πµ2

ŝ

)ε
appears in all one-loop integrals regulated in DR.

CF and CD are the eigenvalues of the quadratic Casimir operator of SU(3)C acting on

the fundamental representation and on the diquark representation respectively. For both

the sextet and antitriplet diquark, CF = 4/3 while CD is 4/3 for the antitriplet and 10/3

for the sextet diquark. The effect of external leg corrections can be incorporated in the

wave function renormalization of the quark and diquark fields. Thus one can conveniently

express the sum of Born and virtual cross section to O(αs) as [47, see chapter 5],

σ̂B+V = (Zq2)2ZD2 σ̂B + σ̂V. (3.8)

The wave function renormalization constants Zq2 and ZD2 for quark and vector diquark

fields are,

Zq2 = 1 +
αs
4π
Cε CF

(
− 1

εUV
+

1

εIR

)
(3.9)

ZD2 = 1 +
αs
4π
Cε CD

(
2

εUV
− 2

εIR

)
. (3.10)

2We can also use this result to extract the vertex renormalization constant,

Zλ = 1− αs
4π
Cε

(
8

3
CD + CF

)
1

εUV
.
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Note that these renormalization constants are calculated for on-shell quark and diquark

fields, therefore, the IR singularity also appears. In DR, both are one as εUV = εIR =

ε. However, the above form is suitable for extracting the full UV singularity in virtual

corrections. The sum of Born and virtual cross section thus becomes,

σ̂B+V = σ̂B

[
1 +

αsCε
2π

{
CF

[
− 2

ε2IR
− 3

εIR
+ π2 − 8

]
+ CD

[
11

3

1

εUV
− 1

εIR
− 2π2

3
+

77

18

]}]
.

(3.11)

To get rid of the UV divergence in the above, renormalization of the coupling parameter

λ is necessary which is equivalent to adding an UV counter term of the following form to

eq. (3.11),

σ̂UV
C.T. = −σ̂B

αs
2π

(4π)ε

Γ(1− ε)
CD

11

3

(
1

εUV
+ ln

µ2

µ2
R

)
(3.12)

where µR is the renormalization scale. Hence the UV renormalized parton-level cross

section to O(αs) for the production of diquark from qq initial state is given by

σ̂B+V+C.T. = σ̂B

[
1 +

αsCε
2π

{
CF

(
− 2

ε2IR
− 3

εIR
+ π2 − 8

)
+CD

(
− 1

εIR
+

11

3
ln
µ2
R

ŝ
− 2π2

3
+

77

18

)}]
. (3.13)

Note that the procedure of renormalization has introduced a scale dependence in the cross

section which would help in reducing the overall scale dependence due to the running of the

coupling. After regulating the UV divergence, we are left with IR divergences, part of which

will be canceled (due to Kinoshita-Lee-Nauenberg (KLN) theorem [47]) once we take into

account the real gluon emission contribution. It is important to note that the singularity

structure of virtual cross section is the same in the scalar [28] and vector diquark cases.

Just like the singular terms proportional to CF , we find that the singular term proportional

to CD is also universal.

Note that the results of this section can be utilized to predict the one-loop running

of the quark-quark-diquark coupling λ. The one-loop beta function due to O(αs) QCD

correction is therefore given by

β(λ) = µ2dlnλ

dµ2
= −αs

4π

(
11

3
CD

)
. (3.14)

Solving this, the running of the renormalized coupling parameter λ(µ2
R) follows3

λ(µ2
R) = λ(Q2)

[
1−

αs(µ
2
R)

4π

11

3
CD ln

(
µ2
R

Q2

)]
, (3.15)

where Q is a reference scale which we will identify with MD (mass of the vector diquark)

and choose λ(M2
D) = 1. It is worth pointing out that in contrast to the scalar diquark case,

3We would like to point out that in the expression of running coupling for the scalar diquark case, given

in eq. 4.4 of ref. [28], the factor of CF should also be multiplied in the O(αs) term.
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Figure 3. Running of quark-diquark coupling with respect to the renormalization scale (µR)

to O(αs).

the one-loop running of the coupling in the vector diquark case depends on the diquark

representation and therefore will behave differently for the antitriplet and the sextet. This

is highlighted in figure 3 where we show how the coupling λ varies as a function of the

renormalization scale µR. Note that we have chosen λ(Q2) = 1 for Q = MD = 1 TeV as a

reference point which is just for illustration purposes only. The scale dependence for the

antitriplet vector diquark coupling is found to be at ∼ 6% for the µR range considered while

that for the sextet turns out to be significantly higher at ∼ 16% for the same variation

in µR. This is due to the dependence of the one-loop beta function on CD which takes

different values for the two cases. Note that the running of the coupling will bring in a

scale dependence for the LO cross section of the diquark too, similar to that observed for

QCD cross sections due to the running of the strong coupling constant αs.

3.2 Real corrections: qq channel

Next, we compute the contribution from the gluon bremsstrahlung radiated from initial

state as well as final state to O(αs). The process for the real gluon emission is,

qi(p1) + qj(p2)→ g(k) + VD(p1 + p2 − k).

