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1 Introduction

In spite of its Lorentz noncovariance, the light-cone gauge approach to relativistic field

and string dynamics [1] simplifies considerably the study of various problems of quantum

field and string theories. This is to say that a number of important problems of modern

quantum field and string theories have successfully been solved by using the light-cone

gauge formalism. Perhaps the most attractive example of application of this formalism is

the building of the light-cone gauge formulation of superstring field theory [2, 3].

Motivated by desire to provide the light-cone gauge framework for the study of the

conjectured string/gauge duality [4] and its cousins, the light-cone gauge formulation of
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AdS field theory in ref. [5] and light-cone gauge formulation of AdS superstring theory

in refs. [6, 7] were developed. Also, in ref. [5], light-cone gauge approach to CFT was

developed. AdS/CFT correspondence for arbitrary spin massless AdS fields was studied in

ref. [5] and it was demonstrated that the light-cone approach simplifies considerably the

study of AdS/CFT correspondence.

To explain our terminology let us discuss briefly the group theoretical interpretation

of fields in AdSd+1 and related currents, shadows, and conformal fields in Rd−1,1 we are

going to study in this paper. Massless and massive fields propagating in AdSd+1 space

are associated with unitary positive-energy lowest weight irreducible representations of the

so(d, 2) algebra. We will denote such representations by D(E0,h), where the E0 is the

lowest eigenvalue of the energy operator, while the h = (h1, . . . , hr), r = [d2 ] stands for the

highest weight of the so(d) algebra representation. For bosonic fields, the highest weights

hi are integers. As shown in ref. [8], the E0 and h satisfy the following restriction:1

E0 ≥ hk − k − 1 + d , (1.1)

where k is defined from the relation2

h1 = . . . = hk > hk+1 ≥ hk+2 ≥ . . . ≥ hr ≥ 0 . (1.2)

Using the notation

Em=0
0 ≡ hk − k − 1 + d , (1.3)

we note that, for massless and massive fields, restriction in (1.1) takes the form3

E0 = Em=0
0 , for massless fields in AdSd+1, (1.4)

E0 > hk − k − 1 + d , for massive fields in AdSd+1. (1.5)

Conformal currents in Rd−1,1 are also associated with the representations D(∆cur,h)

of the so(d, 2) algebra, where ∆cur stands for the conformal dimension of the currents. In

this paper, conformal currents with ∆cur = Em=0
0 and ∆cur > Em=0

0 will be referred to

as short and long currents respectively. Conformal shadows in Rd−1,1 are associated with

non-unitary representations of the so(d, 2) algebra labeled by ∆sh, h, where ∆sh = d−∆cur.

In this paper, conformal shadows having ∆sh = d−Em=0
0 are referred to as short shadows,

while conformal shadows having ∆sh = d − E0 with E0 as in (1.5) are referred to as

long shadows.4

1For d = 3, 4, the restriction (1.1) was obtained in refs. [9, 10]. The study of unitary representations of

various superalgebras may be found, e.g., in refs. [11, 12].
2For d-even, the weight hr in (1.1), (1.2) should be replaced by |hr|. Bosonic irrep of the so(d) algebra

having highest weight h can be described by tensor field whose so(d) space tensor indices have the structure

of the Young tableaux labelled by h. In such Young tableaux, hi is equal to length of the i-th row.
3As known, the case with E0 = Em=0

0 , and k = d/2, d-even is not associated with local field propagating

in AdSd+1. This case will be ignored in this paper.
4In the literature, the short currents and shadows are referred to as canonical currents and shadows

respectively, while the long currents and shadows are referred to as anomalous currents and shadows respec-

tively. We recall that, in Lorentz covariant approach, the short currents with ∆cur = d−1, h = (1, 0, . . . , 0)

and ∆cur = d, h = (2, 0, . . . , 0) are described by the respective conserved vector current and conserved sym-

metric traceless rank-2 tensor field (energy-momentum tensor). Discussion of the short currents bilinear in

arbitrary spin massless fields may be found in ref. [13, 14].
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The short shadows in Rd−1,1 can be used to build the conformal invariant Lagrangian

dynamics of fields propagating in Rd−1,1. Such fields will be referred to as short conformal

fields. The long shadows with some particular values of ∆sh can also be used to build the

conformal invariant Lagrangian dynamics of fields propagating in Rd−1,1. Such fields will

be referred to as long conformal fields. Most of conformal fields enter higher-derivative

Lagrangian dynamics and are associated with non-unitary representations of the so(d, 2)

algebra labeled by ∆, h. For the short conformal fields, ∆ = d−Em=0
0 , while for the long

conformal fields ∆ = d − E0,long, where E0,long takes integer or half integer values which

satisfy the restriction (1.5).5

Throughout this paper, fields with h = (h1, 0, . . . , 0) are referred to as totally symmet-

ric fields, while fields with h = (h1, . . . , hr), h1 > h2 ≥ 1 are referred to as mixed-symmetry

fields.6 The light-cone gauge description of arbitrary spin totally symmetric short currents

(shadows) and long currents (shadows) was developed in the respective ref. [5] and ref. [18].

The general light-cone formalism for arbitrary spin mixed-symmetry short currents (shad-

ows) and long currents (shadows) was developed in ref. [19].7 We note however that the

light-cone gauge formulation of CFT in ref. [19] has the following unsatisfactory feature.

Representation for generators of the conformal symmetries obtained in ref. [19] is non-

local.8

One of the aims of this paper is to obtain the local representation for generators of

the conformal symmetries in CFT. Doing so, we obtain not only the desired light-cone

gauge formulation of currents and shadow but also new light-cone gauge formulation of

fields in AdS space and conformal fields in flat space. The new formulations of AdS field

theory and CFT are based on the use of one and the same spin operators satisfying some

equations which take the form of deformed commutation relations of so(d) algebra. Finding

a solution to these equations for the spin operators implies immediately the complete light-

cone description of both the AdS field theory and CFT. Therefore, in the framework of our

new light-cone gauge approach, the study of the AdS/CFT correspondence is realized in a

rather straightforward way. This is why we refer the new approach as AdS/CFT-adapted

light-cone approach.

The reason why it is possible to develop the light-cone formulations of AdS field theory

and CFT in terms of one and the same spin operators is related to the following fact. In the

light-cone gauge formulations of AdS field theory and CFT, we deal with fields which are

not subject to any differential constraints. For the light-cone gauge field theory in AdSd+1,

it is convenient to decompose light-cone gauge massless and massive fields into irreps of the

so(d−2) algebra. For the light-cone gauge CFT in Rd−1,1, it is also convenient to decompose

5In Lorentz covariant approach, the short conformal fields were studied in refs. [15–17].
6Fields with h = (1, . . . , 1, 0, . . . , 0) are referred to as totally antisymmetric fields.
7We recall that, in the framework of AdS/CFT, the long currents (shadows) are dual to bulk massive

AdS fields.
8Using the notation ∂i and ∂− for derivatives with respect to the transverse space coordinates xi and the

light-cone time coordinate x+, we note that if a representation for generators of the conformal symmetries

is non-polynomial in the ∂i, ∂−, then such representation is referred to as non-local. Accordingly, if a repre-

sentation for generators of the conformal symmetries is polynomial in the ∂i, ∂−, then such representation

is referred to as local.
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light-cone gauge short currents (shadows) and long currents (shadows) into irreps of the

so(d − 2) algebra. In the framework of AdS/CFT correspondence, massless AdS field is

related to short current (shadow). Namely, considering massless field in AdSd+1 and the

corresponding short current (shadow) in Rd−1,1, we note that irreps of the so(d−2) algebra

which enter the light-cone gauge formulation of the massless field in AdSd+1 coincide with

irreps of the so(d − 2) algebra which enter the light-cone gauge formulation of the short

current (shadow) in Rd−1,1. In other words, there is precise matching between irreps of

the so(d − 2) algebra involved in the light-cone gauge formulation of the massless field in

AdSd+1 and irreps of the so(d−2) algebra involved in the light-cone gauge formulation of the

corresponding short current (shadow) in Rd−1,1. The same matching happens for massive

fields and the corresponding long currents (shadows). Namely, irreps of the so(d−2) algebra

which enter the light-cone gauge formulation of the massive field in AdSd+1 coincide with

irreps of the so(d − 2) algebra which enter the light-cone gauge formulation of the long

current (shadow) in Rd−1,1. In fact, it is the remarkable matching of bulk and boundary

irreps of the so(d − 2) algebra that explains why it is possible to develop the light-cone

gauge formulations of fields in AdSd+1 and currents (shadows) in Rd−1,1 in terms of one

and the same spin operators.

For the reader convenience, let us mention briefly some results concerning the Lorentz

covariant description of mixed-symmetry AdS fields. General mixed-symmetry mass-

less fields in AdSd+1, d-arbitrary, were studied in refs. [8, 20]–[28]. Two-column mixed-

symmetry massless fields in AdSd+1 were considered in ref. [29], while two-row mixed-

symmetry massless fields in AdS5 were investigated in refs. [30]. General mixed-symmetry

massive fields in AdSd+1 were studied in refs. [27, 31]. Two-column and two-row mixed-

symmetry massive fields in AdSd+1 were investigated in ref. [32] and refs. [33–35] respec-

tively. Interacting hook mixed-symmetry massive fields in AdSd+1 were considered in

refs. [36, 37], while interacting two-row and two-column mixed-symmetry massless fields in

AdSd+1 were studied in refs. [38, 39] and refs. [40, 41] respectively.9

The paper is organized as follows. In section 2, we start with brief review of light-cone

approach to AdS fields developed in ref. [5]. After that, we present our new light-cone for-

mulation which is adapted for the study of AdS/CFT. We present light-cone gauge action

which leads to decoupled equations of motion for light-cone gauge AdS fields. Realization

of relativistic symmetries of light-cone gauge AdS fields is also discussed. In section 3, we

discuss our new light-cone gauge formulation of currents and shadows in flat space. Two-

point functions for light-cone gauge currents and shadows are presented. Realization of

conformal symmetries on space of currents and shadows is discussed. section 4 is devoted

to the study of AdS/CFT. We demonstrate that, in the framework of AdS/CFT, the nor-

malizable modes of AdS fields are related to currents, while the non-normalizable modes

of AdS fields are related to shadows. Also we show that light-cone gauge action of AdS

field computed on solution of Dirichlet problem coincides with light-cone gauge two-point

9Successful applications of light-cone gauge and BRST approaches in string theory give hope that these

approaches will be useful for the study of interacting mixed-symmetry AdS fields. In flat space, interacting

mixed-symmetry fields were studied by the BRST method in refs. [42]–[46] and by the light-cone gauge

method in refs. [47]–[49].
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function of shadow. In section 5, we study the light-cone gauge formulation of conformal

fields in flat space. We present the action which leads to decoupled equations of motion

for light-cone gauge conformal fields. Simple examples of short and long totally symmetric

arbitrary spin conformal fields are discussed with some details. In sections 6, 7, to illus-

trate our approach, we deal with totally antisymmetric and two-column fields which, in

the earlier literature, have not been studied in the framework of light-cone gauge approach.

For such fields, we demonstrate how finding a solution to our defining equations for the

spin operators leads immediately to the complete light-cone description of fields in AdS

space and currents, shadows, and conformal fields in flat space. Various technical details

are collected in three appendices.

2 Light-cone gauge formulation of fields in AdSd+1 space

We begin with the discussion of light-cone gauge formulation of field dynamics in AdS

space. To this end we use Poincaré parametrization of AdSd+1 space given by (for details

of our notation, see appendix A)

ds2 =
1

z2
(dxadxa + dzdz) . (2.1)

To simplify the presentation, we collect all scalar, vector, tensor, and arbitrary spin fields

into a ket-vector |φ〉. By definition, in light-cone gauge approach, all fields entering the

ket-vector |φ〉 are not subject to any differential constraints. In terms of the ket-vector |φ〉,
light-cone action and Lagrangian can be cast into the following form [5]:

S =

∫
ddxdz L , (2.2)

L =
1

2
〈φ|

(
�+ ∂2

z −
1

z2
A

)
|φ〉 , (2.3)

� = 2∂+∂− + ∂i∂i , (2.4)

where � in (2.3), (2.4) stands for the D’Alembertian operator in Rd−1,1. Operator A

appearing in (2.3) is independent of space-time coordinates and their derivatives. This

operator acts only on spin D.o.F of fields collected into the ket-vector |φ〉.

Light-cone gauge realization of relativistic symmetries. Relativistic symmetries of

fields propagating in AdSd+1 space are described by the so(d, 2) algebra. The Lorentz sym-

metries of fields in AdSd+1 space are described by the so(d, 1) algebra. The use of Poincaré

parametrization (2.1) spoils manifest so(d, 1) Lorentz algebra symmetries. Namely, only the

so(d− 1, 1) algebra symmetries are manifest when we use Poincaré parametrization (2.1).

Note however that the choice of the light-cone gauge spoils the manifest so(d− 1, 1) alge-

bra symmetries. This is to say that, in the framework of the light-cone approach, in order

to complete the description of relativistic dynamics of fields in AdSd+1 space we have to

work out an explicit realization of the so(d − 1, 1) algebra symmetries and the remaining

relativistic symmetries as well. To this end we now discuss the so(d, 2) algebra symmetries

of the light-cone gauge action given in (2.2).
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In the light-cone formulation, generators of the so(d, 2) algebra can be separated into

the following two groups:

P i, P+, J+i, J+−, J ij , D, Ki, K+, kinematical generators; (2.5)

P−, J−i , K− dynamical generators, (2.6)

where the vector indices of the so(d− 2) algebra take values i, j = 1, . . . , d− 2 (for details

of our notation see appendix A). For the case of free fields, the field theoretical realization

of so(d, 2) algebra generators Gfield in (2.5), (2.6) takes the following form:

Gfield =

∫
dzdx−dd−2x 〈∂+φ|Gdiff |φ〉. (2.7)

Quantity Gdiff appearing on right hand side (2.7) stands for the realization of genera-

tors (2.5), (2.6) in terms of differential operators defined on space of the ket-vector |φ〉.
Light-cone gauge action (2.2) is invariant under the transformation δ|φ〉 = Gdiff |φ〉. In

ref. [5], we found the following explicit expressions for the differential operators Gdiff :

Kinematical generators,

P+ = ∂+ , P i = ∂i , (2.8)

J+− = x+P− − x−∂+ , J+i = x+∂i − xi∂+ , (2.9)

J ij = xi∂j − xj∂i +M ij , (2.10)

D = x+P− + x−∂+ + xi∂i + z∂z +
d− 1

2
, (2.11)

K+ = −1

2
(2x+x− + xixi + z2)∂+ + x+D , (2.12)

Ki = −1

2
(2x+x− + xjxj + z2)∂i + xiD +M ijxj +M i−x+ +M⊖i , (2.13)

Dynamical generators,

P− =
−∂i∂i +M2

2∂+
, (2.14)

J−i = x−∂i − xiP− +M−i , (2.15)

K− = −1

2
(2x+x− + xjxj + z2)P− + x−D + xiM−i −M⊖i ∂

i

∂+
+

1

∂+
B , (2.16)

M2 ≡ −∂2
z +

1

z2
A , (2.17)

M−i ≡ M ij ∂
j

∂+
+

1

∂+
M⊕i , (2.18)

M⊕i = −M zi∂z −
1

2z
[M zi, A] , M⊖i = −zM zi , (2.19)

B =
1

2

(
A− 1

2
M ijM ij − 〈Cso(d,2)〉 −

d2 − 1

4

)
. (2.20)

In (2.20) and below, the quantity 〈Cso(d,2)〉 stands for an eigenvalue of the second order

Casimir operator of the so(d, 2) algebra. For the representation D(E0,h), the 〈Cso(d,2)〉 is

– 6 –
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given by

〈Cso(d,2)〉 = E0(E0 − d) +

[d/2]∑

σ=1

hσ(hσ − 2σ + d) . (2.21)

The spin operators M ij , i, j = 1, . . . , d − 2, form commutation relations of the so(d − 2)

algebra, while the spin operators M ij and M zi form commutation relations of the so(d−1)

algebra (see relations in (B.5)–(B.7)). Hermitian conjugation rules are given by

A† = A , M ij† = −M ij , M zi† = −M zi . (2.22)

From (2.8)–(2.20), we see that a knowledge of the operators A, M ij , M zi allows us

to fix the realization of the kinematical and dynamical generators on space of the ket-

vector |φ〉. Thus problem of the light-cone gauge description of AdS fields amounts to

finding an explicit expressions for the operators A, M ij , M zi which we refer to as basic

operators. Closed system of equations for these basic operators was found in ref. [5] (see

eqs.(B.1)–(B.7) in appendix B in this paper).

The presentation above-given summarizes the light-cone formulation of AdS fields de-

veloped in ref. [5]. We now proceed to the discussion of AdS/CFT-adapted light-cone for-

mulation which is based on the use of new basic operators. Such new basic operators turn

out to be very convenient for the study of AdS/CFT correspondence and conformal fields.

