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1 Introduction

Anti-de Sitter (AdS) space-time is linearly stable. Yet, non-linear dynamics of its pertur-

bations is characterized by complex interplay of stable and unstable behavior. Numerical

simulations for a massless, spherically symmetric scalar field [1–6] indicate that, while some

initial data of small amplitude ε collapse, after multiple reflections from the AdS boundary,

to form black holes on time scales of order 1/ε2, other small amplitude initial data remain

small for much longer (possibly, for all) times; see also [7–9] for generalizations to massive

scalar fields.

Attempts to control the small amplitude dynamics in terms of näıve perturbative ex-

pansions in the perturbation amplitude ε are plagued by a profusion of secular terms [1]

growing in time and invalidating the perturbative expansions. This profusion is due to the

perfectly commensurate spectrum of frequencies displayed by the linearized AdS perturba-

tions. The perturbation theory can be re-structured using a variety of techniques equiv-

alent at the lowest order (multiscale or renormalization group resummation, averaging),

producing an improved perturbative expansion accurately describing the small amplitude

dynamics on time scales of order 1/ε2 [10–14].

As a result of applying the resummation techniques in the small amplitude regime,

one obtains a system of effective equations governing slow variations of the amplitudes and

phases of the AdS normal modes under the effect of non-linearities. We usually refer to

these equations as “(renormalization) flow equations” or “time-averaged equations”; they
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have also been called “two-time framework equations” [10] and “resonant system” [13].

The coefficients in this system are complicated expressions in terms of integrals of the AdS

mode functions and their derivatives, obtained in [11, 12].

In [13], the flow equations were solved numerically for AdS5. It was observed that,

for a variety of initial data for which collapse occurs in the fully non-linear description, a

singularity in solutions develops in finite time. At this singular moment, the time deriva-

tives of the phases diverge logarithmically, while the amplitude spectrum, initially rapidly

decreasing in the ultraviolet, attains a power-law form 1/n2, where n is the mode num-

ber. This signifies efficient weakly turbulent transfer of energy to short wavelength modes,

which is the main mechanism behind the collapse dynamics.

Since the key questions on the fate of AdS perturbations involve ultraviolet dynamics,

it is important to develop asymptotic techniques for analyzing the high-frequency contribu-

tions to the flow equations. Here, we initiate such analysis by addressing the high-frequency

asymptotics of the interaction coefficients appearing in the flow equations (see also our par-

allel work [15]).1 To this end, we first review, in section 2, the basics of constructing the

flow equations for spherically symmetric AdS-scalar field perturbations. In section 3, we

develop iterative relations for the interaction coefficients in these equations. These iterative

relations may be of independent value for the purposes of optimizing numerical simulations

of the flow equations, as in [13]. In section 4, we use the iterative relations to reveal the

power law behavior of the interation coefficients for large mode numbers, and emphasize

that this asymptotics is substantially affected by the time parametrization conventions

(two gauges, corresponding to labelling the time slices by the proper time in the center

and at the boundary of the perturbed AdS, have commonly appeared in the literature).

We conclude with a discussion of the qualitative implications of the power law behavior we

find, in particular, the qualitative dependence of the near-AdS dynamics on the number of

spatial dimensions.

2 Weakly non-linear AdS dynamics and the effective time-averaged de-

scription

Reviews of the general spherically symmetric AdS-scalar field set-up are widely available in

the literature, for example [2] or our own work [11, 12]. We shall therefore limit ourselves

to a very basic summary of the relevant formulae.

One considers the following spherically symmetric metric:

ds2 =
L2

cos2 x

(
dx2

A
−Ae−2δdt2 + sin2 x dΩ2

d−1

)
, (2.1)

with A(x, t), δ(x, t) and a scalar field φ(x, t) depending on the time coordinate t and

the radial coordinate x ∈ [0, π/2). A = 1, δ = φ = 0 corresponds to empty AdSd+1.

δ(x, t) has some residual gauge freedom δ(x, t) 7→ δ(x, t) + q(t), corresponding to redef-

inition of time. Two possible gauge fixing conditions have appeared in the literature:

1Some further considerations of ultraviolet properties of AdS perturbations were given in [18] after the

present article had appeared as a preprint.
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δ(0, t) = 0 [1, 10, 11, 13, 14] and δ(π/2, t) = 0 [5, 12]. We shall refer to them as the ‘inte-

rior’ and ‘boundary’ time, respectively.