The Feynman diagrams which contribute to the NLO level gluon emission process for

diquark production is given in figure 4. The full O(αs) spin and color averaged squared-

amplitude for the three different diagrams shown in figure 4 can be expressed in terms of

Mandelstam variables (s, t, u) in n = 4− 2ε space-time dimensions and is given by,∑
|MR

qq|2 =
(n− 2)NDg

2
sλ

2µ4ε

4N2
Ctu(t+ u)2

(
− CDtu+ CF (t+ u)2

)
×
(

4s2 + (n− 2)t2 + 2(n− 4)tu+ (n− 2)u2 + 4s(t+ u)
)

(3.16)
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Figure 4. Feynman diagram at leading order for the process qq → g VD.

where s = (p1 + p2)2, t = (p1 − k)2 and u = (p2 − k)2. The partonic cross section for the

real gluon emission process is obtained by performing the phase space integration in 4− 2ε

dimensions and is given by

σ̂Rqq =
σ̂0

ŝ

αs
2π
Cε

[
CF

{(
2

ε2IR
+

3

εIR
− π2

3

)
δ(1− τ)− 2

εIR

(
1 + τ2

1− τ

)
+

+ 4(1 + τ2)

(
ln(1− τ)

1− τ

)
+

}
+ CD

{(
1

εIR
+

11

3

)
δ(1− τ)− 2

3

(
1 + τ + τ2

1− τ

)
+

}
+O(εIR)

] (3.17)

In the above expression, the terms with (. . .)+ are the plus functions. The plus function

distribution is defined in appendix C. The IR divergence of real emission process originates

from the phase space region where the emitted gluon is soft (k0 → 0) and/or it is collinear

to the quarks. Since τ = 1 corresponds to threshold production of the vector diquark,

the 1/εIR singular terms proportional to δ(1− τ) are due to the gluon becoming soft. On

the other hand, the 1/ε2IR term arises when this soft gluon is also collinear to any of the

two initial state quarks. The remaining singular terms in eq. (3.17) are due to the gluon

becoming collinear to quarks. Since the vector diquark is massive, the gluon emitted from

it cannot be collinear thus explaining the absence of collinear singularity in CD part of the

expression. As mentioned above, the IR soft singularities cancel between real and virtual

correction to qq → VD. Adding the two cross sections given by eqs. (3.11) and (3.17),

we get

σ̂B+V+C.T.+R = σ̂B+V+C.T. + σ̂R
qq

=
σ̂0

ŝ

[
δ(1− τ) +

αsCε
2π

{
CF

[(
2π2

3
− 8

)
δ(1− τ)− 2

εIR

(
1 + τ2

1− τ

)
+

+ 4(1 + τ2)

(
ln(1− τ)

1− τ

)
+

]
+ CD

[(
11

3
ln
µ2
R

ŝ
− 2π2

3
+

143

18

)
δ(1− τ)− 2

3

(
1 + τ + τ2

1− τ

)
+

}]
,

(3.18)

where we are left only with the collinear divergence terms as expected. The collinear

divergences can be finally removed by redefining the quark PDF’s. In the MS factorization
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Figure 5. Feynman diagrams for the process qg → q̄ VD.

scheme, the universal counter term for collinear singularity is

σ̂C.T.
qq =

σ̂0

ŝ

αs
2π

(4π)ε

Γ(1− ε)

(
1

εIR
+ ln

µ2

µ2
F

)
2Pqq(τ) (3.19)

where Pqq(τ) = CF
(

1+τ2

1−τ
)

+
is the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)

splitting function (probability of quark splitting into a quark and a gluon) and µF defines

the factorization scale. The total parton level cross section in qq channel is finally given by,

σ̂qq = σ̂B+V+C.T+R + σ̂C.T.
qq

=
σ̂0

ŝ

[
δ(1− τ) +

αs
2π

{
2Pqq(τ)ln

(
M2
D

µ2
F τ

)
+ CF

[
4(1 + τ2)

(
ln(1− τ)

1− τ

)
+

+

(
2π2

3
− 8

)
δ(1− τ)

]
+ CD

[
− 2

3

(
1 + τ + τ2

1− τ

)
+

+

(
11

3
ln

(
µ2
R

M2
D

)
− 2π2

3
+

143

18

)
δ(1− τ)

]}]
.

(3.20)

The corresponding hadronic cross section is obtained by convoluting the parton level cross

section with the initial state quark distribution functions,

σqq =

∫ 1

τ0

dτ
τ0

τ2

[
(q ⊗ q)

(
τ0

τ

)]
σ̂qq. (3.21)

If the initial state quarks are of different flavors q1 and q2 then replace, q⊗ q → (q1 ⊗ q2 +

q2 ⊗ q1) in the above equation.

3.3 Real corrections: qg channel

As pointed out earlier, for a complete O(αs) contribution we should also consider the

quark-gluon (qg) initiated process,

qi(p1) + g(k)→ VD(p1 + k − p2) + qj(p2).

The Feynman diagrams for this process are given in figure 5. The total spin and color

averaged amplitude-squared for the qg initiated process in terms of Mandelstam variables
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is given by

∑
|MR

qg|2 =
g2
sλ

2µ4εND(CDsu− CF (s+ u)2)

2NC(N2
C − 1)su(s+ u)2

×
(

(n− 2)(s2 + u2) + 4t(u+ s) + 2(n− 4)su+ 4t2
) (3.22)

Note that the spin average for the initial state gluon introduces a term dependent on the

space-time dimension n and also has a different color averaging factor compared to the

qq initiated process for real corrections. However, as expected the above expression does

match with that for the qq case without the spin and color averaging, under the interchange

t ↔ s and an overall sign. This is because of the crossing symmetry between qq and qg

processes. The extra -ve sign in qg case results when one fermion is moved from initial

state to the final state.

