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1 Introduction

In the last few years there has been a resurgence of interest in studying heat and charge

transport in holographic theories. By finding ways to incorporate momentum relaxation

into these models [1–7] rapid progress has been made in understanding their DC [8–14],

and low-frequency [15–19] response coefficients.

Perhaps the most interesting aspects of these results are that holography provides,

beyond leading order in the strength of momentum relaxation, a class of non-Drude models

of transport (see for instance [10, 11, 19–22]). Such models are likely to be necessary to

describe the experimental measurements on strange metals [23–25].

It is therefore an important open problem to develop a detailed framework in which

to study this generalised transport. Motivated by this goal, we recently utilised the

fluid/gravity correspondence [26–30] to construct a hydrodynamical description of the

boundary physics dual to a simple holographic theory with broken translational invari-

ance [15]. More precisely, we studied a 4+1 dimensional Einstein-Maxwell-Dilaton theory

in which the translational symmetry was broken by linear sources φ
(0)
A

= kxA for scalar

fields dual to marginal operators OA.

The resulting hydrodynamical description then consists of the constitutive relations,

which express the electrical and heat currents of the boundary theory in terms of a lo-

cal fluid velocity uµ(x), together with the Ward-identity that describes the relaxation of

momentum by the scalars. It was found that, beyond leading order in the derivative ex-

pansion, both the constitutive relations and Ward identity differed from those studied in

the seminal work of Hartnoll et al. [17]. Nevertheless, the resulting hydrodynamics was

remarkably simple and could be used to calculate the thermoelectric response coefficients

of the boundary theory.

In this paper, we continue to develop this approach by studying the magnetohydrody-

namics dual to the 3+1 dimensional version of the model studied in [15]. The effect of the

– 1 –



J
H
E
P
1
0
(
2
0
1
5
)
0
7
8

magnetic field is to introduce new terms into the constitutive relations and to modify that

Ward identity to include the Lorentz force

∂µT
µν = ∂νφ

(0)
A

〈OA〉+ FνµJµ (1.1)

Here Fµν is the field strength of an external gauge field that we use to turn on a magnetic

field, B. Using the fluid/gravity correspondence we evaluate the constitutive relations to

O(ε2) in our derivative expansion and the Ward identity to O(ε4). Once again we find that

whilst the results agree with [17] at leading order, there are subleading corrections that

need to be taken into account.

Given the initial motivation of [17] with relation to the Nernst effect, it is particularly

important to understand how these corrections effect the magnetotransport of the boundary

theory. By linearising our constitutive relations in the fluid velocity, vi, we are able to

calculate new results for the entire set of low-frequency thermoelectric response coefficients.

Of special interest is the ω → 0 limit of these results. It has long been known that

this limit is very special within holographic models — in particular it is possible to obtain

exact expressions for the DC response coefficients in terms of horizon data [25, 31–33]. We

therefore end this paper by reformulating our constitutive relations in a new hydrodynami-

cal frame in order to make the structure behind these DC formulae self-evident. In the DC

limit, this approach is found to be equivalent to the exact ‘horizon-fluid’ recently proposed

by Donos and Gauntlett [34, 35].

The remainder of this paper is organised as follows. In section 2 we use the fluid/gravity

correspondence to construct the constitutive relations of magnetohydrodynamics dual to

our holographic model. Since much of the discussion is equivalent to that of [15], we will

be schematic in our presentation of the details. In section 3 we study the linear response

of the boundary theory and extract the thermoelectric response coefficients. Finally in

section 4 we focus on the DC limit and examine the connection with [34, 35].

2 The fluid/gravity correspondence

In this section we will explain how to derive the constitutive relations of the magnetohy-

drodynamics dual to a simple holographic model with broken translational invariance. Of

particular phenomenological interest [17, 36, 37] are 2+1 dimensional boundary CFTs, and

so we will use the four-dimensional Einstein-Maxwell action in the bulk

S =
1

16πGN

∫

d4x
√−g

[

R+ 6− 1

4
FMNFMN − 1

2
gMN∂MφA∂NφA

]

(2.1)

where the scalar fields φA will be used to introduce momentum relaxation into the boundary

theory. Here the calligraphic index on the scalars runs over the spatial directions on the

boundary, i.e. A = 1, 2. Note that in [15] we recently studied the 5 dimensional analogue of

this theory (without the magnetic field). Since we can always set B = 0, as a byproduct of

our calculations we will generalise the results of [15] to 2+1 dimensional boundary theories.
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The starting point in constructing the boundary hydrodynamics is the Reissner-

Nordström black brane in ingoing Eddington-Finkelstein coordinates

gMNdxMdxN = −2uµdx
µdr − r2f(r)uµuνdx

µdxν + r2Pµνdx
µdxν

AMdxM =
2q

r
uµdx

µ

φA = φ0 (2.2)

Where xµ are the boundary coordinates, uµdx
µ = −dv and Pµν = ηµν + uµuν is the

projector perpendicular to1 uµ. In four bulk dimensions the emblackening factor is given by

f(r) = 1− b/r3 + q2/r4 (2.3)

and the horizon radius, r0, is defined as the solution to

b = r30

(

1 +
q2

r40

)

(2.4)

We stress that, although our primary interest in this paper is magnetohydrodynamics, the

Reisnner-Nordstrom black brane in (2.2) only contains an electric charge. The magnetic

field, B, will be included in our description as part of the derivative expansion. As a result,

the hydrodynamics we derive will be perturbative in the strength of the magnetic field.2

The derivative expansion. To derive the constitutive relations of the boundary theory

we follow the standard proceedure of the fluid gravity correspondence (see for instance [26–

30]). First we take the parameters uµ, q, b, φA appearing in (2.2) to be functions of boundary

co-ordinates xα. Following [40–42] we allow for an external gauge field Aext
µ (xα) that we

will use to apply a magnetic field to the boundary theory. We therefore take the ansatz

g
(0)
MNdxMdxN = −2uµ(x

α)dxµdr − r2f(r, q(xα), b(xα))uµ(x
α)uν(x

α)dxµdxν

+r2Pµν(x
α)dxµdxν

A
(0)
M dxM =

2q(xα)

r
uµ(x

α)dxµ +Aext
µ (xα)dxµ

φ
(0)
A

= φ
(0)
A

(xα) (2.5)

The interpretation of this prescription is to think of these parameters q(xα), b(xα), uµ(xα)

as corresponding to a local charge density, energy density and fluid velocity. In contrast,

the scalars φ
(0)
A

(xα) and gauge field Aext
µ (xα) are external sources in the boundary theory.

