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Abstract: We construct a generalization of the JIMWLK Hamiltonian, going beyond the

eikonal approximation, which governs the high-energy evolution of the scattering between

a dilute projectile and a dense target with an arbitrary longitudinal extent (a nucleus, or

a slice of quark-gluon plasma). Different physical regimes refer to the ratio L/τ between

the longitudinal size L of the target and the lifetime τ of the gluon fluctuations. When

L/τ � 1, meaning that the target can be effectively treated as a shockwave, we recover

the JIMWLK Hamiltonian, as expected. When L/τ � 1, meaning that the fluctuations

live inside the target, the new Hamiltonian governs phenomena like transverse momentum

broadening and radiative energy loss, which accompany the propagation of an energetic

parton through a dense QCD medium. Using this Hamiltonian, we derive a non-linear

equation for the dipole amplitude (a generalization of the BK equation), which describes

the high-energy evolution of jet quenching. As compared to the original BK-JIMWLK evo-

lution, the new evolution is remarkably different: the plasma saturation momentum evolves

much faster with increasing energy (or decreasing Bjorken’s x) than the corresponding scale

for a shockwave. This widely opens the transverse phase-space for the evolution in the vicin-

ity of the saturation line and implies the existence of large radiative corrections, enhanced

by the double logarithm ln2(LT ), with T the temperature of the medium. This confirms

from a wider perspective a recent result by Liou, Mueller, and Wu (arXiv:1304.7677). The

dominant, double-logarithmic, corrections to the dipole amplitude are smooth enough to

be absorbed into a renormalization of the jet quenching parameter q̂. This renormalization

is universal: it applies to all the phenomena, like the transverse momentum broadening or

the radiative energy loss, which can be computed from the dipole amplitude.
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1 Introduction

The concept of jet quenching globally denotes the modifications in the properties of a ‘hard

probe’ (an energetic parton, or the jet generated by its evolution) which occur when this

‘jet’ propagates through the dense QCD matter (‘quark-gluon plasma’) created in the in-

termediate stages of a ultrarelativistic nucleus-nucleus collision [1–5]. This encompasses

– 1 –



J
H
E
P
1
0
(
2
0
1
4
)
0
9
5

several related phenomena like the transverse momentum broadening, the (radiative) en-

ergy loss, or the jet fragmentation via medium-induced gluon branching, and also the

associated observables, like the nuclear modification factor, or the di-jet asymmetry. A

common denominator of these phenomena is that, within most of their theoretical descrip-

tions to date, they depend upon the medium properties via a single parameter: a transport

coefficient known as the ‘jet quenching parameter’ q̂. This explains the importance of this

quantity q̂ for both theory and phenomenology, and motivates the recent attempts to obtain

better estimates for it from first principles, at least in special cases [6–11].

Roughly speaking, the jet quenching parameter measures the dispersion in transverse

momentum accumulated by a fast parton after crossing the medium over a distance L:

〈p2
⊥〉 ' q̂L. At weak coupling, the dominant mechanism responsible for this dispersion is

multiple scattering off the medium constituents. At leading order in αs, q̂ can be computed

as the second moment of the ‘collision kernel’ (see section 4.1 for details). Beyond leading

order, one needs a non-perturbative definition for 〈p2
⊥〉. The one that we shall adopt here

and which is often used in the literature involves the ‘color dipole’, a light-like Wilson loop

in the color representation of the fast parton. Physically, this Wilson loop describes the

S-matrix S(r) for a small ‘color dipole’ (say, a quark-antiquark pair in a color singlet state)

with transverse size r which propagates through the medium. Via unitarity, the Fourier

transform of S(r) determines the transverse-momentum distribution dN/d2p of the parton

when it exits the medium [12, 13]. At tree-level, these definitions imply 〈p2
⊥〉(0) ' q̂(0)(L)L,

with q̂(0)(L) logarithmically dependent upon the medium size L. This dependence enters

via the resolution of the scattering process: the transverse momenta transferred by the

collision can be as large as the ‘saturation momentum’ Q2
s(L) ≡ q̂L. Beyond leading order,

it is a priori unclear whether the notion of ‘jet quenching parameter’ (as a quasi-local

transport coefficient) is still useful, or even well-defined. Our criterion in that sense will

be to check whether a formula like 〈p2
⊥〉 ' q̂(L)L does still hold, with q̂(L) a reasonably

smooth function.

This criterion appears to be satisfied for the two classes of next-to-leading order cor-

rections to 〈p2
⊥〉 ' q̂L that have been considered so far and which correspond to very

different kinematical regimes [7, 9]. For a weakly-coupled quark-gluon plasma (QGP)

with temperature T , Caron-Huot has computed the corrections of O(g) to the ‘collision

kernel’, as generated by the soft, highly-populated, thermal modes, with energies and mo-

menta . gT [7]. (The corresponding leading-order value has been computed by Arnold

and Xiao [6].) These corrections do not modify the logarithmic dependence of q̂ upon

the medium size L, which is rather introduced by the hardest collisions, with transferred

momenta k⊥ ∼ Qs. (Throughout this paper, we assume that Qs(L)� T .)

By contrast, in ref. [9], Liou, Mueller, and Wu have studied the relatively hard and

nearly on-shell gluon fluctuations, with large transverse momenta p⊥ � T and even larger

longitudinal momenta p3 ' p0 � p⊥ (in the plasma rest frame). Such fluctuations, which

are most naturally viewed as bremsstrahlung by the projectile, are not sensitive to the

detailed properties of the medium. They depend upon the latter only via the tree-level

value q̂(0) of the jet quenching parameter and via two basic scales — the longitudinal

size L and the wavelength λ of the typical medium constituents (with λ = 1/T for the
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QGP) — which constrain the phase-space for bremsstrahlung. Ref. [9] found large one-

loop corrections1 to 〈p2
⊥〉, of relative order αsNc ln2(L/λ), where the double logarithm

comes from the phase-space: one logarithm is generated by integrating over the lifetime

τ ∼ p0/p2
⊥ of the fluctuations, over the range λ � τ � L, and the other one comes

from the respective transverse momenta, within the interval q̂τ � p2
⊥ � Q2

s(L). The

lower limit q̂τ on p2
⊥ refers to multiple scattering: the condition p2

⊥ � q̂τ means that the

relevant fluctuations are hard enough to suffer only one scattering during their lifetime.

Physically, these radiative corrections express the contribution to the transverse momentum

broadening coming from the recoil associated with unresolved emissions.

It is important to notice that the medium size L sets the upper limit on the lifetime τ of

the fluctuations, hence on their energy p0. Accordingly, when increasing L, one opens the

phase-space for fluctuations which are more and more energetic. Such fluctuations can then

evolve towards lower energies, via soft gluon emissions. This evolution is represented by

Feynman graphs of higher-loop order (gluon cascades which are strongly ordered in energy),

which are enhanced by the phase-space: the powers of ᾱ ≡ αsNc/π associated with soft

gluon emissions can be accompanied by either double, or at least single, logarithms of L/λ,

depending upon the kinematics of the emissions. Ref. [9] not only computed the first step in

this evolution, for both the double-logarithmic and the single-logarithmic corrections, but

also provided a simple recipe for resuming the corrections enhanced by double-logarithms

to all orders. This resummation is tantamount to a renormalization of the jet quenching

parameter, although this interpretation has not been explicitly spelled out in [9]. In fact,

the suggestion that the double logarithmic correction calculated in [9] could be interpreted

as a renormalization of q̂, with a universal character, was first made by Mehtar-Tani [15]

and later developed (in the special context of the radiative energy loss) by Blaizot and

Mehtar-Tani [16].

Yet, already the one-loop calculation of the single–logarithmic corrections in ref. [9]

has met with several difficulties, reflecting the lack of a systematic theoretical framework

for this complicated, non-linear, evolution. Namely, in order to compute the effects of

order ᾱ ln(L/λ), one had to estimate the effects of multiple scattering beyond the eikonal

approximation and also to heuristically include the ‘virtual’ corrections responsible for

probability conservation, that were otherwise missed by that analysis. Vice-versa, the

only reason why the double-logarithmic corrections appear to be comparatively simple, is

because they are neither sensitive to multiple scattering (except for the restriction on their

phase-space), nor to the effects of the ‘virtual’ corrections.

We thus see that the subset of radiative corrections which are enhanced by powers

of ln2(L/λ) play a special role in the in-medium evolution of dipole S-matrix: they form

an ‘island’ of effectively linear evolution (so they are relatively easy to compute), they

dominate in the limit of a large medium L � λ, and they are smooth enough to be

absorbed into a redefinition of q̂. Such considerations demonstrate the importance of the

double-logarithmic approximation (DLA) for the high-energy evolution of jet quenching.

1See also ref. [14] for a similar but earlier observation, which has motivated the more elaborate analysis

in ref. [9].
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It will be one of our main objectives in this paper to understand the emergence of this

approximation from a more general perspective and with a clear physical interpretation.

This is indeed non-trivial, as we now explain.

By itself, the prominence of DLA within the pQCD evolution is not new — it is a

rather generic consequence of the soft and collinear divergences of the bremsstrahlung.

Other familiar examples include the fragmentation of a virtual jet in the vacuum [17], or

the evolution of the gluon distribution in the ‘double-leading-log-approximation’ (a com-

mon limit of the DGLAP and BFKL equations [18]). What is surprising though, is the

importance of such an approximation in the context of a non-linear evolution. All the

other examples listed above refer to linear processes. And in the only other example of

a non-linear pQCD evolution at our disposal — the BK-JIMWLK evolution of the gluon

distribution in a large nucleus (or of particle production in proton-nucleus collisions) [19–

29] —, it is well known that the DLA becomes a good approximation only in the linear

regime at very large transverse momenta k⊥ � Qs, or very small dipole sizes r � 1/Qs.

But this is not the most interesting regime for a study of jet quenching. Indeed, as we shall

later argue, phenomena like p⊥-broadening and the radiative energy loss are controlled by

dipole sizes in the vicinity of the saturation line: r . 1/Qs. The evolution in this regime

turns out to be very different in the context of jet quenching as compared to pA collisions.

To better appreciate the differences, let us first remind that, for a nuclear target, the

high-energy evolution of the dipole S-matrix is governed by the non-linear BK equation [19,

20]. Both the non-linear effects in this equation (corresponding to multiple scattering and

gluon saturation in the target) and the ‘virtual’ corrections (for probability conservation)

are important in the approach towards saturation. Together, they imply a drastic change in

the behavior of the scattering amplitude T (r) ≡ 1−S(r) for r . 1/Qs: the corresponding

result at tree-level, T (0)(r) ∼ r2 ln r2, gets replaced via the evolution by T (r) ∼ r2γs with

γs ' 0.63 a non-perturbative anomalous dimension [30–33]. If a similar change of behavior

was to occur also in the problem of jet quenching, it could not be simply absorbed into a

redefinition of q̂. Vice-versa, if the dominant radiative corrections to jet quenching appear

to be consistent with a mere renormalization of q̂ [9, 15, 16], it is essentially because, in this

particular context, the DLA remains valid in the vicinity of the saturation line. Indeed,

as we shall demonstrate in section 4.3.2, the DLA evolution preserves the same functional

form for S(r) as at tree-level, except for the replacement of the tree-level jet quenching

parameter q̂(0) by its renormalized value q̂(L), which obeys eq. (4.42). In turn, this implies

the universality of the renormalization of the jet quenching parameter, to DLA accuracy:

all the quantities that can be computed from the dipole S-matrix get renormalized simply

via the appropriate redefinition of q̂.

We are now in a position to describe the new developments in this paper. To demon-

strate the key ideas alluded to above, like the emergence of the DLA in the approach

towards saturation, or the universality of the renormalization of q̂, and also to be able to

go beyond DLA (at least in principle), one needs a theory for the non-linear evolution of

jet quenching. That is, one needs equations describing the evolution of observables like

the dipole S-matrix under a change in the medium size L, within the high-energy approx-

imations. In what follows, we shall develop such a theory via a suitable generalization of
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the BK-JIMWLK evolution. Like the latter, the new theory is valid to leading logarithmic

accuracy, meaning that it resums terms of order (ᾱ lnL/λ)n for any n ≥ 1 together with the

non-linear effects associated with multiple scattering and gluon saturation in the medium.

However, and unlike for the BK-JIMWLK evolution, the logarithmic enhancement for the

in-medium evolution is not easy to demonstrate in full generality, because of the non-local

structure of the multiple scattering in time (equivalently, because of the failure of the

eikonal approximation; see below). This being said, we shall be able to demonstrate this

enhancement in the single scattering approximation (see section 4.3) and also for multiple

scattering under specific approximations (see section 4.5).

In developing the formalism below, it will be convenient to assume that the projectile

enters the medium from the outside and that it was on-shell prior to the collision. This

guarantees that the quantum fluctuations which matter for the evolution of the S-matrix

are generated exclusively via interactions in the target.2 Then the main difference between

the evolution of jet quenching and that of pA collisions refers to the ratio between the

longitudinal extent L of the target and the lifetime τ of the gluon fluctuations. In pA

collisions, the center-of-mass energy is so high that the nuclear target looks effectively like

a shockwave (L � τ), due to Lorentz contraction. Then the multiple scattering can be

treated in the strict eikonal approximation, which assumes that the transverse coordinates

of the projectile partons are not affected by their interactions in the medium. By contrast,

in the context of jet quenching, the energies are much lower and the typical fluctuations live

inside the medium (L & τ), so the effects of the multiple scattering can accumulate during

their whole lifetime. Then the strict eikonal approximation is not applicable anymore,

although the individual scatterings are still soft: one cannot ignore the transverse motion

of the fluctuations during their lifetime.

These considerations also show that these two problems, pA collisions and jet quench-

ing, can be viewed as limiting situations of a common set-up: the high-energy scattering

between a dilute projectile and a dense target with an arbitrary longitudinal extent. This

is the first problem that we shall address and solve in this paper. Specifically, in section 2

and appendix A, we shall construct an effective Hamiltonian which, when acting on the

S-matrix of the projectile (a gauge-invariant product of Wilson lines), generates one addi-

tional soft gluon emission in the background of a strong color field representing the medium.

(The medium correlations are reproduced by averaging over this background field, in the

spirit of the color glass condensate [35, 36].) This Hamiltonian provides a generalization

of the JIMWLK Hamiltonian beyond the eikonal approximation. It looks compact and

simple, but it is less explicit than the JIMWLK Hamiltonian, in the sense that the inte-

grals over the emission times cannot be performed in general (i.e. for an arbitrary target).

Accordingly, the general Hamiltonian is non-local both in the transverse coordinates and

in the light-cone (LC) times. The formal manipulations with this Hamiltonian are compli-

cated by potential (infrared and ultraviolet) divergences which require prescriptions at the

2If the projectile is produced by a hard process occurring inside the medium or at some finite distance

from it, then there is additional radiation, associated with the initial virtuality, that would mix with the

evolution that we are here interested in (see e.g. the discussion in [34]). By choosing an on-shell projectile,

we avoid this mixing.
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intermediate steps and cancel only in the final results. In section 2.2, we demonstrate a

general mechanism ensuring such cancellations — this involves a particular ‘sum-rule’ for

the gluon propagator in the LC gauge, eq. (2.13) — and clarify its connexion to probabil-

ity conservation. In particular, we show that the ‘virtual’ corrections can be alternatively

implemented as a local ‘counter-term’, which is particularly convenient when the target is

an extended medium.

As a first test of the new Hamiltonian and of our ability to use it in practice, we consider

in section 3 the example of a shockwave target (L � τ). In that case, the integrals over

the emission times can be explicitly performed (the adiabatic prescription for regulating

the large time behavior turns out to be important for that purpose) and, as a result, we

recover the JIMWLK Hamiltonian [21–29], as expected. We also show that the ‘counter-

term’ alluded to above generates the ‘virtual’ piece in the BK equation — once again,

as expected.

Starting with section 4, we turn to the case of an extended target (L� τ), as appro-

priate for the problem of jet quenching. The general equations generated by the evolution

Hamiltonian in that case are extremely complicated (see section 4.2): they are non-local in

LC time (since gluon emissions can occur anywhere inside the medium and they can have

any lifetime τ) and also functional (the transverse trajectories of the gluon fluctuations

are random, due to quantum diffusion, and distributed according to a path-integral). An

useful approximation is to assume that the medium correlations are Gaussian and local in

LC time. (A similar mean field approximation has proven to be successful in the case of

the BK-JIMWLK equations [35, 37–44].) Under this assumption, the equation obeyed by

the dipole S-matrix takes the form shown in eqs. (4.22) or (4.24), which is recognized as

a functional generalization of the BK equation. It remains as an open question whether

such an equation can be solved via numerical methods.

Our main point though is that, for the present purposes — i.e. for a study of the

leading-order evolution of the jet quenching in the limit L � λ —, one can drastically

simplify this equation and even obtain analytic results. This is so because the dominant

radiative corrections are those enhanced by the double logarithm ln2(L/λ) [9] and they are

encoded into a much simpler, linear, version of eq. (4.24), which corresponds to a single

scattering approximation (see section 4.3). A subtle point in this context is the fact that

the relevant linear approximation is not the BFKL equation (4.29), as it would be for a

shockwave, but rather its simpler, double-logarithmic, version in eq. (4.33). This follows

from a study of the phase-space for the linear evolution, as constrained by the non-linear

effects in eq. (4.24). As anticipated, the DLA preserves the tree-level functional form of the

dipole S-matrix and thus can be written as an equation for the renormalized jet quenching

parameter q̂(L), namely eq. (4.42). This is equivalent with the resummation performed

in [9] in the context of p⊥-broadening and also with the equation inferred from Feynman

graphs in [15, 16] in the context of radiative energy loss. Eq. (4.42) differs from the

standard DLA equation in the literature [18] via the integration limits, which here reflect

the non-linear physics of multiple scattering. The solution q̂(L) to this equation shows a

stronger dependence upon the medium size L than at tree-level, due to the non-locality of

the radiative corrections.

Given the central role played here by the DLA and the difference in that respect with

the case of a shockwave, it is interesting to understand the emergence of this approximation
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on more physical grounds. As we explain in section 4.4, this is related to the special way

how gluon saturation occurs in a medium: the non-linear effects in the evolution of the

dipole amplitude can be also understood as saturation effects in the gluon distribution

in the medium, but with a saturation scale Q2
s(x) which increases very fast with 1/x —

much faster than the corresponding scale for a shockwave. (x = λ/τ is the longitudinal

momentum fraction of the gluons.) Specifically, one finds Q2
s(x) = q̂λ/x, which rises as

1/x already at tree-level. The physical explanation is quite simple: the quantity Q2
s(x) is

proportional with the longitudinal size of the region where the gluons can overlap with each

other; for gluons inside the medium, this region is their wavelength τ = λ/x. This rapid

rise of Q2
s(x) with 1/x, which becomes even more pronounced after taking into account

the small-x evolution of q̂ (see eq. (4.63)), implies that the transverse phase-space for the

high-energy evolution towards saturation grows as fast as the longitudinal one. In turn,

this creates the conditions for a double-logarithmic evolution.3 By contrast, in the case of a

shockwave, the x-dependence of Q2
s(x) is perturbatively small (since a consequence of the

evolution), so the transverse phase-space increases much slower than the longitudinal one

in the approach towards saturation.