The parton level cross section for the qg initiated process is

σ̂Rqg =
σ̂0

ŝ

αs
2π
Cε

[{
−((1− τ)2 + τ2)

2εIR
+

3 + 2τ − 3τ2

4
+ ((1− τ)2 + τ2)ln(1− τ)

}
+

CD
2CF

{
− 1 +

2

τ
+ τ − 2τ2 + 2(1 + τ)lnτ

}]
,

(3.23)

where σ̂0 is given in eq. (3.3). As shown above, the cross section has IR collinear divergence

which we remove by factorization in MS scheme. The required counter term is given by,

σC.T.
qg =

σ̂0

ŝ

αs
2π

(4π)ε

Γ(1− ε)

(
1

εIR
+ ln

µ2

µ2
F

)
Pqg(τ) (3.24)

with Pqg(τ) = 1
2

[
(1− τ)2 + τ2

]
. Hence the parton level cross section for the vector diquark

production in qg initiated channel is given by

σ̂qg = σ̂Rqg + σC.T.
qg

=
σ̂0

ŝ

αs
2π

[
Pqg(τ)

{
ln

(
M2
D

µ2
F τ

)
+ 2ln(1− τ)

}
+

3 + 2τ − 3τ2

4

+
CD
2CF

{
− 1 +

2

τ
+ τ − 2τ2 + 2(1 + τ)lnτ

}]
.

(3.25)

The corresponding hadronic cross section is obtained by convoluting the above parton level

cross section with the initial state quark and gluon distribution functions,

σqg =

∫ 1

τ0

dτ
τ0

τ2

[
(q ⊗ g + g ⊗ q)

(
τ0

τ

)]
σ̂qg. (3.26)

4 Decay width: O(αs) correction

Note that just like the LO cross sections for the production of the vector diquarks, the

LO predictions for decay width of the particle also suffer from the renormalization scale
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uncertainties. Therefore for the sake of completion we would also like to estimate the

effect of the QCD corrections on the decay width (Γ) of the vector diquark. Note that a

primary requirement in assuming the narrow width approximation, one expects that the

ratio Γ/MD is relatively small and not exceeding ' 10%. In order to remain in that regime,

it is necessary to check that the decay width does not change by much under higher-order

corrections. In this section, we compute the NLO QCD corrections to the vector diquark

decaying into a pair of light jets,

VD(q)→ qi(p1) + qj(p2). (4.1)

The leading order total decay width is given by

Γ0 =
∑
i

λ2
i

24π
MD, (4.2)

where i is the number of light quark generations which can couple to the vector diquark

of a given electric charge. We have assumed that we can neglect all quark masses in the

decay products (including top quark). The virtual corrections to the decay width involve

the same Feynman graphs shown in figure 2 and has the same singular structure as given

in eq. (3.13) for the on-shell vector diquark production. The same procedure followed

in calculating the virtual corrections for the production cross section leads us to the UV

renormalized virtual correction to the decay width which is given by

ΓV = Γ0

[
1 +

αs
2π
Cε

{
CF

(
− 2

ε2IR
− 3

εIR
− 8 + π2

)
+CD

(
− 1

εIR
+

11

3
ln

(
µ2
R

M2
D

)
+

77

18
− 2π2

3

)}]
. (4.3)

However we must point out that the real gluon correction is inherently different from that

of the production. To compute the real gluon correction to the decay width, we need to

consider the following three body final state,

VD(q)→ qi(p1) + qj(p2) + g. (4.4)

Note that the calculation of real correction to diquark decay width requires three body

phase space integration to be performed in n = 4 − 2ε dimensions. For that we have

followed the method given in ref. [48, see chapter 2]. The final expression with the real

correction to the decay width is then given by,

ΓR = Γ0
αs
2π
Cε

[
CF

(
2

ε2IR
+

3

εIR
+

19

2
− π2

)
+ CD

(
1

εIR
+

11

3

)]
. (4.5)

By adding the virtual and real corrections to decay width all the singularities cancel as

expected by KLN theorem. Thus, the complete NLO QCD correction to the diquark decay

width is given by (from eq. (4.3) and eq. (4.5)),

ΓNLO = Γ0

[
1 +

αs
2π

{
3

2
CF + CD

(
143

18
− 2π2

3
+

11

3
ln

(
µ2
R

M2
D

))}]
. (4.6)
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Figure 6. Dependence of decay width on MD (left) and on renormalization scale µR (right) to

O(αs). To show the µR dependence we chose λ(MD) = 1 where MD = 1 TeV.

The corresponding expression for the case of scalar diquark is given in appendix D. From

eq. (4.6), we observe that the coefficient of CF is similar to that in SM (NLO QCD correction

of an electroweak vector boson decaying into quark-antiquark pair) although here the final

state is a quark-quark pair. We also find that a non-trivial contribution to the NLO decay

width arises from the other Casimir, CD which takes different values for the two color

representations of the vector diquark.