At zeroth order, i.e. when these fields take constant values, this ansatz satisfies the

Einstein-Maxwell-Dilaton equations. More generally, we need to supplement (2.5) with

corrections that can be calculated by solving the Einstein-Maxwell-Dilaton equations order

by order in a derivative expansion. After determining these corrections, the expectation

1Note that boundary indices on, for instance, the fluid velocity uµ are raised and lowered with the

Minkowski metric ηµν .
2For other early approaches to incorporating a magnetic field within fluid-gravity see [38, 39].
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value of any operator in the boundary theory can be extracted in terms of the hydrodynamic

fields, together with an expansion in the derivatives of these variables and the external

sources3 Aext
µ , φ

(0)
A

.

In this paper we are interested in studying solutions in which the external sources

φ
(0)
A

and Aext
µ take specific forms. Firstly, we will break translational invariance using

the sources

φ
(0)
1 = kx φ

(0)
2 = ky (2.6)

These sources, first studied in the context of transport in [6], are the simplest way we can

incorporate momentum relaxation within our holographic model. Similarly, we will use the

external gauge field to introduce a magnetic field to the boundary field

Aext
y = Bx (2.7)

Note that the choice of sources (2.6) and (2.7) defines a laboratory frame (t, x, y).

Our goal in this paper is to study how the breaking of translation invariance and

the introduction of the magnetic field affect the thermoelectric transport properties of the

boundary theory. Since the bulk stress tensor is quadratic in derivatives of the scalar fields,

we will find that at leading order momentum relaxes at a rate τ−1 ∼ k2. We therefore take

the anisotropic scalings

k ∼ ε B ∼ ε2 ∂µq ∼ ε2, ∂µb ∼ ε2 ∂µu
α ∼ ε2 (2.8)

so that the frequency ω of the fluid flow, the relaxation rate τ−1, and the cyclotron fre-

quency ωc ∼ B all have the same scaling. Note that, once we go beyond leading order

in this expansion, the equilibrium configuration is no longer the translationally invariant

black brane (2.2). Rather, the equilibrium solution changes in the presence of the sources

(2.6) and (2.7). These corrections can be determined order by order within our expan-

sion by setting uµ = (1, 0, 0) and ∂µq = ∂µb = 0, but retaining the terms proportional to

derivatives of Aext
µ and φ

(0)
A

.

We can now perform our derivative expansion by solving the bulk equation of motions

as a perturbation series in ε. To study transport in the boundary theory, we need to

evaluate Jµ and Tµν to O(ε2) and to calculate 〈OA〉 up to4 O(ε3). The corresponding

calculation for the five dimensional analogue of this model was recently explained in detail

in [15]. It is straightforward to adapt this computation to four dimensions and also to

include the external gauge field5 [40–42]. We therefore simply present our final results for

constitutive relations, and refer the interested reader to this literature.

3Of course, an expansion of derivatives only makes sense if the derivative are small in comparison to the

scales set by the background theory. That is most simply achieved by taking the derivatives to be small

with respect to the chemical potential µ and temperature T .
4Note that to simplify our construction we will neglect certain terms that will not appear in the linearized

hydrodynamics we are ultimately interested in. For our choice of sources (2.6), this means that we will

consistently ignore any terms in the constitutive relations proportional to uµuν∂µφ
(0)
A

∂νφ
(0)
B

.
5The only place the external field strength Fµν enters the equations of motions is through the vector-

channel constraint equation. That is the 3+1 dimensional analogue of equation (A.18) in [15].
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Thermodynamics. Before proceeding to discuss hydrodynamics, we should quickly re-

view the thermodynamics of the boundary theory. As we remarked above, the equilibrium

solutions, and hence thermodynamics, receive corrections in the presence of the scalar

sources and magnetic field. Fortunately, since we are fixing the local charge and energy

densities in our expansion, these take the same form as in the black hole background (2.2)

ǫ =
2b

16πGN

ρ =
2q

16πGN

(2.9)

Conversely the remaining thermodynamics variables s, T, µ and P are corrected at O(ε2)

by the presence of the scalar fields (2.6). Due to the scaling B ∼ ε2, we do not see the

corrections in the thermodynamics due to the magnetic field at this order.

We find that the first-order corrected entropy density is given by

s =
1

4GN

(

r20 +
k2

3−Q2

)

+ . . . (2.10)

where Q = q/r20 is the dimensionless charge density, and . . . indicates terms of higher order

in our expansion. We can also calculate the chemical potential

µ =
2q

r0
− qk2

r30(3−Q2)
+ . . . (2.11)

the temperature

4πT = r0(3−Q2) +
2Q2k2

r0(3−Q2)
+ . . . (2.12)

and finally the pressure

P = µρ+ sT − ǫ =
1

16πGN

(

b+ k2r0

)

+ . . . (2.13)

Constitutive relations. Having determined the thermodynamics we can now consider

the constitutive relations. To make these well-defined, we first need to pick a fluid-

dynamical frame. This choice reflects the fact that, out of equilibrium, there is an ambi-

guity in defining the local fluid velocity. In the study of finite-density hydrodynamics, it is

conventional to choose the Landau frame condition

uµT
(1)µν = 0 (2.14)

where T (1)µν is the first-order correction to the stress tensor. Physically this condition

defines uµ to be the velocity of the energy current.6

With this condition the constitutive relation for the stress tensor can be written as

Tµν = T (0)µν + T (1)µν (2.15)

6Note, as will be crucial in our discussion of section 4, this is distinct from the velocity of the heat

current.
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where

T (0)µν =
2b

16πGN

uµuν +
b

16πGN

Pµν

T (1)µν = − 2r20
16πGN

σµν − r0
16πGN

Φµν (2.16)

and the tensorial sources appearing in the first order correction are

σµν = PµαP νβ∂(αuβ) −
1

2
Pµν∂αu

α

Φµν = PµαP νβ∂αφ
(0)
A

∂βφ
(0)
A

− 1

2
PµνPαβ∂αφ

(0)
A

∂βφ
(0)
A

(2.17)

Likewise the electrical current can be extracted as

Jµ =
2q

16πGN

uµ − 2

16πGN

M + 2

3Mr0
Pµν

(

∂νq −
2q

3b
∂νb

)

+
1

16πGN

(

3−Q2

3M

)2

PµνFνλu
λ − 1

16πGN

8Q3

9M2
(uλ∂λφ

(0)
A

)Pµν∂νφ
(0)
A

(2.18)

where M = b/r30 and Fµν is the field strength of the external gauge field Aext
µ .