As a final application, we consider in section 5 the evolution of the radiative energy loss,

within the framework of the BDMPSZ mechanism for medium-induced gluon radiation [46–

56]. This is essentially a variation of the problem discussed in section 4, in the sense that

the BDMPSZ spectrum is itself related to the dipole S-matrix. The only new feature is

that, now, the eikonal approximation fails not only for the soft gluon fluctuation responsible

for the evolution, but also for its relatively hard parent gluon, which is responsible for the

energy loss. That is, one has to study the evolution of a non-eikonal dipole. Yet, this

brings no serious difficulty because of the strong separation in energy, hence in lifetime,

between the fluctuations and the radiation. In particular, at DLA, the evolution of the

radiative energy loss is obtained by simply using the renormalized value of q̂ (the solution

to eq. (4.42)) within the respective formula at tree-level, in agreement with refs. [15, 16].

Section 6 briefly summarizes our results and conclusions and lists some open problems.

2 The evolution Hamiltonian in the high-energy approximation

Throughout this paper, we shall consider the high-energy evolution of the scattering am-

plitude for the collision between a dilute projectile and a dense target. The projectile

is a set of partons in an overall color singlet state (the prototype being a color dipole),

while the target can be either a large nucleus, or the dense partonic medium created in

the intermediate stage of an ultrarelativistic heavy ion collision. In both cases, the tar-

get is characterized by a dense gluon distribution, which for the present purposes will be

described in the spirit of the CGC formalism, that is, as a random distribution of strong,

classical, color fields. The interactions between the projectile and the target will be treated

in a generalized eikonal approximation, which allows one to resum the multiple scattering

3A double-logarithmic evolution for gluons in the plasma has also been advocated in ref. [45]. In that

case though, this was the standard DLA limit of either BFKL or DGLAP equation, which applies only for

k⊥ � Qs.
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between the partons in the projectile and the strong color fields in the target to all orders,

via Wilson lines, while also keeping trace of the transverse motion of the partons.

One step in the high-energy evolution consists in the emission of a relatively soft gluon

by one of the partons in the projectile and in the background of the target field. Such

an emission modifies the partonic content of the projectile and hence the S-matrix for the

elastic scattering between the projectile and the target. In this section we shall present and

motivate a rather compact expression for the Hamiltonian which ‘generates this evolution’,

that is, which describes the change in the S-matrix induced by one soft gluon emission. A

schematic derivation of this Hamiltonian from the QCD path integral, which largely follows

the derivation of the JIMWLK Hamiltonian in [26, 29], will be presented in appendix A.

2.1 The evolution Hamiltonian

To be specific, let us assume that the projectile propagates in the positive x3 direction and

introduce light-cone (LC) vector notations: xµ = (x+, x−,x), with x+ = (x0 + x3)/
√

2,

x− = (x0 − x3)/
√

2, and x = (x1, x2). Each parton in the projectile has a color current

oriented in the LC ‘plus’ direction, which couples to the A−a component of the target color

field. If the parton energy is sufficiently high (see below for the precise condition), its

transverse coordinate x is not affected by the interaction. Then the only effect of the latter

is a rotation of the parton color state, as encoded in the Wilson line:

U †(x) = P exp

{
ig

∫
dx+A−a (x+,x)T a

}
. (2.1)

The T a’s are the color group generators in the appropriate representation and P stands for

path ordering w.r.t. x+ (the LC ‘time’ for the projectile): with increasing x+, matrices are

ordered from right to left. The integral over x+ formally extends along the whole real axis,

but in practice it is limited to the support of the target field. The x− coordinate has been

omitted in eq. (2.1) since it is understood that x− ' 0 for the ultrarelativistic projectile,

by Lorentz contraction.

The elastic S-matrix for a color-singlet projectile involves the trace of a product of such

Wilson lines, one for each parton (quark, antiquark, or gluon) in the projectile. For more

clarity, in what follows we shall keep the notations T a and U † for the color group generators

and the Wilson lines in the adjoint representation, and use ta and respectively V † for quarks

in the fundamental representation. As anticipated, most of the examples below will refer

to a color dipole, for which the S-matrix reads (in the fundamental representation, for

definiteness)

Ŝxy ≡
1

Nc
tr
[
V †xVy

]
, (2.2)

where x and y are the transverse coordinates of the quark and the antiquark, respectively,

and V †x ≡ V †(x), etc. This dipole enters the calculation of a variety of physical processes,

like the total cross-section for deep inelastic scattering, the cross-section for single inclusive

hadron production in proton-nucleus (pA) collisions, or the transverse momentum broad-

ening of a ‘hard probe’ (here an energetic quark) propagating through the dense partonic

– 8 –



J
H
E
P
1
0
(
2
0
1
4
)
0
9
5

medium (‘quark-gluon plasma’) created at the intermediate stages of a nucleus-nucleus

(AA) collision.

Below we shall refer to eq. (2.1) as the strict eikonal approximation. For a quantum

particle, like the gluon fluctuations that we are interested in, this is correct only so long as

the target is ‘sufficiently thin’ — namely, so long as the duration ∆x+ of the interaction is

small enough for the effects of the quantum diffusion to remain negligible. Indeed, a high

energy particle with longitudinal momentum p+ is similar to a non-relativistic quantum

particle with mass equal to p+ and living in two spatial dimensions, in that it undergoes

Brownian motion in the transverse plane: the dispersion ∆x2
⊥ in its transverse position

grows with time according to ∆x2
⊥ ' ∆x+/2p+. (This transverse dynamics is explicit in

eq. (2.9) below.) The dispersion thus accumulated during the interaction time ∆x+ can

be neglected so long as it remains smaller than the respective quantum uncertainty 1/p2
⊥

(with p⊥ = |p| the particle transverse momentum). This requires4 ∆x+ � τcoh ≡ 2p+/p2
⊥,

a condition which is well satisfied when the target is a shockwave, but not also in the case

of an extended medium.

Indeed, the case of a ‘shockwave target’ corresponds, by definition, to a physical situa-

tion where the collision energy in the center-of-mass frame is so high that the longitudinal

extent of the target (as measured in a given Lorentz frame) is much smaller than the

coherence time of the relevant partons from the projectile in that particular frame. In

particular, if the scattering is viewed in a frame where the target is highly boosted, then

the target looks genuinely as a shockwave. But the statement about the ratio between

the target width and the coherence time of the partons in the projectile is of course boost

invariant: in the shockwave set-up, this ratio is small in any frame. This particular set-up

corresponds e.g. to proton-nucleus (pA) collisions at the LHC energies.

By contrast, the target looks like an ‘extended medium’ when the center-of-mass energy

is not that high and the coherence times of the relevant partons from the projectile become

comparable to, or even smaller than, the longitudinal width L of the target. In what

follows, we shall often be interested in such (relatively short-lived) parton fluctuations,

with τcoh = 2p+/p2
⊥ . L. In such a case, the duration ∆x+ of the interaction process is

equal to τcoh and the effects of the transverse diffusion are generally important. To take

that into account, we need the generalization of eq. (2.1) to an arbitrary trajectory x(t)

in the transverse plane (t ≡ x+ is the LC time). This is a functional of the trajectory,

which reads

U †t2t1 [x(t)] = P exp

{
ig

∫ t2

t1

dt A−a
(
t,x(t)

)
T a
}
. (2.3)

As compared to eq. (2.1) we have also generalized the definition in eq. (2.3) to trajectories

which start at some generic (light-cone) time t1 and end up at a later time t2. In writing

eq. (2.3), we have implicitly assumed that the transverse velocity and momentum of the

partonic fluctuations are much smaller than the corresponding longitudinal quantities (say,

as measured in the rest frame of the medium). Hence, one can ignore the vectorial coupling

4In evaluating the coherence time τcoh one should use the maximal value of p⊥ accumulated by the

particle via rescattering in the target, that is, the saturation momentum Qs to be later introduced.
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to the transverse components of the target gauge field. This condition p⊥ � p+ is indeed

well satisfied for the problems of interest and, whenever needed, will be enforced as a

constraint on the phase-space (see e.g. the discussion in section 4.3.3).

We are now in a position to present the operator which generates the emission of a soft

gluon by the dilute projectile in the presence of the strong color field of the target. This

operator acts on gauge-invariant operators built with products of Wilson lines, like that in

eq. (2.2), and reads

∆H =
1

2

∫
strip

dp+

2π

∫
dt1

∫
dt2

∫
d2r2

∫
d2r1 J

a(t2, r2)G−−ab (t2, r2; t1, r1; p+) Jb(t1, r1) ,

(2.4)

in notations to be explained below.

The variable p+ is the LC longitudinal momentum of the emitted gluon; by assumption

this is much smaller than the respective momentum of the parent parton (to be below

denoted as Λ), but much larger than any ‘plus’ component that can be transferred by

the target in the collision process. Accordingly, the component p+ is conserved by the

interactions, which makes it useful to use the mixed Fourier representation (t,x, p+), as we

did above. The ‘strip integral’ in eq. (2.4) runs over an interval in p+ which is symmetric

around p+ = 0:

∫
strip

dp+

2π
f(p+) ≡

 Λ∫
xΛ

+

−xΛ∫
−Λ

 dp+

2π
f(p+) =

Λ∫
xΛ

dp+

2π

[
f(p+) + f(−p+)

]
, (2.5)

Here Λ is the typical ‘plus’ momentum of the emitters, which is the relevant ‘hard’ scale,

whereas x, with x � 1, is the smallest longitudinal fraction of the emitted, ‘soft’, gluon.

In what follows, we shall be mostly concerned with situations where the above integral is

logarithmic,
∫

(dp+/p+); in such a case, the evolution operator takes of the form ∆H =

Hevol ln(1/x), with Hevol playing the role of a Hamiltonian for the evolution with ‘time’

Y ≡ ln(1/x) (the rapidity difference between the valence partons in the projectile and the

softest evolution gluons).

Furthermore, Ja(t, r) denotes the functional derivative w.r.t. the component A−a (t, r)

of the gauge field and plays the role of the color charge density operator. When acting on a

Wilson line like that in eq. (2.3), this operator generates the emission of a soft gluon from

the parton represented by that Wilson line:

Ja(t, r)U †t2t1 [x] ≡ δ

δA−a (t, r)
U †t2t1 [x]

= igθ(t2 − t)θ(t− t1)δ(2)
(
r − x(t)

)
U †t2t[x]T a U †tt1 [x] . (2.6)

As visible on this equation, each functional derivative brings a factor of g, so ∆H starts at

order g2 = 4παs (but in general includes effects of higher order in g, via the background

field; see below). The operator Ja(t,x) is also the generator of the infinitesimal color
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rotations. Using (2.6), one can check the following equal-time commutation relation (with

fabc the structure constants for SU(Nc) and δxy ≡ δ(2)(x− y))

[Ja(t,x), Jb(t,y)] = −gδxyfabcJc(t,x) , (2.7)

which confirms that these operators obey the color group algebra, as they should.

The last ingredient in eq. (2.4) is the background field propagator G−− of the emitted

gluon. This is a functional of the target field A−, via Wilson lines. Its construction is

well documented in the literature and will be briefly discussed in appendix B, where we

show that

G−−ab (x+,x; y+,y; p+) =
1

(p+)2
∂ix∂

i
y Gab(x

+,x; y+,y; p+) +
i

(p+)2
δabδ(x

+ − y+)δxy .

(2.8)

Here, Gab is the ‘scalar’ propagator, defined as the solution to the following equation[
2ip+

(
∂−x − igA−(x)

)
+∇2

⊥x
]
ac
Gcb(x

+,x; y+,y; p+) = iδabδ(x
+ − y+)δxy , (2.9)

with Feynman prescription for the pole at the mass-shell. This prescription ensures that

modes with positive (negative) values of p+ propagate forward (backward) in time (see e.g.

eq. (B.8)). For definiteness, we shall refer to the two pieces in the r.h.s. of eq. (2.8) as the

‘radiative piece’ and respectively the ‘Coulomb piece’ of the gluon propagator.

eq. (2.9) exhibits the eikonal coupling between the large component p+ of the 4-

momentum of the gluon and the conjugate component A− of the color field of the target,

and also the transverse dynamics responsible for quantum diffusion. Given the formal

analogy between this equation and the Schrödinger equation for a non-relativistic particle

in two spatial dimensions, it is clear that its solution can be written as a path integral.

Namely, for p+ > 0 and hence x+ > y+, one has5

G(x+,x; y+,y; p+) =
1

2p+
G(x+,x; y+,y; p+) ,

G(x+,x; y+,y; p+) =

∫ [
Dr(t)

]
exp

{
i
p+

2

∫ x+

y+
dt ṙ2(t)

}
U †
x+y+

[r(t)] , (2.10)

where one integrates over paths r(t) with boundary conditions r(y+) = y and r(x+) = x.

For p+ < 0 (and hence x+ < y+), the propagator can be computed by using the following

symmetry property, which follows from eq. (2.9) together with the Feynman prescription:

Gab(x
+,x; y+,y; p+) = Gba(y

+,y;x+,x;−p+) , (2.11)

By exploiting the above properties, one can limit the time integrals in eq. (2.4) to −∞ <

t1 < t2 < ∞, while simultaneously restricting the p+ integral to the positive side of the

strip, xΛ < p+ < Λ, and multiplying the result by two. More precisely, we have here in

mind the integral over the ‘radiation’ piece of the propagator (2.8), which is non-local in

time. The local, Coulomb, piece must be treated separately.

5The ‘reduced propagator’ G is formally the same as the non-relativistic evolution operator.
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Note finally that there is no ambiguity concerning the ordering of the various factors

within the integrand of eq. (2.4): (i) the two charge operators act at different times, t1 and

t2, so they commute with each other; (ii) the radiation piece of the propagator involves

the background field A−(t) only at intermediate times t, between t1 and t2, so it commutes

with any of the two functional derivatives; (iii) the Coulomb piece is local not only in

time, but also in color.

The structure of the evolution Hamiltonian (2.4) looks both simple and intuitive: this

operator does precisely what it is expected to do, namely, it generates the evolution of

an S-matrix like (2.2) via the emission and the reabsorption of a soft gluon by any of the

color sources within the projectile. But this apparent simplicity hides several subtleties

which show up when trying to use this Hamiltonian in practice. These subtleties will be

discussed in the next subsection, where we shall derive an alternative form for the evolution

Hamiltonian — more precisely, for its action on a generic operator Ô[A−] — which is more

convenient in practice, especially for an extended target.

2.2 Virtual corrections and probability conservation

The purpose of this subsection is to render the Hamiltonian (2.4) ‘less formal’. First,

we shall argue that, in order to be well defined, this operator must be supplemented

with an adiabatic prescription for switching off the interactions at large times. Second,

we shall discuss a sum-rule for the free LC gauge propagator, which ensures probability

conservation and also the cancellation of ultraviolet and infrared divergences between the

‘radiative’ piece and the ‘Coulomb’ piece of the Hamiltonian. Finally, we shall derive an

alternative expression for the action of ∆H where this cancellation occurs locally in time

and probability conservation becomes manifest.

Throughout this paper, we shall assume that the target is localized in x+, within

the longitudinal6 strip at 0 < x+ < L, so the collision has a finite duration ∆x+ ∼ L.

The scattering amplitude can only be affected by gluon emissions which occur sufficiently

close to this interaction region, within a time interval ∆x+ ∼ τcoh. (We recall that the

‘coherence time’ τcoh ≡ 2p+/p2
⊥ is the typical lifetime of the fluctuation.) Vice-versa,

virtual fluctuations in the wave function of the projectile which occur very far away from

the interaction region, either in the remote past or the remote future, should have no

influence on the evolution of the S-matrix. As we shall see, this property is correctly

encoded in the present formalism, but it involves delicate cancellations between various

terms, which might be invalidated by careless manipulations at intermediate stages. It

turns out that a proper way to deal with this problem is to adiabatically switch off the

interactions at very large times |x+| � τcoh [13, 57]. (Other, less smooth, prescriptions,

like a sharp cutoff on |x+|, could induce spurious radiation and thus alter the Fock space

of the projectile.) To that aim, we shall supplement each functional derivative within ∆H

6An interval ∆x+ is ‘longitudinal’ from the viewpoint of the target (a left mover), but ‘temporal’ from

that of the projectile (a right mover). In what follows, we shall often mix the two viewpoints and the

respective terminologies. The precise meaning should be clear from the context.
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with an exponential attenuation factor,

Ja(t, r) → Ja(t, r) e−ε|t| , (2.12)

where ε should be much smaller than 1/τcoh. The physical predictions will not be sensitive

to the precise value of ε because the limit ε → 0 of the final results, as obtained after

performing the integrals over the emission times t1 and t2, is indeed well defined.

With this adiabatic switch-off, the free LC gauge propagator G−−0 , eq. (B.7), obeys

the following sum-rule, with paramount consequences for what follows:∫
dt1

∫
dt2G

−−
0 (t2 − t1, r; p+) e−ε(|t1|+|t2|) = 0 . (2.13)

This will be demonstrated in appendix C, where we show that the l.h.s. of eq. (2.13) is a

quantity of O(ε) and hence vanishes when ε→ 0. A simple way to understand this cancel-

lation is to notice that the integral over ∆t ≡ t2 − t1 isolates the Fourier component with

p− = 0, which vanishes because G−−0 (p) ∝ p−, cf. eq. (B.7). But this property holds only

for the complete propagator, G−−0 = G−−0,rad+G−−0,Coul, as obtained after adding its radiative

and Coulomb pieces. In the presence of a background field, we have to distinguish between

these two pieces, since they are differently dressed by the background, cf. eq. (2.8). Taken

separately, the radiative piece G−−0,rad and the Coulomb piece G−−0,Coul generate contributions

∝ 1/ε to the l.h.s. of eq. (2.13), which however cancel, together with the finite terms of

O(1), in their sum (see appendix C).

In view of the above, the sum-rule (2.13) is expected to be important for the limit A− →
0 of our formalism. In that limit, it ensures an important property, that we now explain.

As previously mentioned, quantum fluctuations which are not measured by the collision

should not matter for the evolution of the S-matrix. Consider in particular the situation

where, after acting with ∆H on some generic S-matrix Ô (to produce the fluctuation), one

sets A− = 0, so that there is no scattering. Without scattering, the evolution cannot be

measured (the S-matrix must be equal to one both before and after the evolution), hence

the action of ∆H must vanish:

∆H Ô
∣∣
A−=0

= 0 . (2.14)

This is precisely ensured by the identity (2.13), as it can be easily seen: the action of the

functional derivatives on Ô becomes independent of time after we set A− = 0 (since all the

Wilson lines are replaced by the unity matrix). Accordingly, the result of first acting with

∆H on any Ô and then letting A− → 0 is indeed proportional to the integral in the l.h.s.

of eq. (2.13).