New basic operators. In this paper, we introduce new basic operators denoted by ν,

W i, W̄ i. As before, the so(d − 2) algebra spin operator M ij also enters the game. In

terms of the new operators and the operator M ij , the operators A, B, M zi and M⊕i take

the form

A = ν2 − 1

4
, (2.23)

M zi = W i − W̄ i , (2.24)

M⊕i = Tν+ 1

2

W̄ i −W iT−ν− 1

2

, (2.25)

B =
1

2

(
ν2 − 〈Cso(d,2)〉 −

1

2
M ijM ij − d2

4

)
, (2.26)

Tν ≡ ∂z +
ν

z
. (2.27)

We note the following

Defining equations for the new basic operators ν, W i, W̄ i, M ij:

[ν,M ij ] = 0 , (2.28)

[M ij ,Mkl] = δjkM il + 3 terms , M ij = −M ji , (2.29)

[ν,W i] = W i , (2.30)

[ν, W̄ i] = −W̄ i , (2.31)

[W i,M jk] = δijW k − δikW j , (2.32)

[W̄ i,M jk] = δijW̄ k − δikW̄ j , (2.33)
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[W i,W j ] = 0 , (2.34)

[W̄ i, W̄ j ] = 0 , (2.35)

W iW̄ j −W jW̄ i + W̄ iW j − W̄ jW i = M ij , (2.36)

(ν − 1)
(
W iW̄ j +W jW̄ i

)
− (ν + 1)

(
W̄ iW j + W̄ jW i

)
= δijB +

1

2
{M il,M lj} , (2.37)

where the operator B appearing in (2.37) is defined by relations (2.26), (2.21). We assume

the hermitian conjugation rules,

ν† = ν , M ij† = −M ij , W i† = W̄ i . (2.38)

Equations (2.28)–(2.37) together with relations in (2.26), (2.21) constitute the defining

equations of AdS/CFT-adapted light-cone gauge formulation of the relativistic dynamics

in AdS space we suggest in this paper. These equations are equivalent to the equations

for operators A, M zi, M ij we obtained in ref. [5]. Derivation of eqs.(2.28)–(2.37) from the

ones in ref. [5] may be found in appendix B.

The following remarks are in order.

i) For AdS field associated with the representation D(E0,h), the operator ν can be

presented as

ν = κ+M z , κ ≡ E0 −
d

2
, (2.39)

where we introduce a new operator M z. The use of the representation for ν in (2.39)

is advantageous in view of the following reason. It turns out that eigenvalues of

the operator M z on the space of ket-vector |φ〉 are integers. Namely, for massive

field, eigenvalues of M z take values −hk,−hk + 1, . . . , hk, while, for massless field,

eigenvalues of M z take values −hk,−hk + 1, . . . , hk+1.

ii) The particular representation for the operator B in (2.26) is simply obtained from

general representation for the operator B in (2.20) and the particular representa-

tion for the operator A in (2.23). For AdS field associated with the representation

D(E0,h), we can use relations (2.39) and (2.21) to represent the operator B (2.26)

in the following two forms:

B =
1

2

(
ν2 − κ2 − 〈Cso(d)〉 −

1

2
M ijM ij

)

= κM z +
1

2

(
M zM z − 1

2
M ijM ij − 〈Cso(d)〉

)
, (2.40)

where quantity 〈Cso(d)〉 appearing in (2.40) stands for eigenvalue of the second order

Casimir operator of the so(d) algebra. For the representation labelled by the highest

weight h = (h1, . . . , hr), r = [d2 ], the 〈Cso(d)〉 is given by the well known expression,

〈Cso(d)〉 =
[d/2]∑

σ=1

hσ(hσ − 2σ + d) . (2.41)
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iii) The particular representation for the operator M⊕i given in (2.25) is obtained from

general representation in (2.19) by using (2.23), (2.24) and commutators in (2.30),

(2.31). The operators Tν (2.27) and M⊕i (2.25) satisfy the following interesting

relations

−Tν+ 1

2

T−ν− 1

2

= M2 , [M⊕i,M⊕j ] = M2M ij , M2 ≡ −∂2
z+

1

z2

(
ν2 − 1

4

)
. (2.42)

iv) Using (2.30), (2.31), we can represent eqs.(2.37) in the following concise form

W iνW̄ j +W jνW̄ i − W̄ iνW j − W̄ jνW i = δijB +
1

2
{M il,M lj} . (2.43)

v) The defining equations (2.28)–(2.37) take the form of some special deformation of

commutation relations of the so(d) algebra. In the flat space limit which is realized

as R → ∞, where R is radius of AdS space, the defining equations (2.28)–(2.37)

become the usual commutators of the so(d) algebra. To see this we note the following

relations in the limit as R → ∞:

κ|R→∞
→ Rm , W i|R→∞

→ W i
0 , W̄ i|R→∞

→ W̄ i
0 , (2.44)

M ij = M ij
0 , M z = M z

0 , (2.45)

where m in (2.44) stands for mass parameter of a massive field.10 Using (2.44), (2.45),

we see that, in the flat limit, commutators in (2.28), (2.30), (2.31), (2.37) take the

form

[M z
0 ,M

ij
0 ] = 0 , [M z

0 ,W
i
0] = W i

0 , [M z
0 , W̄

i
0] = −W̄ i

0 , (2.46)

W i
0W̄

j
0 +W j

0 W̄
i
0 − W̄ i

0W
j
0 − W̄ j

0W
i
0 = δijM z

0 . (2.47)

Obviously, commutators (2.46), (2.47) together with the ones in (2.29), (2.32)–(2.36)

form the commutators of the so(d) algebra.

vi) The explicit form of the operator ν is known for the following dynamical systems:

a) totally symmetric arbitrary spin massless and massive fields in AdSd+1, d ≥
3, [5, 18];

b) mixed symmetry arbitrary spin massless and self-dual massive fields inAdS5 [51];

c) mixed symmetry arbitrary spin massive fields in AdS5 [52];

d) type IIB supergravity in AdS5 × S5 and AdS3 × S3 backgrounds [53, 54].

Just to illustrate our approach we consider arbitrary spin massless fields in AdS4.

10The asymptotic behaviour of κ in (2.44) can easily been obtained from relation (5.62) in ref. [50]. Note

that, in ref. [50], we set the AdS radius R = 1. To restore the dependence on the R, we should make the

re-scaling m → mR in relation (5.62) in ref. [50].
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Massless arbitrary spin field in AdS4. For AdS4, one gets d = 3 and hence the

vector index of the so(d−2) algebra i takes only one value, i = 1. In order to describe field

content entering dynamics of massless field in AdS4 we use oscillators α
1, αz. Commutation

relations for the oscillators, the vacuum |0〉, and hermitian conjugation rules are defined as

[ᾱ1, α1] = 1 , [ᾱz, αz] = 1 , ᾱ1|0〉 = 0 , ᾱz|0〉 = 0 , α1† = ᾱ1 , αz† = ᾱz . (2.48)

Using such oscillators, we introduce the ket-vector |φ〉 to discuss massless spin-s field,

|φ〉 = |φs〉+ α1|φs−1〉 , |φs〉 ≡
αs
z√
s!
φs|0〉 , |φs−1〉 ≡

αs−1
z√

(s− 1)!
φs−1|0〉 , (2.49)

αz = αz, where two real-valued fields φs = φs(x, z) and φs−1 = φs−1(x, z) appearing

in (2.49) stand for two propagating physical D.o.F which describe spin-s massless field in

AdS4. Operators A, ν, W 1, W̄ 1, B can be read from results in ref. [18],

A = 0 , ν = s− 1

2
−Nz , B = −s2 , (2.50)

W 1 = −
√
sα1(1−Nα)ᾱ

z , W̄ 1 = −
√
sαzᾱ1 , (2.51)

Nα ≡ α1ᾱ1 Nz ≡ αzᾱz . (2.52)

The relation A = 0 in (2.50) is obtained by using general formula (2.23) and noticing that

ν given in (2.50) takes values ±1/2 on space of ket-vector (2.49). Using (2.50) in (2.3), we

get Lagrangian of massless arbitrary spin field in AdS4,

L =
1

2
〈φ|(�+ ∂2

z )|φ〉 , for massless field in AdS4 . (2.53)

A a side remark we note that all unitary representations of the so(d + 1, 2) algebra

which are associated with fields propagating in Rd,1 and AdSd+1 were found in refs. [55, 56].

For fields in AdSd+1 which respect not only the relativistic so(d, 2) symmetries but also the

conformal so(d+1, 2) symmetries, the operator A is equal to zero and the light-cone gauge

action (2.2) is invariant under transformations of the so(d+1, 2) algebra.11 We note then,

that, for arbitrary spin massless fields in AdS4, the light-cone gauge action (2.2), (2.53) is

invariant under the conformal so(4, 2) symmetries.

3 Light-cone gauge approach to currents and shadows in Rd−1,1

Light-cone gauge formulation of currents (shadows) can be developed by starting with

Lorentz covariant approach to currents (shadows). Doing so, we use differential constraints

appearing in Lorentz covariant formulation of currents (shadows) to solve all fields entering

Lorentz covariant approach in terms of unconstrained fields.12 It is such unconstrained

11As shown in ref. [56], for fields in AdSd+1 which respect the conformal so(d+1, 2) symmetries, one has

the following relations and restrictions for E0, hi, and d: h1 = h2 = . . . = hr, r ≡ d−1

2
, E0 = h1 + d−1

2
,

d-odd. Recent interesting notes on conformal symmetries of massless and partial-massless fields may be

found in refs. [57–59].
12Study of differential constraints for short currents may be found in refs. [60]–[65].
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fields that constitute a field content entering the light-cone gauge formulation of currents

(shadows). For the case of totally symmetric fields, the demonstration of how the Lorentz

covariant approach can be used for the derivation of the light-cone gauge formulation of

currents (shadows) in Rd−1,1, d-arbitrary, may be found in ref. [5].13 However this strategy

is difficult to realize in the case of mixed-symmetry currents (shadows) because, in general,

Lorentz covariant formulations of mixed-symmetry currents (shadows) are complicated or

not available. One of the attractive features of the light-cone approach is that this approach

admits to develop light-cone gauge formulation of currents and shadows without the use

of Lorentz covariant formulation. Namely, in ref. [19], we developed the general light-cone

formulation of arbitrary spin mixed-symmetry currents and shadows in Rd−1,1.

The light-cone gauge formulation of CFT worked out in ref. [19] has the following

unsatisfactory feature. Representation for generators of the so(d, 2) algebra obtained in

ref. [19] is non-local.14 In ref. [19], we noticed that the local representation can be obtained

by choosing a suitable basis of currents (shadows). However an explicit local realization of

the so(d, 2) algebra generators on such suitable basis of currents (shadows) has not been

worked out in ref. [19]. In this section, we fill this gap and find the following interesting

result. It turns out that the local representation of the so(d, 2) algebra generators is entirely

formulated in terms of basic operators ν, W i, W̄ i which we used to develop the light-cone

gauge formulation of arbitrary spin AdS fields in section 2. In other words, it is the basic

operators ν, W i, W̄ i discussed in section 2 that allows us to develop the local representation

of the so(d, 2) algebra generators for currents and shadows. We start our presentation of

new light-cone gauge approach to CFT with the discussion of light-cone gauge 2-point

vertices for currents and shadows.

Light-cone gauge 2-point vertices of currents and shadows. To simplify the pre-

sentation we collect all scalar, vector, tensor, and arbitrary spin fields entering the light-

cone gauge formulation of currents and shadows into the respective ket-vectors |φcur〉 and
|φsh〉. By definition, in light-cone gauge approach, all fields entering the ket-vector |φcur〉,
|φsh〉 are not subject to any differential constraints.

For currents and shadows, one can construct three 2-point vertices. The first 2-point

vertex, which we denote by Γcur−sh, is a local functional of current and shadow. We now

note the following expression for the local vertex:

Γcur−sh =

∫
ddxLcur−sh , Lcur−sh = 〈φcur||φsh〉 . (3.1)

The second 2-point function denoted by Γsh−sh is a nonlocal functional of two shad-

ows, while the third 2-point function, denoted by Γcur−cur, is a nonlocal functional of two

13The use of Lorentz covariant approach for the derivation of canonical formulation of totally symmetric

arbitrary spin currents in R3,1 may be found in ref. [66]. Canonical formulation of totally symmetric

arbitrary spin massless and massive fields in AdSd+1, d-arbitrary, may be found in ref. [67]. In the framework

of canonical formulation, interesting recent discussion of AdS particle/string may be found in ref. [68–70].
14We recall that if a representation for generators of the conformal symmetries is non-polynomial in the

derivatives ∂i, ∂−, then such representation is referred to as non-local. Accordingly, if a representation for

the generators is polynomial in the ∂i, ∂−, then such representation is referred to as local. We recall also that

appearance of terms non-polynomial in the derivative ∂+ is unavoidable in light-cone gauge formulation.
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currents. The 2-point functions Γsh−sh and Γcur−cur are given by

Γsh−sh =

∫
ddx1d

dx2 Lsh−sh
12 , (3.2)

Lsh−sh
12 ≡ 1

2
〈φsh(x1)|

f sh
ν

|x12|2ν+d
|φsh(x2)〉 , (3.3)

f sh
ν ≡ 4νΓ(ν + d

2)Γ(ν + 1)

4κΓ(κ+ d
2)Γ(κ+ 1)

, (3.4)

Γcur−cur =

∫
ddx1d

dx2 Lcur−cur
12 , (3.5)

Lcur−cur
12 ≡ 1

2
〈φcur(x1)|f cur

ν |x12|2ν−d|φcur(x2)〉 , (3.6)

f cur
ν ≡ 4κΓ(κ+ 1− d

2)Γ(κ)

4νΓ(ν + 1− d
2)Γ(ν)

, (3.7)

|x12|2 ≡ xa12x
a
12 , x

a
12 = xa1 − xa2 , (3.8)

where expression for the operator ν appearing in (3.4), (3.7) is given in (2.39).

It the literature, sometimes one prefers to present the 2-point vertices in the momentum

space. Therefore, for the reader convenience, we represent our above-given expressions for

Γsh−sh,Γcur−cur in the momentum space. To this end we make the Fourier transform for

currents and shadows,

|φ(x)〉 =
∫

ddp

(2π)d/2
eip

axa |φ̃(p)〉 . (3.9)

Now it is easy to check that expressions for Γsh−sh (3.2) Γcur−cur (3.5) take the following

respective forms

Γ̃sh−sh =

∫
ddp L̃sh−sh , L̃sh−sh ≡ 1

2
〈φ̃sh(p)|�ν

p |φ̃sh(p)〉 , (3.10)

Γ̃cur−cur =

∫
ddp L̃cur−cur , L̃cur−cur ≡ 1

2
〈φ̃cur(p)|�−ν

p |φ̃cur(p)〉 , (3.11)

�p ≡ −papa , (3.12)

where the momentum-space bra-vectors 〈φ̃cur(p)| and 〈φ̃sh(p)| are defined according the

rule 〈φ̃(p)| = (|φ̃(p)〉)†. Note that expressions for Γsh−sh (3.2) and Γcur−cur (3.5) are equal

to the respective expressions for Γ̃sh−sh (3.10) and Γ̃cur−cur (3.11) up to overall normaliza-

tion factors.

so(d, 2) symmetries of light-cone gauge currents and shadows. In the light-cone

approach to currents and shadows, the Lorentz so(d − 1, 1) algebra symmetries are not

realized manifestly. This is to say that, in the framework of the light-cone approach, the

complete description of currents and shadows implies that we have to work out an explicit

realization of the so(d − 1, 1) algebra symmetries and the remaining symmetries of the

so(d, 2) algebra as well. To this end we now discuss the so(d, 2) algebra symmetries of the

light-cone gauge 2-point vertices above given.
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The so(d, 2) algebra transformations of light-cone gauge currents and shadows can be

presented as

δ|φcur〉 = Gcur|φcur〉 , δ|φsh〉 = Gsh|φsh〉, (3.13)

where the quantities Gcur and Gsh stand for realization of generators of the so(d, 2) algebra

in terms of differential operators defined on the respective ket-vectors of currents and

shadows. Expressions for the differential operators Gcur and Gsh we found admit the

following representation:

P+ = ∂+ , P− = ∂− , P i = ∂i , (3.14)

J+− = x+∂− − x−∂+ , J+i = x+∂i − xi∂+ , (3.15)

J ij = xi∂j − xj∂i +M ij , (3.16)

J−i = x−∂i − xi∂− +M−i , (3.17)

D = x+∂− + x−∂+ + xi∂i +∆ , (3.18)

K+ = K+
∆ , (3.19)

Ki = Ki
∆ +M ijxj +

1

2
{M i−, x+}+M⊖i , (3.20)

K− = K−
∆ +

1

2
{M−i, xi} −M⊖i ∂

i

∂+
+

1

∂+
B , (3.21)

Ka
∆ ≡ −1

2
(2x+x− + xjxj)∂a + xaD , a = ±, i , (3.22)

M−i ≡ M ij ∂
j

∂+
+

1

∂+
M⊕i , M i− = −M−i . (3.23)

Expressions for generators given in (3.14)–(3.23) are valid for both currents and shadows.