Whilst this expression appears somewhat ungainly, we can make the structure much

more evident by trading derivatives of q, b with the conjugate thermodynamics variables

µ, T . This yields

Jµ = ρuµ + σQP
µν

(

− ∂νµ+ Fνλu
λ + µ

∂νT

T

)

− 1

16πGN

8Q3

9M2
(uλ∂λφ

(0)
A

)Pµν∂νφ
(0)
A

(2.19)

where it is now clear that the external field strength and chemical potential enter the con-

stitutive relations in the natural combination −∂νµ+Fνλu
λ. These terms are proportional

to a single transport coefficient

σQ =
1

16πGN

(

sT

ǫ+ P

)2

(2.20)

The first two terms in (2.19) are precisely the constitutive relation of relativistic hydrody-

namics [17, 43] with the specific choice (2.20) for σQ. However, as was first appreciated

in [15], the presence of the scalars φA breaks Lorentz invariance and introduces new terms

into the constitutive relation that are absent in [17].

Scalar expectation value. Finally we need the constitutive relation for the scalar up

to O(ε3). The calculation although somewhat involved, is identical to the one performed in

– 6 –
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5 dimensions in [15]. For our purposes, all we need to know is that we can expand 〈OA〉 as

〈OA〉 = − r20
16πGN

uλ∂λφ
(0)
A

− λr0
16πGN

S+
A
+

r0
16πGN

S−

A

− 1

16πGN

2

4(3−Q2)
uλ∂λφ

(0)
A

(Pµν∂µφ
(0)
B

∂νφ
(0)
B

)

+
1

16πGN

2

3M
uλ∂λφ

(0)
B

(Pµν∂µφ
(0)
A

∂νφ
(0)
B

)

− 1

16πGN

2qPµν∂µφ
(0)
A

(∂νq + 2quλ∂λuν)

3Mr30
(2.21)

where the source terms S±

A
are defined to be

S±

A
= (uλ∂λu

µ ± 1

2
∂λu

λuµ)∂µφ
(0)
A

(2.22)

Note that, written this way, there is no explicit dependence on the external field strength

Fµν appearing in this constitutive relation.

The only unspecified quantity is then the transport coefficient λ, that multiplies S+
A

in (2.21). In general this is a complicated function of µ/T that we have not been able to

determine analytically. Nevertheless, it can be calculated perturbatively in Q for which we

find the leading terms

λ = −
√
3π − 9log3

18
− 5

√
3π − 72 + 27log3

54
Q2 + . . . (2.23)

Whilst this is a rather complicated expression, the precise value of λ will not be important

in describing the magnetotransport of the boundary theory - which we study in detail in

the next section.

3 Thermoelectric response coefficients

In the last section we quickly reviewed how the fluid-gravity correspondence can be used to

derived the constitutive relations of the boundary theory. In the remainder of this paper,

we wish to use this hydrodynamics to study how the magnetic field affects charge and heat

transport. To do this, we need to linearise our constitutive relations around equilibrium.

We therefore consider the fluid flow7

ut = −1 ui =

(

1 +
k2r0
3b

)

vi(x, y, t) (3.1)

together with the perturbations

µ(x, y, t) → µ+ δµ(x, y, t)

T (x, y, t) → T + δT (x, y, t) (3.2)

7Here i = 1, 2 are spatial indices, i.e. x, y in the laboratory frame.
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The unusual normalisation of the fluid velocity vi in (3.1) has been chosen so that, after

linearising in the perturbations (δµ, δT, vi), the constitutive relation for the momentum

density8 T 0i takes the same form as in relativistic hydrodynamics

T 0i = (ǫ+ P )vi + . . . . (3.3)

where the . . . indicate higher order terms, i.e. those that are O(ε4). The corresponding

expression for the electrical current is

Ji = ρvi + σQ

(

− ∂iµ+ Fijvj + µ
∂iT

T

)

+
µσQk

2

4πT
vi + . . . (3.4)

where Fij = Bǫij is the field strength of the magnetic field (2.7). Similarly, the heat current

Qi = T 0i − µJ i has components

Qi = sTvi − µσQ

(

− ∂iµ+ Fijvj + µ
∂iT

T

)

− µ2σQk
2

4πT
vi . . . (3.5)

Note that the thermodynamic factors in these formulae include the O(ε2) corrections we

determined earlier. Written this way, we find it remarkable how simple these equations are.

In the absence of the magnetic field, they take the same form as those derived from a five

dimensional bulk action in [15], although the precise value of σQ is dimension dependent.

Compared to the usual constitutive relations of relativistic hydrodynamics, there is

just the one extra term (∼ k2) due to the scalars. It is intriguing that, within these

specific holographic models, this novel term is naturally proportional to the same transport

coefficient σQ that multiplies the derivatives of µ and T . It would certainly be interesting to

understand if this continues to hold more generally. If so, it might suggest that there is some

fundamental reason, such as the positivity of entropy production ([44] see section 33; [17]),

for why there only appears to be a single transport coefficient at this order.

Ward identity. In order to describe momentum relaxation we need to supplement these

constitutive relations with the linearised Ward identity. To obtain this, we insert the consti-

tutive relation for the scalar expectation values into (1.1) and then linearise the resulting

expression in our perturbations. Since our aim in this paper is to calculate the zero-

wavevector response coefficients, we will ignore terms proportional to spatial derivatives of

the fluid velocity. At leading order the Ward identity then reads

∂tT
0i + ∂iP = −k2s

4π
vi + FijJj + . . .

= − k2s

4π(ǫ+ P )
T 0i +

ρB

ǫ+ P
ǫijT

0j + . . . (3.6)

and simply describes a Drude excitation with a momentum relaxation rate, τ−1, and cy-

clotron frequency, ωc, given by

τ−1 =
k2s

4π(ǫ+ P )
ωc =

ρB

ǫ+ P
(3.7)

8Note that because of the projection operators in (2.17) there is no contribution, at the linearised level,

to T 0i from the first order correction to the stress tensor T (1)µν .
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Evaluating the Ward identity at O(ε4) is much more involved since it requires using the

subleading terms in (2.21). Amazingly, we find that it can be written in the compact form

∂tT
0i + ∂iP = − k2

4π

[

svi −
µσQ
T

(

− ∂iµ+ Fijvj + µ
∂iT

T

)

− µ2σQk
2

4πT 2
vi

]

+FijJj −
λk2r0
16πGN

∂tvi

= − k2

4πT
Qi + FijJj −

λk2r0
16πGN

∂tvi + . . . (3.8)

where, just as was noticed in the absence of the magnetic field in [15], the contribution of the

scalar fields gives rise to a term proportional to the heat current. In [17] a similar form the

Ward identity was studied,9 but instead with the momentum density T 0i appearing on the

right hand side of (3.8). Since these two quantities differ in general, the magnetotransport

of these holographic theories is not described by the results of [17] once we go beyond the

Drude limit.