The equations of motion take the form

Φ̇ = (Ae−δΠ)′, Π̇ =
1

µ
(µAe−δΦ)′, (2.2a)

A′ =
ν ′

ν
(A− 1)− µν(Φ2 + Π2)A , δ′ = −µν(Φ2 + Π2) , (2.2b)

Ȧ = −2µνA2e−δΦΠ , (2.2c)

with Φ ≡ φ′ and Π ≡ A−1eδφ̇ (where dots and primes denote the t- and x-derivatives,

respectively),

µ(x) ≡ (tanx)d−1 and ν(x) ≡ (d− 1)

µ′(x)
=

sinx cosx

(tanx)d−1
. (2.3)

These equations, as they are, are forbiddingly complicated. Further analytic progress can

be made by considering small amplitude solutions. Näıve power law expansions in the

field amplitude result, however, in unacceptable perturbation series plagued by growing

‘secular’ terms [1, 10–12]. Improved perturbative expansions can be constructed using

multiscale [10], renormalization [11] and averaging [12] methods, all of which are equivalent

at the lowest non-trivial order. The general idea is to use as the starting point for weak

field expansions a linearized solution with slowly modulated integration constants, namely

φ(x, t) = ε

∞∑
n=0

An(ε2t) en(x) cos
(
ωnt+Bn(ε2t)

)
. (2.4)

Here, en are the mode functions of a linearized massless scalar field in fixed AdSd+1,

en(x) = kn(cosx)dP
( d2−1,

d
2 )

n

(
cos(2x)

)
with kn =

2
√
n!(n+ d− 1)!

Γ
(
n+ d

2

) . (2.5)

P
(a,b)
n (x) is a Jacobi polynomial of order n. ωn = d+ 2n is the famously integer, fully com-

mensurate spectum of the linearized normal mode frequencies in AdS, largely responsible

for the rich non-linear dynamics of AdS perturbations.

The effective equations for the slow time dependences of An(ε2t) and Bn(ε2t) can be

deduced using a number of equivalent methods [10–12]. Their analytic form was presented

in [11, 12]. The equations are known to describe the exact non-linear dynamics accu-

rately on time scales of order 1/ε2, if the scalar field amplitude is of order ε [12]. Some

phenomenological consequences of these equations have been explored in [13, 14].
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The averaged equations [12] are of the form

2ωl
ε2

dAl
dt

= −
{i,j}∑
i

6=∑
j

{k,l}∑
k︸ ︷︷ ︸

ωi+ωj=ωk+ωl

SijklAiAjAk sin(Bl +Bk −Bi −Bj) , (2.6)

2ωlAl
ε2

dBl
dt

= −TlA3
l −

i 6=l∑
i

RilA
2
iAl −

{i,j}∑
i

6=∑
j

{k,l}∑
k︸ ︷︷ ︸

ωi+ωj=ωk+ωl

SijklAiAjAk cos(Bl +Bk −Bi −Bj) .

(2.7)

Note that a priori resonant frequency quartets other than ωi + ωj = ωk + ωl might have

appeared in the sum, but they do not in fact contribute [11] due to special selection rules

in AdS (see also [16, 17]). The coefficients of the terms that appear in the time-averaged

equations can be expressed in terms of certain integrals of products of the mode functions.

In boundary time gauge (δ(π/2) = 0), in which the slow dynamics turns out to be

manifestly Hamiltonian [12], the coefficients take the following form:

Tl =
1

2
ω2
lXllll +

3

2
Yllll + 2ω4

lW
(0,0)
llll + 2ω2

lW
(1,0)
llll , (2.8)

Ril =
1

2

(
ω2
i + ω2

l

ω2
l − ω2

i

)
(ω2
lXilli − ω2

iXliil) + 2

(
ω2
l Yilil − ω2

i Ylili
ω2
l − ω2

i

)
+

1

2
(Yiill + Yllii)

+

(
ω2
i ω

2
l

ω2
l − ω2

i

)
(Xilli −Xlili) + ω2

i ω
2
l (W

(0,0)
llii +W

(0,0)
iill ) + ω2

iW
(1,0)
llii + ω2

lW
(1,0)
iill ,

(2.9)

Sijkl = −1

4

(
1

ωi + ωj
+

1

ωi − ωk
+

1

ωj − ωk

)
(ωiωjωkXlijk − ωlYiljk)

− 1

4

(
1

ωi + ωj
+

1

ωi − ωk
− 1

ωj − ωk

)
(ωjωkωlXijkl − ωiYjikl)

− 1

4

(
1

ωi + ωj
− 1

ωi − ωk
+

1

ωj − ωk

)
(ωiωkωlXjikl − ωjYijkl)

− 1

4

(
1

ωi + ωj
− 1

ωi − ωk
− 1

ωj − ωk

)
(ωiωjωlXkijl − ωkYikjl) . (2.10)

The integrals that appear in these expressions are defined by

Xijkl =

∫ π/2

0
dx e′i(x)ej(x)ek(x)el(x)

(
µ(x)

)2
ν(x) , (2.11a)

Yijkl =

∫ π/2

0
dx e′i(x)ej(x)e′k(x)e′l(x)

(
µ(x)

)2
ν(x) , (2.11b)

W
(0,0)
ijkl =

∫ π/2

0
dx ei(x)ej(x)µ(x)ν(x)

∫ x

0
dy ek(y)el(y)µ(y) , (2.11c)

W
(1,0)
ijkl =

∫ π/2

0
dx e′i(x)e′j(x)µ(x)ν(x)

∫ x

0
dy ek(y)el(y)µ(y) . (2.11d)
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Note that the coefficient Rij = Rji is symmetric. Whenever the resonance condition

ωi + ωj = ωk + ωl is satisfied, one also has Sijkl = Sjikl and Sijkl = Sklij .