We calculate the relevant K-factor defined as the ratio of the NLO width to that of

the LO width and plot it in figure 6. In the left panel of figure 6, we have shown the

dependence of the NLO K−factor for the decay width on the diquark mass. As µR = MD

we can clearly see that the logarithmic term in eq. (4.6) will not contribute and we should

expect a constant value for a particular diquark representation. We however observe a

slight variation for the NLO K-factor for the widths of the antitriplet and sextet vector

diquarks as we vary the mass MD, which is only arising because of the running of the

strong coupling αs (we have taken αs(MZ) = 0.1184 as the reference value). We find that

K-factor for the sextet case is larger than the antitriplet due to larger CD and increases

the LO width by about 8− 10% for the mass range MD = 0.5− 3 TeV. The corresponding

LO width for the antitriplet vector diquark is modified less and increases by about 4.5−6%

with the K-factor. On the right panel of figure 6, we show the scale dependence µR of the

decay width at LO and NLO and for sextet and antitriplet vector diquark states. As a

reference point, we have chosen λ(MD) = 1 where MD = 1 TeV and we vary µR between

MD/2 to 3MD. The LO scale dependence is entirely due to the running of the coupling

(see figure 3). We can clearly see that the inclusion of O(αs) correction has significantly

reduced the scale dependence. As one would expect, due to the smaller color factor CD
the scale variation for the antitriplet case is also smaller as compared to the scale variation

for the sextet case.

5 Numerical analysis and results

In this section, we discuss the LO and NLO results for the vector diquark production at

the LHC. We have used the CTEQ6L1 (CTEQ6M) [49] PDF’s for the parton fluxes in the
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Figure 7. Vector diquark production cross sections for the sextet and antitriplet cases at LO and

NLO through the uu, uc and cc initial states as a function of the pp hadronic center of mass energy.

colliding protons for our LO (NLO) results. In our calculations we choose µF = µR = MD

as the central scale for factorization and renormalization unless otherwise stated. Using

our analytic results for the vector diquark production derived in the previous section we

can now study how the cross sections are affected as a function of the collider center of

mass energy (
√
s) as well as for different values of the mass (MD) of the vector diquark.

The LHC has already completed its run at two different
√
s of 7 and 8 TeV and there

are plans of running the machine at 13 and 14 TeV while future upgrades to 33 TeV is

also possible. In figure 7 we show the LO and NLO hadronic cross sections for the on-

shell vector diquark production as a function of the proton-proton collider center of mass

energy, for a fixed value of MD = 1 TeV. Note that the variation observed in the LO

cross section can be attributed to the initial parton PDF’s only where, as the center of

mass energy rises the on-shell condition of the diquark production for MD = 1 TeV forces

the colliding partons to carry a much smaller x (momentum fraction) of the proton beam

energy. Therefore the initial quark’s flux grows giving rise to increase in the production

cross section. The variation of the NLO cross section is however governed by both the

partonic cross section and the PDF’s although the feature attributed to the LO behavior

due to the PDF’s is similar. The plot is shown for three different quark-quark initial states,

namely uu, cc and uc.

It is worth recalling the fact that the coupling of the vector diquark can be generation

and flavor dependent. Therefore one can consider the diquark to be produced through

initial partons of a particular fermion generation and flavor or it can be produced, mediated

by interactions between different generations. We have chosen to normalize the cross

sections with the coupling strength λ squared so that it does not play a role here. Also

note that although we always choose λ(MD) = 1 we have neglected the effect of the running

of the coupling constant λ in figure 7. Quite clearly, cross sections for the valence quark

initiated processes are significantly large and reach appreciably high rates of above ∼ 100

picobarns (pb) for O(1) coupling strengths. Even the sea quark rates rise from a few 100
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Figure 8. Production cross section of the sextet and antitriplet vector diquarks at LO and NLO

through the uu, uc and cc initial states as a function of the diquark mass MD at LHC with√
s = 13 TeV.

femtobarns (fb) to few ten’s of picobarns for both the sextet and antitriplet vector diquarks

for O(1) coupling strengths. When compared with the scalar diquark production rates we

note that the LO cross section for the vector diquark production is exactly twice that of

the scalar diquark.4 Again, as against the scalar case where same flavor initial states are

disallowed for the antitriplet case because of the antisymmetric property of the Kab, one

gets all modes contributing in the vector case [36]. Thus a vector diquark which transforms

as an antitriplet under SU(3)C would be produced through the initial valence uu and dd

states resulting in a much higher cross section for the dijet final state compared to the

scalar diquark which would have dominant production mode through ud initial states.

One important point to note here is that if only flavor diagonal couplings are allowed for

the uu type interactions then the vector antitriplet diquark will mediate same-sign top pair

productions while the scalar diquarks will not, which would be a very interesting signal at

the LHC.