Note however that explicit expressions for the operators ∆, M⊖i, M⊕i corresponding to

the currents and shadows are different. Using the subscript ‘cur’ and ‘sh’ we note that the

operators ∆, M⊖i, M⊕i corresponding to the currents and shadows are given by

∆cur =
d

2
+ ν , (3.24)

M⊕i
cur = W i

�+ W̄ i , (3.25)

M⊖i
cur = −W i(2ν + 1) , (3.26)

Bcur =
1

2

(
ν2 − 〈Cso(d,2)〉 −

1

2
M ijM ij − d2

4

)
, (3.27)

∆sh =
d

2
− ν , (3.28)

M⊕i
sh = W i + W̄ i

� , (3.29)

M⊖i
sh = (2ν + 1)W̄ i , (3.30)

Bsh =
1

2

(
ν2 − 〈Cso(d,2)〉 −

1

2
M ijM ij − d2

4

)
. (3.31)

The D’Alembertian operator � in Rd−1,1 appearing in (3.25), (3.29) is given in (2.4).
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The following remarks are in order.

i) The representation for the generators of conformal symmetries we obtained is local,

i.e., generators (3.14)–(3.31) are polynomial in the derivatives ∂i, ∂−. In fact, the

main advantage of the light-cone approach to currents (shadows) in this paper as

compared the one in ref. [19] is that the representation for generators of conformal

symmetries obtained in this paper is local.

ii) Operators ν, W i, W̄ i, M ij , which enter 2-point functions in (3.2), (3.5) and genera-

tors of so(d, 2) algebra symmetries of currents and shadows in (3.14)–(3.31), satisfy

the same defining equations as the ones in light-cone gauge AdS field theory in (2.28)–

(2.37). In other words, in our light-cone approach, the so(d, 2) algebra symmetries

of bulk AdS field theory and the so(d, 2) algebra symmetries of boundary CFT are

governed by one and the same operators ν, W i, W̄ i, M ij . Also, in our light-cone

gauge approach, the Lagrangian of bulk AdS fields and 2-point functions of boundary

currents and shadows are governed by the same operator ν. To summarize, finding

a solution to defining equations given in (2.28)–(2.37) leads immediately to the com-

plete description of light-cone gauge AdS field theory and light-cone gauge currents

and shadows in CFT.

iii) The quantity 〈Cso(d,2)〉 appearing in (3.27), (3.31) stands for the second order Casimir

operator of the so(d, 2) algebra. For current labelled by E0,h and for shadow labelled

by d− E0,h, the 〈Cso(d,2)〉 takes the form given in (2.21).

iv) Operators Bcur (3.27) and Bsh (3.31) coincide and take the same form as in light-cone

gauge AdS field theory (2.26).

v) Realization for generators of so(d, 2) algebra symmetries on space of currents and

shadows given in (3.14)–(3.31) can be derived by using the general light-cone gauge

approach to CFT developed in ref. [19]. For some comments, see appendix B.

4 AdS/CFT correspondence

In the framework of AdS/CFT, boundary currents are related to normalizable solution

of equations of motion for bulk AdS fields, while boundary shadows are related to non-

normalizable solution of equations of motion for bulk AdS fields. In section 2, we obtained

the light-cone gauge formulation for bulk AdS fields, while, in section 3, we obtained the

light-cone gauge formulation for boundary currents and shadows. We ready therefore to

demonstrate the AdS/CFT explicitly. In the light-cone approach, the study of AdS/CFT

implies, firstly, the matching of bulk and boundary symmetries of the so(d, 2) algebra

and, secondly, the matching of effective action of bulk AdS field and boundary 2-point

function of shadow. As a side remark we note that, in the framework of our light-cone

gauge approach, the study of AdS/CFT is essentially simplified in view of the following

two reasons.
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i) In the light-cone gauge approach, we deal with unconstrained fields on both the AdS

and CFT sides. This implies that on both the AdS and CFT sides we deal with the

same spin degrees of freedom. As we have already said, it is the matching of bulk and

boundary spin degrees of freedom that explains why the generators of the so(d, 2)

algebra in the bulk AdS theory and on the boundary CFT are governed by one and

the same operators ν, W i, W̄ i, M ij which we discussed in sections 2, 3.

ii) Light-cone gauge bulk action turns out be surprisingly simple and leads to the de-

coupled equations of motion.15 Therefore, finding a solution to the Dirichlet problem

and the computation of the bulk action on solution of the Dirichlet problem is con-

siderably simplified.

We now study the AdS/CFT duality for normalizable and non-normalizable modes of

bulk AdS fields and corresponding boundary currents and shadows in turn.

4.1 AdS/CFT for normalizable modes of AdS field and boundary current

In this section, we study the AdS/CFT for bulk AdS field and boundary current. As we have

already said, in the framework of AdS/CFT, boundary current is related to normalizable

solution of equations of motion for bulk AdS field. Therefore we start with analysis of the

normalizable solution. To this end we note that the light-cone gauge action in (2.2) leads

to the following equations of motion for AdS field
(
�+ ∂2

z −
1

z2
(ν2 − 1

4
)
)
|φ〉 = 0 . (4.1)

The normalizable solution of eq.(4.1) is well known

|φ(x, z)〉 = Uν |φcur(x)〉 , (4.2)

Uν ≡ hκ
√
zqJν(zq)q

−(ν+ 1

2
) , hκ ≡ 2κΓ(κ+ 1) , q2 ≡ � , (4.3)

where Jν in (4.3) stands for the Bessel function. From relation (4.2), we see that the nor-

malizable solution for bulk AdS field |φ〉 is entirely governed by the operator Uν . To proceed

we note the following helpful interesting relations for the operator Uν which streamline the

study of AdS/CFT:

Tν− 1

2

Uν = Uν−1 , (4.4)

T−ν− 1

2

Uν = −Uν+1� , (4.5)

Tν+ 1

2

Uν+1 = Uν , (4.6)

T−ν+ 1

2

Uν−1 = −Uν� , (4.7)

zUν−1 + z�Uν+1 = 2νUν , (4.8)

xaUν = Uνx
a + zUν+1∂

a , (4.9)

15It will be interesting to find Lagrangian formulation of massive fields in non-conformal gravitational

backgrounds admitting decoupled equations of motion and apply such formulation for the study of holog-

raphy along the lines in refs. [71–73]. For recent discussion of massive fields in gravitational backgrounds,

see, e.g., refs. [74, 75] (see also refs. [76–78]).
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where the operator Tν is defined in (2.27). Relations in (4.4)–(4.9) should be understood

in weak sense. Namely, those relations hold true on space of ket-vectors which depend on

the boundary coordinate xa and do not depend on the radial coordinate z. We note also

that relations (4.4)–(4.9) can easily be proved by using the following well known formulas

for the Bessel function:

TνJν = Jν−1 , T−νJν = −Jν+1 . (4.10)

In fact, it is concise form of relations for the Bessel function in (4.10) that motivates us

to use the operator Tν . Using textbook formulas for the Bessel function, we find that the

asymptotic behavior of the normalizable solution given in (4.2) takes the following form

|φ(x, z)〉 z→0−→ zν+
1

2
2κΓ(κ+ 1)

2νΓ(ν + 1)
|φcur(x)〉 . (4.11)

The asymptotic behaviour in (4.11) tells us that, up to normalization factor, the ket-vector

|φcur〉 is nothing but the boundary value of the normalizable solution of equations for bulk

AdS field.

From AdS/CFT dictionary, we expect that the ket-vector |φcur〉 appearing in (4.11)

describes boundary current. The fact that |φcur〉 (4.11) is indeed realized as boundary

current can be checked by matching of bulk and boundary symmetries of the so(d, 2)

algebra. To check that |φcur〉 appearing on right hand side (4.11) is realized as boundary

current we should prove the following statement.

Representation of the light-cone gauge symmetries of the so(d, 2) algebra on space

of bulk normalizable solution (4.2) amounts to representation of the light-cone gauge

symmetries of the so(d, 2) algebra on space of boundary current.

To this end let us use the notation GAdS for the representation of the so(d, 2) al-

gebra generators on space of bulk AdS field given in (2.8)–(2.20) and the notation Gcur

for representation of the so(d, 2) algebra generators on space of boundary current given

in (3.14)–(3.27). With the use of such notation we note that all that is required is to

demonstrate that the following relation

GAdS|φ〉 = UνGcur|φcur〉 (4.12)

holds true, where |φ〉 is the normalizabe solution given in (4.2).

The relation in (4.12) can be proved by following the procedure we described in

section 6.1 in ref. [52]. For the reader convenience we present some relations which are

helpful for analysis of relation (4.12). We note that the following relations

M2Uν = Uν� , M⊕i
AdSUν = UνM

⊕i
cur (4.13)

are helpful to verify relation (4.12) for the generators P− and J−i. Other relations given by
(
Ka

∆ − 1

2
z2∂a

)∣∣∣
∆=z∂z+

d−1

2

Uν = UνK
a
∆

∣∣∣
∆= d

2
+ν

, (4.14)

Ka
∆ ≡ −1

2
x2∂a + xa(x∂ +∆) , a = ±, i , (4.15)
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where x2 ≡ xaxa, x∂ ≡ xa∂a, are helpful to verify relation (4.12) for the generators

Ka. Relations (4.13)–(4.15) are easily proved by using relations given in (4.4)–(4.9). Also

note that, as in (4.4)–(4.9), relations in (4.13)–(4.15) should be understood in weak sense.

Namely, relations (4.13)–(4.15) hold true on space of ket-vectors which depend on the

boundary coordinate xa and do not depend on the radial coordinate z.

Representation of bulk fields in terms of currents (4.2) is referred sometimes as holo-

graphic representation of bulk fields. Our relation (4.2) is valid for massless and massive

arbitrary spin totally symmetric and mixed-symmetry fields. Thus, we see that our light-

cone approach allows us us to study the holographic representation for all just mentioned

fields on an equal footing.16

4.2 AdS/CFT for non-normalizable modes of AdS field and boundary shadow

This section is devoted to the study of AdS/CFT for bulk AdS field and boundary shadow.

As we have already said, in the framework of AdS/CFT, boundary shadow is related to

non-normalizable solution of equations of motion for bulk AdS field.17 Therefore we start

with the analysis of the non-normalizable solution of bulk equations of motion.

The bulk equations of motion obtained from light-cone gauge action (2.2) are given

in (4.1). Non-normalizable solution to equations in (4.1) with the Dirichlet problem corre-

sponding to shadow is well known,

|φ(x, z)〉 = σν

∫
ddy Gν(x− y, z)|φsh(y)〉 , (4.16)

Gν(x, z) =
cνz

ν+ 1

2

(z2 + |x|2)ν+ d
2

, (4.17)

cν ≡ Γ(ν + d
2)

πd/2Γ(ν)
, σν ≡ 2νΓ(ν)

2κΓ(κ)
, (4.18)

where Gν appearing on right hand side in (4.16) is the bulk to boundary Green function.

The asymptotic behaviors of the Green function and solution in (4.16) are well known

Gν(x, z)
z→0−→ z−ν+ 1

2 δd(x) , (4.19)

|φ(x, z)〉 z→0−→ z−ν+ 1

2σν |φsh(x)〉 . (4.20)

Relation (4.20) tells us that, up to normalization factor, the ket-vector |φsh〉 is nothing

but the boundary value of the non-normalizable solution of the Dirichlet problem for bulk

equations of motion.

Using the AdS/CFT dictionary, we expect that the ket-vector |φsh〉 appearing in (4.16)

describes boundary shadow. To make sure that ket-vector |φsh〉 (4.16) is indeed realized as

boundary shadow we should prove the following two statements:

16In Lorentz covariant approach, the holographic representation of totally symmetric arbitrary spin mass-

less and massive AdS field was obtained for first time in the respective ref. [79] and ref. [80]. In Lorentz

covariant approach, the holographic representation of arbitrary spin mixed-symmetry fields is still to be

investigated.
17In earlier literature, shadows and related dualities were discussed in refs. [81, 82]. Recent interesting

discussion of shadows may be found in ref. [83].

– 17 –



J
H
E
P
1
0
(
2
0
1
5
)
1
1
0

i) Representation of the light-cone gauge symmetries of the so(d, 2) algebra on space of

bulk non-normalizable solution (4.16) amounts to the representation of the light-cone

gauge symmetries of the so(d, 2) algebra on space of boundary shadow.

ii) The light-cone gauge action of bulk AdS field evaluated on the solution of the Dirichlet

problem (4.16) amounts to the boundary 2-point vertex for the shadow.

We outline proof of these statements.

Matching of bulk and boundary representations of the so(d, 2) algebra. We use

the notation GAdS for the representation of the so(d, 2) algebra generators on space of bulk

AdS field given in (2.8)–(2.20) and the notation Gsh for the representation of the so(d, 2)

algebra generators on space of boundary shadow given in (3.14)–(3.23), (3.28)–(3.31). With

the use of such notation we note that all that is required is to demonstrate that GAdS and

Gsh respect the relation

GAdS|φ(x, z)〉 = σν

∫
ddy Gν(x− y, z)Gsh|φsh(y)〉 , (4.21)

where |φ〉 is given in (4.16). Relation given in (4.21) can be proved by following the

procedure we described in section 6.1 in ref. [52]. For the reader convenience, we present

the list of relations which are helpful for the analysis of relation (4.21)

Tν− 1

2

(σνGν) = �σν−1Gν−1 , (4.22)

T−ν− 1

2

(σνGν) = −σν+1Gν+1 , (4.23)

Tν+ 1

2

(σν+1Gν+1) = �σνGν , (4.24)

T−ν+ 1

2

(σν−1Gν−1) = −σνGν , (4.25)

z�σν−1Gν−1 + zσν+1Gν+1 = 2νGν , (4.26)

xaσνGν = σνGνy
a − z∂a(σν−1Gν−1) , (4.27)

M2(σνGν) = σνGν� , M⊕i
AdS(σνGν) = σνGνM

⊕i
sh , (4.28)

(
Ka

∆ − 1

2
z2∂a

)∣∣∣
∆=z∂z+

d−1

2

(σνGν) = (σνGν)K
a
∆

∣∣∣
∆= d

2
−ν

, (4.29)

Ka
∆ ≡ −1

2
x2∂a + xa(x∂ +∆) , a = ±, i , (4.30)

where x2 ≡ xaxa, x∂ ≡ xa∂a, and operator Tν is given in (2.27). Relations in (4.22)–

(4.29) should be understood in weak sense, i.e., relations (4.22)–(4.29) hold true on space

of ket-vectors which depend on the boundary coordinate xa and do not depend on the

radial coordinate z. We note that relations (4.28) are helpful to verify relation (4.21) for

the generators P− and J−i, while relation (4.29) is helpful to verify relation (4.21) for

the generators Ka. In turn, relations (4.28)–(4.30) can be easily proved by using relations

in (4.22)–(4.27).
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Matching of effective action and 2-point vertex for shadow. Action of AdS field

evaluated on non-normalizable solution of Dirichlet problem (4.16) we refer to as effective

action. The effective action is found by plugging solution (4.16) into action (2.2), where

action (2.2) should be supplemented with appropriate boundary term. Using the method

in ref. [84], we verify that a light-cone gauge Lagrangian which involves an appropriate

boundary term takes the form

L =
1

2
〈∂aφ||∂aφ〉+ 1

2
〈Tν− 1

2

φ||Tν− 1

2

φ〉 . (4.31)

Note also that, to respect the commonly used Euclidean signature, the overall sign of

Lagrangian (2.3) has been changed, L → −L, when passing from expression (2.3) to

expression (4.31).

Now it is easy to check that action (2.2), (4.31) considered on the solution of the

Dirichlet problem admits the following general representation:

− Seff =

∫
ddxLeff

∣∣∣
z→0

, Leff ≡ 1

2
〈φ|Tν− 1

2

|φ〉 . (4.32)

Plugging solution to the Dirichlet problem (4.16) into (4.32), we obtain the effective action

− Seff = 2κcκΓ
sh−sh , (4.33)

where cκ is given in (4.18), while the 2-point vertex of shadow Γsh−sh takes the form given

in (3.2), (3.3). We recall also that κ is defined in (2.39). Relation (4.33) tells that the

effective action and the 2-point vertex of shadow indeed match. By product, we find the

normalization factor 2κcκ entering (4.33). This normalization factor might be important

for the systematical investigation of the AdS/CFT duality.

Our relation for effective action (4.33) is valid for massless and massive arbitrary spin

totally symmetric and mixed-symmetry fields. Thus we see that the light-cone gauge

approach allows us to study the AdS/CFT correspondence for all just mentioned fields on

an equal footing.18

To summarize, we used new light-cone gauge formulation of bulk AdS field theory

and boundary CFT for the investigation of the AdS/CFT correspondence of AdS fields

and boundary currents (shadows). We believe that our new light-cone gauge approach

to AdS field theory and CFT might have other interesting applications along the lines in

refs. [89–94].