These properties, eqs. (2.13) and (2.14), allows one to compute the action of ∆H on Ô
in an alternative way, where the Coulomb piece of the propagator is not explicitly present

anymore and the cancellation of would-be divergent contributions occurs quasi-locally in

time. Namely, eq. (2.14) implies, with obvious notations,

∆HCoul Ô
∣∣
A−=0

= −∆Hrad Ô
∣∣
A−=0

. (2.15)
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Also, as we shall shortly demonstrate, the action of the Coulomb piece of the Hamiltonian

on any observable Ô amounts to

∆HCoul Ô =
(

∆HCoul Ô
∣∣
A−=0

)
Ô = −

(
∆Hrad Ô

∣∣
A−=0

)
Ô , (2.16)

where the second equality follows after using eq. (2.15). By using the above, one can write

∆H Ô =
[
∆Hrad + ∆HCoul

]
Ô =

[
∆Hrad −

(
∆Hrad Ô

∣∣
A−=0

)]
Ô , (2.17)

or, less formally,

∆H Ô[A−] =

Λ∫
xΛ

dp+

2π

∫ ∞
−∞

dt2

∫ t2

−∞
dt1 e−ε(|t1|+|t2|)×

×
∫

d2r2

∫
d2r1

[
H −

(
HÔ

∣∣
A−=0

)]
Ô , (2.18)

where H is a Hamiltonian density built with the ‘radiation’ piece of the propagator alone:

H(t2, r2; t1, r1; p+)[A−] ≡ 1

(p+)2
Ja(t2, r2)

[
∂ir2∂

i
r1 Gab(t2, r2; t1, r1; p+)

]
Jb(t1, r1) .

(2.19)

In eq. (2.19), the transverse derivatives act only on the ‘scalar’ propagator. In particular,

HÔ
∣∣
A−=0

=
1

(p+)2

[
∂ir2∂

i
r1 G0(t2 − t1, r2 − r1; p+)

] (
Ja(t2, r2)Ja(t1, r1)Ô

∣∣
A−=0

)
,

(2.20)

with G0 the free propagator (B.8). Notice that the r.h.s. of eq. (2.18) cannot be written as

the action of a linear operator on Ô. Hence, this equation does not provide an alternative

expression for the Hamiltonian ∆H, but rather a new method for computing its action on

a generic observable.

Using Ô|A−=0 = 1, one sees that the property (2.14) is now satisfied locally in time,

that is, it is already verified by the integrand in eq. (2.18). This allows for a natural

probabilistic interpretation: the term HÔ describes the change in the S-matrix associated

with a real emission which occurrs during the time interval from t1 to t2; the virtual term

−
(
HÔ |A−=0

)
Ô represents the reduction in the probability that the projectile remain in

its original state during that time interval. The local (in time) version of (2.14) is then the

expression of probability conservation.

To better appreciate the advantages of eq. (2.18) over the direct use of eq. (2.4), let

us consider the action of ∆HCoul in more detail. (This will also allow us to verify the first

equality in eq. (2.16).) What we would like to show is that any operator Ô is an eigenstate

of ∆HCoul, but with an ill-define eigenvalue, which suffers from both infrared (large time

and small p+) and ultraviolet (small |r2 − r1|, or high p⊥) divergences. Chosing Ô = Ŝxy

– 14 –
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for definiteness (this brings no loss in generality), we can write (cf. eq. (2.8))

∆HCoulŜxy =

Λ∫
xΛ

dp+

2π

∫
t1,t2

∫
r1,r2

e−ε(|t1|+|t2|)
i

(p+)2
δt2t1δr1r2 J

a(t2, r2) Ja(t1, r1) Ŝxy

= − ig2CF
2π

Λ∫
xΛ

dp+

(p+)2

∫
dt e−2ε|t|

∫
d2r
(
δrx + δry

)
δrr Ŝxy

= − ig2CF
π

δrr 1

ε

Λ∫
xΛ

dp+

(p+)2

 Ŝxy . (2.21)

Because of the ultra-local nature of the Coulomb propagator ∝ δt2t1δr1r2 , the two functional

derivatives must act on a same Wilson line within Ŝxy, either the quark one at x or the

antiquark one at y. This feature, together with identities like

Ja(t, r2) Ja(t, r1)V †x = −g2CF δr1xδr2x V
†
x , (2.22)

explains why the result is again proportional to Ŝxy. But for the very same reason, the

proportionality coefficient exhibits several types of divergences, as anticipated: a large-

time divergence as ε →, a small-p+ divergence when x → 0, and a transverse ‘tadpole’

δrr =
∫

[d2p/(2π2)]. Being independent of A−, this coefficient is necessarily the same as

the limit A− → 0 of ∆HCoulŜxy, in agreement with eq. (2.16). Clearly, a similar argument

holds for any observable Ô.

The above discussion shows that the action of the Coulomb piece of ∆H generates

severe divergences. By virtue of eq. (2.13), there divergences are guaranteed to cancel

against similar ones generated by the radiation piece, but only after performing the two

time integrations. This cancellation can be explicitly verified whenever one is able to

perform the time integrations, as in the case of a shockwave target to be discussed in

section 3. But even in such a case, the calculation of the finite terms is quite subtle and

relies in an essential way on the use of the adiabatic prescription (see e.g. section 3.1).

By contrast, the calculations based on eq. (2.18) are more robust, because the potential

divergences cancel between the ‘real’ and ‘virtual’ terms quasi-locally in time, so one is

not sensitive to the regularization prescription used for the time integrations. This second

method becomes particularly useful in those cases where one is not able to explicitly perform

the time integrals, like that of an extended target to be discussed in section 4.

3 A shockwave target: recovering the JIMWLK Hamiltonian

In this section, we shall specialize the general formalism developed so far to the case where

the target is a ‘shockwave’. By this, we more precisely mean a target which looks localized

in x+ on the resolution scale set by the lifetime of the quantum fluctuations. For this

case, we will be able to explicitly perform the time integrations which appear in eq. (2.4)

and thus recover the JIMWLK Hamiltonian [21–29], as expected. Besides giving us more

confidence with the use of eq. (2.4) in practice, the subsequent manipulations will also
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illustrate some of the subtleties discussed in section 2.2, notably the role of the adiabatic

prescription and the cancellation of the ill-defined contributions between the ‘radiation’

piece and the ‘Coulomb’ piece of ∆H.

More precisely, the physical problem that we here have in mind is ‘dense-dilute’ (e.g.

proton-nucleus) scattering in the high-energy regime where the longitudinal extent ∆x+ ≡
L of the dense target is much smaller than the coherence time τcoh = 2p+/p2

⊥ of the typical

gluons fluctuations associated with the evolution of the projectile: τcoh � L. This condition

involves both the ‘energy’ (actually, LC longitudinal momentum) p+ and the transverse

momentum p⊥ of the gluon fluctuations. In practice, p⊥ is at least as large as the target

saturation momentum Qs, since this is the typical transverse momentum acquired by either

the soft gluon, or its parent parton, via interactions with the target (see e.g. [12, 35, 36]).

Hence, the ‘shockwave condition’ can be written as a lower limit on the gluon energy:

p+ � ωc, with

ωc ≡ Q2
sL . (3.1)

This limiting energy ωc is an intrinsic scale of the target and grows with the target size like

ωc ∼ L2 (since Q2
s ∝ L). To have a significant phase-space for the high-energy evolution,

the energy p+
0 ≡ E of the incoming projectile must be considerably larger than ωc, such

that ᾱ ln(E/ωc) & 1 with ᾱ ≡ αsNc/π assumed to be small (ᾱ� 1).

3.1 Performing the time integrations

What is special about the shockwave (SW) target, is that the probability for a gluon

to be emitted or absorbed inside the target is negligible,7 since suppressed by a factor

L/τcoh � 1. This physical statement is boost invariant, but the mathematics becomes

simpler by working in the ‘target infinite momentum frame’, i.e. a frame in which the

nucleus is ultrarelativistic and it looks like a ‘pancake’ (our intuitive representation of a

SW). In such a frame, the target can be effectively treated as a δ-function at x+ = 0. This

drastically simplifies the structure of the background field propagator and the action of the

functional derivatives on the Wilson lines.

Namely, assuming the SW to be localized near x+ = 0, one can easily show that the

path integral in eq. (2.10) reduces to (for p+ > 0 and hence x+ > y+; see appendix B

for details)

G(x+,x; y+,y; p+ > 0) = G0(x+ − y+,x− y; p+)
[
θ(x+)θ(y+) + θ(−x+)θ(−y+)

]
+ 2p+θ(x+)θ(−y+)

∫
z
G0(x+,x− z; p+)U †z G0(−y+, z − y; p+) , (3.2)

where G0 is the free propagator (B.8), U †z is the adjoint Wilson line introduced in eq. (2.1),

and
∫
z ≡

∫
d2z. The physical interpretation of eq. (3.2) is quite transparent: when x+ and

y+ are both positive, or both negative, the gluon does not cross the SW, so it propagates

freely; when x+ and y+ are on opposite sides of the SW, the gluon propagates freely from

7Strictly speaking, this statement is gauge-dependent, but it is indeed correct in the gauge a+ = 0 that

we currently use; see e.g. the discussion in [58].
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the initial point up to the SW, then it crosses the latter at some transverse position z, thus

accumulating a color precession represented by the Wilson line U †z, then it moves freely

again, up to the final point.

Furthermore, since gluons cannot be emitted or absorbed inside the SW, the action of

the functional derivative Jax(t) on the Wilson lines is piecewise independent of time. Indeed

for any negative value of the time argument, one has (compare to eq. (2.6))

Jax(t < 0)U †z = igδzx U
†
z(∞, t)T a U †z(t,−∞) = igδzx U

†
z T

a ≡ Rax U
†
z , (3.3)

where we have used U †z(t,−∞) = 1 and U †z(∞, t) = U †z(∞,−∞) ≡ U †z for t < 0 and a

target field localized at x+ = 0. Similarly, for a positive value t > 0, one can write

Jax(t > 0)U †z = igδzx U
†
z(∞, t)T a U †z(t,−∞) = igδzx T

a U †z ≡ Lax U
†
z , (3.4)

The above equations have introduced the ‘right’ and ‘left’ functional derivatives, Rax and

respectively Lax, which act on the Wilson lines as infinitesimal color rotations of the right,

respectively on the left, and measure the color charge density in the projectile prior, respec-

tively after, the collision. They are related by the condition Lax = U †abx Rbx, which expresses

the color rotation acquired by a color current which crosses the shockwave.

The fact that the r.h.s.’s of eqs. (3.3)–(3.4) are independent of time allows us to perform

the time integrations directly at the level of the evolution Hamiltonian (2.4), that is, before

acting with ∆H on the observable. To that aim, we need to distinguish three regions for

the time integrations:

(i) −∞ < t1 < 0 and 0 < t2 < ∞: the evolution gluon crosses the SW.

After using eqs. (3.3)–(3.4) for the action of the functional derivatives, one sees that the

respective contribution to ∆H, denoted as ∆HRL, simplifies to

∆HRL =

∫
x,y

LaxR
b
y

Λ∫
xΛ

dp+

2π

1

(p+)2

∫ 0

−∞
dt1

∫ ∞
0

dt2 ∂
i
x∂

i
y Gab(t2,x; t1,y; p+) , (3.5)

where the adiabatic prescriptions are implicit (they will be exhibited when needed) and,

cf. eq. (3.2),

∂ix∂
i
y Gab(t2,x; t1,y; p+) = 2p+

∫
z
∂ixG0(t2,x− z; p+)

(
U †z
)
ab
∂iyG0(−t1, z − y; p+) .

(3.6)

Due to the factorized structure of the background field propagator (3.6), the two time

integrations are independent of each other. To be specific, consider the integral over t2.

This involves∫ ∞
0

dt2 ∂
i
xG0(t2,x− z; p+) =

−i

2p+

∫
d2p

(2π)2
pi eip·(x−z)

∫ ∞
0

dt2 e
−i

p2⊥
2p+

t2 e−εt2

= −
∫

d2p

(2π)2

pi

p2
⊥

eip·(x−z) =
i

2π

xi − zi

(x− z)2
. (3.7)
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The final result is recognized as the Weizsäcker-Williams field created at z by a point-

like source at x. Note that the complex exponential in the integral over t2 has restricted

the respective phase-space to an interval of order τcoh = 2p+/p2
⊥ after the SW. A similar

conclusion holds for the emission time t1, which is restricted to an interval ∼ τcoh before

the SW. The respective integral yields∫ 0

−∞
dt1 ∂

i
yG0(−t1, z − y; p+) =

i

2π

yi − zi

(y − z)2
. (3.8)

Importantly, the final results in eqs. (3.7)–(3.8) are independent of p+. In both cases, this

is due to a cancellation between the factor 1/p+ implicit in the free propagator G0 and the

phase-space factor 2p+/p2
⊥ produced by the time integral. As a consequence, the ensuing

integral over p+ in eq. (3.5) is logarithmic:
∫

(dp+/p+) = ln(1/x). Putting all together,

one finds

∆HRL = − ln
1

x

1

(2π)3

∫
xyz
Kxyz

(
2Lax U

† ab
z Rby

)
, (3.9)

with the following notations:

Kxyz ≡ Kixz Kiyz , Kixz ≡
(x− z)i

(x− z)2
. (3.10)

(ii) −∞ < t1 ≤ t2 < 0: the evolution gluon is emitted and reabsorbed prior to

the SW. In this case, both functional derivatives within ∆H act as ‘right’ derivatives,

cf. eq. (3.3). Also, the gluon propagator reduces to the free propagator G−−0 , as shown in

eq. (B.7). Consider first the ‘radiation’ piece of this propagator, which gives

∆Hrad
RR =

∫
x,y

RaxR
a
y

Λ∫
xΛ

dp+

2π

1

(p+)2

∫ 0

−∞
dt2

∫ t2

−∞
dt1 ∂

i
x∂

i
y G0(t2 − t1,x− y; p+) . (3.11)

The time integrations involve (with the shorthand notation p− ≡ p2
⊥/2p

+)∫ 0

−∞
dt2

∫ t2

−∞
dt1 e−ip−(t2−t1) eε(t1+t2) =

∫ 0

−∞
dt2 e−ip−t2+εt2 eip−t2+εt2

ip− + ε

=
1

2ε

1

ip− + ε
=

1

2ε

1

ip−
+

1

2(p−)2
+ O(ε) . (3.12)

The use of the adiabatic prescription has been essential in obtaining the above result, as we

now explain. The time separation t2 − t1 is restricted by the oscillatory phase e−ip−(t2−t1)

to values of order τcoh = 2p+/p2
⊥, but the central value (t2 + t1)/2 is only restricted

by the adiabatic switch-off, so the corresponding integral yields an ‘infrared’ divergence

proportional to 1/ε. By itself, this divergence is pretty harmless, since ultimately cancelled

by a similar contribution due to the Coulomb piece, as we shall see. What is more subtle

though, is the obtention of the finite term accompanying the divergence (namely, the

term ∝ 1/(p−)2 in eq. (3.12)): this term is correctly computed when using the adiabatic

prescription, as above, but it would be mistreated by other regularizations, like a sharp
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cutoff on |t2 + t1| [13, 57]. Importantly, this finite contribution, which is the actual physical

result, has been generated by values t1 and t2 which both lie in the vicinity of the interaction

time x+ = 0, within a distance of order τcoh.

By using eq. (3.12) together with simple manipulations, one finds

∆Hrad
RR =

∫
x,y

RaxR
a
y

Λ∫
xΛ

dp+

2π

1

(p+)2

{
− i

2ε
δxy + p+

∫
d2p

(2π)2

eip·(x−y)

p2
⊥

}
. (3.13)

The first term within the braces exhibits all types of divergences previously identified in

relation with the Coulomb piece, cf. eq. (2.21). As demonstrated by the above calculation

(and anticipated in section 2.2), such divergences are also generated by the ‘radiation’

piece after performing the time integrations. We shall shortly check that this singular term

is cancelled by the respective ‘Coulomb’ contribution, in agreement with the discussion

in section 2.2. Keeping only the second term in eq. (3.13), one finds that the respective

integral over p+ is again logarithmic and yields

∆HRR = ln
1

x

1

(2π)3

∫
xyz
Kxyz R

a
xR

a
y , (3.14)

where we have also used the identity∫
d2p

(2π)2

eip·(x−y)

p2
⊥

=
1

(2π)2

∫
z
Kxyz . (3.15)

The above integral over p⊥ develops a logarithmic infrared (p⊥ → 0) divergence, which is

however harmless, as it disappears in the evolution of gauge-invariant quantities (see e.g.

section 3.2 below).

For completeness, let us also consider the respective Coulomb contribution:

∆HCoul
RR = i

∫
x,y

RaxR
a
y

Λ∫
xΛ

dp+

2π

1

(p+)2

∫ 0

−∞
dt2

∫ 0

−∞
dt1 δ(t2 − t1) eε(t1+t2) δxy

=
i

2ε

∫
x

RaxR
a
x

Λ∫
xΛ

dp+

2π

1

(p+)2
. (3.16)

This precisely cancels the divergent piece in eq. (3.13), as anticipated. This cancellation

illustrates a general argument developed in section 2.2, namely the fact that emissions

which occur at large distances � τcoh from the interaction region cannot affect the scat-

tering amplitude.

(iii) 0 < t1 ≤ t2 <∞: the evolution gluon is emitted and reabsorbed after the

SW. The calculation is entirely similar to that in the previous case, so we can write the

final result without further discussion:

∆HLL = ln
1

x

1

(2π)3

∫
xyz
Kxyz L

a
x L

a
y , (3.17)
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By combining the previous results (3.9), (3.14), and (3.17), one finds ∆H =

ln(1/x)HJIMWLK , with the JIMWLK Hamiltonian [21–29] (see also [59–62] for more recent

derivations).

HJIMWLK =
1

(2π)3

∫
xyz
Kxyz

[
RaxR

a
y + Lax L

a
y − 2Lax U

† ab
z Rby

]
. (3.18)

By using the unitarity of the Wilson lines together with the condition Lax = U †abx Rbx, one

can rewrite the color structure in eq. (3.18) in the following form

RaxR
a
y + Lax L

a
y − 2Lax U

† ab
z Rby =

[
Lax − U †abz Rbx

][
Lay − U †acz Rcy

]
=
[
U †abx − U †abz

]
Rbx
[
U †acy − U †acz

]
Rcy . (3.19)

This makes it obvious that HJIMWLK vanishes when A− = 0, in agreement with eq. (2.14).