Since the vector diquark mass (MD) is a free parameter, it is also instructive to know

how the production cross section varies as a function of the diquark mass. We plot both

the LO and NLO cross sections as a function of MD at the LHC run with
√
s = 13 TeV in

figure 8. The plot is again shown for three different initial state combinations of quarks,

namely uu, cc and uc. All these would lead to the production of a vector diquark of charge

+4/3. The coupling strength has been factored out as before. We have varied MD in the

range between 500 GeV to 1.5 TeV. Due to phase space suppression, the cross section goes

down as we increase MD. It is worth pointing it out here that due to the difference in

ND, the sextet diquark production cross section at LO is just twice that of the antitriplet

production cross section (see eq. (3.3)). However, the NLO cross sections are markedly

different for the two cases and therefore the NLO cross sections for the sextet are no longer

4In ref. [28] the interaction Lagrangian has an extra factor of 2
√
2 thus giving overall rates higher than

what we get here for the vector case. However once that is taken into consideration, one gets larger rates

for the vector case as expected.
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Figure 9. Illustrating the NLO K-factors for the production of both sextet and antitriplet vector

diquark at the LHC with
√
s = 13 TeV, through the initial states uu, uc and cc as a function of

the vector diquark mass MD.

twice that of the antitriplet production. This will be evident from the K-factor estimates

which we show next. Note that as all the different charged vector diquark productions are

driven by the same color algebra for a given representation of SU(3)C the cross sections for

them are eventually driven by the initial quark PDF’s that participate in the production.

Therefore the nature of the plots for the production cross section for the |Q| = 2/3, 1/3

charged diquarks is very similar.

In figure 9 we show the dependence of NLO K-factor, defined as the ratio of the NLO

cross section to the LO cross section, on the vector diquark mass MD for both sextet and

antitriplet diquark states. The K-factors for the uu and dd initiated production are between

1.5 and 1.3 for the mass range considered. We observe that the K-factor for uu and uc

initial states decrease with MD while for cc initial state it increases which is mainly because

of the difference in the PDF distributions for the valence and sea quarks in the proton. Also

note that the K-factors in the case of the vector sextet diquark are larger compared to their

corresponding values in the vector triplet case which is unlike that observed for the scalar

diquarks. For the scalar diquarks there is a partial cancellation between the CF and CD
terms, which gives a smaller K-factor for the sextet case compared to the antitriplet [28],

while the CF and CD terms in the vector case come with the same sign. However other

features such as a larger K-factor for the sea quarks compared to the valence quarks remains

the same, as this comes from their PDF behaviour as the factorization scale varies.

One of the primary reasons for calculating the higher-order corrections to a scatter-

ing process is to minimize the scale dependence on measurable observables such as cross

sections, that would affect the event rate estimates at experiments. We therefore make

an estimate of the dependence of the choice of scale on the LO and NLO cross sections

for the vector diquark production. To illustrate this we vary both the renormalization µR
and factorization µF scale by a factor of two about the central scale µ = MD keeping

µR = µF = µ throughout. Note that the renormalization scale dependence of the leading

order cross section is governed by the one-loop running of the coupling parameter λ. Thus
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Figure 10. Showing the scale dependence of LO and NLO production cross sections for sextet and

antitriplet diquark states of mass MD = 1 TeV at the LHC with
√
s = 13 TeV .

the scale dependence of the LO cross section has an uncertainty of O(αs). Although, while

predicting the scale dependence of NLO cross section, we should use two-loop running of

the coupling, leading to an uncertainty of O(α2
s): in absence of the two-loop result for

running coupling we use eq. (3.15) for predicting the renormalization scale dependence

for both the LO and NLO cross sections for the vector diquark production at LHC with√
s = 13 TeV. We plot our results in figure 10, where we can see clearly how the scale

dependence of the NLO cross section is significantly reduced compared to the LO cross

section. While the LO cross section varies between ∼ ±30% for the vector sextet diquark

for the three initial states uu, uc and cc as µ varies between MD/2 to 2MD, the dependence

is reduced to ∼ ±10% for the NLO cross sections. For the antitriplet vector diquark, the

dependence is relatively less compared to the sextet, of about ∼ ±(12 − 14)% for the LO

cross sections which gets reduced to ∼ ±4% for the NLO result. Notice that the scale

uncertainty in antitriplet case is much smaller than that in sextet case which is reduced

further when the NLO results are included. This is because of the CD dependence (see

eq. (3.15) and eq. (3.20)) which is smaller for the antitriplet (CD = 4/3) compared to the

sextet (CD = 10/3).

Note that we have till now chosen to illustrate our results with figures for only the

4/3 charged diquark production that couple to the first two generations of the fermions.
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√
s = 8 TeV