In the interior time gauge (δ(0, t) = 0), the expressions for Ti and Rij are slightly

more complicated [11, 12], with the additional terms ω2
i (Aii + ω2

i Vii) and ω2
j (Aii + ω2

i Vii),

respectively. The V and A coefficients are defined as.

Vij =

∫ π/2

0
dx ei(x)ej(x)µ(x)ν(x) , Aij =

∫ π/2

0
dx e′i(x)e′j(x)µ(x)ν(x) . (2.12)

Note that the difference between the two gauges only affects the equation for the phases

Bn, but not the equations for the amplitudes An. In this gauge, the R coefficients are not

symmetric and the slow dynamics is not manifestly Hamiltonian [12].

3 Recursive analysis of the interaction coefficients

3.1 Recurrence relations for the mode functions

We first analyze the mode-number structure of the AdSd+1 mode functions given by (2.5).

Using the recurrence relations for the Jacobi polynomials P
(α,β)
n (x),

2(n+ 1)(n+ α+ β + 1)(2n+ α+ β)P
(α,β)
n+1 (x)

= −2(n+ α)(n+ β)(2n+ α+ β + 2)P
(α,β)
n−1 (x)

+ (2n+ α+ β + 1)
{

(2n+ α+ β + 2)(2n+ α+ β)x+ α2 − β2
}
P (α,β)
n (x) (3.1)

and the derivative formula,

(2n+ α+ β + 2)(1− x2) d
dx
P (α,β)
n (x)

= −2(n+ 1)(n+ α+ β + 1)P
(α,β)
n+1 (x)

+ (n+ α+ β + 1)
(
α− β + (2n+ α+ β + 2)x

)
P (α,β)
n (x) (3.2)

we can show that the mode functions satisfy the following identities,

µ(x)ν ′(x)en(x) = −(d− 1)

(
1− 1

ω2
n − 1

)
en(x) +

√
(n+ 1)(n+ d)

(
1

ωn + 1

)
en+1(x)

+
√
n(n+ d− 1)

(
1

ωn − 1

)
en−1(x) (3.3)

and

2µ(x)ν(x)En(x) = −(d− 1)

(
ωn

ω2
n − 1

)
en(x) +

√
(n+ 1)(n+ d)

(
1

ωn + 1

)
en+1(x)

−
√
n(n+ d− 1)

(
1

ωn − 1

)
en−1(x) . (3.4)

We have introduced the notation En(x) = (1/ωn)e′n(x). One can show that En(x) is also

an orthonormal family of functions with weight µ(x). By taking derivatives of these and
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using −(µe′n)′ = ω2
nµen and −(µν ′)′ = 4µν, we can obtain the relations

µ(x)ν ′(x)En(x) = −(d− 1)

(
1 +

1

ω2
n − 1

)
En(x) +

√
(n+ 1)(n+ d)

(
1

ωn + 1

)
En+1(x)

+
√
n(n+ d− 1)

(
1

ωn − 1

)
En−1(x) (3.5)

and

2µ(x)ν(x)en(x) = −(d− 1)

(
ωn

ω2
n − 1

)
En(x)−

√
(n+ 1)(n+ d)

(
1

ωn + 1

)
En+1(x)

+
√
n(n+ d− 1)

(
1

ωn − 1

)
En−1(x) . (3.6)

Note that up to a few signs, these recurrence relations preserve their form under interchange

of en(x) and En(x). This feature will allow us to streamline some of our derivations below.

3.2 Recurrence relations for the X coefficients

A useful simplification is attained by expressing the coefficients

Xijkl =

∫ π
2

0
dx
(
µ(x)ν(x)e′i(x)

)
ej(x)ek(x)el(x)µ(x) (3.7)

in terms of the totally symmetric combinations

χijkl =

∫ π
2

0
dx ei(x)ej(x)ek(x)el(x)µ(x) (3.8)

with the help of the recurrence relation (3.4). This results in the formula

1

ωn
Xnmpq = −1

2
(d− 1)

(
ωn

ω2
n − 1

)
χnmpq +

1

2

√
(n+ 1)(n+ d)

(
1

ωn + 1

)
χ(n+1)mpq

− 1

2

√
n(n+ d− 1)

(
1

ωn − 1

)
χ(n−1)mpq . (3.9)

We shall now derive a set of recursive relations for χ. Once χ have been determined,

X can be extracted using the above formula.