In order to extract this physics, we use the Ward identity (3.8) to solve for the fluid

velocity vi in terms of ∂iµ and ∂iT . In the presence of a magnetic field, it is convenient

to work with the complexified fields v± = vx ± ivy. After a Laplace transform in time we

then find an expression for the fluid velocity up to O(ε2) as

v+ = −

(

4πρ
k2s

+
µσQ

sT
+

µ2ρσQ

s2T 2

)

τ−1 − iσQB

ǫ+P

τ−1 + γ − i(ω − ωc)
∂+µ−

4πτ−1

k2
+

iµσQB

T (ǫ+P )

τ−1 + γ − i(ω − ωc)
∂+T (3.9)

where we have eliminated the pressure using the identity δP = ρδµ + sδT . An analogous

expression for v− follows from making the replacement B → −B in (3.9).

The location of the poles in this fluid flow are described by the momentum relax-

ation rate10

τ−1 =
k2s

4π(ǫ+ P )

[

1− µ2σQk
2

4πsT 2
− λk2r0

3b0
+ . . .

]

(3.10)

and the cyclotron frequency

ωc =
ρB

ǫ+ P

[

1 +
2µσQk

2

4πρT
− λk2r0

3b0
+ . . .

]

(3.11)

which can both be seen to contain subleading corrections to (3.7). Additionally there is a

novel effect at this order in hydrodynamics where we see a contribution

γ =
σQB

2

ǫ+ P
(3.12)

to momentum relaxation arising from the magnetic field. This is a relativistic phenomenon

which, at least at weak coupling, is usually thought of as arising from collisions between

particles and holes undergoing cyclotron orbits in opposite directions [17].

9The time-dependent term proportional to λ is also not present in their model.
10With λ given by (2.23) this expression agrees with the momentum relaxation rate for this model derived

in [19].
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Magnetotransport. Armed with our expression for the fluid velocity we can now extract

the thermoelectric response coefficients of the boundary. To do this we insert (3.9) into

the constitutive relations for the currents. The Kadanoff-Martin prescription [17, 45] then

tells us that the electrical conductivity, σ+, the thermoelectric conductivity, α+, and heat

conductivity, κ̄+ can be read off as11

(

J+
Q+

)

=

(

σ+ α+

Tα+ κ̄+

)(

−∂+µ

−∂+T

)

Recalling the scalings ω ∼ B ∼ k2 ∼ ε2 this approach allows us to calculate the response

coefficients as a perturbation series in ε. We find that the electrical conductivity can be

written as

σ+(ω) =
4πρ2τ−1

k2s
+ σ0τ

−1 − iσQ(ω + ωc)

τ−1 + γ − i(ω − ωc)
+ . . . (3.13)

where the . . . are terms of O(ε2) and the expressions for τ−1 and ωc include the corrections

in (3.10) and (3.11). Note that there is a subtle, but important, distinction between the

parameters σ0 and σQ

σ0 =
1

16πGN

σQ =
1

16πGN

(

sT

ǫ+ P

)2

(3.14)

which are appearing in the electrical conductivity. It is then straightforward to extract the

usual components of the conductivity tensor as

σxx =
σ+ + σ−

2
σxy =

σ− − σ+
2i

(3.15)

The resulting expressions for the low-frequency electrical conductivities can then be writ-

ten as

σxx(ω) =

(

4πρ2τ−1

k2s
+ σ0τ

−1 − iσQω
)(

τ−1 − iω
)

(τ−1 + γ − iω)2 + ω2
c

σxy(ω) =
ωc

(

4πρ2τ−1

k2s
+ (σ0 + σQ)τ

−1 − 2iσQω
)

(τ−1 + γ − iω)2 + ω2
c

(3.16)

Similarly the thermoelectric conductivities are

αxx(ω) =

(

4πρτ−1

k2
+

iµσQω

T

)(

τ−1 − iω
)

(τ−1 + γ − iω)2 + ω2
c

αxy(ω) =
ωc

(

4πρτ−1

k2
+

sσQτ−1

ρ
+

iσQω

ρT
(µρ− sT )

)

(τ−1 + γ − iω)2 + ω2
c

(3.17)

11Note that at non-zero wavectors this prescription is more complicated due to the decay of initial

perturbations.
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and finally the heat conductivities are found to be

κ̄xx(ω) =

(

4πsTτ−1

k2
− iµ2σQω

T

)(

τ−1 − iω
)

+
σQB2

T

(τ−1 + γ − iω)2 + ω2
c

κ̄xy(ω) =
ωc

(

4πsTτ−1

k2
+

2iωµσQs

ρ
− µσQτ−1

ρT
(2sT + µρ)

)

(τ−1 + γ − iω)2 + ω2
c

(3.18)

where all these expressions are accurate up to corrections of O(ε2).

These formulae for the transport coefficients constitute one of the main novel results

of this paper. As we emphasised earlier, beyond leading order in ε they are different to

those presented in [17]. Nevertheless, we can perform perform various checks on their

consistency. Firstly, in the absence of momentum relaxation (i.e k = 0) they reduce to the

usual results of relativistic hydrodynamics.12

Secondly, we can compare to the AC transport coefficients at B = 0 that were previ-

ously derived for this model [15, 19]. It is immediately clear that, in the limit B → 0, we

reproduce these existing results. However we can do much better. The four-dimensional

action (2.1) exhibits an electromagnetic duality that fixes the transport coefficients of a

dyonic black hole in terms of those of a purely electrically charged black hole (see ap-

pendix A). The fact that our expressions are consistent with this duality provides strong

confirmation of our formulation of magnetohydrodynamics.

Finally, it is well known that within this model the DC transport coefficients can be

expressed exactly in terms of horizon data. We have checked that, to the order we are

working, the ω → 0 limit of our results agree with these formulae. Nevertheless, it is not

immediately clear from the way we have written (3.16) (3.17) and (3.18) in terms of ωc, γ

and τ−1 that this is the case. Whilst these are the natural variables that describe the

time-evolution of the fluid flow, we will see in the next section that there is an alternative

formulation of our hydrodynamics which is better suited to discussing the DC limit.

4 Hydrodynamics in the DC limit

In the last section we formulated our fluid-mechanics in the Landau-frame, such that

the constitutive relation for the momentum density was proportional to the fluid veloc-

ity T 0i = (ǫ+P )vi. This choice of frame was appropriate for studying the finite frequency

conductivity because the Ward identity (1.1) includes time derivatives of T 0i.

In the DC limit however, it is clear from (3.8) that within our model it is the heat cur-

rent, and not the momentum density, that plays the fundamental role.13 As we remarked

earlier, there is an ambiguity in the definition of the fluid velocity within relativistic hydro-

dynamics. We are therefore free to reformulate our constitutive relations in a new frame

by introducing a new fluid velocity v̄i such that the heat current can be written

Qi = sT v̄i (4.1)

12These can be found in [46, 47] or by setting τ−1
imp = 0 in equation (3.37) of [17].