MD = 1 TeV MD = 3 TeV

qq State LO NLO KF LO NLO KF

S 212+34.6
−27.3 306+4.5

−12.1 1.4 1.08+41.8
−30.3 1.47+10.4

−15.9 1.3

uu AT 106+17.2
−13.9 144+3.9

−5.2 1.3 0.54+25.2
−19.16 0.69+7.7

−8.9 1.2

S 227+35.6
−27.8 334+5.2

−12.7 1.4 0.67+43.1
−30.9 0.92+11.3

−16.5 1.3

ud AT 113+18.0
−14.5 157+4.3

−5.6 1.3 0.33+26.4
−19.84 0.43+8.3

−9.5 1.2

S 57.3+36.6
−28.3 86.0+5.8

−13.2 1.4 0.09+44.5
−31.4 0.13+12.3

−17.1 1.3

dd AT 28.6+18.8
−15.1 40.4+4.7

−6.0 1.4 0.04+27.5
−20.5 0.06+8.9

−10.0 1.2

S 0.89+36.6
−28.4 1.40+8.3

−14.0 1.5 5.46× 10−5+45.1
−31.7 1.38× 10−4+12.2

−16.8 2.5

ss AT 0.44+18.9
−15.2 0.64+5.3

−6.1 1.4 2.73× 10−5+28.1
−20.8 6.39× 10−5+8.4

−9.4 2.3

S 0.95+34.2
−27.3 1.70+8.0

−13.4 1.7 4.33× 10−5+41.6
−30.2 1.92× 10−4+11.1

−16.0 4.4

sc AT 0.47+16.8
−14.0 0.77+4.7

−5.3 1.6 2.16× 10−5+25.0
−19.1 8.87× 10−5+7.5

−8.7 4.1

S 0.24+31.7
−26.2 0.51+7.6

−12.7 2.1 8.65× 10−6+38.2
−28.7 6.55× 10−5+10.0

−15.1 7.5

cc AT 0.12+14.6
−12.6 0.23+4.1

−4.6 1.9 4.32× 10−6+22.0
−17.3 3.01× 10−5+6.6

−7.8 6.9

S 0.09+24.1
−22.5 0.19+6.0

−10.3 2.0 3.31× 10−6+31.3
−25.6 1.81× 10−5+6.7

−12.4 5.4

bb AT 0.04+8.0
−8.3 0.08+2.1

−2.0 1.7 1.65× 10−6+15.9
−13.7 8.24× 10−6+3.6

−5.0 4.9

Table 1. The LO and NLO cross sections (in pb) and K-factors for vector diquark production via

different initial quark states at
√
s = 8 TeV. We give the cross sections for both the sextet (S) and

antitriplet (AT) diquarks. The uncertainties (in %) given for the cross sections are due to the the

choice of scale Q = µ and is obtained by varying the scale from MD/2 to 2MD. We choose two

reference values of the vector diquark mass MD = 1, 3 TeV and a fixed value for the coupling, λ = 1.

But we should also note here that the vector diquarks with the 2/3 and 1/3 charge can

have substantial rates only affected by the initial PDF’s of the contributing quarks. So to

put the rate of production for the different vector diquarks in perspective we calculated

all the modes that could contribute to its production and present the LO and NLO cross

sections in the relevant channels with scale uncertainties at
√
s = 8 and

√
s = 13 TeV run

of LHC. To highlight the cross sections we have chosen two representative values of diquark

mass MD = 1 and 3 TeV and fixed the coupling λ = 1. We show the cross sections for

LHC with
√
s = 8 TeV and 13 TeV in table 1 and table 2 respectively. We assume that

the couplings of vector diquarks mediating quarks of different generations is suppressed.

So out of the 15 possible combinations we only consider 7 combinations with no inter-

generation vertices. One can clearly see that the valence quark contributions dominate,

with the uu and dd contributions being a few orders of magnitude higher than cc and ss
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√
s = 13 TeV

MD = 1 TeV MD = 3 TeV

qq State LO NLO KF LO NLO KF

S 364+31.6
−25.8 528+4.2

−11.3 1.4 6.91+35.5
−27.3 9.60+6.1

−12.5 1.3

uu AT 182+14.6
−12.1 249+3.4

−4.4 1.3 3.45+19.7
−15.6 4.54+4.8

−6.2 1.3

S 443+32.3
−26.2 660+4.7

−11.7 1.4 5.79+36.6
−27.8 8.12+6.8

−13.1 1.4

ud AT 221+15.1
−12.6 310+3.7

−4.7 1.3 2.89+20.6
−16.2 3.83+5.2

−6.7 1.3

S 126+33.0
−26.5 192+5.2

−12.1 1.5 1.15+37.6
−28.3 1.62+7.5

−13.7 1.4

dd AT 63.3+15.
−13.0 90.2+3.9

−4.9 1.4 0.57+21.5
−16.8 0.76+5.7

−7.1 1.3

S 4.75+32.1
−26.2 7.50+7.6

−12.9 1.5 3.73× 10−3+38.8
−28.9 6.43× 10−3+8.9

−14.1 1.7

ss AT 2.37+14.9
−12.6 3.39+4.4

−4.9 1.4 1.86× 10−3+22.6
−17.5 2.97× 10−3+6.1

−7.1 1.6

S 5.82+30.1
−25.3 9.91+7.7

−12.5 1.7 3.31× 10−3+36.4
−27.8 7.81× 10−3+8.1

−13.3 2.3

sc AT 2.91+13.2
−11.5 4.44+4.1

−4.4 1.5 1.65× 10−3+20.4
−16.2 3.60× 10−3+5.3

−6.3 2.1

S 1.72+27.9
−24.2 3.23+7.6

−12.0 1.8 7.26× 10−4+33.9
−26.6 2.37× 10−3+7.3

−12.5 3.2

cc AT 0.86+11.3
−10.2 1.43+3.7

−3.8 1.6 3.63× 10−4+18.2
−14.9 1.09× 10−3+4.6

−5.6 3.0

S 0.73+20.8
−20.6 1.34+6.8

−10.2 1.8 2.80× 10−4+27.9
−23.7 8.16× 10−4+5.3

−10.3 2.9

bb AT 0.36+5.1
−6.0 0.58+2.1

−1.7 1.5 1.40× 10−4+12.9
−11.5 3.68× 10−4+2.6

−3.3 2.6

Table 2. The LO and NLO cross sections (in pb) and K-factors for vector diquark production via

different initial quark states at
√
s = 13 TeV. All other choices are similar to that in table 1.

respectively for MD = 1 TeV in table 1. For the 3 TeV diquark, the difference in orders

is nearly doubled. A similar behavior is seen in table 2. It is quite easy to understand

that this happens due to the PDF’s of the quarks in consideration and the momentum

fraction x of the initial proton that they carry. However the notable thing to consider

is the fact that due to quite small production cross sections for the diquarks produced

through second generation quarks, even with order 1 coupling, the mass limits on them

would be considerably weaker compared to the diquarks coupling to the first generation.