3.2 The Balitsky-Kovchegov equation

The simplest among the evolution equations generated by the JIMWLK Hamiltonian is the

Balitsky-Kovchegov (BK) equation [19, 20], that is, the equation obeyed by the average

S-matrix for a qq̄ dipole. In what follow we shall present two different derivations for this

equation: the standard one in the literature, where one directly acts with HJIMWLK on

the dipole operator Ŝxy, and the alternative one based on eq. (2.18), which distinguishes

between ‘real’ and ‘virtual’ corrections. Clearly, the final result will be the same, but the

comparison between these two methods will shed more light on the reorganization of the

perturbation theory performed by the sum-rule (2.13) and also on the origin of the virtual

terms in the B-JIMWLK equations.

(i) The standard approach. Consider the dipole-nucleus scattering in a Lorentz frame

where the nuclear target carries most of the rapidity separation Y , so that the projectile

is a bare dipole — a quark-antiquark pair without additional gluons. In this frame, the

average S-matrix is computed as [35, 36]

〈Ŝxy〉Y =

∫
[DA−]WY [A−]

1

Nc
tr
(
V †xVy

)
, (3.20)

where the ‘CGC weight function’ WY [A−] is a functional probability density describing the

distribution of the color fields in the target (including its evolution up to rapidity Y ). Let

us now increase the rapidity separation, Y → Y + ∆Y , by giving an additional boost ∆Y

to the projectile. Then the dipole evolves by emitting a soft gluon (from either the quark,

or the antiquark), with longitudinal momentum fraction x1 within the range x < x1 < 1,

where ∆Y = ln 1/x. The ensuing evolution of the S-matrix is obtained by acting with the

JIMWLK Hamiltonian on the bare scattering operator:

∆
〈
Ŝxy

〉
Y

= ∆Y
〈
HJIMWLKŜxy

〉
≡
∫

[DA−]WY [A−]HJIMWLKŜxy . (3.21)

Using eq. (3.18) together with the differentiation rules in eqs. (3.3)–(3.4), one can

easily deduce

(HRR +HLL) Ŝxy = − ᾱ

2π

(
1− 1

N2
c

)∫
z
MxyzŜxy. (3.22)
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for the contribution of the ‘non-crossing’ terms and, respectively,

HRL Ŝxy =
αs
π2

∫
z
Mxyz U

†ab
z

1

Nc
tr
(
V †xt

b Vyt
a
)

=
ᾱ

2π

∫
z
Mxyz

(
ŜxzŜzy −

1

N2
c

Ŝxy

)
, (3.23)

for that of the ‘crossing’ one. In these equations, Mxyz is the ‘dipole kernel’,

Mxyz ≡ Kxxz +Kyyz − 2Kxyz =
(x− y)2

(x− z)2(z − y)2
. (3.24)

In the linear combination above, the positive terms Kxxz and Kyyz correspond to self-

energy corrections, i.e. graphs where both emissions are attached to a same fermion (the

quark at x or the antiquark at y), whereas the negative term −2Kxyz summarizes the two

exchange graphs, where the gluon is emitted by the quark and absorbed by the antiquark,

or vice-versa (see also figure 1 for similar graphs). Note that the leading behavior at large

z⊥, which is proportional to 1/z2
⊥ for each of these individual graphs, has cancelled in

their linear combination, with the result that Mxyz ∼ 1/z4
⊥ when z⊥ → ∞. This decay

is sufficiently fast to guarantee that the integral over z is convergent in this limit. Similar

cancellations occur for any projectile which is a color singlet and ensure that the respective

evolution equation is free of infrared problems [63].

The second line in eq. (3.23) follows after reexpressing the adjoint Wilson line in terms

of fundamental ones, according to U †abz tb = Vzt
aV †z , and then using the Fierz identity

tr
(
taA taB

)
=

1

2
trA trB − 1

2Nc
tr(AB). (3.25)

By adding together the above results, one sees that the terms proportional to 1/N2
c exactly

cancel between ‘crossing’ and ‘non-crossing’ contributions,8 so the net result reads

∂〈Ŝxy〉Y
∂Y

=
ᾱ

2π

∫
z
Mxyz

〈
ŜxzŜzy − Ŝxy

〉
Y
, (3.26)

where we have also taken the average over the target. Formally, this equation depicts the

evolution as the splitting of the original dipole (x,y) into a system of two dipoles, (x, z)

and (z,y), which have a common leg at z. This would be the actual physical picture at

large Nc, but it formally holds also for finite Nc, due to the ‘accidental’ cancellation of the

terms suppressed by 1/N2
c .

In deriving eq. (3.26) as above, it has been convenient to work in a frame where the

projectile was a bare dipole prior to the evolution step under consideration. By boost

invariance, the ensuing equation is valid in any frame (so long as the projectile remains

dilute, of course).

8This cancellation too can be recognized as a consequence of the identity (2.13).
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(ii) The manifestly probabilistic approach. In applying eq. (2.18) to a SW target,

one must perform manipulations similar to those in section 3.1 — that is, distinguish

between ‘crossing’ and ‘non-crossing’ contributions and then compute the respective time

integrals. In doing that, it is essential to keep together the ‘real’ and ‘virtual’ pieces in

eq. (2.18), for each of the three integration ranges. Then the calculations simplify since

(a) there are no divergences in the intermediate stages, and (b) the full result comes from

the ‘crossing’ pieces (‘real’ plus ‘virtual’) alone. Moreover, the associated manipulations

have a clear probabilistic interpretation, in agreement with the discussion in section 2.2.

To demonstrate this, notice the following identities for the action of the functional

derivative on the dipole S-matrix:

Rar1R
a
r2Ŝxy = Lar1L

a
r2Ŝxy =

[
− g2CF

(
δr1x − δr1y

)(
δr2x − δr2y

)]
Ŝxy

=
(
Ja(t2, r2)Ja(t1, r1)Ŝxy

∣∣
A−=0

)
Ŝxy , (3.27)

where the equality in the second line holds for any t1 and t2. These identities imply that

the ‘virtual’ and ‘real’ contributions mutually cancel within the ‘non-crossing’ terms, as

anticipated.

Consider now the respective ‘crossing’ contributions. For the ‘real’ term, this has been

already computed in eq. (3.23). For the ‘virtual’ term, we also need the following integral∫ 0

−∞
dt1

∫ ∞
0

dt2 ∂
i
r1∂

i
r2 G0(t2 − t1, r2 − r1; p+) = − 2

p+

∫
d2p

(2π)2

eip·(r2−r1)

p2
⊥

. (3.28)

By using this and eqs. (3.27), (3.15), and (3.24), one finds the ‘virtual-crossing’

contribution:

−
(

∆Hrad Ŝxy
∣∣
A−=0

)
Ŝxy = −αsCF

π2

∫
z
MxyzŜxy . (3.29)

This is the same as the contribution (3.22) of the ‘non-crossing’ terms in the JIMWLK

Hamiltonian. By adding this to the ‘real-crossing’ piece in eq. (3.23), one finally recovers

the BK equation (3.26).

The probabilistic interpretation is now manifest. The quantity (ᾱ/2π)MxyzdY d2z is

the differential probability for emitting a gluon at transverse coordinate z out of the quark-

antiquark dipole (x,y). The ‘real-crossing’ piece represents the process where the evolved

partonic system (quark, antiquark, and gluon) exists at the time of scattering x+ = 0.

The ‘virtual-crossing’ piece measures the decrease in the probability to find the original qq̄

dipole at x+ = 0. This decrease is associated with evolution processes which occur either

before (x+ < 0), or after (x+ > 0), the scattering. So, the ‘virtual-crossing’ contribution

must be equal to that of such genuinely ‘non-crossing’ processes. This is indeed what we

have found in eq. (3.29).

The validity of this interpretation is also comforted by the fact the ‘real’ and ‘virtual’

terms in the BK equation separately develop logarithmic ‘ultraviolet’ divergences, which

precisely cancel in their sum. These divergences, coming from the poles of the dipole kernel

at z = x and z = y, correspond to self-energy corrections where the gluon lies arbitrarily
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close to its parent quark in the transverse plane. But such short-distance emissions should

not affect the S-matrix since the scattering cannot distinguish between a bare quark and

a bare quark accompanied by its radiation gluon, so long as the two partons are very close

to each other. And indeed, by inspection of (3.26) one sees that the pole of Mxyz at, say,

z = x is compensated by the linear combination of Wilson line correlators, due to ‘color

transparency’ (Ŝxz → 1 as z → x).

Notice that, in order for such cancellations to work, it has been essential to have the

right relative coefficient between the ‘virtual’ term and the ‘real’ one (or, equivalently, be-

tween ‘crossing’ and ‘non-crossing’ contributions). In turn, this emphasizes the importance

of using the adiabatic prescription when computing the time integrals in section 3.1 (cf.

the discussion after eq. (3.12)).

For later reference, it is useful to exhibit the limit of eq. (3.26) in the regime where

the scattering is weak, which is the celebrated BFKL equation [64–66]. This is obtained

by linearizing the BK equation (3.26) w.r.t. the dipole amplitude TY (x,y) ≡ 1 − 〈Ŝxy〉Y
and reads

∂TY (x,y)

∂Y
=

ᾱ

2π

∫
z
Mxyz

{
TY (x, z) + TY (z,y)− TY (x,y)

}
. (3.30)

This equation is valid so long as TY � 1 and describes the high-energy evolution of the

amplitude for single scattering. It is also interesting to consider the ‘infrared’ (large z)

behavior of the integral above. As already noticed, one has Mxyz ∼ 1/z4
⊥ when z⊥ →∞.

Also, to leading order in pQCD, the dipole amplitude behaves like T0(r) ∝ r2 ln r2, hence

for large z⊥ one can write T0(x, z) ' T0(z,y) ∼ z2
⊥. With this behavior, the integral over z

in eq. (3.30) would be logarithmically divergent. This is the familiar ‘collinear’ divergence

of bremsstrahlung in QCD. One may (legitimately) question the validity of this linear

approximation in the limit where z⊥ is large. But as a matter of facts, the solution to the

BFKL equation with T0 as an initial condition is known to be infrared safe: the successive

iterations of this equation introduce an ‘anomalous dimension’, that is, they modify the

dominant behavior of the amplitude at small r according to r2 → r2γ , where γ < 1 depends

upon the direction of evolution in the (Y, ln r2) plane (see e.g. [18] for details). For any

such a γ, the integral eq. (3.30) is indeed convergent at large z⊥. This is interesting to keep

in mind in view of the comparison with the corresponding approximation for an extended

target (a medium), to be discussed in section 4.3.

Note finally that eq. (3.26) is not a closed equation — its r.h.s. also involves the S-

matrix
〈
ŜxzŜzy

〉
Y

for a system of two dipoles —, so it cannot be solved as it stands.

This is truly the first equation from an infinite hierarchy, the B-JIMWLK hierarchy, which

describes the coupled evolution of scattering amplitudes for dilute systems with increasing

complexity in terms of partonic structure. This hierarchy simplifies in the large Nc limit,

where expectation values of gauge invariant operators can be factorized from each other.

In that limit, eq. (3.26) reduces to a closed equation for the dipole S-matrix, originally

derived by Kovchegov [20]:

∂〈Ŝxy〉Y
∂Y

=
ᾱ

2π

∫
z
Mxyz

{〈
Ŝxz

〉
Y

〈
Ŝzy

〉
Y
−
〈
Ŝxy

〉
Y

}
, (3.31)

In the next section, we shall generalize this equation to the case of an extended target.
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4 The high-energy evolution of transverse momentum broadening

Starting with this section, we address the main physical problem of interest for us here,

namely the high energy evolution of a ‘hard probe’ (energetic parton) which crosses a dense

QCD medium, like a weakly-coupled quark-gluon plasma (QGP). The main difference with

respect to the ‘shockwave’ problem that we considered in section 3 refers to the center-of-

mass energy of the process: for the problem of jet quenching, this energy is considerably

smaller. To be specific, consider the scattering between the hard probe and the medium in

the target rest frame. In section 3, we have assumed that the energy E ≡ p+
0 of the incom-

ing projectile is much higher than the characteristic energy scale of the target, ωc = Q2
sL.

This condition ensured the existence of a large energy phase-space, at ωc � p+ � E, for

gluon fluctuations with very large lifetimes τ � L, to which the target effectively looks like

a shockwave. But in the problem of jet quenching, these scales E and ωc are comparable

with each other. For instance, for jet production in AA collisions at the LHC, the typical

jet energies are of the order of 100 GeV, whereas the medium scale ωc (which in this con-

text is most naturally evaluated as ωc = q̂L2, with q̂ the jet quenching parameter) is in the

ballpark of 50 GeV. Accordingly, the (soft) gluon fluctuations of the projectile have typical

energies p+ � ωc and lifetimes much smaller than L. As generally for bremsstrahlung,

these soft fluctuations are favored by the phase-space, leading to relatively large quantum

corrections, enhanced by the energy logarithm ln(L/λ). This is an ‘energy’ logarithm, since

it comes from the longitudinal phase-space for the fluctuations: their lifetimes τ are con-

strained according to λ < τ < L, with λ the wavelength of a typical medium constituent.

(Alternatively, this logarithm could be rewritten as ln(ωc/ω0) with ω0 ≡ q̂λ2.) The resum-

mation of these large radiative corrections is the scope of the high-energy evolution, which

in this context is most conveniently described as an evolution with increasing the medium

size L (the upper limit on the longitudinal phase-space for fluctuations).

This evolution is similar to the Balitsky-JIMWLK evolution discussed in section 3

in that it is non-linear : it deals with soft gluon emissions in the presence of a strong

background field, so the effects of multiple scattering must be resumed to all orders. But

unlike in the case of a shockwave, the multiple scattering inside the extended medium

cannot be treated in the eikonal approximation. This is a source of several ‘technical’

complications, that we here anticipate.

First the gluon propagator in the background of the target field is known only as a

formal path integral, cf. eq. (2.10). Accordingly, the Wilson lines attached to the gluon

fluctuations become functionals of the gluon trajectories, which are themselves random.

Second, the time integrations in eq. (2.4) cannot be performed directly at the level of

the Hamiltonian, i.e. before acting with ∆H on the scattering operator representing the

projectile. This can be understood by inspection of eq. (2.6): if the time argument t of

the functional derivative Ja(t, r) lies inside the medium, then the Wilson lines in the r.h.s.

of eq. (2.6) are explicitly time-dependent, in contrast to what happened for a shockwave

(compare to eqs. (3.3)–(3.4)). So one cannot disentangle the integrations over the emission

times t1 and t2 from the Wilson line correlations. The precise structure of the latter

depends of course upon the nature of the projectile.
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Third, even after choosing a projectile and using ∆H to construct the associated evo-

lution equation, this equation is still too complicated to be dealt with in full generality.

Not only this is not a closed equation (a feature that we are already familiar with from the

example of the B-JIMWLK hierarchy), but this equation is also functional (the unknown

correlators enter under the path integral representing the trajectory of the fluctuation) and

non-local in time (the correlators depend upon the integration variables t1 and t2). The fact

that one cannot perform the time integrations in general (i.e. without additional simplifi-

cations) also implies that we shall not be able to demonstrate the logarithmic enhancement

of the radiative corrections directly at the level of the equations. This enhancement will

become manifest only after performing additional approximations, which refer to limiting

cases of special interest and lead to more tractable equations.

For simplicity, we shall focus on the evolution of a color dipole. This is pertinent in-

deed, since the corresponding scattering amplitude enters the calculation of two important

observables — the transverse momentum broadening and the energy loss by an energetic

parton — that we shall discuss in this and the next coming sections. Also, we shall use a

general set-up which is similar to that in the previous section: the quark is approaching

the medium from very far away and its interactions are adiabatically switched off at large

times, |x+| → ∞. This is not necessarily the actual situation in a nucleus-nucleus collision,

where the quark can also be created inside the medium, via some hard process. This would

lead to additional radiation which could mix with the quantum fluctuations triggered by

the interactions in the medium. The simplest way to avoid such a mixing is to assume that

the quark was on-shell before it enters the medium, as we shall actually do.

4.1 The tree-level approximation

In preparation for the quantum evolution to be discussed in the next sections, we shall first

briefly review the tree-level calculation of the transverse momentum broadening. This will

give us the opportunity to introduce the relevant scales and notations and, moreover, it

will inspire some of the approximations to be performed later on.

At tree-level, the problem of transverse momentum broadening for an energetic quark

which enters the medium is formally similar to that of quark production in pA collisions

at forward rapidities. In both cases, the transverse-momentum distribution dN/d2p of the

quark after the collision can be computed, within the limits of the eikonal approximation,

as the Fourier transform of a dipole forward amplitude (below, r ≡ x− y):

dN

d2p
=

1

(2π)2

∫
r

e−ip·r〈Ŝxy〉. (4.1)

The ‘dipole’ here is merely a mathematical construction: the ‘quark leg at x’ represents

the physical quark in the direct amplitude, whereas the ‘antiquark leg at y’ is the physical

quark in the complex conjugate amplitude. As usual, the brackets within 〈Ŝxy〉 denotes

the target average over the configurations of the color field A−a (x). The target is a weakly-

coupled QCD medium with longitudinal support at 0 < x+ < L. For simplicity, we assume

this medium to be homogeneous (on the average) in the transverse plane. Accordingly,

the average S-matrix depends only upon the dipole size r = x − y and we can write
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〈Ŝxy〉 ≡ S(r). Using S(0) = 1 (‘color transparency’), one sees that the distribution (4.1)

is properly normalized:
∫

d2p (dN/d2p) = 1.

A weakly-coupled medium, such as a QGP with sufficiently high temperature T , can

be described as an incoherent collection of independent color charges, ‘quarks’ and ‘gluons’.

These charges will be assumed to be point-like and to have no other mutual interactions,

except for those responsible for the screening of the color interactions over a (transverse)

distance r ∼ 1/mD, with mD the ‘Debye mass’. Under these assumptions, the only non-

trivial correlator of the target field A− is the respective 2-point function, which has the

following structure〈
A−a (x+, x−,x)A−b (y+, y−,y)

〉
0

= δabδ(x
+ − y+)n(x+)γ(x− y) , (4.2)

where n is the number density of the medium constituents (more precisely, a linear com-

bination of the respective densities for quarks and gluons, weighted with appropriate color

factors). As indicated in eq. (4.2), this density can generally depend upon x+ (e.g. for an

expanding medium), but here we shall mostly work with a medium which is uniform in x+

(within its longitudinal support at 0 < x+ < L, of course). Also

γ(k) ≡
∫

d2r eik·r γ(r) ' g2

k4
, (4.3)

with the approximate equality holding for k⊥ � mD, is the square of the 2-dimensional

Coulomb propagator. It is understood that eq. (4.3) must be used with an infrared cutoff

k⊥ ' mD.

The correlator (4.2) is local in the color indices, by gauge symmetry. It is furthermore

independent of the light-cone variables x− and y−, and it is local in x+, because of the

high energy kinematics. These properties can be best understood in a frame where the

medium is a ultrarelativistic left mover: then, the dynamics in x− (the light-cone ‘time’ for

a left mover) is frozen by Lorentz time dilation, whereas the correlation length in x+ gets

squeezed by Lorentz longitudinal contraction. The locality in x+ is clearly an idealization,

whose limitations will be discussed in section 4.3.3. The shockwave counterpart of eq. (4.2)

is the description of a large nucleus in the McLerran-Venugopalan (MV) model, which

employs a Gaussian CGC weight function [67, 68].