Consider first the product µν ′enem. One can apply the recurrence relation (3.3) either

to µν ′en or to µν ′em, resulting in two different re-writings of this product. Equating these

two different re-writings, multiplying by µepeq and integrating over x, one obtains

(d−1)

(
ω2
m

ω2
m−1

)
χnmpq+

√
(m+1)(m+d)

(
χn(m+1)pq

ωm+1

)
+
√
m(m+d−1)

(
χn(m−1)pq

ωm−1

)
= (d−1)

(
ω2
n

ω2
n−1

)
χnmpq+

√
(n+1)(n+d)

(
χ(n+1)mpq

ωn+1

)
+
√
n(n+d−1)

(
χ(n−1)mpq

ωn−1

)
.

(3.10)

(By total symmetry of χ, a similar relation holds for any other pair of indices.)
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Furthermore, one can consider the relation∫ π/2

0
dxµ2ν ′enemepeq = −2(d− 1)χnmpq −Xnmpq −Xmnpq −Xpnmq −Xqnmp . (3.11)

Here we have used integration by parts moving the derivative off ν ′, and the fact that

µ′ν = (d − 1). This relation can be easily converted in a closed iterative relation for χ

alone. On the right-hand side, we can eliminate X in favor of χ with (3.9). On the left-hand

side, applying (3.3) to µν ′en re-expresses everything through χ alone. The result is{
1

2
(d− 1)

(
ω2
n

ω2
n − 1

)
χnmpq −

1

2

√
(n+ 1)(n+ d)

(
ωn

ωn + 1

)
χ(n+1)mpq

+
1

2

√
n(n+ d− 1)

(
ωn

ωn − 1

)
χ(n−1)mpq

}
+ {n↔ m}+ {n↔ p}+ {n↔ q}

= (d− 1)

(
ω2
n

ω2
n − 1

)
χnmpq +

√
(n+ 1)(n+ d)

(
1

ωn + 1

)
χ(n+1)mpq

+
√
n(n+ d− 1)

(
1

ωn − 1

)
χ(n−1)mpq . (3.12)

We shall now present the analogous relations for the Y -coefficients, and then explain

how (3.10) and (3.12), and the corresponding equations pertinent to the Y -coefficients,

can be used to set up effective recursive evaluation algorithms.

3.3 Recurrence relations for the Y coefficients

We have already remarked on the immediate parallels between the recurrence relations for

en(x) and En(x) = (1/ωn)e′n(x). These parallels make the analysis of the Y coefficients

essentially identical to what we have presented above for the X coefficients. Using recursion

formula (3.6), we can write

Yijkl =

∫ π
2

0
dx e′i(x)ej(x)e′k(x)e′l(x)

(
µ(x)

)2
ν(x) (3.13)

in terms of

ψijkl =

∫ π
2

0
dxEi(x)Ej(x)Ek(x)El(x)µ(x) (3.14)

as follows:

1

ωnωpωq
Ynmpq = −1

2
(d− 1)

(
ωm

ω2
m − 1

)
ψnmpq −

1

2

√
(m+ 1)(m+ d)

(
1

ωm + 1

)
ψn(m+1)pq

+
1

2

√
m(m+ d− 1)

(
1

ωm − 1

)
ψn(m−1)pq . (3.15)

Considering the action of (3.5) on µν ′EnEm results in

− (d−1)

(
1

ω2
n−1

)
ψnmpq+

√
(n+1)(n+d)

(
ψ(n+1)mpq

ωn+1

)
+
√
n(n+d−1)

(
ψ(n−1)mpq

ωn−1

)
= −(d−1)

(
1

ω2
m−1

)
ψnmpq+

√
(m+1)(m+d)

(
ψn(m+1)pq

ωm+1

)
+
√
m(m+d−1)

(
ψn(m−1)pq

ωm−1

)
.

(3.16)
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On the other hand, one obtains by integration by parts∫ π/2

0
dxµ2ν ′EnEmEpEq = 2(d−1)ψnmpq +

ωnYmnpq
ωmωpωq

+
ωmYnmpq
ωnωpωq

+
ωpYnpmq
ωnωmωq

+
ωqYnqmp
ωnωmωp

.

(3.17)

Using (3.5) and (3.15), we can conclude that{
− 1

2
(d− 1)

(
ω2
n

ω2
n − 1

)
ψnmpq −

1

2

√
(n+ 1)(n+ d)

(
ωn

ωn + 1

)
ψ(n+1)mpq

+
1

2

√
n(n+ d− 1)

(
ωn

ωn − 1

)
ψ(n−1)mpq

}
+ {n↔ m}+ {n↔ k}+ {n↔ l}

= −(d− 1)

(
1

ω2
n − 1

+ 3

)
ψnmpq +

√
(n+ 1)(n+ d)

(
1

ωn + 1

)
ψ(n+1)mpq

+
√
n(n+ d− 1)

(
1

ωn − 1

)
ψ(n−1)mpq . (3.18)

3.4 Recursive evaluation of the X and Y coefficients

One important feature of the recursive expressions in the previous section, is that we can

easily compute all the X and Y coeffients recursively. We will explain this in detail for the

X coefficients. The procedure is completely analogous for the Y coefficients.