13We do not have a deep understanding of why this is the case, but the same conclusion can be drawn

for very general holographic models from the results of [34, 35, 48].
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In practice this means that we are defining our new velocity through the relation

v̄i = vi −
µσQ
sT

(

− ∂iµ+ Fijvj + µ
∂iT

T

)

− µ2k2σQ
4πsT 2

vi + . . . (4.2)

Inserting this into the constitutive relations then allows us to write the electrical current

in terms of v̄i as

Ji = ρv̄i +

(

ǫ+ P

sT

)

σQ

(

− ∂iµ+ Fij v̄j + µ
∂iT

T

)

+

(

ǫ+ P

sT

)

µσQk
2

4πT
v̄i + . . . (4.3)

Finally, it will prove convenient to make one further manipulation of this equation. To

do this we recall that, at any given order in hydrodynamics, the various derivative terms

that can appear in the constitutive relations are not all independent [43]. Rather, they

are related by the hydrodynamic constraint equations, which arise from considering the

equations of motion for the currents at lower orders in the expansion. In particular, we

can use the O(ε2) expression for the Ward identity

(ǫ+ P )∂tv̄i + ρ∂iµ+ s∂iT = −k2s

4π
v̄i + ρFij v̄j (4.4)

to eliminate the ∼ k2 term in (4.3). This gives

Ji = ρv̄i + σ0

(

− ∂iµ+ Fij v̄j

)

− µσ0∂tv̄i + . . . (4.5)

where we note that in this new formulation it is now

σ0 =
1

16πGN

(4.6)

as opposed to σQ that appears naturally in the constitutive relation for the current.

DC transport coefficients. We emphasise that the constitutive relations (4.1) and (4.5)

are just as valid as those we presented in section 3. We are simply exploiting the ambiguities

of hydrodynamics to rewrite the theory in a new frame. The motivation for doing this, as

will now become clear, is that with these new constitutive relations the structure of the

DC limit is self-evident. Indeed, taking the ω → 0 we simply have

Ji = ρv̄i + σ0(−∂iµ+ Fij v̄j)

Qi = sT v̄i (4.7)

and can extract the transport coefficients by noticing that in the DC limit the Ward

identity (3.8) implies the constraint

ρ∂iµ+ s∂iT = − k2

4πT
Qi + FijJj (4.8)

which can be solved to determine the fluid velocity v̄i. We find that the complexified

velocity v̄+ = v̄x + iv̄y is given by

v̄+ = − ρ− iσ0B
k2s
4π + σ0B2 + iρB

∂+µ− s
k2s
4π + σ0B2 + iρB

∂+T (4.9)
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Inserting this expression into the DC constitutive relations (4.7) then allows us to read off

the thermoelectric response coefficients as

σxx =

k2s
4π

(

ρ2 + σ2
0B

2 + σ0k
2s

4π

)

(

k2s
4π + σ0B2

)2
+ ρ2B2

σxy =
ρB
(

ρ2 + σ2
0B

2 + 2σ0k
2s

4π

)

(

k2s
4π + σ0B2

)2
+ ρ2B2

αxx =
ρsk

2s
4π

(

k2s
4π + σ0B2

)2
+ ρ2B2

αxy =
sB
(

ρ2 + σ2
0B

2 + σ0k
2s

4π

)

(

k2s
4π + σ0B2

)2
+ ρ2B2

κ̄xx =
s2T

(

k2s
4π + σ0B

2
)

(

k2s
4π + σ0B2

)2
+ ρ2B2

κ̄xy =
ρBs2T

(

k2s
4π + σ0B2

)2
+ ρ2B2

(4.10)

To O(ε0), these expressions agree with the ω → 0 limit of the results in section 3.

However, it is worth emphasising that this agreement arises in a quite non-trivial manner.

It is tempting, say, to think that the ρ2B2 term in the denominators of (4.10) is the same

as the ω2
c factor in (3.16). Likewise one might try to associate (ǫ+P )τ−1 with the various

factors of k2s
4π . However, we have already seen that beyond leading order things are not so

simple — there are subleading corrections in (3.10) and (3.11) which are crucial in showing

that the ω → 0 limit of our AC expressions agrees with these formulae.

Exact DC hydrodynamics. Strictly speaking, we can only trust these expressions (4.7)

for the DC limit of the constitutive relations to O(ε2). Likewise we have only evaluated

the Ward identity up to O(ε4). Nevertheless, the results they imply for the DC conduc-

tivities (4.10) are nothing other than the exact formulae of [31]. In other words, they are

known to hold regardless of the strength of the magnetic field B or the scalar source k.

It is therefore natural to suggest that the constitutive relations (4.7) and the constraint

arising from the Ward identity (4.8) will continue to hold exactly, i.e. to all orders in our

derivative expansion.14

These observations are deeply connected to a beautiful recent paper by Donos and

Gauntlett [34] (similar ideas have been developed in [35, 48, 49].). There it was shown

that the DC conductivity of quite general holographic models can be understood from

solving the forced Navier-Stokes equations for a fluid living on the black hole horizon.

Remarkably this was an exact description, achieved without the need to take any sort of

hydrodynamical limit.

The DC constitutive relations that we have derived (4.7) for the boundary quantum

field theory are, for our model, just the same as the exact constitutive relation of the horizon

fluid in15 [34, 35]. Similarly, our expression for the fluid velocity, (4.9), is identical to that

obtained by solving the Navier-Stokes equation on the horizon. We therefore see that the

hydrodynamics of our boundary theory is precisely equivalent, in the DC limit, to that of

14However, we certainly should expect that at higher orders in the derivative expansion we will see

additional finite ω corrections to (3.8) and (4.3).
15For inhomogeneous models the relationship between the boundary theory and the horizon physics is

expected to be more complicated.
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the horizon fluid of Donos and Gauntlett. What we have demonstrated in this section is

how these equations, and hence the formulae (4.10), naturally arise in the boundary theory

through reformulating our hydrodynamics in terms of a new fluid velocity v̄i.
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A Electromagnetic duality

In this appendix we set 16πGN = 1 for convenience. Then the four dimensional Einstein-

Maxwell-Scalar action (2.1) exhibits an electromagnetic duality upon rotating the field

strength FMN into its Hodge dual
√−gǫMNPQF

PQ. This symmetry allows us to map the

electrically charged Reissner-Nordström black hole ((2.2) with uµ = (1, 0, 0)) into a dyonic

black hole.

Additionally, the duality acts on the perturbations of the black hole by rotating the cur-

rent J+ into the electric field iE+ [46, 50, 51]. As such it can be used to relate the transport

coefficients of the dyonic black hole to those of a purely electrically charged background.