5 Light-cone gauge approach to conformal fields in Rd−1,1

Our expression for 2-point vertex of shadow given in (3.2) provides interesting opportunity

for finding a light-cone gauge Lagrangian of conformal field. To explain what has just been

said we note that a kernel of the 2-point vertex of shadow in (3.2), (3.3) is not well-defined

for the cases when ν given in (2.39) takes integer values (see, e.g., ref. [95]), while for the

18In Lorentz covariant approach, the computation of effective action for massless mixed-symmetry field

in AdSd+1 with d-arbitrary and h1 = 2, h2 = 1 may be found in ref. [85], while the computation of effective

action for massive self-dual field in AdS5 with κ-arbitrary and h1 = 1, h2 = 1 may be found in ref. [86].

In Lorentz covariant approach, the problem of the effective action for arbitrary spin mixed-symmetry AdS

fields is still to be investigated. The realization of AdS/CFT duality in terms of intertwining operator was

investigated in refs. [87, 88].
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cases when ν takes non-integer values the kernel turns out to be well-defined. Therefore 2-

point vertex of shadow with integer ν can be regularized by using non-integer ν. Removing

the regularization, we are left with a logarithmic divergence of the 2-point vertex for shadow

which turns out to be light-cone gauge action of conformal field.

Let us describe the regularization procedure we are going to use. Taking into ac-

count (2.39) and recalling that eigenvalues of the operator M z take integer values, we see

that non-integer values of κ imply non-integer values of ν. Denoting the integer part of κ

by κint, we define the regularization parameter ε by the following relation:

κ− κint = −ε , κint − integer. (5.1)

Taking into account (5.1) and (2.39), we use the textbook asymptotic behavior for

the kernel:

1

|x|2ν+d

ε∼0∼ 1

ε
̺νint�

νintδ(d)(x) , νint ≡ κint +M z, ̺ν ≡ πd/2

4νΓ(ν + 1)Γ(ν + d
2)

. (5.2)

Plugging expression (5.2) into Γsh−sh given in (3.2), we get

Γsh−sh ε∼0∼ 1

ε
̺κint

∫
ddx L ,

L =
1

2
〈φ|�νint |φ〉 , νint = κint +M z , (5.3)

where in expression for L we use the identification |φ〉 ≡ |φsh〉. Lagrangian (5.3) describes

light-cone gauge dynamics of conformal field. In general, Lagrangian (5.3) describes higher-

derivative theory of conformal field.

Long and short conformal fields. In section 4.2, we demonstrated that, in the frame-

work of AdS/CFT, the 2-point function Γsh−sh is realized as effective action of bulk AdS

field (4.33). Relation (5.3) tells us then that, for integer κ, the logarithmic divergence of

the effective action of AdS field turns out to be the action of conformal field, i.e., AdS

field theory leads to higher-derivative theory of conformal field only when κ takes integer

values. Also note that, in the framework AdS/CFT, the κ is connected with d and lowest

eigenvalue of the energy operator E0 of AdS field by relation (2.39). From relation (2.39),

we see that requiring the κ be integer leads to restrictions on the E0 and d. This is to

say that not all AdS fields are related to conformal fields. Namely, as we have already

said, AdS field is related to conformal field only when κ (2.39) takes integer values. Let us

now describe AdS fields which are related to conformal fields. We consider massless and

massive AdS fields in turn. Requiring the κ (2.39) to be integer we are led to the following

statements.

i) Massless field in AdSd+1 is related to conformal field in Rd−1,1 only for even d ≥ 4.

This can easily been seen by noticing that, for the massless AdS field, the E0 takes

integer values (see (1.4)). Therefore relation (2.39) and requirement the κ to be

integer imply that d should be even. Conformal field in Rd−1,1 related to massless field
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in AdSd+1 is referred to as short conformal field. Thus we see that short conformal

field propagates in space-time of even dimension d.19

ii) Massive field in AdSd+1 is related to conformal field in Rd−1,1 for arbitrary d ≥ 4.

For even d, the E0 takes integer values, while, for odd d, the E0 takes half-integer

values. Allowed values of the E0, denoted by E0,long are given by

E0,long = κint +
d

2
, (5.4)

κint > Em=0
0 − d

2
, (5.5)

where κint in (5.4) is arbitrary integer which satisfies (5.5). Conformal field which is

related to massive AdS field is referred to as long conformal field. As there are no

restrictions on space-time dimension d ≥ 4, we conclude that the long conformal field

propagates in space-time of arbitrary dimension d ≥ 4. Conformal dimension of the

long conformal field is given by ∆ = d−E0,long, where E0,long is given in (5.4), (5.5).

Thus, the short conformal fields propagate in space-time of even dimension d ≥ 4

and these fields are related to massless fields, while the long conformal fields propagate in

space-time of arbitrary dimension d ≥ 4 and are related to massive AdS fields having E0

defined by (5.4), (5.5).

Light-cone gauge action of conformal field (5.3) is invariant under symmetries of the

so(d, 2) algebra. Realization of light-cone gauge symmetries of the so(d, 2) algebra on space

of conformal field |φ〉 is described by the same relations as for shadow (see (3.13), (3.14)–

(3.23) (3.28)–(3.31)). Operators ν, W i, W̄ i, M ij , which enter light-cone gauge action (5.3)

and generators of the so(d, 2) algebra symmetries of conformal fields (3.14)–(3.31), satisfy

the same defining equations as the ones in light-cone gauge AdS field theory in (2.28)–(2.37).

In other words, in our light-cone approach, the so(d, 2) algebra symmetries of massless

(massive) fields in AdSd+1 and the so(d, 2) algebra symmetries of short (long) conformal

fields in Rd−1,1 are governed by one and the same operators ν, W i, W̄ i, M ij . Also, in

our approach, the Lagrangian of massless (massive) fields in AdSd+1 and Lagrangian of

conformal short (long) fields in Rd−1,1 are governed by the same operator ν. To summarize,

finding a solution to defining equations given in (2.28)–(2.37) leads immediately to the

complete description of light-cone gauge theory of massless (massive) fields in AdSd+1 and

light-cone gauge theory of short (long) conformal fields in Rd−1,1. We note also that irreps

of the so(d− 2) algebra which enter the light-cone gauge formulation of massless (massive)

field in AdSd+1 coincide with irreps of the so(d−2) algebra which enter the light-cone gauge

formulation of short (long) conformal field in Rd−1,1. In fact, it is matching of irreps of the

so(d−2) algebra entering the massless (massive) light-cone gauge fields in AdSd+1 and the

19The fact that short totally (anti)symmetric conformal fields propagate in Rd−1,1 only with even d is

well-known. It was also expected that short mixed-symmetry conformal fields propagate in Rd−1,1 only with

even d. Our discussion demonstrates that the restriction the d to be even integer for all short conformal

fields can be explained by the fact that dependence of E0 on d in (1.4) is the same for all totally symmetric

and mixed-symmetry massless AdS fields.
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irreps of the so(d − 2) algebra entering the light-cone gauge short (long) conformal fields

that explains why the light-cone gauge formulations of massless (massive) AdS fields and

conformal short (long) fields are governed by one and the same operators ν, W i, W̄ i, M ij .

For the illustration purposes, we now discuss totally symmetric conformal fields. The

light-cone gauge Lagrangian of totally symmetric short conformal fields has already been

presented in ref. [96], while light-cone gauge Lagrangian of totally symmetric long conformal

fields has not been discussed in the earlier literature. For the reader convenience we discuss

the both short and long conformal fields.

spin-1 short conformal field in Rd−1,1. Field content we use for the light-cone gauge

description of spin-1 short conformal field in Rd−1,1 involves vector field φi and scalar field

φ of the so(d− 2) algebra. These fields can be collected into the following ket-vector:20

|φ〉 =
(
φiαi + φαz

)
|0〉 . (5.6)

Realization of the operator ν on space of ket-vector (5.6) takes the form

ν = κ−Nz , Nz = αzᾱz, κ =
d− 2

2
, d− even , d ≥ 4 . (5.7)

Plugging (5.6) and (5.7) into (5.3), we get Lagrangian for spin-1 short conformal field

L =
1

2
φi
�

κφi +
1

2
φ�κ−1φ , κ =

d− 2

2
. (5.8)

The number of propagating D.o.F described by the Lagrangian (5.8) is given by

n =
1

2
d(d− 3). (5.9)

spin-1 long conformal field in Rd−1,1. Field content we use for the light-cone gauge

description of spin-1 long conformal field in Rd−1,1 involves one vector fields φi and two

scalar fields φ−1, φ1 of the so(d− 2) algebra,

φi

(5.10)
φ−1 φ1

We collect fields (5.10) into the ket-vector defined by

|φ〉 =
(
φiαi + φ−1α

z + φ1ζ
)
|0〉 . (5.11)

Realization of the operator ν on space of ket-vector (5.11) takes the form

ν = κint +Nζ −Nz , κint >
d− 2

2
, κint − integer , d ≥ 4 , (5.12)

20To build ket-vectors, we use oscillators with commutation relations [ᾱi, αj ] = δij , [ᾱz, αz] = 1, [ζ̄, ζ] = 1

and hermitian conjugation rules, ᾱi = αi†, ᾱz = αz†, ζ̄ = ζ†. The vacuum is defined as ᾱi|0〉 = 0, ᾱz|0〉 = 0,

ζ̄|0〉 = 0.
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where Nz = αzᾱz, Nζ = ζζ̄. Plugging (5.11) and (5.12) into (5.3), we get Lagrangian for

spin-1 long conformal field,

Lκint
=

1

2
φi
�

κintφi +
1

2
φ−1�

κint−1φ−1 +
1

2
φ1�

κint+1φ1 , (5.13)

κint =

[
d

2

]
− 1 +N , N = 1, 2, . . . (5.14)

Using the notation n for the number of propagating D.o.F described by the Lagran-

gian (5.13) we note the relation

n = κintn
so(d)
1 , n

so(d)
1 = d, (5.15)

where n
so(d)
1 in (5.15) stands for dimension of the spin-1 irreps of the so(d) algebra.

spin-2 short conformal field in Rd−1,1. Field content we use for the light-cone gauge

description of spin-2 short conformal field in Rd−1,1 involves traceless tensor field φij , vector

field φi and scalar field φ. All these fields transform as irreps of the so(d− 2) algebra. We

introduce ket-vector by the relation

|φ〉 =
(1
2
φijαiαj + φiαiαz +

1√
2
φαzαz

)
|0〉 . (5.16)

Realization of the operator ν on space of ket-vector (5.16) takes the form

ν = κ−Nz , κ =
d

2
, d− even , d ≥ 4 . (5.17)

Plugging (5.16) and (5.17) into (5.3), we get Lagrangian for spin-2 short conformal field

L =
1

4
φij

�
κφij +

1

2
φi
�

κ−1φi +
1

2
φ�κ−2φ , (5.18)

where κ is given in (5.17). Note that number of propagating D.o.F described by the

Lagrangian (5.18) is given by

n =
1

4
(d− 3)d(d+ 2). (5.19)

spin-2 long conformal field in Rd−1,1. Field content we use for the light-cone gauge

description of spin-2 long conformal field in Rd−1,1 involves one traceless rank-2 tensor

field, two vector fields, and three scalar fields

φij

φi
−1 φi

1 (5.20)

φ−2 φ0 φ2

All fields in (5.20) transform as irreps of the so(d− 2) algebra. We collect fields (5.20) into

ket-vector defined by

|φ〉 =
(1
2
φijαiαj + φi

−1α
iαz + φi

1α
iζ +

1√
2
φ−2α

zαz + φ0α
zζ +

1√
2
φ2ζ

2
)
|0〉 . (5.21)
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Realization of the operator ν on space of ket-vector (5.21) takes the form

ν = κint +Nζ −Nz , κint >
d

2
, κint − integer , d ≥ 4 . (5.22)

Plugging (5.21) and (5.22) into (5.3), we get Lagrangian for spin-2 long conformal field

Lκint
=

1

4
φij

�
κintφij

+
1

2
φi
−1�

κint−1φi
−1 +

1

2
φi
1�

κint+1φi
1 ,

+
1

2
φ−2�

κint−2φ−2 +
1

2
φ0�

κintφ0 +
1

2
φ2�

κint+2φ2 , (5.23)

κint =

[
d

2

]
+N , N = 1, 2, . . . (5.24)

Using the notation n for the number of propagating D.o.F described by the Lagran-

gian (5.23) we note the relation

n = κintn
so(d)
2 , n

so(d)
2 =

1

2
(d− 1)(d+ 2) , (5.25)

where n
so(d)
2 in (5.25) stands for dimension of the totally symmetric spin-2 irrep of so(d)

algebra.

spin-s totally symmetric short conformal field in Rd−1,1. Field content we use

for the light-cone gauge description of spin-s totally symmetric short conformal field in

Rd−1,1 involves scalar, vector, and traceless tensor fields of the so(d − 2) algebra, φi1...is′ ,

s′ = 0, 1, . . . , s. We collect these fields into ket-vector defined by

|φ〉 =
s∑

s′=0

αs−s′
z αi1 . . . αis′

s′!
√
(s− s′)!

φi1...is′ |0〉 . (5.26)

Realization of the operator ν on space of ket-vector (5.26) takes the form

ν = κ−Nz , Nz = αzᾱz, κ = s+
d− 4

2
, d− even , d ≥ 4 . (5.27)

Plugging (5.26) and (5.27) into (5.3), we get Lagrangian for spin-s short conformal field

L =
s∑

s′=0

1

2s′!
φi1...is′�

νs′φi1...is′ , νs′ ≡ s′ +
d− 4

2
. (5.28)

Note that number of propagating D.o.F described by the Lagrangian (5.28) is given by

n =
1

2
(d− 3)(2s+ d− 2)(2s+ d− 4)

(s+ d− 4)!

s!(d− 2)!
. (5.29)
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spin-s totally symmetric long conformal field in Rd−1,1. Field content we use

for the light-cone gauge description of spin-s totally symmetric long conformal field in

Rd−1,1 involves scalar, vector and traceless tensor fields of the so(d − 2) algebra, φ
i1...is′
λ ,

s′ = 0, 1, . . . , s, λ ∈ [s − s′]2. Here and below the notation λ ∈ [n]2 implies that λ =

−n,−n+ 2, . . . , n− 2, n. We collect the fields into ket-vector defined by

|φ〉 =
s∑

s′=0

∑

λ∈[s−s′]2

ζ
s−s′+λ

2 α
s−s′−λ

2
z αi1 . . . αis′

s′!
√
( s−s′+λ

2 )!( s−s′−λ
2 )!

φ
i1...is′
λ |0〉 . (5.30)

Realization of the operator ν on space of ket-vector (5.30) takes the form

ν = κint +Nζ −Nz , κint > s+
d− 4

2
, κint − integer , d ≥ 4 , (5.31)

where Nζ = ζζ̄, Nz = αzᾱz. Plugging (5.30) and (5.31) into (5.3), we get Lagrangian for

spin-s long conformal field

L =
s∑

s′=0

∑

λ∈[s−s′]2

1

2s′!
φ
i1...is′
λ �

κint+λφ
i1...is′
λ , (5.32)

κint = s− 2 +

[
d

2

]
+N , N = 1, 2, . . . (5.33)

Using the notation n for the number of propagating D.o.F described by the Lagran-

gian (5.32) we note the relation

n = κintn
so(d)
s , nso(d)

s = (2s+ d− 2)
(s+ d− 3)!

(d− 2)!s!
, (5.34)

where n
so(d)
s in (5.34) stands for dimension of the totally symmetric spin-s irrep of so(d)

algebra. As is well known, the n
so(d)
s describes a number of propagating D.o.F of totally

symmetric massive spin-s field in (d+ 1) dimensions. Thus we find the following rule.

Number of propagating D.o.F of the totally symmetric spin-s long conformal field

in d dimensions is equal to κint times the number of propagating D.o.F for totally

symmetric spin-s massive field in (d+ 1) dimensions.

For the case of short conformal fields, the expression for n given in (5.29) agrees with

expression for n when d = 4 in ref. [15] and d ≥ 4 in ref. [97].21 To our knowledge, for the

case of long conformal fields, expression for n given in (5.34) has not been discussed in the

earlier literature.

6 Antisymmetric (one-column) fields

In the framework of Lorentz covariant approach, Lagrangian formulation of antisymmetric

massless and massive fields in AdS is well known. Using such formulation, the AdS/CFT for

totally antisymmetric AdS fields and related boundary shadows was studied in ref. [99, 100].

To our knowledge, the AdS/CFT for totally antisymmetric AdS fields and related boundary

currents has not been considered in the literature.
21For d ≥ 4, derivation of n (5.29) based on the computation of partition function of conformal field may

be found in ref. [98].
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In this section, we discuss light-cone gauge formulation of massless and massive an-

tisymmetric AdS fields. In the framework of our approach, equations of motion turn out

to be decoupled and this considerably simplifies the study of AdS/CFT. Also, we recall

that finding a solution to the defining equations for the spin operators (2.28)–(2.37) leads

immediately to the complete light-cone gauge description of AdS field theory and boundary

currents, shadows, and conformal fields. This is to say that using the antisymmetric fields

we demonstrate how our general approach works.