One starts by evaluating χ as defined by (3.8). For χnmpq, we call L = n+m+ p+ q

the ‘level’ of that coefficient. At level 0, there is only one coefficient, which can easily be

evaluated analytically,

χ0000 = 6

(
Γ(d)

)2
Γ(2d)

Γ
(
3d
2

)(
Γ
(
d
2

))3 . (3.19)

Now note that the formula (3.12) relates coefficients of level L − 1 and L to multiple

coefficients of level L + 1. However, by substituting equation (3.10) three times in (3.12),

we can find a formula that expresses a single coefficient of level L+1 in terms of coefficients

of level L and L− 1:√
(n+1)(n+d)

(ωn + ωm + ωp + ωq + 2)

(ωn + 1)
χ(n+1)mpq

= (d−1)

(
ω2
m

ωm−1
+

ω2
p

ωp−1
+

ω2
q

ωq−1
− (ωm + ωp + ωq + 1)

ω2
n

(ω2
n−1)

)
χnmpq

+
√
n(n+d−1)

(ωn−ωm−ωp−ωq−2)

(ωn−1)
χ(n−1)mpq+

√
m(m+d−1)

(
2ωm
ωm−1

)
χn(m−1)pq

+
√
p(p+d−1)

(
2ωp
ωp−1

)
χnm(p−1)q+

√
q(q+d−1)

(
2ωq
ωq−1

)
χnmp(q−1) . (3.20)

So once all coefficients χnmpq of two adjacent levels are known, one can easily compute all

coefficients of the next level. Since the need for explicit integration is completely elimi-

nated, no fast oscillating integrals have to be computed explicitly, and this method will

be more efficient than a direct evaluation of the integrals of mode functions. After the

recursive computation of the χ coefficients, one only needs to use (3.9) to determine the X

coefficients.
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The method for the Y coefficients and the ψ coefficients is completely analogous. One

simply needs to combine equations (3.16) and (3.18) and start with the value

ψ0000 =
8
(
Γ(d)

)2
Γ(2 + 2d)

Γ
(
3d
2 −

1
2

)
Γ
(
d
2 + 5

2

)(
Γ
(
d
2

))4 . (3.21)

Once all X and Y coefficients are known, we can determine the coefficients Sijkl that

appear in the flow equation (2.6) for the amplitudes. In order to determine the Rij and Ti
coefficients, we also need to compute the Wijkl integrals appearing in (2.11c) and (2.11d).

Though there are much fewer R and T coefficients than S coefficients, and hence optimizing

their evaluation is probably less crucial, we shall now explain briefly how they can be

efficiently computed as well.

3.5 Computation of the W coefficients

Consider the W -coefficients as defined in [12],

W
(a,b)
ijkl =

∫ π/2

0
dx e

(a)
i (x)e

(a)
j (x)µ(x)ν(x)

∫ x

0
dy e

(b)
k (y)e

(b)
l (y)µ(y) . (3.22)

In appendix D of [12] we established the relations

W
(0,1)
ijkl − ω

2
kW

(0,0)
ijkl = Xkijl , W

(1,1)
ijkl − ω

2
kW

(1,0)
ijkl = Yiljk , (3.23a)

(ω2
k − ω2

l )W
(0,0)
ijkl = Xlijk −Xkijl , (ω2

k − ω2
l )W

(1,0)
ijkl = Yikjl − Yiljk , (3.23b)

(ω2
k − ω2

l )W
(0,1)
ijkl = ω2

kXlijk − ω2
lXkijl , (ω2

k − ω2
l )W

(1,1)
ijkl = ω2

kYikjl − ω2
l Yiljk . (3.23c)

These allow us to express all W
(a,b)
ijkl for which k 6= l in terms of X and Y coefficients.

However, in the expressions for Rij and Ti we need the W -coefficients with k = l. Assuming

that we already know the χ, ψ, X and Y coefficients, these can be calculated recursively

in the following way.

Consider the integral
∫ π/2
0 dx eiejµν

∫ x
0 dy µ(µν ′)ekel. By letting the (µν ′) work on ek

and el respectively and using the recurrence relations (3.4), we find that

(d−1)

(
1

ω2
k−1

)
W

(0,0)
ijkl +

√
(k+1)(k+d)

(
W

(0,0)
ij(k+1)l

ωk+1

)
+
√
k(k+d−1)

(
W

(0,0)
ij(k−1)l

ωk−1

)

= (d−1)

(
1

ω2
l −1

)
W

(0,0)
ijkl +

√
(l+1)(l+d)

(
W

(0,0)
ijk(l+1)

ωl+1

)
+
√
l(l+d−1)

(
W

(0,0)
ijk(l−1)

ωl−1

)
.