For the Gaussian field distribution in eq. (4.2), it is a straightforward exercise to

compute the average S-matrix for a quark-antiquark dipole. One finds

S0(r) = exp

{
−g2CF

L∫
0

dx+n(x+)

∫
d2k

(2π)2
γ(k)

(
1− eik · r

)}
. (4.4)

The quantity within the braces is (minus) the amplitude for a single scattering between the

dipole and the medium. The fact that the multiple scattering series exponentiates reflects

the lack of non-trivial medium correlations: successive collisions proceed independently

from each other.

Using eq. (4.3), one sees that the integral over k in eq. (4.4) is logarithmically sensitive

to the IR cutoff mD. We shall be mostly interested in small dipole sizes r ≡ |r| � 1/mD.
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Then, there is a large logarithmic phase-space, at mD � k⊥ � 1/r. To leading logarithmic

accuracy, the integral can be evaluated by expanding the complex exponential eik · r to

second order (the linear term vanishes after angular integration). One thus finds (with

n(x+) = n0 from now on)

S0(r) ' exp

{
−1

4
Lq̂(1/r2) r2

}
, (4.5)

where q̂ is the jet quenching parameter for an incoming quark:

q̂(Q2) ≡ g2CFn0

∫ Q2
d2k

(2π)2
k2 γ(k) ' 4πα2

sCFn0 ln
Q2

m2
D

. (4.6)

In the above integral, the ‘collision kernel’ g2CFγ(k) (the differential cross-section for

the scattering between the quark and the medium) is weighted by the transverse mo-

mentum squared k2
⊥ transferred in the collision. Accordingly, q̂(Q2) is proportional to

a transport cross-section — the total cross-section for collisions which are accompanied

by hard transverse-momentum transfers, within the range m2
D � k2

⊥ � Q2. For a

weakly coupled QGP, one has, parametrically, n0 ∼ NcT
3, m2

D ∼ αsNcT
2, and hence

q̂ ∼ α2
sN

2
c T

3 ln(1/αsNc). (See refs. [6, 7, 69] for detailed calculations.)

The dipole scattering becomes strong when the exponent in eq. (4.5) is of order one,

or larger. This happens when r & 1/Qs, with Qs a characteristic transverse momentum

scale, defined as

Q2
s = Lq̂(Q2

s) = 4πα2
sCFn0L ln

Q2
s

m2
D

. (4.7)

(We implicitly assume that Qs is much larger than mD, which in turn requires the medium

size L to be large enough; see section 4.3.3 for details.) This scale Qs is generally referred to

as the ‘target saturation momentum’, because the physics responsible for the unitarization

of the dipole amplitude — the multiple scattering between the dipole and the color charges

in the target — can also be viewed, in a suitable frame where the target is highly boosted,

as the result of non-linear phenomena in the gluon distribution in the target, leading to

gluon saturation [12, 35, 36]. In section 4.4, we shall argue that this profound relation

between jet quenching and gluon saturation, which here has been observed at tree-level, is

also preserved by the high-energy evolution.

Using eq. (4.5), one can now estimate the Fourier transform in eq. (4.1) for p⊥ � mD.

Consider first the case p⊥ . Qs; then, the integral in eq. (4.1) is cut off by the dipole S-

matrix at a value r ' 1/Qs. To the accuracy of interest, one can ignore the slow dependence

of the jet quenching parameter upon r, and thus deduce

dN

d2p
' 1

πQ2
s

e−p
2/Q2

s . (4.8)

This Gaussian distribution is the hallmark of a diffusive process — a random walk in the

transverse momentum space, leading to a momentum broadening 〈p2
⊥〉 ' Q2

s —, which is

induced by a succession of independent collisions in the medium.
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Consider also the high-momentum limit p⊥ � Qs; then, the integral in eq. (4.1) is cut

off by the complex exponential at a value r ∼ 1/p⊥ � 1/Qs, so it is appropriate to expand

the dipole S-matrix to linear order in its exponent. This gives

dN

d2p
' α

2
sCF
4π

n0L

∫
r

e−ip·r (−r2) ln
1

r2m2
D

=
4α2

sCFn0L

p4
⊥

=
1

πQ2
s ln(Q2

s/m
2
D)

Q4
s

p4
⊥
. (4.9)

The logarithmic scale dependence of q̂(1/r2) has been essential in deriving this result. As

clear from its above derivation, the 1/p4
⊥ tail in the spectrum at high p⊥ is produced via

a single, hard, scattering. This represents a rather rare event, as visible from the fact that

the integral of (4.9) over p⊥ > Qs is suppressed by a large logarithm:∫
Qs

d2p
dN

d2p
' 1

ln(Q2
s/m

2
D)
� 1 . (4.10)

This is furthermore in agreement with the fact that the probability sum rule∫
d2p (dN/d2p) = 1 is already exhausted (to the leading-logarithmic accuracy of inter-

est) by the contribution (4.8) of relatively soft (k⊥ . Qs) multiple scattering.

In what follows, we shall be mostly interested in typical events, in which the final

spectrum is the result of multiple soft scattering and has the Gaussian form in eq. (4.8).

Accordingly, we shall focus on a quark-antiquark dipole with transverse size r ∼ 1/Qs.

This in turn implies that the exponent in eq. (4.5) for the dipole S-matrix is of O(1): on

the average, the dipole undergoes one inelastic scattering while crossing the medium. This

more precisely means that the dipole may undergo a single hard collision, with a transferred

momentum k⊥ ∼ Qs, or a large number of softer collisions, but in such a way that the

total transferred momentum squared is again of order Q2
s. The present calculation cannot

distinguish between such scenarios, so in that sense the jet quenching parameter q̂(Q2
s) is

not really a local transport coefficient, but rather a measure of the average properties of

the medium coarse-grained over a longitudinal distance of order L. (This is also visible in

the fact that the quantity q̂(Q2
s) ‘knows’ about the overall size L of the medium, via its

logarithmic dependence upon Q2
s ∝ L.) This should be kept in mind when interpreting the

radiative corrections to be computed in what follows.

4.2 The dipole evolution equation

In this section, we shall construct a generalization of the Balitsky-Kovchegov equation —

that is, a non-linear equation for the high energy evolution of the dipole S-matrix — to

the case where the dense target is an extended medium. Then, by using this evolution

equation together with eq. (4.1), we shall be able to study the high-energy evolution of the

transverse momentum broadening and related phenomena. At this point it is important to

notice that the relation (4.1) between the cross-section for p⊥-broadening and the forward

dipole amplitude is known to be preserved by the high-energy evolution to next-to-leading

logarithmic accuracy, at least [13, 70]. Here, we shall merely work at leading logarithmic

accuracy, so we can indeed rely on this dipole picture for the present purposes.
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As in section 3.2, we shall construct an evolution equation for the average dipole S-

matrix by first acting with the evolution Hamiltonian ∆H on the dipole operator Ŝxy
and then taking the average over the target. This procedure implicitly assumes that the

projectile is a ‘bare’ dipole prior to the evolution step under consideration, a condition

which can always be satisfied by appropriately choosing the Lorentz frame: namely, we

view this particular step of the evolution in a frame where the dipole is relatively slow, but

the medium is highly boosted. This in turn implies that the effects of the earlier steps in

the evolution have been incorporated in the distribution of the color fields in the target.

So, in general, this distribution can be more complicated than the Gaussian introduced in

the previous subsection, cf. eq. (4.2), and which applies at tree-level.

In the present context, it is more advantageous to use the alternative form (2.18) for

the action of ∆H. In this form, the ‘virtual’ term required by probability conservation is

already built in. This allows one to avoid spurious divergences already before integrating

over the emission times t1 and t2 (an operation that we shall not be able to perform

in full generality). We start by computing the coefficient of this ‘virtual’ term, which

is independent of the background field and hence particularly simple. Using eqs. (2.20)

and (3.27), one finds

−∆Hrad Ŝxy
∣∣
A−=0

=
g2CF

2π

ωc∫
ω

dp+

(p+)2

∫ ∞
−∞

dt2

∫ t2

−∞
dt1

[
∂ir2∂

i
r1G0(t2 − t1, r2 − r1; p+)

]∣∣∣r2=x

r2=y

∣∣∣r1=x

r1=y
. (4.11)

It would be straightforward to perform the remaining integrations in the expression above,

but its present form is more useful for what follows.

As compared to eq. (2.4), in writing eq. (4.11) we have adapted the integration limits

for p+ to the problem at hand. Namely, the upper limit is the characteristic medium scale

(cf. eq. (3.1))

ωc = Q2
sL = q̂(Q2

s)L
2 , (4.12)

which sets the upper cutoff on the energy of the gluon fluctuations (indeed, fluctuations

with larger energies ω > ωc would have a formation time larger than L). The lower limit

ω is the minimal energy allowed for a gluon fluctuation. Eventually this will be identified

with another medium scale ω0 ≡ q̂λ2, corresponding to a minimal formation time equal to

λ (see the discussion in section 4.3.3). But in the interesting situation where L � λ, we

expect large radiative corrections enhanced by the logarithm ln(ωc/ω0) = ln(L/λ), hence

we need to ‘evolve’ from ω ∼ ωc down to ω = ω0 in a differential way. For the time being,

it is convenient to choose this lower limit ω as the parameter for the evolution.

Consider now the ‘real’ term in eq. (2.18), which involves the radiation piece of the

background field propagator, cf. eq. (2.19). By repeatedly using eq. (2.6), one finds

∆HradŜxy = − g2

ωc∫
ω

dp+

2π

1

(p+)2

∫ ∞
−∞

dt2

∫ t2

−∞
dt1 ∂

i
r1∂

i
r2 Gab(t2, r2; t1, r1; p+)

{
δr1xδr2x

tr

Nc

[(
V †∞,t2t

a V †t2t1t
bV †t1,−∞

)
x
Vy

]
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x

y
0 L t1 t2 L0t1 t2

r r

Figure 1. Two diagrams illustrating the dipole evolution described by eq. (4.13) (they correspond

to the first and respectively the fourth term in the r.h.s. of eq. (4.13)). It is understood that all the

partonic lines (quark, antiquark, and gluon) are accompanied by Wilson lines describing scattering

off the medium.

+ δr1yδr2y
tr

Nc

[
V †x

(
Vt1,−∞t

b Vt2t1t
aV∞,t2

)
y

]
− δr1yδr2x

tr

Nc

[(
V †∞,t2t

a V †t2,−∞

)
x

(
Vt1,−∞t

b V∞,t1

)
y

]
− δr1xδr2y

tr

Nc

[(
V †∞,t1t

bV †t1,−∞

)
x

(
Vt2,−∞t

aV∞,t2

)
y

]}
. (4.13)

Note that Vt2t1 ≡
(
V †t2t1

)†
truly describes backward propagation in time, from t2 to t1

(recall that t2 > t1). The physical interpretation of the four terms within the braces in

the r.h.s. of eq. (4.13) is quite transparent (see also figure 1): the first two terms describes

processes in which the soft gluon is emitted and then reabsorbed by a same leg of the

dipole (either the quark, or the antiquark); the last two terms, which have the opposite

sign, correspond to exchange processes where the gluon is emitted by the quark and then

absorbed by the antiquark, or vice-versa.

To obtain an evolution equation, one needs to average eq. (4.13) over the target field

distribution and also perform the integrations over the emission times t1 and t2. (Note that

the target average should also include the adjoint Wilson line implicit in the structure of

the gluon propagator, cf. eq. (2.10).) We here meet with one of the difficulties anticipated

at the beginning of this section: unlike in the corresponding discussion for a shockwave,

the support of the Wilson lines in eq. (4.13) is now truly dependent upon the emission

times t1 and t2. Accordingly, the time integrations cannot be disentangled from the target

correlations anymore: the Wilson line correlators which enter 〈∆HŜxy〉 are explicitly time

dependent. So, it seems impossible to make further progress in full generality — i.e.,

without additional assumptions about the medium correlations.

Inspired by the situation at tree-level and also by the mean field approximation to the

B-JIMWLK equations [35, 37–43], which appears to be remarkably successful [43, 44], we

shall from now on assume that the background field distribution remains approximatively

Gaussian after including the effects of the high energy evolution. That is, the only non-

trivial background field correlator is the respective 2-point function, which has the general

structure (compare to eq. (4.2))

〈
A−a (x+, x−,x)A−b (y+, y−,y)

〉
ω

= δabδ(x
+ − y+) Γ̄ω(x+,x− y) . (4.14)
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This depends upon the energy scale ω down to which one has integrated out the soft gluons,

since this fixes the longitudinal resolution on which one probes the medium correlations.

The x+-dependence of the correlator Γ̄ω(x+,x − y) reflects the evolution of the time in-

homogeneity introduced at tree-level by the charged particles density n(x+), cf. eq. (4.2).

Vice-versa, if the latter is independent of time, n(x+) = n0, then so is also the function Γ̄ω
— except, of course, for the fact that its longitudinal support is restricted9 to 0 < x+ < L.

The main characteristic of the 2-point function (4.14) is to be local in time. This is well

justified at tree-level and remains true in the presence of the high-energy evolution, because

of the strong separation in longitudinal scales inherent in this evolution. To understand

that, recall that we work in a frame where the target is a rapid left mover, hence the

medium correlations are potentially modified by radiative corrections associated with the

emission of (relatively) soft gluons by the medium constituents. Such ‘soft’ emissions carry

longitudinal momenta p− which are small compared to the respective momenta of their

parent partons (the medium constituents), but much larger than the p− component of

any parton from the projectile (the original dipole or its gluon fluctuations). Accordingly,

the scale for non-locality in x+ as induced by this evolution, namely ∆x+ ∝ 1/p−, is

much smaller than the respective resolution scale (the lifetime τ ∼ t2 − t1) of the gluon

fluctuations of the projectile.10 To the latter, the medium correlations look still local, as

at tree-level.

The locality of eq. (4.14) in x+ allows one to factorize the Wilson correlations within

〈∆HŜxy〉 according to their time arguments. To be specific, consider the first among the

four terms within the braces in eq. (4.13). After also including the adjoint Wilson line

from the gluon propagator, cf. eq. (2.10), we are led to the following medium correlation

function:〈
U † abt2t1

[r]
tr

Nc

[(
V †∞,t2t

a V †t2t1t
bV †t1,−∞

)
x
Vy

]〉
=

=

〈
tr

Nc

(
V †∞,t2(x)V∞,t2(y)

)〉 〈
U † abt2t1

[r]
tr

Nc

(
ta V †t2t1(x)tb Vt2t1(y)

)〉
×

×
〈

tr

Nc

(
V †t1,−∞(x)Vt1,−∞(y)

)〉
=
Nc

2

{〈
Ŝ∞,t2(x,y)

〉〈
Ŝt2,t1(x, r)Ŝt2,t1(r,y)

〉〈
Ŝt1,−∞(x,y)

〉
− 1

N2
c

〈
Ŝ(x,y)

〉}
, (4.15)

where the first equality is obtained by using the Gaussian Ansatz (4.14) for the medium

averages and the second one follows via the Fierz identity (3.25). We have defined the

time-dependent dipole operator Ŝt2,t1(x,y) via the obvious generalization of eq. (2.2). To

simplify writing, we keep implicit the dependence of the various correlations upon the

9This restriction is not affected by the evolution since one can neglect the fluctuations occurring near

the edges of the medium; see the discussion below.
10To fully justify the local approximation in eq. (4.14), one should also compare the non-locality scale

∆x+ to the average time interval between two inelastic collisions in the medium. However it turns out that,

for the gluon fluctuations of a dipole, this ‘mean free path’ is at least as large as the lifetime ∆t = t2− t1 of

the fluctuation, so this comparison introduces no additional restriction; see the discussion in sections 4.3.1

and 4.5.
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renormalization scale ω. Also, in the very last term we have reconstructed the average of

the global S-matrix according to〈
Ŝ(x,y)

〉
=
〈
Ŝ∞,t2(x,y)

〉〈
Ŝt2,t1(x,y)

〉〈
Ŝt1,−∞(x,y)

〉
. (4.16)

This last term, which is explicitly suppressed at large Nc, vanishes against the respective

contribution of the ‘virtual’ term. A similar cancellation has been noticed in section 3.2

at the level of the BK equation. As in that case though, it is nevertheless convenient to

consider the large-Nc limit, which allows us to factorize the two-dipoles S-matrix during

the lifetime of the fluctuation:〈
Ŝt2,t1(x, r)Ŝt2,t1(r,y)

〉
'
〈
Ŝt2,t1(x, r)

〉〈
Ŝt2,t1(r,y)

〉
at large Nc . (4.17)

One should keep in mind that Ŝt2,t1(x, r) ≡ Ŝt2,t1
(
x, [r(t)];ω

)
is truly a functional of the

path r(t), with t1 < t < t2, and also a function of ω, although such features are kept

implicit, to simplify the notations. In what follows, we shall often use the more compact

notations

St2,t1(x,y) ≡
〈
Ŝt2,t1(x,y)

〉
, S(x,y) ≡ S∞,−∞(x,y) . (4.18)

Before we proceed, let us open here a parenthesis on the generalization of the present

results to finite Nc: within the Gaussian approximation at hand, it is in fact possible to

also evaluate the finite-Nc corrections. (See e.g. refs. [37, 39–41, 43, 44] for corresponding

discussions in the framework of the CGC.) To keep the presentation as simple as possible, we

shall stick to the large-Nc limit in all the intermediate steps, but indicate the generalization

of the final results to finite Nc.

We now close the parenthesis and return to the evaluation of eq. (4.13) in the Gaussian

approximation and at large Nc. The first term in the r.h.s. has been already discussed in

eqs. (4.15)–(4.17). The remaining three terms can be similarly manipulated. Under the

present assumptions, they all involve the same product of Wilson line correlators, as written

down in the last line of eq. (4.15). Thus, they differ from each other (and from the first

term) only via the actual values taken by the endpoints r1 and r2 of the emitted gluon.

By putting together the previous results and adding the contribution of the ‘virtual’ piece

(i.e. eq. (4.11) times S(x,y)), one obtains

〈
∆HŜxy

〉
= − αsNc

2

ωc∫
ω

dp+

(p+)3

∫ ∞
−∞

dt2

∫ t2

−∞
dt1 ∂

i
r1∂

i
r2

{∫ [
Dr(t)

]
e

i p
+

2

t2∫
t1

dt ṙ2(t)

× S∞,t2(x,y)
[
St2,t1(x, r)St2,t1(r,y)−St2,t1(x,y)

]
St1,−∞(x,y)

}∣∣∣∣∣
r2=x

r2=y

∣∣∣∣∣
r1=x

r1=y

.