In particular, letting σ+(ρ,B) = σxx(ρ,B)− iσxy(ρ,B) denote the conductivity of a dyonic

black brane with charges (ρ,B) we have the relation

σ+(ρ,B) =
iσ+(

√

ρ2 +B2, 0)cosθ − sinθ

icosθ − σ+(
√

q2 +B2, 0)sinθ
(A.1)

where tanθ = B/ρ. Similarly, there are corresponding expressions for the thermoelectric

α+(ρ,B) =
(

cosθ − iσ+(ρ,B)sinθ
)

α+(
√

ρ2 +B2, 0) (A.2)

and heat conductivities

κ̄+(ρ,B) = κ̄(
√

ρ2 +B2, 0)− iTα+(
√

ρ2 +B2, 0)α+(ρ,B)sinθ (A.3)

Note that this rotation completely determines the low frequency transport coefficients

(to O(ε0)) in terms of those previously calculated for the electrically charged black brane

in [15, 19]. We have checked that our expressions (3.16) (3.17) (3.18) satisfy these relations.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

– 14 –

http://creativecommons.org/licenses/by/4.0/


J
H
E
P
1
0
(
2
0
1
5
)
0
7
8

References

[1] G.T. Horowitz, J.E. Santos and D. Tong, Optical conductivity with holographic lattices,

JHEP 07 (2012) 168 [arXiv:1204.0519] [INSPIRE].

[2] G.T. Horowitz, J.E. Santos and D. Tong, Further evidence for lattice-induced scaling,

JHEP 11 (2012) 102 [arXiv:1209.1098] [INSPIRE].

[3] S.A. Hartnoll and D.M. Hofman, Locally critical resistivities from Umklapp scattering,

Phys. Rev. Lett. 108 (2012) 241601 [arXiv:1201.3917] [INSPIRE].

[4] D. Vegh, Holography without translational symmetry, arXiv:1301.0537 [INSPIRE].

[5] R.A. Davison, Momentum relaxation in holographic massive gravity,

Phys. Rev. D 88 (2013) 086003 [arXiv:1306.5792] [INSPIRE].

[6] T. Andrade and B. Withers, A simple holographic model of momentum relaxation,

JHEP 05 (2014) 101 [arXiv:1311.5157] [INSPIRE].

[7] A. Donos and J.P. Gauntlett, Holographic Q-lattices, JHEP 04 (2014) 040

[arXiv:1311.3292] [INSPIRE].

[8] M. Blake and D. Tong, Universal resistivity from holographic massive gravity,

Phys. Rev. D 88 (2013) 106004 [arXiv:1308.4970] [INSPIRE].

[9] M. Blake, D. Tong and D. Vegh, Holographic lattices give the graviton an effective mass,

Phys. Rev. Lett. 112 (2014) 071602 [arXiv:1310.3832] [INSPIRE].

[10] A. Donos and J.P. Gauntlett, Novel metals and insulators from holography,

JHEP 06 (2014) 007 [arXiv:1401.5077] [INSPIRE].

[11] B. Gouteraux, Charge transport in holography with momentum dissipation,

JHEP 04 (2014) 181 [arXiv:1401.5436] [INSPIRE].

[12] A. Donos, B. Gouteraux and E. Kiritsis, Holographic metals and insulators with helical

symmetry, JHEP 09 (2014) 038 [arXiv:1406.6351] [INSPIRE].

[13] A. Donos and J.P. Gauntlett, Thermoelectric DC conductivities from black hole horizons,

JHEP 11 (2014) 081 [arXiv:1406.4742] [INSPIRE].

[14] A. Amoretti, A. Braggio, N. Maggiore, N. Magnoli and D. Musso, Thermo-electric transport

in gauge/gravity models with momentum dissipation, JHEP 09 (2014) 160

[arXiv:1406.4134] [INSPIRE].

[15] M. Blake, Momentum relaxation from the fluid/gravity correspondence, JHEP 09 (2015) 010

[arXiv:1505.06992] [INSPIRE].

[16] A. Lucas, Conductivity of a strange metal: from holography to memory functions,

JHEP 03 (2015) 071 [arXiv:1501.05656] [INSPIRE].

[17] S.A. Hartnoll, P.K. Kovtun, M. Muller and S. Sachdev, Theory of the Nernst effect near

quantum phase transitions in condensed matter and in dyonic black holes,

Phys. Rev. B 76 (2007) 144502 [arXiv:0706.3215] [INSPIRE].

[18] A. Lucas and S. Sachdev, Memory matrix theory of magnetotransport in strange metals,

Phys. Rev. B 91 (2015) 195122 [arXiv:1502.04704] [INSPIRE].

[19] R.A. Davison and B. Gouteraux, Momentum dissipation and effective theories of coherent

and incoherent transport, JHEP 01 (2015) 039 [arXiv:1411.1062] [INSPIRE].

– 15 –

http://dx.doi.org/10.1007/JHEP07(2012)168
http://arxiv.org/abs/1204.0519
http://inspirehep.net/search?p=find+EPRINT+arXiv:1204.0519
http://dx.doi.org/10.1007/JHEP11(2012)102
http://arxiv.org/abs/1209.1098
http://inspirehep.net/search?p=find+EPRINT+arXiv:1209.1098
http://dx.doi.org/10.1103/PhysRevLett.108.241601
http://arxiv.org/abs/1201.3917
http://inspirehep.net/search?p=find+EPRINT+arXiv:1201.3917
http://arxiv.org/abs/1301.0537
http://inspirehep.net/search?p=find+EPRINT+arXiv:1301.0537
http://dx.doi.org/10.1103/PhysRevD.88.086003
http://arxiv.org/abs/1306.5792
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.5792
http://dx.doi.org/10.1007/JHEP05(2014)101
http://arxiv.org/abs/1311.5157
http://inspirehep.net/search?p=find+EPRINT+arXiv:1311.5157
http://dx.doi.org/10.1007/JHEP04(2014)040
http://arxiv.org/abs/1311.3292
http://inspirehep.net/search?p=find+EPRINT+arXiv:1311.3292
http://dx.doi.org/10.1103/PhysRevD.88.106004
http://arxiv.org/abs/1308.4970
http://inspirehep.net/search?p=find+EPRINT+arXiv:1308.4970
http://dx.doi.org/10.1103/PhysRevLett.112.071602
http://arxiv.org/abs/1310.3832
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.3832
http://dx.doi.org/10.1007/JHEP06(2014)007
http://arxiv.org/abs/1401.5077
http://inspirehep.net/search?p=find+EPRINT+arXiv:1401.5077
http://dx.doi.org/10.1007/JHEP04(2014)181
http://arxiv.org/abs/1401.5436
http://inspirehep.net/search?p=find+EPRINT+arXiv:1401.5436
http://dx.doi.org/10.1007/JHEP09(2014)038
http://arxiv.org/abs/1406.6351
http://inspirehep.net/search?p=find+EPRINT+arXiv:1406.6351
http://dx.doi.org/10.1007/JHEP11(2014)081
http://arxiv.org/abs/1406.4742
http://inspirehep.net/search?p=find+EPRINT+arXiv:1406.4742
http://dx.doi.org/10.1007/JHEP09(2014)160
http://arxiv.org/abs/1406.4134
http://inspirehep.net/search?p=find+EPRINT+arXiv:1406.4134
http://dx.doi.org/10.1007/JHEP09(2015)010
http://arxiv.org/abs/1505.06992
http://inspirehep.net/search?p=find+EPRINT+arXiv:1505.06992
http://dx.doi.org/10.1007/JHEP03(2015)071
http://arxiv.org/abs/1501.05656
http://inspirehep.net/search?p=find+EPRINT+arXiv:1501.05656
http://dx.doi.org/10.1103/PhysRevB.76.144502
http://arxiv.org/abs/0706.3215
http://inspirehep.net/search?p=find+EPRINT+arXiv:0706.3215
http://dx.doi.org/10.1103/PhysRevB.91.195122
http://arxiv.org/abs/1502.04704
http://inspirehep.net/search?p=find+EPRINT+arXiv:1502.04704
http://dx.doi.org/10.1007/JHEP01(2015)039
http://arxiv.org/abs/1411.1062
http://inspirehep.net/search?p=find+EPRINT+arXiv:1411.1062