(3.24)

Now we substitute l = k+ 1 in this formula and replace all W
(0,0)
nmpq with p 6= q that appear

in the remaining expression by (3.23). What remains is a recursive relation that relates

W
(0,0)
ijkk simply to W

(0,0)
i,j,k+1,k+1. This allows for a fast recursive computation of the W

(0,0)
ijkk

coefficients, once the value of W
(0,0)
ij00 is known.
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The most efficient way to compute W
(0,0)
ij00 for all i and j is also by a recursive procedure.

In close analogy to the other derivations we have presented, one obtains

(d−1)

(
1

ω2
i −1

)
W

(0,0)
ijkl +

√
(i+1)(i+d)

(
W

(0,0)
(i+1)jkl

ωi+1

)
+
√
i(i+d−1)

(
W

(0,0)
(i−1)jkl

ωi−1

)

= (d−1)

(
1

ω2
j−1

)
W

(0,0)
ijkl +

√
(j+1)(j+d)

(
W

(0,0)
i(j+1)kl

ωj+1

)
+
√
j(j+d−1)

(
W

(0,0)
i(j−1)kl

ωj−1

)
(3.25)

and{
1

2
(d− 1)

(
ω2
i

ω2
i − 1

)
W

(0,0)
ijkl −

1

2

√
(i+ 1)(i+ d)

(
ωi

ωi + 1

)
W

(0,0)
(i+1)jkl

+
1

2

√
i(i+ d− 1)

(
ωi

ωi − 1

)
W

(0,0)
(i−1)jkl

}
+ {i↔ j}+ {i↔ k}+ {i↔ l}

= (d− 1)W
(0,0)
ijkl + 2(d− 1)

(
1

ω2
i − 1

)
W

(0,0)
ijkl + 2

√
(i+ 1)(i+ d)

(
1

ωi + 1

)
W

(0,0)
(i+1)jkl

+ 2
√
i(i+ d− 1)

(
1

ωi − 1

)
W

(0,0)
(i−1)jkl + (d− 1)

(
1

ω2
k − 1

)
W

(0,0)
ijkl

+
√

(k + 1)(k + d)

(
1

ωk + 1

)
W

(0,0)
ij(k+1)l +

√
k(k + d− 1)

(
1

ωk − 1

)
W

(0,0)
ij(k−1)l .

(3.26)

Using these relations, the W
(0,0)
ij00 coefficients can be computed in exactly the same way as

for the χ and ψ coefficients. Only now we take L = i+ j to be the ‘level’ of W
(0,0)
ij00 .

We can easily extract the W (1,0) coefficients once all the W (0,0) are known. On the one

hand, we consider W
(0,0)
ijkl , with ei expressed as −(µe′i)

′/ω2
i , and use integration by parts to

throw one of the two thus inserted derivatives off ei, obtaining the relation

− ω2
iW

(0,0)
ijkl = −W (1,0)

ijkl −N
(0)
ijkl −Xijkl (3.27)

where we have defined the integral N
(a)
ijkl =

∫ π/2
0 dx e′iejµν

′ ∫ x
0 dy e

(a)
k e

(a)
l µ. On the other

hand, we have by integration by parts,

N
(0)
ijkl +N

(0)
jikl = 4W

(0,0)
ijkl + 2(d− 1)χijkl +Xijkl +Xjikl +Xkijl +Xlijk . (3.28)

Here we have used the fact that (µν ′)′ = −4µν and the expression for the integral (3.11).

Combining these two, we find that

(ω2
i + ω2

j − 4)W
(0,0)
ijkl − 2W

(1,0)
ijkl = 2(d− 1)χijkl + 2Xijkl + 2Xjikl +Xkijl +Xlijk . (3.29)

Assuming all χ, X and W (0,0) are known, this allows us to compute all W (1,0).
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3.6 Additional coefficients in interior time gauge

If one works in the interior time (δ(0, t) = 0), one also needs the Vij and Aij coefficients

defined by (2.12). These coefficients can also be computed by a simple recursive procedure.

Just as before, we first consider the action of the recursion relation (3.3) either on

µν ′en or on µν ′em in the product µν ′enem. We then equate the results, multiply by µν

and integrate to obtain

(d− 1)

ω2
n − 1

Vnm +
√

(n+ 1)(n+ d)

(
V(n+1)m

ωn + 1

)
+
√
n(n+ d− 1)

(
V(n−1)m

ωn − 1

)
=

(d− 1)

ω2
m − 1

Vnm +
√

(m+ 1)(m+ d)

(
Vn(m+1)

ωm + 1

)
+
√
m(m+ d− 1)

(
Vn(m−1)

ωm − 1

)
.