(4.19)

This equation can be recognized as a generalization of the BK equation (3.31), to which

it reduces in the limit where the target is a shockwave. Namely, for a target localized

near x+ = 0, the BK equation is obtained from eq. (4.19) by integrating over positive
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values for t2 and negative values for t1. (When both t1 and t2 have the same sign, one

has St2,t1 = 1 for a SW target and then the r.h.s. of eq. (4.19) simply vanishes.) In that

case, S∞,t2 = St1,−∞ = 1, whereas St2,t1(x,y) = S(x,y) is independent of time. Moreover,

the S-matrices for the two daughter dipoles, S(x, r) and S(r,y), do not depend upon the

detailed trajectory r(t) of the soft gluon, but only upon its position r(0) at the interaction

time t = 0. Hence one can write (compare to eq. (B.9))

S
(
x, [r(t)]

)
' S(x, r(0)) =

∫
d2z δ(2)

(
z − r(0)

)
S(x, z) . (4.20)

After also using the factorization property (B.10) for the free path integral, one can perform

the time integrations as in eqs. (3.7), (3.8) and (3.28), then recognize the logarithmic en-

hancement of the ensuing integral over p+, and finally reconstruct the BK equation (3.31),

as anticipated. Eq. (4.20) expresses the revival of the eikonal approximation: the trans-

verse diffusion of the gluon fluctuation can be neglected while crossing a ‘shockwave’ target

with very narrow longitudinal extent.

Returning to the case of an extended target, we notice that eq. (4.19) is complicated

by the fact that interactions are delocalized in time and also by the transverse diffusion of

the gluon fluctuation, as encoded in the path integral. Accordingly, the time integrations

in eq. (4.19) cannot be performed in full generality, i.e. without further approximations.

Yet, as we shall shortly see, eq. (4.19) is a convenient starting point for further studies: it

allows for explicit calculations in limiting situations of interest and also for general physics

conclusions. Before we proceed with more specific studies, it is convenient to recast this

expression in a more suggestive form.

First, one can interpret eq. (4.19) as an equation for the evolution w.r.t. the longitudinal

momentum (‘energy’) p+ ≡ ω of the emitted gluon. To that aim, we shall write

〈
∆HŜxy

〉
= ∆S(x,y) ≡

ωc∫
ω

dω1
∂S(x,y)

∂ω1
, (4.21)

which by comparison with eq. (4.19) allows us to deduce the following evolution equation

−∂ lnS(x,y)

∂ω
=

αsNc

2

1

ω3

∫ ∞
−∞

dt2

∫ t2

−∞
dt1 ∂

i
r1∂

i
r2

{∫ [
Dr(t)

]
e

i ω
2

t2∫
t1

dt ṙ2(t)

×
[
St2,t1(x, r)St2,t1(r,y)S−1

t2,t1
(x,y) − 1

]}∣∣∣∣∣
r2=x

r2=y

∣∣∣∣∣
r1=x

r1=y

. (4.22)

(Recall that 0 < S ≤ 1, so lnS < 0.) eq. (4.22) is somewhat formal because, so far, we

have not demonstrated the logarithmic enhancement
∫

(dω/ω) of the soft gluon emission

for the case of an extended target. Yet, as we shall see starting with section 4.3, such

enhancement shows up indeed in all the cases where we will be able to perform the time

integrations.

Furthermore, we anticipate that the dominant corrections in the regime of interest

are associated with very soft gluons, with energies p+ � ωc. Such gluons have small
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lifetimes τcoh � L, hence they are typically emitted and absorbed deeply inside the medium:

boundary effects, i.e. emissions which occur within a distance ∼ τcoh from the medium edges

at x+ = 0 or x+ = L, are comparatively suppressed by a factor τcoh/L � 1. Accordingly,

it is justified to restrict the time integrations in eq. (4.22) to 0 < t1 < t2 < L. In this

range, one can exploit the Gaussian nature of the medium correlations, cf. eq. (4.14), to

express the dipole S-matrix as (compare to eq. (4.5))

St2,t1(x,y;ω) = exp

{
−g2CF

∫ t2

t1

dtΓω(t,x− y)

}
= exp

{
−g2CF (t2 − t1)Γω(x− y)

}
(4.23)

where Γω(t,x− y) ≡ Γ̄ω(t,0)− Γ̄ω(t,x− y). The second equality in eq. (4.23) holds for a

medium which is homogeneous in time, a case to which we shall restrict ourselves in what

follows. In particular, S(x,y) is obtained by replacing t2 − t1 → L in eq. (4.23). Note

that the quantity g2CFΓω(x−y) is the dipole amplitude for one scattering per unit length

(or time).

After using eq. (4.23) and restricting the time integrations to the support of the target,

eq. (4.22) can be rewritten as an equation for Γω(x− y):

L
∂Γω(x,y)

∂ω

=
1

4πω3

∫ L

0
dt2

∫ t2

0
dt1 ∂

i
r1∂

i
r2

{∫ [
Dr
]

e
i ω
2

t2∫
t1

dt′ ṙ2(t′)

×

[
exp

(
− g2Nc

2

∫ t2

t1

dt
[
Γω(x, r(t)) + Γω(r(t),y)− Γω(x,y)

])
− 1

]}∣∣∣∣∣
r2=x

r2=y

∣∣∣∣∣
r1=x

r1=y

.

(4.24)

We have also used CF ' Nc/2, as appropriate at large Nc.

It is in fact easy to generalize the above results to finite Nc and also to a generic

representation R for the original color dipole (see appendix D for details): within the

limits of the Gaussian approximation (4.14), the average S-matrix for an RR̄-dipole and

for finite Nc is given by eq. (4.23) with CF → CR (the second Casimir for the respective

representation) and with the function Γω(x − y) obeying exactly the same equation as

above, i.e. eq. (4.24). Such a simplification has been previously noticed in ref. [40], where

the analog of eq. (4.24) has been proposed in the context of a shockwave target (that is,

as a mean field approximation to JIMWLK evolution at finite Nc).

Note finally that eq. (4.24) can be viewed as a generalization (and also a corrected

version) of a corresponding result in ref. [9], as shown in eqs. (11–12) there.11 eq. (4.24)

is more general because it is an evolution equation, whose solution (say, as obtained via

11For the sake of this comparaison, note that the quantities denoted as S(x⊥) and N(x⊥, ω) in [9]

correspond to our present quantities ∆S(x,y) and respectively ω(∂S/∂ω), cf. eq. (4.21). Hence, eq. (12)

in [9] must be compared to the equation obtained by multiplying both sides of our eq. (4.24) by a factor

[−ω(g2Nc/2)S(x,y)].
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successive iterations) would resum an infinite series of radiative corrections of arbitrary

loop order (within the high-energy approximations at hand). By comparison, eq. (12)

in [9] is a one-loop result, which can be viewed as the first iteration of our eq. (4.24)

— the limit in which the r.h.s. of the latter is evaluated in the tree-level approximation

(i.e., by using the expression (4.5) for the average S-matrix). Moreover, even at one-loop

order, eq. (12) in [9] mistreats the ‘virtual’ corrections: instead of subtracting a term

proportional to S(x,y), as required by the correct prescription in eq. (2.18), the authors

of ref. [9] have merely subtracted the vacuum limit (A− → 0) of the corresponding ‘real’

term.12 This imprecision has consequences to leading logarithmic accuracy, as we shall see

in the next subsection. (In ref. [9], the proper virtual term has been heuristically added in

the calculation of the single-logarithmic corrections, where it was actually needed.)

4.3 The single scattering approximation

In this section, we shall discuss a series of successive approximations to eq. (4.24), which will

lead us to a simpler, linear, equation — namely, eq. (4.43) — which, besides being more

tractable (including via analytic methods), has also the virtue to capture the dominant

radiative corrections in the limit where the medium is large — those which are enhanced

by the double logarithm ln2(L/λ), with λ a microscopic length scale to be explained in

section 4.3.3.

To better appreciate the ensuing approximations, let us remind here that we are pri-

marily interested in the radiative corrections which are enhanced by (at least) one large

energy logarithm ln(ωc/ω), or, equivalently, which exhibit a logarithmic divergence in the

soft limit ω → 0. Since the lifetime τcoh of the fluctuations is proportional to ω and, more-

over, their scattering amplitude in the medium is proportional to τcoh, we conclude that

fluctuations which are sufficiently soft should scatter only weakly. This explains our current

emphasis on the single scattering approximation. Yet, the situation turns out to be more

subtle: both the lifetime τcoh = 2ω/p2
⊥ and the scattering amplitude per unit time also

depend upon the transverse momentum p⊥ (or the transverse size B⊥ ∼ 1/p⊥) of the fluc-

tuation. Hence relative hard (large ω) fluctuations can still interact only weakly provided

their size is small enough. This implies the existence of double-logarithmic corrections

associated with single scattering, where the second logarithm comes from integrating over

the transverse phase-space [9]. Such corrections will be explicitly identified and resumed in

our formalism, with results which agree with ref. [9]. Vice-versa, single energy logarithms

can be generated also via multiple scattering, namely, via fluctuations with generic energies

ω � ωc and with sufficiently large transverse sizes. Such corrections too are encoded in

our formalism, but it seems very difficult to explicitly isolate them (beyond the one-loop

approximation already considered in ref. [9]), for reasons to be explained in section 4.5.

4.3.1 The BFKL equation for jet quenching

Let us first recall the interesting kinematical regime for a study of the transverse momentum

broadening and of its high-energy evolution: the transverse size r ≡ |x− y| of the original

12In our present set-up, the procedure of ref. [9] would amount to subtracting just the coefficient (4.11)

of the virtual term, and not the product between that coefficient and the average S-matrix S(x,y) of the

unevolved dipole.
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dipole is parametrically of order 1/Qs, with Q2
s = q̂L, and the typical energies of the

emitted gluons obey ω � ωc, with ωc = q̂L2. This particular regime corresponds to the

unitarity line for the dipole amplitude, or, equivalently, to the plasma saturation line (see

the discussion in section 4.4).

Under these assumptions, we shall focus on the regime where the quark-gluon (‘two-

dipole’) fluctuation living during the time interval ∆t = t2− t1 undergoes a single collision

with the medium, as illustrated in figure 2. We shall refer to this regime as the ‘single

scattering approximation’, but one should keep in mind that multiple scattering is still

allowed prior to, and after, the fluctuation, that is, during the comparatively large time

intervals between 0 and t1 and, respectively, between t2 and L. Roughly speaking, this

approximation is justified provided the transverse separation between the soft gluon and

the parent dipole is small enough (see eq. (4.32) below). Within this ‘single scattering’

regime, one can expand the exponential within the square brackets in eq. (4.24) to linear

order:

L
∂Γω(x,y)

∂ω
= − αsNc

2

1

ω3

∫ L

0
dt2

∫ t2

0
dt1 ∂

i
r1∂

i
r2

{∫ [
Dr
]

e
i ω
2

t2∫
t1

dt′ ṙ2(t′)

×
∫ t2

t1

dt
[
Γω(x, r(t)) + Γω(r(t),y)− Γω(x,y)

]}∣∣∣∣∣
r2=x

r2=y

∣∣∣∣∣
r1=x

r1=y

.

(4.25)

For the physical interpretation of this equation, one should keep in mind that the quantity

g2CFΓω is the single scattering amplitude per unit time (or length). Hence, the solution

to eq. (4.25) shows how each of the scatterings suffered by the original dipole (x,y) is

renormalized by the high-energy evolution. By using this solution within eq. (4.23), one

obtains the S-matrix for that dipole in the presence of both multiple scattering and high-

energy evolution.

A main virtue of eq. (4.25) is that the time integrals over t1, t2, and t can be explicitly

performed, as we now explain. An important consequence of this calculation will be to

render manifest the logarithmic enhancement of the radiative corrections with small ω. To

that aim, it is convenient to reverse the order of the time integrations, as follows:∫ L

0
dt2

∫ t2

0
dt1

∫ t2

t1

dt =

∫ L

0
dt

∫ t

0
dt1

∫ L

t
dt2 . (4.26)

After introducing the identity in the form 1 =
∫

d2z δ(2)
(
z − r(t)

)
and using eq. (B.10)

with r(0)→ r(t), eq. (4.25) becomes

L
∂Γω(x,y)

∂ω

= − αsNc

2

1

ω3

∫
d2z

[
Γω(x, z) + Γω(z,y)− Γω(x,y)

]
(4.27)

×
∫ L

0
dt

∫ t

0
dt1

∫ L

t
dt2 ∂

i
r1∂

i
r2

{
G0(t2 − t, r2 − z;ω)G0(t− t1, z − r1;ω)

}∣∣∣∣∣
r2=x

r2=y

∣∣∣∣∣
r1=x

r1=y

.
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The time integrations can now be performed as in eqs. (3.7)–(3.8). For instance,

1

2ω

∫ L

t
dt2 ∂

i
r2G0(t2 − t, r2 − z;ω) =

−i

2ω

∫
d2p

(2π)2
pi eip·(r2−z)

∫ L

t
dt2 e−i

p2⊥
2ω

(t2−t)

= −
∫

d2p

(2π)2

pi

p2
⊥

eip·(r2−z)

[
1− e−i

p2⊥
2ω

(L−t)
]

' −
∫

d2p

(2π)2

pi

p2
⊥

eip·(r2−z) =
i

2π

ri2 − zi

(r2 − z)2
. (4.28)

The crucial approximation that has been performed here, was to neglect the rapidly-

oscillating complex exponential in the second line. This is indeed justified for the problem

at hand because L− t ∼ L is much larger than the lifetime τcoh = 2ω/p2
⊥ of the interesting

gluon fluctuations. Accordingly, the final result in eq. (4.28) is independent of t. This final

result is recognized as the Weizsäcker-Williams (or BFKL) wavefunction of the valence

quark at r2 (with r2 = x, or r2 = y) accompanied by a soft gluon at z. At this level, the

transverse diffusion (which was a priori encoded in the gluon propagator) is not manifest

anymore: this has been averaged out by the integral over the emission time t2, because

the latter had a sufficiently large phase-space at its disposal: L− t� τcoh. This argument

explains why the transverse diffusion plays no role in this single scattering approximation:

the interaction probability being weak, the (unique) scattering typically occurs far away

from the gluon emission vertices, at a time where the soft gluon wavefunction is already

fully developed.

A similar reasoning applies to the integral over t1, whose result can be read off eq. (3.8).

The final integral over t then simply yields a factor of L, which cancels the similar factor in

the l.h.s. of eq. (4.25). The above discussion is quite similar to that of the ‘crossing’ piece

in the evolution when the target is a shockwave, cf. section 3.1. As in that case, the two

integrals over the emission times t1 and t2 around the interaction time t have generated a

factor τ2
coh ∝ ω2, which, when also combined with the overall factor 1/ω3 in the r.h.s. of

eq. (4.25), produces a final result ∝ 1/ω. This demonstrates the logarithmic enhancement,

as anticipated. We are thus lead to the following, relatively simple, equation for Γω (with

ᾱ = αsNc/π and the kernel Mxyz as defined in eq. (3.24)):

ω
∂Γω(x,y)

∂ω
=

ᾱ

2π

∫
z
Mxyz

[
Γω(x, z) + Γω(z,y)− Γω(x,y)

]
. (4.29)

This equation looks formally similar to the BFKL equation eq. (3.30), but in reality

it is different from the latter, in that it has a different validity range (as characterized

by the boundary conditions for the integral over z; see below) and it applies in different

circumstances.

Namely, recall that eq. (3.30) applies to a dipole scattering off a shockwave and is valid

so long as the amplitude for a single scattering remains small: TY � 1. This condition

refers to both the parent dipole, with size |x − y|, and the daughter dipoles, |x − z| and

|z − y|, and it implies that all these dipoles must be small relative to the same scale —

the target saturation momentum Qs(Y ). Moreover this condition r � 1/Qs(Y ) is only

weakly dependent upon the energy ω of the fluctuation (or upon Y ), in the sense that
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0 Lt2tt1

r

B(t)

x
y

z

Figure 2. A diagram for dipole evolution in the single scattering approximation, cf. eqs. (4.27)

and (4.29). The grey areas prior and after the fluctuation are regions of multiple scattering. During

the fluctuation, the 3-parton (qq̄g) system scatters only once, at some intermediate time t. The

lifetime ∆t = t2 − t1 of the fluctuation is considerably smaller than L; its transverse size B⊥ is

typically much larger than the size r of the original dipole, but much smaller than the ‘saturation’

size 2/k
br

(ω) introduced by multiple scattering.

this dependence is introduced by the high energy evolution and hence it vanishes in the

weak-coupling limit ᾱ→ 0.

By contrast, eq. (4.29) refers to the scattering amplitude per unit time and is valid so

long as the scattering accumulated by the fluctuation (i.e. by the daughter dipoles) during

its lifetime ∆t remains small. Since ∆t is much smaller than the size L of the medium, this

condition allows the daughter dipoles to be much larger than the parent one. Moreover, the

upper limit thus introduced on the transverse size of the fluctuation is strongly dependent

upon the energy, since so is its lifetime ∆t ∝ ω. Specifically, the weak-scattering condition

for the fluctuation can be written as

2g2CF∆tΓω(B⊥) � 1 , (4.30)

where B⊥ is the maximal size of any of the daughter dipoles during ∆t — that is, the

largest among the distances |x − r(t)| and |r(t) − y| for t1 < t < t2 — and the overall

factor of 2 stands for the two daughter dipoles (see also figure 2). As we shall shortly check,

this B⊥ is typically much larger than the size r ∼ 1/Qs of the original dipole, hence it is

indeed justified to indistinguishably treat the two daughter dipoles.

To be more specific, let us estimate the fluctuation lifetime via the uncertainty

principle, ∆t ' 2ω/p2
⊥ ' ωB2

⊥/2, and use the tree-level estimate for Γ in eq. (4.5):

g2CFΓ(B⊥) ' q̂(1/B2
⊥)B2

⊥/4. Then the condition (4.30) can be rewritten as an energy-

dependent upper limit on B2
⊥:

B2
⊥ �

4

2
√
ωq̂
≡ 4

k2
br

(ω)
, (4.31)
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with q̂ itself evaluated on the scale set by this limit: q̂ = q̂(k2
br

). This constraint will be

confirmed by the analysis in section 4.5, which also shows that the very large fluctuations,

with sizes B⊥ & 2/k
br

(ω), — or, equivalently, with large lifetimes ∆t &
√
ω/q̂ — are

destroyed by multiple scattering. On the other hand, the very small fluctuations, with

transverse sizes much smaller than r ∼ 2/Qs, do not contribute to the evolution, since

their effects cancel between the ‘real’ and ‘virtual’ terms in eq. (4.29). To conclude, the

phase-space for the single scattering approximation reads

r ' 2

Qs
. |x− z| , |z − y| � 2

k
br

(ω)
. (4.32)

Via the uncertainty principle, eq. (4.32) implies that the transverse momentum p⊥ of

the emitted gluons lies within the range k
br

(ω) � p⊥ . Qs. This phase-space depends

upon the energy ω of the emitted gluons, so it is important to recall that the interesting

fluctuations have ω � ωc. When ω approaches the upper limit ωc, the phase-space in

eq. (4.32) shrinks to zero since k
br

(ωc) ∼ Qs. Vice-versa, for the soft gluons with ω � ωc,

one has k2
br

(ω) � Q2
s and then the transverse phase-space for linear evolution is indeed

very large.