6.1 Antisymmetric (one-column) massive fields in AdSd+1 and long currents,

shadows, and conformal fields in Rd−1,1

Massive field in AdSd+1. Antisymmetric rank-s massive field in AdSd+1 is associated

with unitary irreps D(E0,h) of the so(d, 2) algebra, where E0, h are given by

h = (1, 1, · · · , 1︸ ︷︷ ︸
s times

, 0, 0, · · · , 0︸ ︷︷ ︸
r−s times

) , r ≡
[
d

2

]
,

{
1 ≤ s ≤ r , for odd d

1 ≤ s ≤ r − 1 , for even d
(6.1)

E0 > d− s . (6.2)

Restriction on E0 (6.2) is the standard unitarity constraint (1.5) represented in terms of the

label s. For even d and s = d/2, we deal with a sum of self-dual and anti self-dual massive

fields associated with the respective unitary irreps D(E0,h+) and D(E0,h−), where

h± = (1, 1, · · · , 1︸ ︷︷ ︸
r−1 times

,±1) , s = r , r ≡ d

2
, for even d , (6.3)

E0 >
d

2
. (6.4)

Field content of massive field. In order to describe field content entering dynamics of

antisymmetric massive field it is convenient to introduce anti-commuting oscillators αi, αz,

ζ. The oscillators αi, i = 1, . . . , d − 2, transform as vector of the so(d − 2) algebra, while

the oscillators αz and ζ transform as scalars of the so(d − 2) algebra. Anti-commutation

relations for the oscillators, the vacuum |0〉, and hermitian conjugation rules, are defined as

{ᾱi, αj} = δij , {ᾱz, αz} = 1 , {ζ̄ , ζ} = 1 , (6.5)

ᾱi|0〉 = 0 , ᾱz|0〉 = 0 , ζ̄|0〉 = 0 , (6.6)

αi† = ᾱi , αz† = ᾱz , ζ† = ζ̄ . (6.7)

All the remaining anti-commutators for the oscillators are equal to zero. Using such os-

cillators we introduce the following ket-vector to discuss the antisymmetric rank-s mas-

sive fields:

|φ〉 = φ(αi, αz, ζ)|0〉 , (6.8)

where the ket-vector, by definition, satisfies the following constraint

(Nα +Nαz +Nζ − s)|φ〉 = 0 , Nα ≡ αiᾱi , Nz ≡ αzᾱz , Nζ ≡ ζζ̄ . (6.9)
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Finite number of ordinary light-cone gauge fields depending of space-time coordinates xa, z

are obtained by expanding ket-vector (6.8) into the oscillators αi, αz, ζ,

|φ〉 = |φ1〉+ |φ0〉+ |φ−1〉 , (6.10)

|φ1〉 = ζ|φs−1
1 〉 , (6.11)

|φ0〉 = |φs
0〉+ ζαz|φs−2

0 〉 , (6.12)

|φ−1〉 = αz|φs−1
−1 〉 , (6.13)

|φK
λ 〉 =

1

K!
αi1 . . . αiKφi1...iK

λ |0〉 , (6.14)

where field φi1...iK
λ in (6.14) is antisymmetric rank-K tensor field of the so(d− 2) algebra.

Thus we see that ket-vector |φ〉 (6.10) is expanded into finite set of antisymmetric tensor

fields of the so(d− 2) algebra.22 To label ket-vectors (6.11)–(6.13) we use the subscript λ

which is eigenvalue of the operator M z (see (6.16)). For the illustration purposes, we use

the shortcut φK
λ for rank-K antisymmetric tensor field φi1...iK

λ to represent the tensor fields

entering ket-vector in (6.10) as

φs
0

φs−1
−1 φs−1

1 (6.15)

φs−2
0

Lagrangian of massive field. From (2.3), (2.23), we see that the Lagrangian is deter-

mined by the operator ν. We find the following realization of the operator ν on space of

ket-vector (6.10):

ν = κ+M z, κ = E0 −
d

2
, M z = Nζ −Nz , Nζ ≡ ζζ̄ , Nz ≡ αzᾱz . (6.16)

Plugging then ket-vector (6.10) into (2.3), we see that Lagrangian takes the form

L =
∑

λ=−1,0,1

〈φλ|
(
�+ ∂2

z −
1

z2
(
ν2λ − 1

4

))
|φλ〉 , νλ ≡ κ+ λ , (6.17)

where ket-vectors |φλ〉, λ = 0,±1, are defined in (6.11)–(6.13).

According to the general setup in section 2, to complete the light-cone gauge description

of the antisymmetric field we should provide a realization of the operators M ij , W i, W̄ i,

B on space of ket-vector (6.10). The realization of these operators on space of ket-vector

|φ〉 (6.10) is given by

M ij = αiᾱj − αjᾱi , (6.18)

W i = Xᾱi + αiȲ , (6.19)

22In this paper, we use vector-like oscillators to build ket-vectors |φ〉. In recent literature, the use of

spinor-like and vector like oscillators entering ket-vectors of massive fields may be found in the respective

refs. [52, 101] and ref. [102, 103].
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W̄ i = Y ᾱi + αiX̄ , (6.20)

X = ζfζ , X̄ = fζ ζ̄ , fζ =
(2κ− d+ 2s

4κ

)1/2
, (6.21)

Y = αzfz , Ȳ = fzᾱ
z , fz =

(2κ+ d− 2s

4κ

)1/2
, (6.22)

B = κM z − s− 1

2
(d− 2− 2s)(Nζ +Nz)− 2NζNz . (6.23)

We note that the realization for the spin operator of the so(d−2) algebraM ij given in (6.18)

is well known, while the realization of the operators ν, W i, W̄ i in (6.16), (6.19), (6.20) is

found by solving the defining equations given in (2.30)–(2.37). Expression for the operator

B in (6.23) can be obtained by using relation (2.40) and the eigenvalue of the second order

Casimir operator of the so(d) algebra for antisymmetric rank-s irrep,

〈Cso(d)〉 = s(d− s) . (6.24)

Long currents and shadows in Rd−1,1. Antisymmetric rank-s long current in Rd−1,1

is associated with the unitary representation D(∆cur,h) of the so(d, 2) algebra, where

∆cur = E0, and E0, h are given in (6.1), (6.2). Accordingly, antisymmetric rank-s long

shadow in Rd−1,1 is associated with non-unitary representation of the so(d, 2) algebra with

labels ∆sh = d−E0, h, where E0, h are given in (6.1), (6.2). For s = d/2, d-even, we deal

with a sum of self-dual and anti self-dual currents (shadows) having h± as in (6.3).

For long currents and shadows in Rd−1,1, ket-vectors |φcur〉, |φsh〉 and the operators ν,

W i, W̄ i, M ij take the same form as the ones for massive field in AdSd+1 (see (6.10), (6.18)–

(6.23)). Plugging the ket-vectors |φcur〉, |φsh〉 and the operators ν, W i, W̄ i, M ij into

expressions for 2-point functions and generators of so(d, 2) algebra presented in section 3, we

get the complete light-cone gauge description of long currents and shadows. For example,

plugging the ket-vector |φsh〉 into expression for 2-point function in (3.3), we get

Lsh−sh
12 =

∑

λ=−1,0,1

Lsh−sh
12,λ , Lsh−sh

12,λ ≡ 1

2
〈φsh,λ(x1)|

f sh
νλ

|x12|2νλ+d
|φsh,λ(x2)〉 , (6.25)

f sh
νλ

≡ 4νλΓ(νλ + d
2)Γ(νλ + 1)

4κΓ(κ+ d
2)Γ(κ+ 1)

, νλ ≡ κ+ λ , κ = E0 −
d

2
, (6.26)

where the ket-vectors |φsh,λ〉 take the same form as in (6.11)–(6.14).

Long conformal field in Rd−1,1. Antisymmetric rank-s long conformal field in Rd−1,1

is associated with non-unitary representation of the so(d, 2) algebra with labels ∆, h, where

h is given in (6.1), while the conformal dimension ∆ is given by

∆ = d− E0,long , E0,long = κint +
d

2
, κint >

d

2
− s κint − integer. (6.27)

For s = d/2, d-even, we deal with a sum of self-dual and anti self-dual conformal fields

having h± as in (6.3).

Ket-vector of long conformal field |φ〉 in Rd−1,1 takes the same form as the one for

massive field in AdSd+1 (6.10). Relations in (6.18)–(6.23) with the substitution κ → κint
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provide solution for the operators ν, W i, W̄ i, M ij entering the light-cone gauge descrip-

tion of the long conformal field. Plugging such operators ν, W i, W̄ i, M ij into (3.14)–

(3.23), (3.28)–(3.31) provides the realization of the conformal so(d, 2) symmetries on space

of the ket-vector |φ〉, while plugging the ket-vector |φ〉 into (5.3), we get Lagrangian for

the long conformal field

L =
1

2

∑

λ=−1,0,1

〈φλ|�νint,λ |φλ〉 , νint,λ = κint + λ , (6.28)

where the ket-vectors |φλ〉 take the same form as in (6.11)–(6.14). In terms of tensor

fields (6.14), Lagrangian (6.28) takes the form

L =
1

2s!
φi1...is
0 �

κintφi1...is
0 +

1

2(s− 2)!
φ
i1...is−2

0 �
κintφ

i1...is−2

0

+
1

2(s− 1)!
φ
i1...is−1

−1 �
κint−1φ

i1...is−1

−1 +
1

2(s− 1)!
φ
i1...is−1

1 �
κint+1φ

i1...is−1

1 , (6.29)

where s and κint satisfy restrictions in (6.1), (6.27). Using the notation n for the number

of propagating D.o.F described by the Lagrangian (6.29), we note the relation

n = κintn
so(d)
s , nso(d)

s =
d!

s!(d− s)!
, (6.30)

where n
so(d)
s in (6.30) stands for dimension of the rank-s antisymmetric irrep of so(d)

algebra. As is well known, the n
so(d)
s describes a number of propagating D.o.F of rank-s

antisymmetric massive spin-s field in (d+ 1) dimensions.

6.2 Antisymmetric (one-column) massless fields in AdSd+1 and short currents,

shadows, and conformal fields in Rd−1,1

Massless field in AdSd+1. From general relations (1.3), (1.4), we see that in order to

realize the limit of antisymmetric massless field we have to consider the limit23

E0 → d− s , s ≤ d− 1

2
. (6.31)

In the framework of Lorentz covariant approach, it is well-known that, in the massless

limit, antisymmetric rank-s massive AdS field is decomposed into rank-s and rank-(s− 1)

massless AdS fields. We now demonstrate how this result is obtained in the framework of

light-cone gauge approach. To this end we note that the ket-vector of massive field in (6.10)

can be represented as

|φ〉 = |φ〉+ ζ|ϕ〉 , (6.32)

|φ〉 = |φ0〉+ |φ−1〉 , |φ0〉 ≡ |φs
0〉 , |φ−1〉 ≡ αz|φs−1

−1 〉 , (6.33)

|ϕ〉 = |ϕ0〉+ |ϕ−1〉 , |ϕ−1〉 ≡ |φs−1
1 〉 , |ϕ0〉 ≡ αz|φs−2

0 〉 , (6.34)

23As well known, in massless limit (6.31), unitary irreps D(E0,h±) in (6.3) are not associated with local

AdS fields propagating in AdSd+1. Therefore we ignore the case (6.3) when considering the massless limit.

As we ignore the case s = d/2 for even d, then the constraints on s in (6.1) can be represented on equal

footing as in (6.31).
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where the ket-vectors |φK
λ 〉 appearing in (6.33), (6.34) are defined in (6.14). It turns out

that, in the massless limit, it is the ket-vectors |φ〉 and |ϕ〉 that describe the respec-

tive rank-s and rank-(s − 1) massless AdS fields. Namely, considering the spin opera-

tors (6.16), (6.18)–(6.23) in the limit (6.31), we verify that ket-vectors |φ〉, |ϕ〉 (6.33), (6.34)
are invariant under action of the so(d, 2) algebra generators given in (2.8)–(2.16).24 In other

words, in limit (6.31), the ket-vector |φ〉 is decomposed into two invariant sub-spaces de-

scribed by the ket-vectors |φ〉, |ϕ〉. The ket-vectors |φ〉 and |ϕ〉 describe the respective

antisymmetric rank-s and rank-(s − 1) irreps of so(d − 1) algebra. The ket-vectors |φ〉
and |ϕ〉 are associated with the unitary irreps of the so(d, 2) algebra with E0 = d− s and

E0 = d + 1 − s respectively. This implies that, in the massless limit, the antisymmetric

rank-s massive field is decomposed into antisymmetric rank-s and rank-(s − 1) massless

fields described by the respective ket-vectors |φ〉 and |ϕ〉 .
Plugging ket-vector (6.33) into (2.3), we get Lagrangian of rank-s antisymmetric mass-

less field

L =
∑

λ=−1,0

〈φλ|
(
�+ ∂2

z −
1

z2

(
ν2λ − 1

4

))
|φλ〉 , νλ ≡ d

2
− s+ λ , s ≤ d− 1

2
. (6.35)

To complete the light-cone gauge description of the antisymmetric massless field, we provide

the realization of the operators M ij , W i, W̄ i, B on space of ket-vector |φ〉 (6.33),

ν =
d

2
− s−Nz , M ij = αiᾱj − αjᾱi , (6.36)

W i = αiᾱz , W̄ i = αzᾱi , (6.37)

B = −s− (d− 1− 2s)Nz , Nz ≡ αzᾱz . (6.38)

We note that the spin operators in (6.36)–(6.38) are simply obtained by taking the

limit (6.31) in expressions for spin operators in (6.18)–(6.23).

Short currents and shadows in Rd−1,1. Antisymmetric rank-s short current in Rd−1,1

is related to unitary irrep D(∆cur,h) of the so(d, 2) algebra, where ∆cur = d− s, while h is

given in (6.1) and s ≤ (d−1)/2. Antisymmetric rank-s short shadow in Rd−1,1 is associated

with representation of the so(d, 2) with ∆sh = s and h as in (6.1), where s ≤ (d− 1)/2.

For short currents and shadows in Rd−1,1, ket-vectors |φcur〉, |φsh〉 and the operators ν,

W i, W̄ i, M ij take the same form as the ones for massless field in AdSd+1 (see (6.33), (6.36)–

(6.38)). Plugging the ket-vectors |φcur〉, |φsh〉 and the operators ν, W i, W̄ i, M ij into

expressions for 2-point functions and generators of so(d, 2) algebra presented in section 3,

we get the complete light-cone gauge description of the short currents and shadows.

Short conformal field in Rd−1,1. Antisymmetric rank-s short conformal field in Rd−1,1

is associated with representation of the so(d, 2) algebra with labels ∆, h, where h is given

in (6.1), while the conformal dimension ∆ is given by

∆ = s , 1 ≤ s ≤ d

2
− 1 , d− even. (6.39)

24It is easy to see that invariance of the ket-vectors under action of so(d, 2) algebra generators given

in (2.8)–(2.16) amounts to the invariance of the ket-vectors under action of the spin operators W i, W̄ i.
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For rank-s antisymmetric short conformal field in Rd−1,1, ket-vector |φ〉 and operators

ν, W i, W̄ i, M ij take the same form as the ones for massless field in AdSd+1 (see (6.33),

(6.36)–(6.38)). Plugging the operators ν, W i, W̄ i, M ij into (3.14)–(3.23), (3.28)–(3.31)

provides realization of the conformal so(d, 2) symmetries on space of the ket-vector |φ〉,
while plugging the ket-vector |φ〉 into (5.3), we get Lagrangian for the short antisymmetric

conformal field

L =
1

2

∑

λ=−1,0

〈φλ|�νint,λ |φλ〉 , νint,λ =
d

2
− s+ λ . (6.40)

In terms of tensor fields (6.14), Lagrangian (6.40) takes the form

L =
1

2s!
φi1...is
0 �

κφi1...is
0 +

1

2(s− 1)!
φ
i1...is−1

−1 �
κ−1φ

i1...is−1

−1 , (6.41)

κ ≡ d

2
− s , 1 ≤ s ≤ d

2
− 1 , d− even . (6.42)

Using the notation n for the number of propagating D.o.F described by the Lagran-

gian (6.41) we note the relation

n =
d(d− 1− 2s)(d− 2)!

2s!(d− 1− s)!
. (6.43)

For s < (d − 2)/2, Lagrangian (6.41) describes non unitary conformal fields, while, for

s = (d− 2)/2, Lagrangian (6.41) descries unitary conformal fields.25

7 Mixed-symmetry (two-column) fields

In the framework of Lorentz covariant approach, Lagrangian formulation of two-column

massless and massive fields in AdS was developed in ref. [29] and ref. [32] respectively.

AdS/CFT for such fields and related boundary currents (shadows) has not been considered

in the literature. Lorentz covariant description of two-column short conformal field can be

obtained from ref. [17]. Long conformal fields have not been discussed in the framework of

Lorentz covariant approach.