(3.30)

We then note that

(d−1)Vij

= (d−1)

∫ π
2

0
dx eiejµν =

∫ π
2

0
dx eiejµν(µ′ν) = −

∫ π
2

0
dx (eiejµν

2)′µ

= −
∫ π

2

0
dx (µνe′i)ejµν −

∫ π
2

0
dx ei(µνe

′
j)µν −

∫ π
2

0
dx eiejµν(µ′ν)− 2

∫ π
2

0
dx (µν ′ei)ejµν .

(3.31)

Using the recurrence relations results in{
1

2
(d− 1)

(
ω2
n

ω2
n − 1

)
Vnm −

1

2

√
(n+ 1)(n+ d)

(
ωn

ωn + 1

)
V(n+1)m

+
1

2

√
n(n+ d− 1)

(
ωn

ωn − 1

)
V(n−1)m

}
+ {n↔ m}

= 2(d− 1)

(
1

ω2
n − 1

)
Vnm + 2

√
(n+ 1)(n+ d)

(
1

ωn + 1

)
V(n+1)m

+ 2
√
n(n+ d− 1)

(
1

ωn − 1

)
V(n−1)m . (3.32)

The above relations can be used to efficiently compute the Vij coefficients, starting with

V00 =
2 Γ(d)

(d+ 1)
(
Γ
(
d
2

))2 . (3.33)

In appendix B of [12], we established that

Aij =
1

2
(ω2
i + ω2

j − 4)Vij −
1

2
CiCj with Ci ≡

2
√
d− 2

Γ(d/2)

√
(i+ d− 1)!

i!
. (3.34)

Therefore, we can immediately obtain all A-coefficients as well.
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4 Ultraviolet asymptotics of the interaction coefficients

We can extract the behavior of the interaction coefficients for large mode numbers by

solving the recurrence relations asymptotically in this limit. In particular, for the χijkl
coefficients, we consider the recurrence relations (3.10) and (3.12). In the limit of large

values of n, m, p and q, these reduce to

(d−1)χnmpq+
1

2
χn(m+1)pq+

1

2
χn(m−1)pq = (d−1)χnmpq+

1

2
χ(n+1)mpq+

1

2
χ(n−1)mpq (4.1)

and{
1

2
(d− 1)χnmpq −

1

2
nχ(n+1)mpq +

1

2
nχ(n−1)mpq

}
+ (n↔ m) + (n↔ p) + (n↔ q)

= (d− 1)χnmpq +
1

2
χ(n+1)mpq +

1

2
χ(n−1)mpq . (4.2)

By introducing finite difference operators ∆
(1)
n χnmpq = (χ(n+1)mpq − χ(n−1)mpq)/2 and

∆
(2)
n χnmpq = χ(n+1)mpq + χ(n−1)mpq − 2χnmpq, we can write these equations as

∆(2)
mχnmpq = ∆(2)

n χnmpq (4.3)

and

n∆(1)
n χnmpq +m∆(1)

mχnmpq + p∆(1)
p χnmpq + q∆(1)

q χnmpq

= (d− 1)χnmpq −
1

2

(
χ(n+1)mpq + χ(n−1)mpq

)
. (4.4)

Note that our finite difference operators are simply proportional to discretized first and

second derivatives. (4.3) is a discretized two-dimensional wave equation and can be solved

by an ansatz of the following form (which takes into account the total symmetry of χnmpq):

χnmpq = f1(n+m+ p+ q) + f2(−n+m+ p+ q) + f2(n−m+ p+ q)

+ f2(n+m− p+ q) + f2(n+m+ p− q)
+ f3(n+m− p− q) + f3(n−m+ p− q) + f3(n−m− p+ q) , (4.5)

where the function f3 must be even, f3(−x) = f3(x). One can develop some intuition

about (4.4) by likewise considering its continuum limit, assuming |χn+1 − χn| � |χn|,
which yields the Euler equation for homogeneous functions,

n∂nχ+m∂mχ+ p∂pχ+ q∂qχ = (d− 2)χ , (4.6)

solved by taking fi(x) = Aix
d−2. (For d = 2, we expect a logarithmic behavior fi(x) =

Ai lnx.) One can directly verify that such a solution is consistent with the original finite

difference equation (4.4) at large values of the indices. Overall,

χnmpq ∼ A3

(
(n+m− p− q)d−2 + (n−m+ p− q)d−2 + (n−m− p+ q)d−2

)
+A2

(
(−n+m+ p+ q)d−2 + (n−m+ p+ q)d−2 + (n+m− p+ q)d−2

+ (n+m+ p− q)d−2
)

+A1(n+m+ p+ q)d−2. (4.7)
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(We have compared this expression to some explicit brute force calculations for special

index values using Mathematica.)