To summarize, the main difference w.r.t. the ‘standard’ BFKL equation is that, in the

context of eq. (4.29), the longitudinal and transverse phase-spaces are strongly correlated

with each other, already in the absence of the evolution (i.e. in the weak-coupling limit ᾱ→
0). This has important consequences for the evolution, to be discussed in the next section.

4.3.2 The double logarithmic approximation

The previous arguments show that, when increasing the longitudinal phase-space for the

evolution by decreasing ω below ωc, one simultaneously increases the corresponding trans-

verse phase-space, by decreasing the lower limit k
br

(ω) on the transverse momentum p⊥
of the fluctuations (or, equivalently, increasing the upper limit on their transverse size, cf.

eq. (4.32)). In view of this and of the well-known fact that the BFKL evolution admits a

double-logarithmic regime [18], it is clear that the radiative corrections can be enhanced not

just by the large energy logarithm ln(ωc/ω), but also by the even larger double logarithm

ln(ωc/ω) ln(Q2
s/k

2
br

(ω) = (1/2) ln2(ωc/ω). This enhancement has been previously recog-

nized in ref. [9], where the respective correction to the transverse momentum broadening

has been first computed (see also [14, 71]).

In what follows, we shall derive a simplified version of eq. (4.29), which resums the

dominant, double-logarithmic, corrections alone. To that aim, we need to focus on the

relatively large fluctuations with |x − z| ' |z − y| � r. Since the dipole scattering

amplitude Γω(x, z) is a rapidly growing function of the dipole size |x−z| (see below), it is

quite clear that, in this regime, one can neglect the ‘virtual’ term ∝ Γω(x,y) in eq. (4.29).

Then this equation simplifies to

ω
∂Γω(r)

∂ω
' ᾱ

∫
dB2
⊥
r2

B4
⊥

Γω(B⊥) , (4.33)

where we have used B⊥ to denote the size of any of the two daughter dipoles. The initial

condition for this equation at ω ' ωc, i.e. the tree-level result in eq. (4.5), is roughly
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proportional to the dipole size squared. Remarkably, eq. (4.33) shows that this property is

preserved by the evolution under the approximations of interest. Hence, we can write

g2CFΓω(B⊥) ≡ 1

4
q̂ω(1/B2

⊥)B2
⊥ , (4.34)

where the function q̂ω(1/B2
⊥) has only a weak dependence upon B2

⊥ (for ω ' ωc, it reduces

to the zeroth order result in eq. (4.6)). Then eq. (4.33) implies the following equation

for q̂ω,

ω
∂q̂ω(1/r2)

∂ω
' ᾱ

∫ 4/k2
br

(ω)

r2

dB2
⊥

B2
⊥
q̂ω(1/B2

⊥) , (4.35)

where the limits in the integral over B2
⊥ follow from the previous discussion. Eq. (4.35) looks

similar to the familiar ‘double-logarithmic approximation’ (DLA) to the BFKL equation

(see e.g. [18]). But one should keep in mind that the upper limit in the above integral, which

is energy-dependent, is specific to the problem at hand and reflects the non-linear physics

of multiple scattering. (The standard DLA equation would be obtained by replacing this

limit by some fixed, infrared, cutoff, like the confinement scale: 4/k2
br

(ω)→ 1/Λ2.) For this

particular problem, and unlike in more standard applications of the BFKL equation to high-

energy scattering [18, 31–33], the DLA encompasses the dominant radiative corrections in

the high-energy limit ωc/ω � 1, for any r . 1/Qs.

Importantly, the approximation (4.34) for the dipole amplitude does not introduce

a (non-perturbative) anomalous dimension: the dominant behavior at small r is still r2,

like at tree-level. The would-be ‘collinear’ divergence at large B⊥ is cut off by multiple

scattering. In turn, this implies that the radiative corrections that we are about to compute

are mild enough to be absorbed into a redefinition of q̂. Indeed, with this approximation for

Γω, the evolved dipole S-matrix in eq. (4.23) has the same formal structure as at tree-level,

namely (compare to eq. (4.5))

Sω(r) ' exp

{
−1

4
Lq̂ω(1/r2) r2

}
. (4.36)

This is in particular true for the values r ∼ 1/Qs which control the Fourier transform

in eq. (4.1). In turn, this implies that the quark spectrum has the Gaussian form in

eq. (4.8), but with a renormalized, energy-dependent, saturation momentum, defined

by Q2
s = q̂ω(Q2

s)L.

Consider now the first iteration to eq. (4.35) and assume for simplicity that the respec-

tive zeroth order result (to be denoted as q̂(0) in what follows) is scale-independent. The

first order correction implied by eq. (4.35) reads13

δq̂(1)
ω (Q2

s) = ᾱq̂(0)

∫ ωc

ω

dω1

ω1

∫ Q2
s

k2
br

(ω1)

dp2
⊥

p2
⊥

= ᾱq̂(0)

∫ ωc

ω

dω1

ω1
ln

Q2
s

k2
br

(ω1)

' ᾱ
2
q̂(0)

∫ ωc

ω

dω1

ω1
ln
ωc
ω1

=
ᾱ

4
q̂(0) ln2 ωc

ω
, (4.37)

13To the accuracy of interest, one can replace q̂ ' q̂(0) within the argument of the logarithm.
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where the approximate equality sign refers to the double-logarithmic accuracy and we

preferred to use the transverse momentum variable p2
⊥ ≡ 4/B2

⊥ as an integration variable,

instead of B2
⊥. As expected, this correction is of order ᾱ, but it is enhanced by the possibly

large double logarithm ln2(ωc/ω). To understand how large can this actually be, one needs

to know what is the minimal value for ω allowed on physical grounds. This issue has been

previously addressed in ref. [9], where one has argued that this minimal value is controlled

by a lower limit λ on the lifetime τcoh = 2ω/p2
⊥ of the fluctuations, which is independent

of L. In the next subsection, we shall revisit and complete the arguments in ref. [9] and

thus clarify the physical origin and the value of λ. But for the time being, it suffices to

know that such a cutoff exists and examine its consequences. As we now explain, this

implies the existence of a large phase-space for double-logarithmic evolution in the regime

where L� λ.

Specifically, the condition τcoh > λ implies a lower limit on the gluon energy, ω >

λp2
⊥/2, which also depends upon its transverse momentum p⊥. This last feature forces us

to modify our previous analysis leading to eq. (4.37). Indeed, in the integral over p2
⊥ within

that equation, we have assumed that the maximal limit is equal to Q2
s, but in reality this

cannot exceed a value p2
⊥max = 2ω1/λ which also depends upon ω1 (the other integration

variable there). That is, the proper integration range in p2
⊥ for a given value of ω is

k2
br

(ω) � p2
⊥ � min

(
2ω

λ
,Q2

s

)
. (4.38)

The upper limit introduces two constraints. First, it implies the necessary condition

2ω/λ � k2
br

(ω), or equivalently ω � ω0 ≡ q̂λ2, showing that ω0 is the absolute lower

limit on the energy ω of the fluctuation. Second, it means that, when performing the inte-

grals over the phase-space, one must distinguish between two different ranges in ω, namely

ω0 < ω < ω∗ and ω∗ < ω < ωc, where ω∗ ≡ Q2
sλ/2 is the energy for which Q2

s becomes

equal to 2ω/λ and obeys ω∗ � ω0 for L� λ.

To summarize, the DLA phase-space is defined as the range (4.38) in p2
⊥ together with

the energy range at ω0 � ω � ωc. The whole analysis becomes more transparent if, instead

of the original variables ω and p2
⊥, one uses the variables τ ≡ 2ω/p2

⊥ (the lifetime of the

fluctuation) and p2
⊥. As an intermediate step, notice that eq. (4.38) is tantamount to

max

(
λ,

2ω

Q2
s

)
� τ � τ

br
(ω) ≡ 2ω

k2
br

(ω)
=

√
ω

q̂
. (4.39)

Then it is easy to see that, in terms of the new variables τ and p2
⊥, the DLA phase-space

can be simply characterized as (see also figure 3 for an illustration)

λ � τ � L , 2q̂τ � p2
⊥ � Q2

s . (4.40)

Then the first order correction is computed as (compare to eq. (4.37))

δq̂(1) = ᾱq̂(0)

∫ L

λ

dτ

τ

∫ Q2
s

2q̂τ

dp2
⊥

p2
⊥

= ᾱq̂(0)

∫ L

λ

dτ

τ
ln
L

2τ
' q̂(0) ᾱ

2
ln2 L

λ
, (4.41)
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where we have used Q2
s = q̂L. (As before, we ignore the difference between q̂ and q̂(0), or

the factors of 2, in the argument of the logarithm.) The above result, which is in agreement

with refs. [9, 71], is not the same as the result of evaluating eq. (4.37) at the minimal value

of the energy ω = ω0. The last calculation would be naive, in that it would incorrectly

treat the contribution of the low energy region at ω0 < ω < ω∗.

More generally, it is preferable to use the new variables τ and p2
⊥ also within the DLA

equation (4.35) and to replace the latter by an integral equation, where all the integration

limits are explicit:

q̂L(Q2
s) = q̂(0) + ᾱ

∫ L

λ

dτ

τ

∫ Q2
s

q̂τ

dp2
⊥

p2
⊥
q̂τ (p2

⊥) . (4.42)

eq. (4.42) shows that the physical quantity q̂L(Q2
s) of interest — the renormalized jet

quenching parameter as obtained after including the radiative corrections to DLA accuracy

— is obtained as the value of a function of two variables, q̂τ (p2
⊥), at the physical point τ = L

and p2
⊥ = Q2

s(L) in the phase-space. (As it will be explained in section 4.4, this physical

point lies on the saturation line for the gluon distribution of the medium; see also figure 3.)

In turn, the function q̂τ (p2
⊥) has support at p2

⊥ > q̂τ and is obtained as the solution to the

following integral equation:

q̂τ (p2
⊥) = q̂(0) + ᾱ

∫ τ

λ

dτ1

τ1

∫ p2⊥

q̂τ1

dk2
⊥

k2
⊥
q̂τ1(k2

⊥) . (4.43)

As already stressed after eq. (4.35), the above equation differs from the standard DLA

equation which appears e.g. in studies of the jet evolution in the vacuum [17, 18] via the

τ -dependence of the lower limit in the integral over p2
⊥, which comes from the restriction

to single scattering.

Eq. (4.43) can be easily solved via iterations. The first iteration (with q̂(0) assumed to

be scale-independent, once again) gives

δq̂(1)
τ (p2

⊥) = q̂(0) ᾱ

2

(
ln2 p

2
⊥
q̂λ
− ln2 p

2
⊥
q̂τ

)
, (4.44)

which on the physical point τ = L and p2
⊥ = q̂L reduces to eq. (4.41), as it should. The

second iteration yields (we only show its result at the physical point)

δq̂(2) = q̂(0) ᾱ
2

2!3!
ln4 L

λ
. (4.45)

These and the subsequent terms in this iterative procedure are recognized as the Taylor

expansion of the modified Bessel function14 I1(x):

q̂L(Q2
s) = q̂(0) 1√

ᾱ ln
(
L/λ

) I1

(
2
√
ᾱ ln

L

λ

)
. (4.46)

The same result has been obtained in ref. [9] via a resummation of the relevant Feynman

graphs. This resummation becomes pertinent when the medium is large enough, such

14This should be contrasted to the standard DLA solution, which involves the Bessel function I0(x) [18].
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that ᾱ ln2(L/λ) & 1. In such a case, the radiative corrections enhance the medium-size

dependence of the (renormalized) jet quenching parameter, which thus becomes even more

non-local than it was at tree-level.

We conclude this subsection with a few comments on the physical meaning of the

radiative corrections displayed in eqs. (4.41) or (4.46). As obvious from the previous

calculations, these corrections are generated by the emission of soft gluons with energies ω

deeply within the range between ω0 = q̂λ2 and ωc = q̂L2 and with transverse momenta p⊥
deeply between k

br
(ω) and Qs. Such gluons have lifetimes considerably smaller than the

medium longitudinal size L and transverse sizes which are considerably larger than the size

r ∼ 1/Qs of the original dipole. This hierarchy is furthermore respected by the successive

emissions which are summed up by eq. (4.46) and whose energies are softer and softer with

increasing generation. Because of this hierarchy, the corrections appear to be quasi-local on

the longitudinal scale relevant for measuring the transverse momentum broadening, which

is L. Similarly, they do not affect the transverse resolution on which we scrutinize the

medium properties, which is set by Qs. This ultimately explains why such corrections can

be simply accounted for by a renormalization of the jet quenching parameter q̂L(Q2
s).

4.3.3 The phase-space for the high-energy evolution

In the previous section, we have argued that the phase-space for the double-logarithmic

approximation is given by eq. (4.40), where the lower limit λ has not yet been specified. In

this subsection, we shall first explain the physical origin and the value of λ, thus following

a discussion in ref. [9]. Then we shall critically revisit the original arguments in ref. [9] and

demonstrate that, in general, the structure of the DLA phase-space is more complicated

than suggested there (and shown in eq. (4.40)). The differences are unessential in the limit

where the medium size L is arbitrarily large, but they become important for realistic values

of L, in which case they limit the validity of the DLA. Based on such considerations, we shall

derive the constraint (4.52) for the applicability of the DLA (and, more generally, of the

present high-energy approximations) in the case where the target is a weakly coupled QGP.

As discussed in ref. [9], the existence of a lower limit λ on the lifetime τ of the fluc-

tuations follows from energy-momentum conservation. In the high-energy approximation

of interest, the gluon fluctuation is nearly on-shell, so it carries a ‘minus’ momentum

p− = p2
⊥/2ω (recall that ω ≡ p+). This component cannot be inherited from the parent

quark, which is a right mover, so it must be acquired via interactions with the medium.

Since moreover we assume that there is only one scattering during the fluctuation, it is

clear that either the virtual gluon, or its parent quark, must have absorbed a quanta hav-

ing this momentum p−. This quanta is a (generally off-shell) gluon exchanged between the

projectile and some constituent of the medium — say, a thermal quark or gluon, in the

case where the medium is a finite temperature plasma. Let us denote by k− the respec-

tive 4-momentum component of that particular constituent and introduce the longitudinal

momentum fraction x ≡ p−/k−, with x ≤ 1 of course. (This is ‘longitudinal’ since the

medium is a left mover.) We have

x =
p2
⊥

2ωk−
=

p2
⊥

2p · k
, (4.47)
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q
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(b)

(c)

(d)

2

A

B

2

1/q 2

A1

Figure 3. The phase-space for the high-energy evolution of jet quenching, in terms of the variables

τ and p2⊥ (the lifetime and the transverse momentum squared of the gluon fluctuations). We assume

q̂λ3 � 1 and q̂Lλ2 � 1. Line (b) is the ‘saturation line’ p2⊥ = q̂τ (see section 4.4). Line (d) reads

p2⊥ = 1/τ2 and implements the kinematic constraint p+ > p⊥. The phase-space for the double-

logarithmic evolution is region A, as delimited by the lines (a), (b), (c), and (d). For discussions of

regions B and A1, see the main text.

where the second equality, which confirms that x is boost invariant, follows from the high

energy kinematics. Indeed, in whatever frame we use, at least one of the two subsequent

statements is correct: (I) p+ is the large component of the 4-momentum of the gluon fluc-

tuation, and (II) k− is the large component of the 4-momentum of the medium constituent.

In particular, in the plasma rest frame, one has k− ' T for a typical plasma particle

and eq. (4.47) becomes

x '
p2
⊥

2ωT
=

λ

τ
, (4.48)

where τ = 2ω/p2
⊥ and λ ≡ 1/T is the thermal wavelength. Since x ≤ 1 and τ ≤ L, the

above relation implies the following ranges of values for x and τ :

λ

L
≤ x ≤ 1 , L ≥ τ ≥ λ . (4.49)

This motivated the authors of ref. [9] to choose λ = 1/T as the minimal value for τ in

equations like (4.42). This conclusion is essentially correct, but its validity is restricted by

an addition kinematical constraint, that has been overlooked in the analysis in ref. [9] and

that we shall now discuss.
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The high-energy picture that we have developed so far is based on the assumption

that the gluon fluctuations are very energetic in the plasma rest frame, meaning that their

‘energy’ ω is (much) larger than their transverse momentum: ω � p⊥. In particular,

this must be true for the hardest allowed fluctuations, with energy ∼ ωc and transverse

momentum ∼ Qs. Hence, the inequality ωc � Qs, or equivalently q̂L3 � 1, is a necessary

condition for the validity of our approach. This condition has been implicitly assumed

throughout our analysis and is indeed well satisfied in practice. Returning to generic values

for ω and p⊥, we observe that the kinematical constraint ω � p⊥ implies the following

conditions on the lifetime τ = 2ω/p2
⊥ of the fluctuations: τ � 1/p⊥ � 1/ω. For a given

τ , the transverse momentum cannot be smaller than a value pmin
⊥ ∼

√
q̂τ introduced by

multiple scattering. So, clearly, the kinematical constraint τ > 1/p⊥ is satisfied for any

permitted value of p⊥ provided the following condition is fulfilled:

τ &
1

pmin
⊥
∼ 1√

q̂τ
=⇒ τ & q̂−1/3 . (4.50)

If this condition was satisfied for any τ within the range λ . τ < L, then the kinematical

constraint would play no special role for the present analysis (since automatically satisfied

throughout the phase-space). But for a weakly coupled QGP and with λ = 1/T , the

condition (4.50) is not satisfied for sufficiently small values τ ∼ λ: one has indeed q̂1/3λ ∼
[ᾱ2 ln(1/ᾱ)]1/3 � 1.

The solution to this problem is in fact quite simple:15 it suffices to impose the addi-

tional constraint τ > 1/p⊥ on the kinematical domain (4.40) for the double-logarithmic

contributions. This leads to the phase-space denoted by the letter A in figure 3. Note

that, in drawing this figure, we have chosen not only q̂L3 � 1 (together with q̂λ3 � 1,

of course), but also the stronger condition q̂Lλ2 � 1. The reason for that should shortly

become clear.