J
H
E
P
1
0
(
2
0
1
5
)
0
7
8

[20] A. Donos and S.A. Hartnoll, Interaction-driven localization in holography,

Nature Phys. 9 (2013) 649 [arXiv:1212.2998] [INSPIRE].

[21] R.A. Davison and B. Gouteraux, Dissecting holographic conductivities, JHEP 09 (2015) 090

[arXiv:1505.05092] [INSPIRE].

[22] K.-Y. Kim, K.K. Kim, Y. Seo and S.-J. Sin, Coherent/incoherent metal transition in a

holographic model, JHEP 12 (2014) 170 [arXiv:1409.8346] [INSPIRE].

[23] S.A. Hartnoll, Theory of universal incoherent metallic transport, Nature Phys. 11 (2015) 54

[arXiv:1405.3651] [INSPIRE].

[24] T.R. Chien, Z.Z. Wang and N.P. Ong, Effect of Zn Impurities on the normal-state Hall angle

in single crystal YBa2Cu3−xZnxO7−δ, Phys. Rev. Lett. 67 (1991) 2088.

[25] M. Blake and A. Donos, Quantum critical transport and the Hall angle,

Phys. Rev. Lett. 114 (2015) 021601 [arXiv:1406.1659] [INSPIRE].

[26] V.E. Hubeny, S. Minwalla and M. Rangamani, The fluid/gravity correspondence,

arXiv:1107.5780 [INSPIRE].

[27] S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear fluid dynamics

from gravity, JHEP 02 (2008) 045 [arXiv:0712.2456] [INSPIRE].

[28] N. Banerjee, J. Bhattacharya, S. Bhattacharyya, S. Dutta, R. Loganayagam and P. Surowka,

Hydrodynamics from charged black branes, JHEP 01 (2011) 094 [arXiv:0809.2596]

[INSPIRE].

[29] J. Erdmenger, M. Haack, M. Kaminski and A. Yarom, Fluid dynamics of R-charged black

holes, JHEP 01 (2009) 055 [arXiv:0809.2488] [INSPIRE].

[30] S. Bhattacharyya, R. Loganayagam, S. Minwalla, S. Nampuri, S.P. Trivedi and S.R. Wadia,

Forced fluid dynamics from gravity, JHEP 02 (2009) 018 [arXiv:0806.0006] [INSPIRE].

[31] M. Blake, A. Donos and N. Lohitsiri, Magnetothermoelectric response from holography,

JHEP 08 (2015) 124 [arXiv:1502.03789] [INSPIRE].

[32] A. Amoretti and D. Musso, Magneto-transport from momentum dissipating holography,

JHEP 09 (2015) 094 [arXiv:1502.02631] [INSPIRE].

[33] K.-Y. Kim, K.K. Kim, Y. Seo and S.-J. Sin, Thermoelectric conductivities at finite magnetic

field and the Nernst effect, JHEP 07 (2015) 027 [arXiv:1502.05386] [INSPIRE].

[34] A. Donos and J.P. Gauntlett, Navier-Stokes on black hole horizons and DC thermoelectric

conductivity, arXiv:1506.01360 [INSPIRE].

[35] E. Banks, A. Donos and J.P. Gauntlett, Thermoelectric DC conductivities and Stokes flows

on black hole horizons, arXiv:1507.00234 [INSPIRE].

[36] M.J. Bhaseen, A. G. Green, S. L. Sondhi, Magnetothermoelectric response at a

superfluid-Mott insulator transition, Phys. Rev. Lett. 98 (2007) 179901 [cond-mat/0610687].

[37] M.J. Bhaseen, A.G. Green and S.L. Sondhi, Magnetothermoelectric response near quantum

critical points, Phys. Rev. B 79 (2009) 094502 [arXiv:0811.0269].

[38] M.M. Caldarelli, O.J.C. Dias and D. Klemm, Dyonic AdS black holes from

magnetohydrodynamics, JHEP 03 (2009) 025 [arXiv:0812.0801] [INSPIRE].

[39] J. Hansen and P. Kraus, Nonlinear magnetohydrodynamics from gravity,

JHEP 04 (2009) 048 [arXiv:0811.3468] [INSPIRE].