One can check that the asymptotic equations for the ψnmpq coefficients are exactly the

same, thus we expect the same kind of behavior. Extending this to the X and Y coefficients,

plugging this back in (2.10) and assuming that there are no non-trivial cancellations, we

expect the following scaling

Sλi,λj,λk,λl ∼ λd, (4.8)

for any i, j, k, l, with λ� 1.

Similar considerations yield for the W -coefficients

W
(0,0)
λi,λj,λk,λl ∼ λ

d−4, W
(1,0)
λi,λj,λk,λl ∼ λ

d−2. (4.9)

Hence, the R and T -coefficients in the boundary time gauge behave as

Rλi,λj ∼ λd, Tλi ∼ λd. (4.10)

Note that the R and T coefficients in the interior time gauge feature extra terms, as

explained above (2.12). Repeating the asymptotic analysis for the Vij coefficients, we find

the equations

n∆(1)
n Vnm +m∆(1)

mVnm = (d− 3)Vnm (4.11)

and

∆(2)
n Vnm = ∆(2)

mVnm (4.12)

which are solved by Vnm ∼ ν1(n+m)d−3 + ν2(n−m)d−3. For d = 3, this goes to ln(n+m)

and ln(n − m) instead, and for d = 2, this goes to a constant (the explicit value of this

constant is given in appendix B of [12]). The dominant contribution to the T and R-

coefficients becomes ω4
i Vii and ω2

i ω
2
jVii, respectively, rather than coming from the terms

already accounted for in (4.10), which become subleading in the interior gauge. For AdS4

this results in the behavior Tj ∼ j4 ln j andRjn ∼ n2j2 ln j, consistent with the one reported

in [14]. For AdSd+1 with d > 3, it results in the behavior Tj ∼ jd+1 and Rjn ∼ n2jd−1,

consistent with the one reported in [13] from numerical evaluations in AdS5. Note that

we do not find evidence for logarithmic modulations in the leading power-law behavior of

the interior gauge interaction coefficients for d > 3 (a possibility suggested in footnote 9

of [14]).

5 Discussion

We have presented some analytic considerations of the interaction coefficients appearing in

the time-averaged equations describing slow energy transfer between the normal modes of

a spherically symmetric AdS-scalar field system due to gravitational non-linearities. In the

course of our considerations, we have developed an iterative procedure for evaluating the

interaction coefficients, which is likely to present significant advantages over a brute force

approach. Indeed, straightforward computation of the interaction coefficients can be done
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in essentially two ways, both of which are resource-intensive. Either one multiplies high-

degree Jacobi polynomials symbolically and integrates the result exactly using computer

algebra, or one resorts to a numerical treatment of the integrals of products of Jacobi

polynomials, which become very rapidly oscillating as the mode number increases. Our

recursive procedure eliminates the need for integration altogether (the only drawback is

that one has to evaluate the interaction coefficients for all modes, rather than only for those

that satisfy the resonance condition). This sort of optimization is likely to enable significant

improvements in the numerical analysis of the time-averaged theory of the sort presented

in [13]. It would also be interesting to know how the iterative evaluation competes in terms

of computational efficiency with the explicit expressions for the interaction coefficients in

the particular case of AdS4 presented in [14], as those expressions are extremely long and

require many floating point operations per coefficient.

Our iterative formulas allow us to deduce the asymptotic power law dependences of

the interaction coefficients. In the boundary time gauge, if all the mode numbers are

scaled up uniformly controlled by a parameter λ, all interaction coefficients scale as λd in

AdSd+1. The ultraviolet growth of mode couplings becomes more harsh in higher dimen-

sions, conforming to the strengthening of turbulent behavior in higher dimensions alluded

to in [14].

It would be interesting to explore how the power law (4.8) appearing in the scaling of

the S coefficients relates to the properties of the singular spectra developing in finite time in

solutions of the time-averaged system according to [13]. (This singular behavior is believed

to reflect the black hole formation in the full non-linear theory, though establishing this

relation rigorously would require going beyond the time-averaged description.) In [13], it

was observed numerically that, in AdS5, the following behavior of the amplitude spectrum

An emerges near a certain finite ‘singular’ moment t∗:

An(ε2t) ∼ n−2e−ρnε2(t∗−t). (5.1)

This solution was verified to be crudely analytically consistent with the time-averaged

amplitude equation (2.6) in the sense that both sides appear approximately independent

of n at large n, given the scaling Sλi,λj,λk,λl ∼ λ4 in AdS5. We hope that our results, when

combined with generalizations of the numerical analysis of [13] to higher dimensions, will

lead to a more detailed and more general understanding of such singular spectra.

Another comment is that in [13], which used interior time gauge, the flow equations

for d = 4 led to finite-time singular behavior of (the time-derivative of) the phases Bn, and

this singular behavior seemed to be driven by the Rjn ∼ n2j3 scaling. Our analysis shows

that this scaling is due to a contribution that is absent in boundary time gauge, so it would

be interesting to verify whether the singular behavior of the phases persists in boundary

time gauge.
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