In this section, we discuss the light-cone gauge description of two-column massless and

massive AdS fields. We recall that, in our approach, the complete light-cone description

of massless AdS fields leads immediately to the complete light-cone description of short

currents, shadows, and conformal fields, while the complete light-cone description of mas-

sive AdS fields leads immediately to the complete light-cone description of long currents,

shadows, and conformal fields. We discuss AdS fields and CFT in turn.

7.1 Mixed-symmetry (two-column) massive fields in AdSd+1 and long cur-

rents, shadows, and conformal fields in Rd−1,1

Massive field in AdSd+1. We now consider mixed-symmetry (two-column) massive

fields in AdSd+1. Physical D.o.F of such fields are described by irreducible tensor fields of

the so(d) algebra whose so(d) space tensor indices have the structure of two-column Young

tableaux. We use integers s1, s2, s1 ≥ s2, to indicate of height of the first and second

25For s = (d − 2)/2, the field φ
i1...is−1

−1 in (6.41) is non-dynamical, while the field φ
i1...is−1

0 can be

decomposed into self-dual and anti self-dual irreps of the so(d− 2) algebra.
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columns of the two-column Young tableaux. Two-column field described by such Young

tableaux will be referred to as type [s1, s2] field. The type [s1, s2] massive field in AdSd+1

is associated with the unitary representation D(E0,h) of the so(d, 2) algebra, where E0, h

are given by

h = (2, 2, · · · 2, 2︸ ︷︷ ︸
s2 times

, 1, 1, · · · 1, 1︸ ︷︷ ︸
s1−s2 times

, 0, 0, · · · 0, 0︸ ︷︷ ︸
r−s1 times

)

{
1 ≤ s1 ≤ r , for odd d

1 ≤ s1 ≤ r − 1 , for even d
(7.1)

E0 ≥ d+ 1− s2 for s2 ≥ 1 , (7.2)

E0 ≥ d− s1 for s2 = 0 , (7.3)

Field content of massive field with s1 > s2 ≥ 1. In order to describe field content

entering dynamics of two-column massive field we introduce anti-commuting oscillators αi
n,

αz
n, ζn, n = 1, 2. The oscillators αi

n, i = 1, . . . , d − 2, transform as vector of the so(d − 2)

algebra, while the oscillators αz
n and ζn transform as scalars of the so(d− 2) algebra. Anti-

commutation relations for the oscillators, the vacuum |0〉, and hermitian conjugation rules

are defined as

{ᾱi
m, αj

n} = δmnδ
ij , {ᾱz

m, αz
n} = δmn , {ζ̄m, ζn} = δmn , (7.4)

ᾱi
n|0〉 = 0 , ᾱz

n|0〉 = 0 , ζ̄n|0〉 = 0 , (7.5)

αi†
n = ᾱi

n , αz†
n = ᾱz

n , ζ†n = ζ̄n . (7.6)

We note also that all remaining anti-commutators for the oscillators are equal to zero.

Using such oscillators we introduce the ket-vector |φ〉,

|φ〉 = φ(αi
1, α

i
2, α

z
1, α

z
2, ζ1, ζ2)|0〉 , (7.7)

which, by definition, satisfies the following algebraic constraints:

(Nαn +Nαz
n
+Nζn − sn)|φ〉 = 0 , n = 1, 2 , (7.8)

Nα12
|φ〉 = 0 , (7.9)

ᾱ12|φ〉 = 0 , (7.10)

Nαmn ≡ αi
mᾱi

n , ᾱmn ≡ ᾱi
mᾱi

n , m 6= n , (7.11)

Nαn ≡ αi
nᾱ

i
n , Nαz

n
≡ αz

nᾱ
z
n , Nζn ≡ ζnζ̄n . (7.12)

Constraints (7.8) tell us that the ket-vector |φ〉 is degree-sn homogeneous polynomial in

the oscillators αi
n, α

z
n, ζn. Constraints (7.9) and (7.10) are the respective Young symmetry

constraint and tracelessness constraint. Finite number of ordinary light-cone gauge fields

depending of space-time coordinates xa, z are obtained by expanding ket-vector (7.7) into

the oscillators αi
n, α

z
n, ζn,

|φ〉 = |φ2〉+ |φ1〉+ |φ0〉+ |φ−1〉+ |φ−2〉 , (7.13)

|φ2〉 = ζ1ζ2|φs1−1,s2−1
2 〉 , (7.14)

|φ1〉 = ζ1|φs1−1,s2
1 〉+ ζ2|φs1,s2−1

1 〉+ ζ1ζ2α
z
1|φs1−2,s2−1

1 〉+ ζ1ζ2α
z
2|φs1−1,s2−2

1 〉 , (7.15)
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|φ0〉 = |φs1,s2
0 〉+ ζ1α

z
1|φs1−2,s2

0 〉+ ζ1α
z
2|φs1−1,s2−1

0′ 〉

+ ζ2α
z
1|φs1−1,s2−1

0 〉+ ζ2α
z
2|φs1,s2−2

0 〉+ ζ1ζ2α
z
1α

z
2|φs1−2,s2−2

0 〉, (7.16)

|φ−1〉 = αz
1|φs1−1,s2

−1 〉+ αz
2|φs1,s2−1

−1 〉+ ζ1α
z
1α

z
2|φs1−2,s2−1

−1 〉+ ζ2α
z
1α

z
2|φs1−1,s2−2

−1 〉 , (7.17)

|φ−2〉 = αz
1α

z
2|φs1−1,s2−1

−2 〉 , (7.18)

|φK1K2

λ 〉 = 1

K1!

1

K2!
αi1
1 . . . α

iK1

1 αj1
2 . . . α

jK2

2 φ
i1...iK1

,j1...jK2

λ |0〉 , (7.19)

where field φ
i1...iK1

,j1...jK2

λ , K1 ≥ K2, appearing in (7.19) is mixed-symmetry (two-column)

irreducible tensor field of the so(d − 2) algebra. By definition, ket-vector (7.19) satisfies

constraints (7.9), (7.10). Note that we assume the convention |φK1K2

λ 〉 = 0 for K1 < K2. To

label ket-vectors (7.14)–(7.18) we use the subscript λ which is eigenvalue of the operator

M z (see (7.21)). For the illustration purposes, we use the shortcut φK1K2

λ for two-column

tensor field φ
i1...iK1

,j1...jK2

λ to represent the tensor fields entering ket-vector in (7.13) as

φs1,s2
0

φs1−1,s2
−1 , φs1,s2−1

−1 φs1−1,s2
1 , φs1,s2−1

1

φs1−1,s2−1
−2 φs1−2,s2

0 , φs1−1,s2−1
0 , φs1−1,s2−1

0′ , φs1,s2−2
0 φs1−1,s2−1

2

φs1−2,s2−1
−1 , φs1−1,s2−2

−1 φs1−2,s2−1
1 , φs1−1,s2−2

1

φs1−2,s2−2
0

(7.20)

Lagrangian of massive field. We note the following realization of the operator ν on

space of ket-vector (7.13):

ν = κ+M z , κ = E0 −
d

2
, M z = Nζ1 +Nζ2 −Nαz

1
−Nαz

2
, (7.21)

where the operators Nαz
n
, Nζn are defined in (7.12). Plugging ket-vector (7.13) into (2.3),

we see that Lagrangian takes the form

L =
∑

λ=−2,−1,0,1,2

〈φλ|
(
�+ ∂2

z −
1

z2
(
ν2λ − 1

4

))
|φλ〉 , νλ ≡ κ+ λ , (7.22)

where ket-vectors |φλ〉, λ = 0,±1,±2, are defined in (7.14)–(7.18). To complete the light-

cone gauge description of the two-column massive field we provide a realization of the

operators M ij , W i, W̄ i, B. The realization of these operators on space of ket-vector (7.13)

is given by

M ij =
∑

n=1,2

M ij
n , M ij

n ≡ αi
nᾱ

j
n − αj

nᾱ
i
n , (7.23)

W i = X1Ā
i
1 +X2Ā

i
2 +Ai

1Ȳ1 +Ai
2Ȳ2 , (7.24)

W̄ i = Y1Ā
i
1 + Y2Ā

i
2 +Ai

1X̄1 +Ai
2X̄2 , (7.25)

Ai
1 = αi

1 − α12ᾱ
i
2T , (7.26)
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Ai
2 = αi

2 + α12ᾱ
i
1T −Nα21

Ai
1H , (7.27)

Āi
1 = ᾱi

1 +Nα21
ᾱi
2H , (7.28)

Āi
2 = ᾱi

2 , (7.29)

T ≡ (d− 1−Nα1
−Nα2

)−1 , (7.30)

H ≡ (Nα1
−Nα2

+ 1)−1 , (7.31)

B = κM z − s1 − s2 −
t− h

2
(Nζ1 +Nαz

1
)− t+ h

2
(Nζ2 +Nαz

2
)

− 2Nζ1Nαz
1
− 2Nζ2Nαz

2
+ (Nζ1 −Nαz

1
)(Nζ2 −Nαz

2
) , (7.32)

t = d− 1− s1 − s2 , h = s1 − s2 + 1 , (7.33)

where the operator M z appearing in (7.32) is defined in (7.21). The spin operator of the

so(d−2) algebra M ij given in (7.23) is well known, while the realization of the operators ν,

W i, W̄ i in (7.24), (7.25) is found by solving the defining equations given in (2.30)–(2.37).

Explicit expressions for the operators W i, W̄ i may be found in appendix C. Expression

for the operator B in (7.32) can be obtained by using (2.40) and well know expression for

eigenvalue of the second order Casimir operator of the so(d) algebra for two-column irrep,

〈Cso(d)〉 = s1(d− s1) + s2(d+ 2− s2) . (7.34)

Long currents and shadows in Rd−1,1. Type [s1, s2] long current in Rd−1,1 is associ-

ated with the representation D(∆cur,h) of the so(d, 2) algebra, where ∆cur = E0, and E0, h

are given in (7.1), (7.2). Type [s1, s2] long shadow in Rd−1,1 is associated with non-unitary

representation of the so(d, 2) algebra with labels ∆sh = d − E0, h, where E0, h are given

in (7.1), (7.2).

For two-column long currents and shadows in Rd−1,1, ket-vectors |φcur〉, |φsh〉 and the

operators ν, W i, W̄ i, M ij take the same form as the ones for two-column massive field in

AdSd+1 (see (7.21), (7.23)–(7.32)). Plugging the ket-vectors |φcur〉, |φsh〉 and the operators

ν, W i, W̄ i, M ij into expressions for 2-point functions and generators of the so(d, 2) algebra

presented in section 3, we get the complete light-cone gauge description of the two-column

long currents and shadows.

Long conformal field in Rd−1,1. Type [s1, s2] long conformal field in Rd−1,1 is associ-

ated with non-unitary representation of the so(d, 2) algebra with labels ∆, h, where h is

given in (7.1), while the conformal dimension ∆ is given by

∆ = d− E0,long , E0,long = κint +
d

2
, κint >

d

2
+ 1− s2 , κint − integer .

(7.35)

Ket-vector of type [s1, s2] long conformal field |φ〉 in Rd−1,1 takes the same form as the one

for massive field in AdSd+1 (7.13). Relations in (7.23)–(7.32) with substitution κ → κint
provide solution for the operators ν, W i, W̄ i, M ij entering the light-cone gauge descrip-

tion of the long conformal field. Plugging such operators ν, W i, W̄ i, M ij into (3.14)–

(3.23), (3.28)–(3.31), we get the realization of the conformal so(d, 2) symmetries on space

of ket-vector |φ〉, while plugging the ket-vector |φ〉 into (5.3), we get Lagrangian for the
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type [s1, s2] long conformal field,

L =
1

2

∑

λ=−2,−1,0,1,2

〈φλ|�νint,λ |φλ〉 , νint,λ = κint + λ , (7.36)

where the ket-vectors |φλ〉 take the same form as in (7.14)–(7.18).

7.2 Mixed-symmetry (two-column) massless fields in AdSd+1 and short cur-

rents, shadows, and conformal fields in Rd−1,1

Massless field in AdSd+1. From (1.3), (1.4), we see that in order to realize the limit

of two-column massless field we have to consider the limit

E0 → d+ 1− s2 . (7.37)

We note that the ket-vectors of massive field in (7.13) can be presented in terms of two

new ket-vectors |φ〉, |ϕ〉 in the following way

|φ〉 = |φ〉+ ζ2|ϕ〉 (7.38)

|φ〉 = |φ1〉+ |φ0〉+ |φ−1〉+ |φ−2〉 , (7.39)

|ϕ〉 = |ϕ1〉+ |ϕ0〉+ |ϕ−1〉+ |ϕ−2〉 , (7.40)

|φ1〉 = ζ1|φs1−1,s2
1 〉 , (7.41)

|φ0〉 = |φs1,s2
0 〉+ ζ1α

z
1|φs1−2,s2

0 〉+ ζ1α
z
2|φs1−1,s2−1

0′ 〉 , (7.42)

|φ−1〉 = αz
1|φs1−1,s2

−1 〉+ αz
2|φs1,s2−1

−1 〉+ ζ1α
z
1α

z
2|φs1−2,s2−1

−1 〉 , (7.43)

|φ−2〉 = αz
1α

z
2|φs1−1,s2−1

−2 〉 , (7.44)

|ϕ1〉 = −ζ1|φs1−1,s2−1
2 〉 , (7.45)

|ϕ0〉 = |φs1,s2−1
1 〉 − ζ1α

z
1|φs1−2,s2−1

1 〉 − ζ1α
z
2|φs1−1,s2−2

1 〉 , (7.46)

|ϕ−1〉 = αz
1|φs1−1,s2−1

0 〉+ αz
2|φs1,s2−2

0 〉 − ζ1α
z
1α

z
2|φs1−2,s2−2

0 〉, (7.47)

|ϕ−2〉 = αz
1α

z
2|φs1−1,s2−2

−1 〉 , (7.48)

where ket-vectors |φK1K2

λ 〉 appearing in (7.41)–(7.48) are defined in (7.19). Now, considering

the massless limit (7.37), we are led to the following conclusion: for s2 > 1, the ket-vectors

|φ〉 and |ϕ〉 describe the respective type [s1, s2] and type [s1, s2 − 1] massless AdS fields,

while, for s2 = 1, the ket-vectors |φ〉 and |ϕ〉 describe the respective type [s1, 1] massless

and type [s1, 0] massive AdS fields (see also refs. [32, 104]). The type [s1, 0] massive field

is associated with unitary irreps of the so(d, 2) algebra with E0 = d + 1. On space of

type [s1, s2] massless AdS field |φ〉 (7.39), the operator ν takes the form as in (2.39) with

M z = Nζ1 −Nαz
1
−Nαz

2
and E0 as in (7.37).

Plugging ket-vector |φ〉 (7.39) into (2.3), we get Lagrangian of type [s1, s2] massless

AdS field

L =
1

2

∑

λ=−2,−1,0,1

〈φλ|
(
�+ ∂2

z −
1

z2
(
ν2λ − 1

4

))
|φλ〉 , νλ ≡ d

2
+ 1− s2 + λ . (7.49)
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For massless AdS field, the spin operators W i, W̄ i are obtained by taking limit (7.37) in

the respective spin operators of the massive field (see appendix C).

As a side remark we note that the ket-vector of type [s1, s2] massless AdS field |φ〉 (7.39)
can be represented as

|φ〉 = |φs1,s2〉+ ζ1|φs1−1,s2〉 , (7.50)

|φs1,s2〉 ≡ |φs1,s2
0 〉+ αz

1|φs1−1,s2
−1 〉+ αz

2|φs1,s2−1
−1 〉+ αz

1α
z
2|φs1−1,s2−1

−2 〉 , (7.51)

|φs1−1,s2〉 ≡ |φs1−1,s2
1 〉+ αz

1|φs1−2,s2
0 〉+ αz

2|φs1−1,s2−1
0 〉+ αz

1α
z
2|φs1−2,s2−1

−1 〉 . (7.52)

Ket-vectors |φs1,s2〉 (7.51) and |φs1−1,s2〉 (7.52) describe the respective type [s1, s2] and

type [s1 − 1, s2] irreps of the so(d − 1) algebra. In other words, in flat space limit, the

ket-vector of type [s1, s2] massless AdS field |φ〉 (7.50) is decomposed into type [s1, s2] and

type [s1 − 1, s2] massless fields in Rd,1. This result is in agreement with the conjecture in

ref. [20]. For general mixed-symmetry fields, the proof of the conjecture in ref. [20] may be

found in ref. [21, 22].