As we have already determined a rough order of magnitude by which the cross sections

differ for the first and second generation vector diquarks, it would give us a comparative

idea of the limits on their coupling and mass from that derived for any one generation.

We already have updated limits from dijet data by both ATLAS and CMS collaborations

at the LHC [24, 27]. We use ref. [27] of the CMS collaboration to derive the limits on

the vector diquark mass and coupling. The CMS collaboration has given the upper bound

on the cross sections for different resonant mass values which can be compared with the

parton-level resonant production cross section (σ) times branching fraction (B) in the

narrow-width approximation using σBA, where A is an acceptance factor ∼ 0.6 [27]. We
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Figure 11. The constraints on the mass MD and coupling λ at 95% C.L. for the sextet and

antitriplet vector diquark states at the LHC with
√
s = 8 TeV using the LO and NLO cross sections.

The values
√

4π represents the perturbative limit for λ while λ =
√

2.4π gives the upper bound on

the coupling for Γ/MD < 10%.

use this to derive limits for the vector diquark (both sextet and antitriplet) mass MD

and its coupling λ which interacts only with the first generation quarks. As these would

be contributions coming through the valence quarks with the largest rates, the limits on

the diquark coupling to the second and third generation quarks would be much weaker.

In figure 11 we show the 95% C.L. constraints on the mass and couplings of the vector

diquark produced through uu, ud and dd fusion using the dijet data from ref. [27]. The

plots illustrate that all values of MD and λ which are above the curves are ruled out by

the CMS dijet data at 95% C.L.. Note that we assume that the vector diquark couples

to only one pair of quarks. We also show the perturbative limit of λ =
√

4π in the plots,

while λ =
√

2.4π gives the upper bound on the coupling for Γ/MD < 10%. As expected the

strongest limits are for the 4/3 charged diquark which couples to uu. The NLO corrections

do modify the constraints to give slightly stronger limits compared to the LO results. For

example, given a fixed value of the coupling λ = 0.5 we find the dd initiated LO result for

the antitriplet vector diquark gives a lower bound of MD ' 3.03 TeV whereas the NLO

corrections improve the limit by about 100 GeV to MD ' 3.12 TeV. The corresponding

limits for the sextet vector diquark at LO (MD ' 3.32 TeV) changes to MD ' 3.42 TeV

at NLO. The corrections in the other modes are also found to be between ∼ 50-100 GeV.

We have chosen not to show the effect of the associated scale uncertainties on the limits

obtained. It should suffice to mention that the bounds using the LO cross sections would

incorporate a much larger uncertainty band in the constraints compared to the NLO which

is evident from the details given in table 1 and table 2. Also note that as the cross section

for the second generation induced productions are at least 2 or more orders of magnitude

smaller for similar couplings, the limits on the couplings would be relaxed by a factor of

10 or larger, allowing larger couplings for similar diquark mass. However one clearly finds

a large parameter region still allowed for vector diquarks which should be explored at the

upcoming run of LHC with
√
s = 13 TeV.

– 20 –



J
H
E
P
1
0
(
2
0
1
5
)
1
2
2

6 Summary

In this work we have calculated the NLO QCD corrections to the vector diquark production

at hadron colliders, namely the LHC. As colored particles are surely to be produced with

large cross sections at hadron colliders, the discovery of any such state could be the first

step towards discovering BSM physics at the LHC. Colored particles such as the vector

diquark can mediate larger production rates for dijet and multijet events. We show how the

NLO corrections to the vector diquark production affects the cross sections for the sextet

and antitriplet representations. As the vector diquark couplings to the quark pair can be

generation dependent, we find that valence quark processes have K-factors in the range of

1.5 to 1.3 for a mass range of 0.5–1.5 TeV which decrease as we go higher in mass. The sea

quark initiated production modes are found to have increasing values of the K-factor as the

diquark mass is increased. We also find that unlike the scalar diquarks, the sextet vector

diquark has larger NLO corrections compared to the antitriplet. We also illustrate the scale

uncertainties in the cross section for both the sextet and antitriplet vector diquarks and

find that the sextet vector diquark exhibits bigger scale uncertainty at LO compared to the

antitriplet. The NLO corrected cross sections for both cases are found to show much lesser

dependence on the scale variation. We also calculate the NLO corrections to the width

of the vector diquark decaying to a pair of quarks. As a narrow-width approximation is

considered large corrections to the width can affect predictions for relevant final states. We

find that the K-factor for decay width of the sextet diquark is around 1.08− 1.1 while it is

around 1.05 for the antitriplet which is relatively smaller than that for the production cross

section. However the scale uncertainties are relatively large for the decay width which get

reduced by taking the NLO corrected widths.