– 16 –

http://dx.doi.org/10.1038/nphys2701
http://arxiv.org/abs/1212.2998
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.2998
http://dx.doi.org/10.1007/JHEP09(2015)090
http://arxiv.org/abs/1505.05092
http://inspirehep.net/search?p=find+EPRINT+arXiv:1505.05092
http://dx.doi.org/10.1007/JHEP12(2014)170
http://arxiv.org/abs/1409.8346
http://inspirehep.net/search?p=find+EPRINT+arXiv:1409.8346
http://dx.doi.org/10.1038/nphys3174
http://arxiv.org/abs/1405.3651
http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.3651
http://dx.doi.org/10.1103/PhysRevLett.114.021601
http://arxiv.org/abs/1406.1659
http://inspirehep.net/search?p=find+EPRINT+arXiv:1406.1659
http://arxiv.org/abs/1107.5780
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.5780
http://dx.doi.org/10.1088/1126-6708/2008/02/045
http://arxiv.org/abs/0712.2456
http://inspirehep.net/search?p=find+EPRINT+arXiv:0712.2456
http://dx.doi.org/10.1007/JHEP01(2011)094
http://arxiv.org/abs/0809.2596
http://inspirehep.net/search?p=find+EPRINT+arXiv:0809.2596
http://dx.doi.org/10.1088/1126-6708/2009/01/055
http://arxiv.org/abs/0809.2488
http://inspirehep.net/search?p=find+EPRINT+arXiv:0809.2488
http://dx.doi.org/10.1088/1126-6708/2009/02/018
http://arxiv.org/abs/0806.0006
http://inspirehep.net/search?p=find+EPRINT+arXiv:0806.0006
http://dx.doi.org/10.1007/JHEP08(2015)124
http://arxiv.org/abs/1502.03789
http://inspirehep.net/search?p=find+EPRINT+arXiv:1502.03789
http://dx.doi.org/10.1007/JHEP09(2015)094
http://arxiv.org/abs/1502.02631
http://inspirehep.net/search?p=find+EPRINT+arXiv:1502.02631
http://dx.doi.org/10.1007/JHEP07(2015)027
http://arxiv.org/abs/1502.05386
http://inspirehep.net/search?p=find+EPRINT+arXiv:1502.05386
http://arxiv.org/abs/1506.01360
http://inspirehep.net/search?p=find+EPRINT+arXiv:1506.01360
http://arxiv.org/abs/1507.00234
http://inspirehep.net/search?p=find+EPRINT+arXiv:1507.00234
http://dx.doi.org/10.1103/PhysRevLett.98.179901
http://arxiv.org/abs/cond-mat/0610687
http://dx.doi.org/10.1103/PhysRevB.79.094502
http://arxiv.org/abs/0811.0269
http://dx.doi.org/10.1088/1126-6708/2009/03/025
http://arxiv.org/abs/0812.0801
http://inspirehep.net/search?p=find+EPRINT+arXiv:0812.0801
http://dx.doi.org/10.1088/1126-6708/2009/04/048
http://arxiv.org/abs/0811.3468
http://inspirehep.net/search?p=find+EPRINT+arXiv:0811.3468


J
H
E
P
1
0
(
2
0
1
5
)
0
7
8

[40] D.T. Son and P. Surowka, Hydrodynamics with triangle anomalies,

Phys. Rev. Lett. 103 (2009) 191601 [arXiv:0906.5044] [INSPIRE].

[41] T. Kalaydzhyan and I. Kirsch, Fluid/gravity model for the chiral magnetic effect,

Phys. Rev. Lett. 106 (2011) 211601 [arXiv:1102.4334] [INSPIRE].

[42] Y.-P. Hu and J.-H. Zhang, Gravity/fluid correspondence and its application on bulk gravity

with U(1) gauge field, Adv. High Energy Phys. 2014 (2014) 483814 [arXiv:1311.3974]

[INSPIRE].

[43] P. Kovtun, Lectures on hydrodynamic fluctuations in relativistic theories,

J. Phys. A 45 (2012) 473001 [arXiv:1205.5040] [INSPIRE].

[44] L. D. Landau and E. M. Lifshitz, The classical theory of fields, Butterworth-Heinemann,

Oxford U.K. (1987).

[45] L.P. Kadanoff and P.C. Martin, Hydrodynamic equations and correlation functions, Ann.

Phys. 24 (1963) 419.

[46] S.A. Hartnoll and C.P. Herzog, Ohm’s Law at strong coupling: S duality and the cyclotron

resonance, Phys. Rev. D 76 (2007) 106012 [arXiv:0706.3228] [INSPIRE].

[47] J. Lindgren, I. Papadimitriou, A. Taliotis and J. Vanhoof, Holographic Hall conductivities

from dyonic backgrounds, JHEP 07 (2015) 094 [arXiv:1505.04131] [INSPIRE].

[48] A. Lucas, Hydrodynamic transport in strongly coupled disordered quantum field theories,

arXiv:1506.02662 [INSPIRE].

[49] S. Grozdanov, A. Lucas, S. Sachdev and K. Schalm, Absence of disorder-driven

metal-insulator transitions in simple holographic models, arXiv:1507.00003 [INSPIRE].

[50] C.P. Herzog, P. Kovtun, S. Sachdev and D.T. Son, Quantum critical transport, duality and

M-theory, Phys. Rev. D 75 (2007) 085020 [hep-th/0701036] [INSPIRE].

[51] K. Goldstein, N. Iizuka, S. Kachru, S. Prakash, S.P. Trivedi and A. Westphal, Holography of

dyonic dilaton black branes, JHEP 10 (2010) 027 [arXiv:1007.2490] [INSPIRE].

– 17 –

http://dx.doi.org/10.1103/PhysRevLett.103.191601
http://arxiv.org/abs/0906.5044
http://inspirehep.net/search?p=find+EPRINT+arXiv:0906.5044
http://dx.doi.org/10.1103/PhysRevLett.106.211601
http://arxiv.org/abs/1102.4334
http://inspirehep.net/search?p=find+EPRINT+arXiv:1102.4334
http://dx.doi.org/10.1155/2014/483814
http://arxiv.org/abs/1311.3974
http://inspirehep.net/search?p=find+EPRINT+arXiv:1311.3974
http://dx.doi.org/10.1088/1751-8113/45/47/473001
http://arxiv.org/abs/1205.5040
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.5040
http://dx.doi.org/10.1103/PhysRevD.76.106012
http://arxiv.org/abs/0706.3228
http://inspirehep.net/search?p=find+EPRINT+arXiv:0706.3228
http://dx.doi.org/10.1007/JHEP07(2015)094
http://arxiv.org/abs/1505.04131
http://inspirehep.net/search?p=find+EPRINT+arXiv:1505.04131
http://arxiv.org/abs/1506.02662
http://inspirehep.net/search?p=find+EPRINT+arXiv:1506.02662
http://arxiv.org/abs/1507.00003
http://inspirehep.net/search?p=find+EPRINT+arXiv:1507.00003
http://dx.doi.org/10.1103/PhysRevD.75.085020
http://arxiv.org/abs/hep-th/0701036
http://inspirehep.net/search?p=find+EPRINT+hep-th/0701036
http://dx.doi.org/10.1007/JHEP10(2010)027
http://arxiv.org/abs/1007.2490
http://inspirehep.net/search?p=find+EPRINT+arXiv:1007.2490

	Introduction
	The fluid/gravity correspondence
	Thermoelectric response coefficients
	Hydrodynamics in the DC limit 
	Electromagnetic duality