Short currents and shadows in Rd−1,1. Type [s1, s2] short current in Rd−1,1 is related

to the unitary representation D(∆cur,h) of the so(d, 2) algebra, where ∆cur = d + 1 −
s2, while h is given in (7.1). Type [s1, s2] short shadow in Rd−1,1 is associated with

representation of the so(d, 2) algebra with labels ∆sh = s2 − 1 and h (7.1). For short

currents and shadows in Rd−1,1, ket-vectors |φcur〉, |φsh〉 take the same form as the ket-

vector |φ〉 (7.39) for the massless field in AdSd+1, while the operators ν, W i, W̄ i, M ij

are obtained by taking the limit (7.37) in expressions for the respective operators of the

massive field in AdSd+1. Plugging the ket-vectors |φcur〉, |φsh〉 and the operators ν, W i,

W̄ i, M ij into expressions for 2-point functions and generators of the so(d, 2) algebra given

in section 3, we get the complete light-cone gauge description of the type [s1, s2] short

currents and shadows.

Short conformal field in Rd−1,1. Type [s1, s2] short conformal field in Rd−1,1 is associ-

ated with representation of the so(d, 2) algebra with labels ∆, h, where h is given in (7.1),

while the conformal dimension ∆ is given by

∆ = s2 − 1 , s2 ≥ 1 , d− even. (7.53)

For the type [s1, s2] short conformal field inRd−1,1, ket-vector |φ〉 takes the same form as the

one for massless field in AdSd+1 (7.39), while the operators ν, W
i, W̄ i, M ij can be obtained

by considering the massless limit (7.37) in expressions for the respective operators of the

massive field in AdSd+1. Plugging the operators ν, W i, W̄ i, M ij into (3.14)–(3.23), (3.28)–

(3.31) provides realization of the conformal so(d, 2) symmetries on space of the ket-vector

|φ〉, while plugging the ket-vector |φ〉 into (5.3), we get Lagrangian for the type [s1, s2]

short conformal field

L =
1

2

∑

λ=−2−1,0,1

〈φλ|�νint,λ |φλ〉 , νint,λ =
d

2
+ 1− s2 + λ , d− even. (7.54)
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Conclusion. In conclusion, we make the following comment. Our presentation for the

(one)column and (two)column AdS fields demonstrates how the field content and explicit

form of the operator M z which are required for the light-cone gauge formulation of mixed-

symmetry arbitrary spin AdS field can be specified. This is to say that, by analogy with

the light-cone gauge formulation of massive field in Rd,1, in order to develop the light-cone

gauge formulation of massive field in AdSd+1 we can use field content which is realized

as irreducible representation of the so(d) algebra. Note that, in this respect, the light-

cone gauge formulation of massive field is similar to the Lorentz covariant formulation

of massive field. Namely, we recall that the field content entering the Lorentz covariant

formulation of massive field in Rd,1 coincides with the field content entering the Lorentz

covariant formulation of massive field in AdSd+1. Use of the oscillators provides the easy

way to describe the field content and the operator M z. For example, in order to describe

field content entering the light-cone gauge formulation of mixed-symmetry arbitrary spin

massive AdS field (1.5), we introduce a finite set of anti-commuting oscillators αi
n, α

z
n,

ζn, n = 1, . . . , hk, which satisfy the same relations as in (7.4)–(7.6). Also, by analogy

with (7.7), we can introduce a ket-vector |φ〉 which, by definition, depends on all just

mentioned oscillators and satisfies the well-known algebraic constraints needed to select

the irreducible representation of the so(d) algebra. Those constraints for mixed-symmetry

arbitrary spin field are the counterparts of the ones for two-column field in (7.8)–(7.10).

For such oscillator realization of |φ〉, the operator M z takes the form M z =
∑hk

n=1M
z
n,

where we use M z
n ≡ Nζn − Nαz

n
and notation as in (7.12). On space of |φ〉, eigenvalues

of such operator M z take values −hk,−hk + 1, . . . , hk, as it should be. For massless AdS

field, the field content is realized as an invariant subspace in space of massive AdS field.
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A Notation and conventions

The Cartesian coordinates in Rd−1,1 are denoted by xa, a = 0, 1, . . . d− 1. Our flat metric

tensor ηab is mostly positive. To simplify our expressions we drop the flat metric in scalar

product, i.e., we use the convention XaY a ≡ ηabX
aY b.

We use the Poincaré parametrization of AdSd+1 space,

ds2 =
1

z2
(−dx0dx0 + dxidxi + dxd−1dxd−1 + dzdz) , i = 1, . . . , d− 2 . (A.1)

In the light-cone frame, we use the decomposition xa = x+, x−, xi, i = 1, . . . , d − 2,

where the coordinates x± are defined by the relations

x± ≡ 1√
2
(xd−1 ± x0) , (A.2)

and x+ is considered as the light-cone evolution parameter. In the frame of coordinates

x±, xi, non-zero values of the flat metric are given by

ηij = δij , η+− = 1 , (A.3)
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where δij is the Kronecker delta. This implies that a scalar product for two vectors Xa,

Y a of the Lorentz so(d− 1, 1) algebra is decomposed as

XaY a = X+Y − +X−Y + +XiY i . (A.4)

Derivative with respect to z is defined as ∂z = ∂/∂z. For derivatives ∂±, ∂i, and the

D’Alembertian operator � in Rd−1,1 we adopt the following conventions:

∂± ≡ ∂/∂x± , ∂i ≡ ∂/∂xi , ∂+ = ∂− , ∂− = ∂+ , ∂i = ∂i , � = 2∂+∂− + 2∂i∂i.

(A.5)

In a basis of the algebra so(d − 1, 1), the algebra so(d, 2) is decomposed into the

translation generators P a, the conformal boost generators Ka, the dilatation generator D,

and generators of the so(d− 1, 1) algebra Jab. The commutations relations of the so(d, 2)

algebra and the hermitian conjugation rules we use in this paper take the form

[D,P a] = −P a , [P a, Jbc] = ηabP c − ηacP b ,

[D,Ka] = Ka , [Ka, Jbc] = ηabKc − ηacKb , (A.6)

[P a,Kb] = ηabD − Jab , [Jab, Jce] = ηbcJae + 3 terms ,

P a† = −P a , Ka† = −Ka , Jab† = −Jab , D† = −D . (A.7)

In the basis of the so(d− 2) algebra, the generators P a, Ka, Jab are decomposed as

P a = P±, P i , Ka = K± ,Ki , Jab = J+− , J±i , J ij . (A.8)

Commutators for the generators given in (A.8) are obtained from the ones in (A.6) by

using the non-zero values of the flat metric ηab given in (A.3).

B Derivation of defining equations for operators ν, W , W̄ i, M ij

In this appendix, we outline the derivation of defining equations (2.28)–(2.37) for the

operators ν, W , W̄ i, M ij by using equations for the operators A, M zi, M ij obtained in

ref. [5]. Also we comment on the derivation of the generators of the so(d, 2) algebra in CFT.

Derivation of defining equations (2.28)–(2.37). Complete system of equations for the

basic operators A, M zi, M ij obtained in ref. [5] takes the form26

2{M zi, A} − [[M zi, A], A] = 0 , (B.1)

26Relations (2.8)–(2.20) and (B.1)–(B.7) were obtained in the following way. First, in section 3 in ref. [5],

using the Lorentz covariant formulation of totally symmetric AdS fields and applying the standard method

for the derivation of the light-cone gauge formulation from the Lorentz covariant formulation, we ob-

tained (2.8)–(2.20) and the operators A, B, M ij which satisfy (B.1)–(B.7). Second, in sections 4,5 in

ref. [5], using the group theoretical description of representations of the so(d, 2) algebra, we generalized our

results to the case of mixed-symmetry fields. In the same way, we obtained the light-cone gauge formulation

of CFT. Namely, in section 6 in ref. [5], using the Lorentz covariant formulation of totally symmetric cur-

rents (shadows) and applying the standard method for the derivation of the light-cone gauge formulation

from the Lorentz covariant formulation, we obtained the light-cone gauge formulation of totally symmetric

currents (shadows), while, in ref. [19], we generalized our results to the case of mixed-symmetry currents

(shadows). Derivation of relations (3.14)–(3.31) in this paper from the results in ref. [19] is outlined in

this appendix.
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[M zi, [M zj , A]] + {M il,M lj} − {M zi,M zj} = −2δijB , (B.2)

−A+ 2B +
1

2
M ijM ij +

d2 − 1

4
+ 〈Cso(d,2)〉 = 0 , (B.3)

[A,M ij ] = 0 , (B.4)

[M zi,M zj ] = −M ij , (B.5)

[M ij ,Mkl] = δjkM il + 3 terms , M ij = −M ji , (B.6)

[M ij ,M zk] = δjkM zi − δikM zj . (B.7)

From the results in section 5.2 in ref. [5], we learn that the operator A can be presented as

in (2.23), (2.39). Note however that for the derivation of defining equations (2.28)–(2.37)

we do not need to use the particular representation for the operator ν given in (2.39). In

other words, all that is required for the derivation of defining equations (2.28)–(2.37) is

to use the representation for the operator A given in (2.23) and equations (B.1)–(B.7) We

now outline proof of the following

Statement. Equations (B.1)–(B.7) with the operator A as in (2.23) amount to the defin-

ing equations given in (2.28)–(2.37).

Proof of the statement. We prove the statement in the following three steps.

Step 1. Introducing new operators M i, M̃ i by the following commutators

M i ≡ [ν,M zi] , M̃ i ≡ [ν,M i] , (B.8)

we find the relations

[[M zi, A], A] = {ν, {ν, M̃ i}} , 2{A,M zi} = {ν, {ν,M zi}} −M zi + M̃ i . (B.9)

Using (B.9) in (B.1), we find that eq.(B.1) amounts to the equations

{ν, {ν,M zi − M̃ i}} −M zi + M̃ i = 0 . (B.10)

Equations (B.10) imply

M zi = M̃ i . (B.11)

Step 2. We introduce new operators W i, W̄ i by the relations

M zi = W i − W̄ i , M i = W i + W̄ i , (B.12)

and note that (B.8), (B.11) lead to commutators in (2.30), (2.31), while the commuta-

tor (B.5) leads to (2.34)–(2.36). Also we note that (B.4) and (2.23) lead to (2.28).

Step 3. We note that eqs.(2.37) are obtained from (B.2) by using the following relation:

[M zi, [M zj , A]]− {M zi,M zj}
= 2(ν + 1)(W̄ iW j + W̄ jW i)]− 2(ν − 1)(W iW̄ j +W jW̄ i) . (B.13)
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Derivation of generators of so(d, 2) algebra in CFT. We now outline the deriva-

tion of generators of the so(d, 2) algebra symmetries for currents and shadow given in

relations (3.14)–(3.31) in this paper. To this end, we use the general light-cone gauge ap-

proach to CFT developed in ref. [19]. Namely, the defining equations for operators A, M i,

M ij entering general light-cone gauge approach to CFT are given in eqs. (3.11), (A1)-(A3)

in ref. [19]. For the study of those defining equations, we apply the above demonstrated

procedure we used for the study of eqs.(B.1)–(B.7) in this appendix. Doing so, we learn that

the operator A in ref. [19] takes the form as in eq.(2.23) in this paper, while the operator

M i in ref. [19] takes the form M i = W i + W̄ i. Also we learn that eqs. (3.11), (A1)-(A3) in

ref. [19] lead to the same equations for the operators ν, W i, W̄ i, M ij we derived in the light-

cone gauge AdS field theory (see eqs.(2.28)–(2.37) in this paper). We note however that the

representation for generators of the so(d, 2) algebra symmetries on space of conformal field

given by relations (3.1)-(3.15) in ref. [19] is realized as the non-local representation. Let

us use the notation |O〉 for a conformal field on which such non-local representation of the

so(d, 2) algebra is realized. Then introducing a current by the relation qν+
1

2 |O〉 = |φcur〉,
q ≡

√
�, we verify that the non-local representation on space of the conformal field |O〉

given by relations (3.1)-(3.15) in ref. [19] is realized as the local representation on the space

of |φcur〉 given by relations in (3.14)–(3.27) in this paper, while introducing a shadow by

the relation q−ν+ 1

2 |O〉 = |φsh〉, q ≡
√
�, we verify that the non-local representation on

space of conformal field |O〉 given by relations (3.1)-(3.15) in ref. [19] is realized as the

local representation on space of |φsh〉 given by relations (3.14)–(3.23), (3.28)–(3.31) in this

paper.

C Operators W , W̄ i for two-column fields

We start with the description of the explicit form of operators W i, W̄ i (7.24), (7.25) for

the type [s1, s2], s1 > s2, massive fields. These operators should satisfy the defining equa-

tions (2.28)–(2.37) and respect constraints (7.8)–(7.10). By using operators Ai
n, Ā

i
n (7.26)–

(7.29) we respect constraints (7.9), (7.10). All that is required then is to determine the

operators Xn and Yn, n = 1, 2 which depend on the scalar oscillators αz
n, ζn and do not

depend on the vector oscillators αi
n. General representation for the operators Xn, Yn which

respects constraint (7.8) and commutation relations (2.30), (2.31) is given by

X1 = ζ1fζ2αz
1
αz
2
+ gζ1ζ2α

z
1ᾱ

z
2 , Y1 = αz

1fαz
2
ζ1ζ2 + gαz

1
αz
2ζ1ζ̄2 , (C.1)

X2 = ζ2fζ1αz
2
αz
1
+ gζ2ζ1α

z
2ᾱ

z
1 , Y2 = αz

2fαz
1
ζ2ζ1 + gαz

2
αz
1ζ2ζ̄1 , (C.2)

X̄1 = ζ̄1fζ2αz
1
αz
2
+ gζ1α

z
2ᾱ

z
1ζ̄2 , Ȳ1 = ᾱz

1fαz
2
ζ1ζ2 + gαz

1
ζ2ζ̄1ᾱ

z
2 , (C.3)

X̄2 = ζ̄2fζ1αz
2
αz
1
+ gζ2α

z
1ᾱ

z
2ζ̄1 , Ȳ2 = ᾱz

2fαz
1
ζ2ζ1 + gαz

2
ζ1ζ̄2ᾱ

z
1 , (C.4)

where quantities fxyw, gv appearing in (C.1)–(C.4) take the form

fxyw = fxyw(Nx, Ny, Nw) , gv = gv(Nv) , (C.5)

Nx ≡ xx̄ , Ny ≡ yȳ , Nw = ww̄ , Nv ≡ vv̄ . (C.6)
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Namely, fxyw (C.5) depends on three operators Nx, Ny, Nw, while gv (C.5) depends only

on one operator Nv. For example, the quantity fζ2αz
1
αz
2
in (C.1) depends on the three

operators Nζ2 , Nαz
1
, Nαz

2
, while gζ1 in (C.1) depends only on the one operator Nζ1 . Using

notation a, b, c, e for eigenvalues of the respective operators Nx, Ny, Nw, Nv, we introduce

the quantities

fxyw(a, b, c) = fxyw(Nx, Ny, Nw)
∣∣
Nx=a,Ny=b,Nw=c

, gv(e) = gv(Nv)
∣∣
Nv=e

. (C.7)

On space of ket-vector |φ〉 (7.13), the a, b, c, e take the values a, b, c, e = 0, 1. Thus we

should determine the fxyw(a, b, c) and gv(e) for the just mentioned values of a, b, c, e. The

fxyw(a, b, c) and gv(e) are determined from equations (2.34)–(2.37). We now describe our

results for the fxyw(a, b, c) and gv(e). To this end we introduce the following notation

κ = E0 −
d

2
, t = d− 1− s1 − s2 , h = s1 − s2 + 1 , (C.8)

σζ1 = κ− 1

2
(t− h+ 2) , σαz

1
= κ+

1

2
(t− h+ 2) , (C.9)

σζ2 = κ− 1

2
(t+ h+ 2) , σαz

2
= κ+

1

2
(t+ h+ 2) , (C.10)

ρζ1 = σζ1 −
(t+ h+ 2)2

2κ((t+ 2)h+ 1)
, ραz

1
= σαz

1
− (t+ h+ 2)2

2κ((t+ 2)h+ 1)
, (C.11)

ρζ2 = σζ2 +
(t− h+ 2)2

2κ((t+ 2)h− 1)
, ραz

2
= σαz

2
+

(t− h+ 2)2

2κ((t+ 2)h− 1)
. (C.12)

Using notation in (C.8)–(C.12), we find the following expressions for fxyw(a, b, c) and gv(e):

fζ2αz
1
αz
2
(0, 0, 0) =

(σζ1
2κ

)
1/2

, fαz
2
ζ1ζ2(0, 0, 0) =

(σαz
1

2κ

)
1/2

, (C.13)

fζ2αz
1
αz
2
(1, 0, 0) =

(h+ 1

2h

σζ1
κ+ 1

)
1/2

, fαz
2
ζ1ζ2(1, 0, 0) =

(h+ 1

2h

σαz
1

κ− 1

)
1/2

, (C.14)

fζ2αz
1
αz
2
(0, 1, 0) =

(σζ1
2κ

)
1/2

, fαz
2
ζ1ζ2(0, 1, 0) =

(σαz
1

2κ

)
1/2

, (C.15)

fζ2αz
1
αz
2
(0, 0, 1) = rζ1(0) cosψζ1 , fαz

2
ζ1ζ2(0, 0, 1) = rαz

1
(0) cosψαz

1
, (C.16)

fζ2αz
1
αz
2
(0, 1, 1) =

( t+ 3

2(t+ 2)