We have calculated cross sections for the vector diquark production at LHC with√
s = 8 and 13 TeV arising from different generation quarks. We use the dijet data from

the CMS collaboration for LHC with
√
s = 8 TeV to put limits on the vector diquark

mass and its coupling. We find that a large parameter region is still allowed for vector

diquarks which should be explored at the upcoming run of LHC at
√
s = 13 TeV. The

current limits by the LHC experiments on the resonant particles include scalar diquarks

but do not include vector diquarks. We have shown that using the same data one could

also search for the vector diquarks and give search limits for such particles.
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A Feynman rules

The interaction Lagrangians given in Eqns 2.1 and 2.2 give the following Feynman rules

(all momenta incoming):

• q̄c
a(p1)q′b(p2)Vµ

i (p3) :

iλqq′√
1 + δqq′

γµ(Ki
abPτ − δqq′Ki

baPτ ′)

where Pτ (Pτ ′) can be PL/R(PR/L).

• Vµ1
i (p1)V∗µ2j (p2)GA,µ3(p3) :

−igsTAji [gµ1µ2(p1 − p2)µ3 + gµ2µ3(p2 − p3)µ1 + gµ3µ1(p3 − p1)µ2 ]

B One-loop scalars

Here we list various tadpole (A0), bubble (B0) and triangle (C0) scalar integrals required in

the calculation of virtual corrections in sections 3 and 4. For simplicity we take out the uni-

versal one-loop factor from these integrals which arise in DR and use the following notation,

I0 =
i

16π2

(4πµ2)ε

Γ(1− ε)
Ĩ0. (B.1)

We have labeled the UV and IR singularities of scalar integrals explicitly in our calcu-

lations. In DR, εUV = εIR = ε.

Ã0(m2) = (m2)(1−ε)
[

1

εUV
+ 1

]
(B.2)

B̃0(s; 0, 0) =
1

(−s)ε

[
1

εUV
+ 2

]
(B.3)

B̃0(0; 0,m2) =
1

(m2)ε

[
1

εUV
+ 1

]
(B.4)

B̃0(0; 0, 0) =
1

(µ2)ε

[
1

εUV
− 1

εIR

]
(B.5)

B̃0(m2; 0,m2) =
1

(m2)ε

[
1

εUV
+ 2

]
(B.6)

∂

∂s
B̃0(s; 0,m2)|s=m2 = (m2)(−1−ε)

[
− 1

2εIR
− 1

]
(B.7)

C̃0(0, 0, s; 0, 0, 0) =
1

(−s)ε

[
1

s

(
1

ε2IR

)]
(B.8)

C̃0(0, 0,m2; 0, 0,m2) = (m2)(−1−ε)
[
− 1

2ε2IR
− π2

12

]
(B.9)

The derivative of bubble function in eq. (B.7) is used in the calculation of Zq2 and ZD2 .
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C Plus function

For a function f(x), singular at x = 1, and a smooth function g(x), the plus function is

defined by the following relation,∫ 1

0
dxf+(x)g(x) =

∫ 1

0
f(x)[g(x)− g(1)]. (C.1)

Few plus function related identities which have been very useful in the calculation of real

corrections are,∫ 1

a
dxf+(x)g(x) =

∫ 1

a
dxf(x)[g(x)− g(1)]− g(1)

∫ a

0
dxf(x) (C.2)

1

(1− τ)(1+2ε)
=

1

(1− τ)+
− 2ε

[
ln(1− τ)

1− τ

]
+

− 1

2ε
δ(1− τ) (C.3)

f(x)

(1− τ)+
=

[
f(x)

(1− τ)

]
+

+ δ(1− τ)

∫ 1

0
dz

f(z)− f(1)

1− z
(C.4)

D O(αs) correction to scalar diquark decay width

The NLO QCD correction to the decay width for scalar diquark decaying into a pair of

light jets is given by,

ΓNLO = Γ0

{
1 +

αs
2π

[
CD

(
5

2
− 2

3
π2

)
+ CF

(
3 ln

(
µ2
R

M2
D

)
+

17

2

)]}
, (D.1)

where, the LO decay width Γ0, is given by

Γ0 =
λ2

16π
MD. (D.2)

Note that the CF part is exactly the same as one gets in the NLO QCD calculation of

H → bb̄ decay width [50]. We have used the following interaction Lagrangian for the scalar

diquark (Φi) case,

Lφ =
λ

(1 + δqq′)
[Φiq̄caK

i
abPτq

′
b + h.c.] + (DµΦi)

†(DµΦi)−M2
DΦ†iΦi. (D.3)

It should be noted that the coupling of the scalar diquark with two same flavor quarks is

zero in antitriplet case.

E Useful relations

Some of the relations among color factors that we have used to simplify various expressions

in sections 3 and 4, are given below. For a more complete list one may refer to ref. [28].

tAabtA,bc = CF δac (E.1)

TAij TA,jk = CDδik (E.2)
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Tr(KiK̄i) = ND (E.3)

Tr(KitAtAK̄
i) = CFND (E.4)

Tr(KitAK̄i(tA)T ) = ±1

2
CFNC (E.5)

TAijTr(KjtAK̄i) = TAijTr(K̄i(tA)TKj) =
1

2
CDND (E.6)

±CFNC = −2CFND + CDND. (E.7)

In the above tAab are the SU(3)C generators in fundamental representation while TAij are the

generators in the diquark representation of SU(3)C .

To calculate the real corrections to the 2-body decay of the diquark, the following

relation has been used in simplifying the three body phase space integration in n = 4− 2ε

dimensions.

Γ(2z) =
22z−1

√
π

Γ(z)Γ

(
z +

1

2

)
. (E.8)
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