σζ1
κ− 1

)
1/2

, fαz
2
ζ1ζ2(0, 1, 1) =

( t+ 3

2(t+ 2)

σαz
1

κ+ 1

)
1/2

, (C.17)

fζ2αz
1
αz
2
(1,0,1)=

((t+ 3)(h+ 2)σζ1
2(t+ 2)(h+ 1)κ

)
1/2

, fαz
2
ζ1ζ2(1,0,1)=

((t+ 3)(h+ 2)σαz
1

2(t+ 2)(h+ 1)κ

)
1/2

, (C.18)

fζ2αz
1
αz
2
(1, 1, 0) = rζ1(1) cosψζ1 , fαz

2
ζ1ζ2(1, 1, 0) = rαz

1
(1) cosψαz

1
, (C.19)

fζ2αz
1
αz
2
(1,1,1)=

((t+ 4)(h+ 1)σζ1
2(t+ 3)hκ

)
1/2

, fα2ζ1ζ2(1,1,1)=
((t+ 4)(h+ 1)σαz

1

2(t+ 3)hκ

)
1/2

, (C.20)

fζ1αz
2
αz
1
(0, 0, 0) =

(h+ 1

2h

σζ2
κ

)
1/2

, fαz
1
ζ2ζ1(0, 0, 0) =

(h+ 1

2h

σαz
2

κ

)
1/2

, (C.21)

fζ1αz
2
αz
1
(1, 0, 0) =

(1
2

σζ2
κ+ 1

)
1/2

, fαz
1
ζ2ζ1(1, 0, 0) =

(1
2

σαz
2

κ− 1

)
1/2

, (C.22)

fζ1αz
2
αz
1
(0, 1, 0) =

( h+ 2

2(h+ 1)

σζ2
κ

)
1/2

, fαz
1
ζ2ζ1(0, 1, 0) =

( h+ 2

2(h+ 1)

σαz
2

κ

)
1/2

, (C.23)
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fζ1αz
2
αz
1
(0, 0, 1) = rζ2(0) cosψζ2 , fαz

1
ζ2ζ1(0, 0, 1) = rαz

2
(0) cosψαz

2
, (C.24)

fζ1αz
2
αz
1
(0,1,1)=

((t+ 3)(h+ 1)σζ2
2(t+ 2)h(κ− 1)

)
1/2

, fαz
1
ζ2ζ1(0,1,1)=

((t+ 3)(h+ 1)σαz
2

2(t+ 2)h(κ+ 1)

)
1/2

, (C.25)

fζ1αz
2
αz
1
(1, 0, 1) =

( t+ 3

2(t+ 2)

σζ2
κ

)
1/2

, fαz
1
ζ2ζ1(1, 0, 1) =

( t+ 3

2(t+ 2)

σαz
2

κ

)
1/2

, (C.26)

fζ1αz
2
αz
1
(1, 1, 0) = rζ2(1) cosψζ2 , fαz

1
ζ2ζ1(1, 1, 0) = rαz

2
(1) cosψαz

2
, (C.27)

fζ1αz
2
αz
1
(1, 1, 1) =

( t+ 4

2(t+ 3)

σζ2
κ

)
1/2

, fαz
1
ζ2ζ1(1, 1, 1) =

( t+ 4

2(t+ 3)

σαz
2

κ

)
1/2

. (C.28)

gζ1(0) = rζ1(0) sinψζ1 , gαz
1
(0) = rαz

1
(0) sinψαz

1
, (C.29)

gζ1(1) = rζ1(1) sinψζ1 , gαz
1
(1) = rαz

1
(1) sinψαz

1
, (C.30)

gζ2(0) = rζ2(0) sinψζ2 , gαz
2
(0) = rαz

2
(0) sinψαz

2
, (C.31)

gζ2(1) = rζ2(1) sinψζ2 , gαz
2
(1) = rαz

2
(1) sinψαz

2
, (C.32)

where radii rx(0), rx(1) appearing in (C.16), (C.19), (C.24), (C.27), (C.29)–(C.32) are given

by the relations

rζ1(0) =
(((t+ 2)h+ 1)ρζ1
2(t+ 1)h(κ− 1)

)
1/2

, rαz
1
(0) =

(((t+ 2)h+ 1)ραz
1

2(t+ 1)h(κ+ 1)

)
1/2

, (C.33)

rζ1(1) =
( ((t+ 2)h+ 1)ρζ1
2(t+ 2)(h− 1)(κ+ 1)

)
1/2

, rαz
1
(1) =

( ((t+ 2)h+ 1)ραz
1

2(t+ 2)(h− 1)(κ− 1)

)
1/2

, (C.34)

rζ2(0) =
( ((t+ 2)h− 1)ρζ2
2(t+ 1)(h− 1)(κ− 1)

)
1/2

, rαz
2
(0) =

( ((t+ 2)h− 1)ραz
2

2(t+ 1)(h− 1)(κ+ 1)

)
1/2

, (C.35)

rζ2(1) =
(((t+ 2)h− 1)ρζ2
2(t+ 2)h(κ+ 1)

)
1/2

, rαz
2
(1) =

(((t+ 2)h− 1)ραz
2

2(t+ 2)h(κ− 1)

)
1/2

, (C.36)

while angle variables ψx in (C.16), (C.19), (C.24), (C.27), (C.29)–(C.32) should satisfy the

equations

cos(ψζ1 + ψζ2) =
( (t+ 1)(t+ 3)h2(κ2 − 1)σζ1σζ2
((t+ 2)h+ 1)((t+ 2)h− 1)κ2ρζ1ρζ2

)1/2
, (C.37)

cos(ψζ1 + ψαz
1
) =

((t+ 1)(t+ 3)(h2 − 1)σζ1σαz
1

((t+ 2)h+ 1)2ρζ1ραz
1

)1/2
, (C.38)

cos(ψζ1 − ψαz
2
) =

( (t+ 2)2(h2 − 1)(κ2 − 1)σζ1σαz
2

((t+ 2)h+ 1)((t+ 2)h− 1)κ2ρζ1ραz
2

)1/2
, (C.39)

cos(ψζ2 − ψαz
1
) =

( (t+ 2)2(h2 − 1)(κ2 − 1)σζ2σαz
1

((t+ 2)h+ 1)((t+ 2)h− 1)κ2ρζ2ραz
1

)1/2
, (C.40)

cos(ψζ2 + ψαz
2
) =

((t+ 1)(t+ 3)(h2 − 1)σζ2σαz
2

((t+ 2)h− 1)2ρζ2ραz
2

)1/2
, (C.41)

cos(ψαz
1
+ ψαz

2
) =

( (t+ 1)(t+ 3)h2(κ2 − 1)σαz
1
σαz

2

((t+ 2)h+ 1)((t+ 2)h− 1)κ2ραz
1
ραz

2

)1/2
, (C.42)

sin(ψζ1 + ψζ2) = −κ− t− 2

κ

( (h2 − 1)σαz
1
σαz

2

((t+ 2)h+ 1)((t+ 2)h− 1)ρζ1ρζ2

)1/2
, (C.43)
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sin(ψζ1 + ψαz
1
) = − t+ h+ 2

(t+ 2)h+ 1

((κ2 − 1)σζ2σαz
2

κ2ρζ1ραz
1

)1/2
, (C.44)

sin(ψζ1 − ψαz
2
) = −κ+ h

κ

( (t+ 1)(t+ 3)σζ2σαz
1

((t+ 2)h+ 1)((t+ 2)h− 1)ρζ1ραz
2

)1/2
, (C.45)

sin(ψζ2 − ψαz
1
) =

κ− h

κ

( (t+ 1)(t+ 3)σζ1σαz
2

((t+ 2)h+ 1)((t+ 2)h− 1)ρζ2ραz
1

)1/2
, (C.46)

sin(ψζ2 + ψαz
2
) =

t− h+ 2

(t+ 2)h− 1

((κ2 − 1)σζ1σαz
1

κ2ρζ2ραz
2

)1/2
, (C.47)

sin(ψαz
1
+ ψαz

2
) = −κ+ t+ 2

κ

( (h2 − 1)σζ1σζ2
((t+ 2)h+ 1)((t+ 2)h− 1)ραz

1
ραz

2

)1/2
. (C.48)

Eqs. (C.37)–(C.48) do not determine the angle variables uniquely. These equations

leave one-parametric freedom in solution for the angle variables. In other words, the

defining equations leave one-parametric freedom in solution for the operators Xn, Yn (C.1)–

(C.4). This freedom reflects the fact that ket-vector |φ〉 (7.13) involves two ket-vectors

|φs1−1,s2−1
0 〉, |φs1−1,s2−1

0′ 〉 having the sameM z-charge and labels of the so(d−2) algebra. We

note then that there exists the non-trivial unitary transformation of ket-vector |φ〉 (7.13),

|φ〉U = U |φ〉 , (C.49)

with unitary operator U that commutes with the operators M z and M ij ,

U †U = 1 , U †M zU = M z , U †M ijU = M ij . (C.50)

This is to say that eqs.(C.50) have the following non-trivial unique solution:

U =
∑

a,b,c,e=0,1

µabceΠ
ζ1
a Πζ2

b Π
αz
1

c Π
αz
2

e + sinψ(ζ1α
z
2ᾱ

z
1ζ̄2 − ζ2α

z
1ᾱ

z
2ζ̄1) , (C.51)

µabce = 1 for abce 6= 0110, 1001 , µ0110 = µ1001 = cosψ , (C.52)

Πx
0 = 1−Nx , Πx

1 ≡ Nx , Nx ≡ xx̄ . (C.53)

From (7.13), (C.49), we get the transformations of the ket-vectors |φs1−1,s2−1
0 〉, |φs1−1,s2−1

0′ 〉,

|φs1−1,s2−1
0 〉U = cosψ|φs1−1,s2−1

0 〉 − sinψ|φs1−1,s2−1
0′ 〉 , (C.54)

|φs1−1,s2−1
0′ 〉U = cosψ|φs1−1,s2−1

0′ 〉+ sinψ|φs1−1,s2−1
0 〉 . (C.55)

Also, according to textbook, transformation of ket-vector (C.49) implies the transforma-

tions of the operators Xn, Yn,

XU
n = U †XnU , Y U

n = U †YnU . (C.56)

Using (C.1)–(C.4) and relations (C.16), (C.19), (C.24), (C.27), (C.29)–(C.32), we verify

that transformations (C.56) imply the following transformations of the angle variables

ψU
ζ1 = ψζ1 + ψ , ψU

αz
1
= ψαz

1
− ψ , ψU

ζ2 = ψζ2 − ψ , ψU
αz
2
= ψαz

2
+ ψ . (C.57)
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We now note that the following combinations of the angle variables

ψζ1 + ψζ2 , ψζ1 + ψαz
1
, ψζ1 − ψαz

2
, ψζ2 − ψαz

1
, ψζ2 + ψαz

2
, ψαz

1
+ ψαz

2
. (C.58)

are invariant under transformations (C.57). It is the invariant combinations (C.58) that

are determined uniquely by eqs.(C.37)–(C.48). Note however that quantities fxyw and gv
in (C.16), (C.19), (C.24), (C.27), (C.29)–(C.32) are not expressed in terms of the invariant

combinations of the angle variables (C.58). The just-mentioned quantities fxyw and gv are

determined uniquely after fixing the one-parametric freedom in eqs.(C.37)–(C.48). To be

flexible, we do not fix the one-parametric freedom of the angles variables when considering

massive field.

Limit of massless AdS field. For considering various limits, some particular fixing of

the one-parametric freedom in eqs.(C.37)–(C.48) may be convenient. To explain what has

just been said let us consider limit of massless AdS field (7.37). For this limit, the convenient

choice to fix the one-parametric freedom in eqs.(C.37)–(C.48) is given by ψαz
2
= 0. We now

note that, in terms of σζ2 (C.10), the limit of massless AdS field is realized as σζ2 → 0.

Using ψαz
2
= 0, σζ2 = 0 in eqs.(C.37)–(C.48), we find the following unique simple solution

for the angle variables

ψζ1 = 0 , ψζ2 =
π

2
, ψαz

1
= 0 , ψαz

2
= 0 . (C.59)

Making use of relations (C.59) in expressions for the spin operators W i, W̄ i (7.24), (7.25),

we then verify that, in massless limit (7.37), ket-vectors |φ〉 (7.39) and |ϕ〉 (7.40) are

realized as two invariant subspaces in space of ket-vector |φ〉 (7.38).

Type [s, s] massive field in AdSd+1. Ket-vector of type [s, s] massive field is given by

|φ〉 = |φ2〉+ |φ1〉+ |φ0〉+ |φ−1〉+ |φ−2〉 , (C.60)

|φ2〉 = ζ1ζ2|φs−1,s−1
2 〉 , (C.61)

|φ1〉 = ζ2|φs,s−1
1 〉+ ζ1ζ2α

z
2|φs−1,s−2

1 〉 , (C.62)

|φ0〉 = |φs,s
0 〉+ ζ2α

z
1|φs−1,s−1

0 〉+ ζ2α
z
2|φs,s−2

0 〉+ ζ1ζ2α
z
1α

z
2|φs−2,s−2

0 〉, (C.63)

|φ−1〉 = αz
2|φs,s−1

−1 〉+ ζ2α
z
1α

z
2|φs−1,s−2

−1 〉 , (C.64)

|φ−2〉 = αz
1α

z
2|φs−1,s−1

−2 〉 . (C.65)

Ket-vector |φ〉 (C.60) is obtained from the one in (7.13) by equating to zero the ket-vector

|φs−1,s−1
0′ 〉 and the ket-vectors |φK1K2

λ 〉 with K1 < K2. The convenient choice to fix the

one-parametric freedom in eqs.(C.37)–(C.48) is given by ψαz
2
= 0. Using this choice and

taking into account that, for type [s, s] field, one has the relation h = 1 (see (C.8)), we

note that eqs.(C.37)–(C.48) uniquely determine the angle variables,

ψζ1 = −π

2
, ψζ2 =

π

2
, ψαz

1
= 0 , ψαz

2
= 0 . (C.66)
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We now note that the ket-vectors |φKK
λ 〉 appearing in (C.61)–(C.65) satisfy the algebraic

constraints

Āi
1|φKK

λ 〉 = 0 , Ai
2|φKK

λ 〉 = 0 , Nα12
|φKK

λ 〉 = 0 , Nα21
|φKK

λ 〉 = 0 , (C.67)

(Nα1
−Nα2

)|φKK
λ 〉 = 0 , ᾱ12|φKK

λ 〉 = 0 . (C.68)

Using (C.66)–(C.68), we verify that action of operators W i, W̄ i (7.24), (7.25), (C.1)–(C.36)

is well defined on the space of ket-vector |φ〉 (C.60).

Type [s, s] massless field in AdSd+1. Ket-vector of massive field |φ〉 (C.60) can be

presented in terms of two new ket-vectors |φ〉, |ϕ〉 in the following way

|φ〉 = |φ〉+ ζ2|ϕ〉 , (C.69)

|φ〉 = |φ0〉+ |φ−1〉+ |φ−2〉 , (C.70)

|ϕ〉 = |ϕ1〉+ |ϕ0〉+ |ϕ−1〉+ |ϕ−2〉 , (C.71)

|φ0〉 = |φs,s
0 〉 ,

|φ−1〉 = αz
2|φs,s−1

−1 〉 ,
|φ−2〉 = αz

1α
z
2|φs−1,s−1

−2 〉 , (C.72)

|ϕ1〉 = −ζ1|φs−1,s−1
2 〉 ,

|ϕ0〉 = |φs,s−1
1 〉 − ζ1α

z
2|φs−1,s−2

1 〉 ,
|ϕ−1〉 = αz

1|φs−1,s−1
0 〉+ αz

2|φs,s−2
0 〉 − ζ1α

z
1α

z
2|φs−2,s−2

0 〉,
|ϕ−2〉 = αz

1α
z
2|φs−1,s−2

−1 〉 . (C.73)

In the massless limit (7.37), we note that, for s > 1, ket-vector |φ〉 (C.70) describes type

[s, s] massless AdS field, while ket-vector |ϕ〉 (C.71) describes type [s, s− 1] massless AdS

field. Note that type [s, s] massless AdS field is realized as irrep of so(d − 1) algebra.

Therefore, in the flat limit, the ket-vector |φ〉 describes irreducible massless field in Rd,1.

Type [s, s] currents, shadows, and conformal fields in Rd−1,1. Ket-vectors of type

[s, s] long currents, shadows, and conformal fields in Rd−1,1 take the same form as the ket-

vector |φ〉 of type [s, s] massive field in AdSd+1 (C.60), while ket-vectors of type [s, s] short

currents, shadows, and conformal fields in Rd−1,1 take the same form as the ket-vector |φ〉
of type [s, s] massless field in AdSd+1 (C.70). Using the ket-vectors of currents, shadows,

and conformal fields and our result in sections 3, 5, we get 2-point functions for the type

[s, s] currents and shadows and Lagrangian for the type [s, s] conformal fields.
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