The domain A in figure 3 differs from the original phase-space in (4.40) by the domain

denoted there by the letter B, whose contribution to δq̂ can be computed as

δq̂B = ᾱq̂(0)

∫ q̂−1/3

λ

dτ

τ

∫ 1/τ2

q̂τ

dp2
⊥

p2
⊥

= q̂(0) ᾱ

6
ln2 1

q̂λ3
. (4.51)

This contribution is independent of the medium size L, so clearly it becomes negligible

compared to the DLA result in eq. (4.41) — the contribution of the domains A∪B in

figure 3 — for sufficiently large values of L. The precise condition is

L

λ
� 1

q̂λ3
∼ 1

ᾱ2 ln(1/ᾱ)
, or, equivalently, Q2

s �
1

λ2
∼ T 2 , (4.52)

where the parametric estimates refer to the weakly coupled QGP. Vice-versa, these

considerations suggest the existence of L-independent radiative corrections of order

ᾱ ln2(1/ᾱ2), which are quite large and are not properly taken into account by our

high-energy approximations.

15I am grateful to Al Mueller for clarifying discussions on this point.
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Under the same assumptions as above, cf. eq. (4.52), the radiative corrections of interest

for us here can be attributed to the relatively hard fluctuations, with transverse momenta

p⊥ � 1/λ = T . Indeed, the respective contribution of the softer momenta p⊥ ≤ 1/λ is

given by the domain A1 in figure 3 (a subdomain of region A) and can be easily estimated as

δq̂A1 = ᾱq̂(0)

∫ 1/λ2

q̂2/3

dp2
⊥

p2
⊥

∫ p2⊥/q̂

1/p⊥

dτ

τ
= q̂(0) ᾱ

3
ln2 1

q̂λ3
. (4.53)

This contribution is comparable to that in eq. (4.51) and hence it is negligible under the

same conditions. Moreover, these small contributions, from domains B and A1, are not

even enhanced by a single large logarithm ln(L/λ), so they are irrelevant for the high-

energy evolution.

To summarize, the gluon fluctuations which control the high-energy evolution of a slice

of weakly-coupled QGP which is large enough (in the sense of eq. (4.52)) are characterized

by large lifetimes τ � 1/T , large transverse momenta p⊥ � T , and even larger energies

ω � p⊥. In particular, the phase-space for DLA can be restricted to the ‘hard’ region

depicted as A\A1 (i.e. the difference betweens the domains A and A1) in figure 3.

Still with reference to figure 3, it is easy to understand the origin of the subleading

corrections, which are enhanced by only one logarithm — the ‘energy’ logarithm
∫

(dτ/τ).

They are generated when crossing the borderlines for the integral over p⊥, i.e. the lines (a)

and (b) in that figure. The high-p⊥ fluctuations above line (a) have small transverse sizes

B⊥ . 1/Qs and are correctly described by the BFKL equation (4.29), including the virtual

term. One expects successive iterations of this equation to generate a non-perturbative

‘anomalous dimension’, that is, to modify the behavior of the dipole amplitude at small r

from (roughly) r2 to r2γ , with γ < 1 a number of O(1). Clearly, such corrections cannot be

simply absorbed into a renormalization of q̂. The low-p⊥ fluctuations whose phase-space is

located below line (b) have large transverse sizes B⊥ & 1/
√
q̂τ and are sensible to multiple

scattering. They are described by the fully non-linear equation (4.24), where one can use

for that purpose approximations exploiting the fact that B⊥ � r ∼ 1/Qs. Such large

fluctuations will be discussed in section 4.5.

4.4 Gluon evolution and saturation in the medium

In this subsection, we shall develop an alternative physical picture for the high-energy

evolution of jet quenching in terms of the gluon distribution in the medium. In particular,

we would like to argue that the multiple scattering between the soft fluctuations and the

medium can be alternatively interpreted as saturation effects in the gluon distribution at

small x. A similar picture has been developed in ref. [45] for a weakly coupled QGP and

in refs. [72–74] for a strongly coupled plasma described by N = 4 SYM. Here, however, we

shall differ from ref. [45] in the treatment of the high-energy evolution of the saturation

momentum (see below).

To develop this new picture, we will have to use a different Lorentz frame, namely, an

‘infinite momentum frame’ for the medium, in which the relevant gluon fluctuations appear

as ‘partons’ from the plasma. Namely, consider the interaction between the projectile (the

quark, or the dipole) and the medium (plasma) in a frame where the projectile is quite
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slow whereas the target is an ultrarelativistic left mover, with a Lorentz boost factor of

order16 γ ' ωc/Qs =
√
q̂L3. In this frame, all the fluctuations that we have discussed

so far become left movers, so they are more naturally associated with the plasma. They

cannot be a part of the thermal distribution, since that was not true in the plasma rest

frame and the thermal distribution is boost invariant. Rather, they must be considered

as bremsstrahlung (or Weizsäcker-Williams) quanta emitted by the medium constituents

(thermal quarks and gluons). Thus, in this boosted frame, the relevant fluctuations are a

part of the medium gluon distribution.

The typical fluctuations carry small fractions x� 1 of the longitudinal (k−) momenta

of their parent particles (which are large, k− ' γT , in the boosted frame). Accord-

ingly, they have large wavelengths ∆x+ ∼ 1/(xk−) � 1/k−, meaning that they over-

lap with many medium constituents. On the other hand, they have very short lifetimes

∆x− = 1/p+ � γ/T , which explain why they cannot thermalize. (Notice that γ/T is the

smallest time scale associated with the thermal distribution in this frame.) Furthermore,

the high-energy evolution that we had previously associated with the wavefunction of the

projectile can be alternatively interpreted as an evolution of the medium gluon distribution

with decreasing x. Interestingly, this evolution is somewhat different than it would be in

a shockwave: the small-x gluons cannot overlap with all the color sources within a longi-

tudinal tube throughout the target (as they do in a shockwave [12, 35, 36]), but only with

those within a longitudinal distance ∆x+ ∼ 1/(xk−). This is consistent with the peculiar

boundaries on the phase-space for linear evolution, as discussed in the previous sections.

It furthermore implies a stronger x-dependence of the respective saturation momentum, as

we now explain.

To make contact with the previous developments, let us recall that the ‘unintegrated

gluon distribution’ in the target — the number of gluons per unit rapidity Y ≡ ln(1/x) and

per unit transverse phase-space — is closely related to the cross-section (4.1) for transverse

momentum broadening. One has indeed (see e.g. the discussion in ref. [41])

x
dNg

dx d2p d2b
=

N2
c − 1

4π3

p2
⊥

g2CF

∫
r

e−ip·rS(r) , (4.54)

where the subscript g stays for ‘gluon’ and b denotes the position in transverse space, or

‘impact parameter’. More precisely, eq. (4.54) is the gluon distribution ‘unintegrated’ in

the transverse phase-space, but integrated in the longitudinal (x+) direction over the whole

size L of the target. Since our medium is assumed to be homogeneous in both x+ and x,

the occupation number for gluons with 3-momentum (p−,p) is naturally estimated as

f(p−,p) ≡ 4π3

N2
c − 1

1

L

dNg

dp− d2p d2b
=

p2
⊥

g2CF p−L

∫
r

e−ip·rS(r) . (4.55)

As a simple illustration, consider the high-momentum (or low occupancy) regime,

where the dipole S-matrix in eq. (4.54) can be evaluated in the single scattering approxi-

16In the plasma rest rame, a gluon fluctuation with energy ω and transverse momentum k⊥ has a rapidity

η such that γ ≡ cosh η ' ω/k⊥. Since k2⊥ & k2
br

=
√
q̂ω, this implies γ . (ω3/q̂)1/4, where the upper limit

reaches a maximal value γmax = ωc/Qs corresponding to ω = ωc.
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mation. At tree-level one obtains, similarly to eq. (4.9),

f0(p−, p⊥) ' 4παsn0

p−p2
⊥

. (4.56)

Although valid in the dilute regime, this result can be used to estimate the borderline of

the saturation region. Namely, the non-linear effects in the gluon distribution are expected

to become important when f ∼ 1/ᾱ [12, 35, 36]. This occurs for a transverse momentum

p⊥ of the order of the saturation momentum Qs(x), which at tree-level is estimated as

Q2
s0(x) ∼ α2

sNcn0

p−
∼ q̂(0)λ

x
, (4.57)

where we have used p− = xk− and the second equality is written, for convenience, in the

plasma rest frame, where k− ' 1/λ and, parametrically, α2
sNcn0 ∼ q̂(0). Eq. (4.57) is in

agreement with the corresponding result in [45]. Using τ = λ/x, this equation can be

rewritten as Q2
s0(τ) = q̂(0)τ , which is recognized as the line (b) in figure 3 (the borderline

of the multiple scattering region).

What is remarkable about the saturation momentum in eq. (4.57) is that it exhibits a

strong x-dependence already at tree-level (unlike the corresponding scale for a shockwave,

which is independent of x). Clearly, this is the consequence of the fact that the longitudinal

phase-space for gluon overlapping is now the longitudinal wavelength ∆x+ ∝ 1/x of a gluon

fluctuation, and not the width L of the target as a whole. This quantity Q2
s0(x) reaches its

maximal value Q2
s0 = q̂(0)L for xmin = λ/L. Thus, the quantity that we had conventionally

dubbed ‘the saturation momentum’ in our previous discussion (e.g. in eq. (4.7)) is in fact

the proper saturation scale for the softest17 fluctuations allowed by the size of the medium.

This quantity is boost invariant, but its physical interpretation as a saturation scale holds

only in a frame where the target is highly boosted.

Going beyond tree-level, it is clear that the evolution of the dipole scattering amplitude

in the linear approximation, eq. (4.29), can be interpreted as the BFKL evolution of the

gluon occupation number in the medium. Indeed, in the single scattering approximation,

eqs. (4.55) and (4.23) imply

fω(p−,p) ' −
p2
⊥
p−

∫
r

e−ip·rΓω(r) ∼ 1

ᾱ

q̂ω(p2
⊥)

p−p2
⊥
, (4.58)

where the second, parametric, estimate holds to double-logarithmic accuracy, cf. eq. (4.34).

Moreover, the effects of multiple scattering, i.e. the non-linear terms in eq. (4.24), can be

interpreted as gluon saturation in the medium, as we now explain. Indeed, such effects

become important when the exponent in eq. (4.24) becomes of O(1). Using the DLA

estimate (4.58) for fω(p−,p), this condition can be recognized as the saturation condition

for the gluon occupation number:

1 ∼ q̂ω(1/B2
⊥)B2

⊥∆t ∼
q̂ω(p2

⊥)

p2
⊥

λ

x
∼ ᾱ fω(x,p) . (4.59)

17By ‘softest’ we here mean the smallest value of x, as appropriate from the viewpoint of the left-moving

target; from the viewpoint of the right-moving projectile, these are rather the hardest fluctuations, with

‘energy’ p+ = ωc.
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Solving this condition for p2
⊥, one finds the saturation momentum in the presence of radia-

tive corrections (to double-logarithmic accuracy):

Q2
s(x) ∼ q̂(x)λ

x
, (4.60)

where q̂(x) ≡ q̂τ (p2
⊥) with τ = λ/x and p2

⊥ = Q2
s(x). That is, q̂(x) is the function q̂τ (p2

⊥)

evaluated along the saturation line. (In particular, for x = xmin = λ/L, this is the phys-

ical jet quenching parameter.) In view of eq. (4.43), this can be given by the following

integral representation

q̂(x) = q̂(0) + ᾱ

∫ 1

x

dx1

x1

∫ Q2
s(x)

Q2
s(x1)

dp2
⊥

p2
⊥
q̂x1(p2

⊥) . (4.61)

Within the integration limits above, one can use the zeroth order estimate Q2
s(x) ' q̂(0)λ/x.

Note that, with decreasing x, both the longitudinal phase-space and the transverse phase-

space in eq. (4.61) increase equally fast — that is, the both increase like ln(1/x) — due

to the rapid increase Q2
s(x) ∼ 1/x of the saturation scale. Accordingly, the above DLA

calculation correctly captures the dominant radiative corrections to the evolution of Q2
s(x),

unlike what happens in the case of a shockwave. (For the latter, the longitudinal phase-

space increases faster than the transverse one in the approach towards saturation, hence

the correct calculation of Q2
s(x) requires the full BFKL equation, and not just its DLA

limit [31, 32].) Interestingly, a DLA calculation of the plasma saturation momentum has

also been proposed in ref. [45], but merely as a heuristic extrapolation of the standard DLA

approximation to the DGLAP (or BFKL) equation down to a transverse scale p2
⊥ ∼ Q2

s(x),

where this approximation is not really justified.

In particular, if one treats the zeroth order result q̂(0) as a constant, one finds (cf.

eq. (4.46))

q̂(x) = q̂(0) 1√
ᾱ ln

(
1/x
) I1

(
2
√
ᾱ ln

1

x

)
. (4.62)

In the extreme limit where 2
√
ᾱ ln(1/x) � 1, one can use the asymptotic behavior of the

modified Bessel function to deduce

Q2
s(x) ' Q2

0

x1+γs
, (4.63)

with Q2
0 ≡ q̂(0)λ and the ‘anomalous dimension’ γs = 2

√
ᾱ. The overall power λs ≡ 1 + γs

in eq. (4.63) is the medium saturation exponent within the present approximation. This

is independent of the precise nature of the medium, as it is fully determined by the high-

energy evolution. The radiative correction γs looks like a strong effect since 2
√
ᾱ ∼ 1 for

αs ≈ 0.3 and Nc = 3. But one should keep in mind that the present approximation is

strictly valid only when ᾱ� 1.

This being said, it is also interesting to notice that this perturbative result appears as

a reasonable interpolation towards the corresponding result in N = 4 SYM at infinitely

strong coupling (g2Nc → ∞), as obtained in [72]. Namely, ref. [72] reported a saturation
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momentum Q2
s(x) ∼ T 2/x2, where the ‘saturation exponent’ λs = 2 can be recognized

as the sum of a kinematical contribution λs0 = 1, the same as in eq. (4.57), and a large

‘anomalous dimension’ γs = 1, which is the intercept of the graviton. (At strong coupling,

the unitarization occurs via multiple graviton exchanges [75].) Together, the present results

and the previous ones in ref. [72] suggest a rather smooth and fast transition from a weak

coupling-like behavior to a strong coupling-like with increasing ᾱ (at least, in the absence

of running coupling effects).

4.5 Comments on the effects of multiple scattering

So far, we have not attempted to explicitly evaluate the non-linear terms in eq. (4.24),

which encode the effects of multiple scattering. Rather, we have used them within semi-

quantitative considerations in order to constrain the phase-space for the linear approxima-

tion and to develop a physical picture in terms of gluon saturation. But, clearly, it would be

interesting to have a more quantitative control on these effects, e.g. in order to understand

the systematics of the high-energy resummation. Ideally, one would like to isolate all the

radiative corrections which are enhanced by a large energy logarithm ln(1/x) ∼ ln(L/λ)

and thus obtain a non-linear equation which is explicitly valid to leading logarithmic ac-

curacy. Unfortunately, this turns out to be very hard since the non-linear effects enter

eq. (4.24) via a path-integral, in which the unknown function Γω(r) plays the role of the

effective potential. That is, eq. (4.24) is truly a functional integro-differential equation and

very little is known about how to deal with such equations in practice.

In this section, we shall perform a limited study of the non-linear terms in eq. (4.24),

with two main objectives: to elucidate the systematics of the logarithmically-enhanced

radiative corrections (which turns out to be very different from the case where the target

is a shockwave) and to better justify the arguments in the previous sections concerning the

kinematics of the fluctuations and the borderlines of the single scattering regime.

Concerning the first objective above, we would like to demonstrate the following point:

for the case of an extended target, and unlike for a shockwave, the individual terms beyond

the first one in the multiple scattering series — i.e. the terms describing double scattering,

triple scattering etc — are not separately enhanced by a large energy logarithm. This is so

because the longitudinal phase-space for multiple scattering is the lifetime of the soft gluon

fluctuations, which is itself energy-dependent. This being said, the effects of multiple

scattering are nevertheless important for a complete calculation at leading logarithmic

accuracy, in that they provide the physical cutoff for the respective contribution of the

single scattering (which would otherwise be infrared divergent).

To be specific, let us first recall the way how the energy logarithm has been generated

for the single-scattering contribution. This comes via the phase-space for the three time

integrations in eq. (4.27): over the emission times t1 and t2 and over the interaction time

t. Namely, the integral over t between t1 and t2 scales like ∆t = t2 − t1, that over ∆t

scales like τcoh = 2ω/p2
⊥, and the final integral over, say, t2 scales like L. Altogether, there

is a longitudinal phase-space Lτ2
coh ∝ ω2 which, when combined with the overall factor

1/ω3 in eq. (4.27), produces the logarithmic phase-space
∫

(dω/ω) for the ensuing energy

integration. Now, let us similarly consider the contribution of a double scattering. As
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compared to the previous case, there are now two interaction times to be integrated over

between t1 and t2. This introduces an additional factor ∆t, so the global result scales like

Lτ3
coh ∝ ω3, which spoils the logarithmic integration over ω. A similar conclusion holds for

the contribution of n successive collisions, which scales like Lτn+1
coh ∝ ω

n+1.

This should be contrasted to the case of a shockwave target, as discussed in section 3.1.

There, the two integrals over t1 and t2 separately restrict each of the emission times to

values of order τcoh around t = 0 (the position of the shockwave). Also each scattering

with the target occurs within the longitudinal extent L of the latter (with L� τcoh in this

context), so the corresponding time integral brings in a factor of L. Hence, an individual

n-scattering contribution with n ≥ 1 scales like τ2
cohL

n ∝ ω2 and therefore it is by itself

accompanied by a large energy logarithm.

Returning to the case of an extended target, one should observe that the previous,

power-counting, argument is quite formal, in that it is plagued with infrared divergences:

each additional scattering brings in a factor τcoh = 2ω/p2
⊥, which becomes singular when

p⊥ → 0. This leads to a logarithmic divergence in the single-scattering contribution, as

manifest on eq. (4.35), and to even stronger, power-like, divergences in the terms with

two or more scatterings. We expect such divergences to be cured by the resummation

of the multiple scattering series to all orders, but in order to verify this, one needs a

non-perturbative calculation of this series.

To illustrate these considerations, let us consider the first iteration of eq. (4.24). That

is, we shall evaluate the r.h.s. of this equation using the tree-level approximation for the

dipole S-matrix, eq. (4.5), together with the ‘harmonic approximation’ for the jet quench-

ing parameter — meaning that we ignore the scale dependence of the latter: q̂ ' const

(throughout this subsection, one writes q̂ ≡ q̂(0)). The harmonic approximation is indeed

important for the present purposes, since it allows us to explicitly perform the path integral

in eq. (4.24), which becomes

I(r2, r1,∆t) (4.64)

≡
∫ [
Dr
]

e
i ω
2

t2∫
t1

dt′ ṙ2(t′)

exp

{
− q̂

4

∫ t2

t1

dt
[(
x− r(t)

)2
+
(
r(t)− y

)2 − (x− y
)2]}

with boundary conditions r(t1) = r1 and r(t2) = r2. (I is also a function of x and y, but

the respective arguments are kept implicit.) A standard calculation yields

I(r2, r1,∆t) (4.65)

=
−i

2π

ωΩ

sinh Ω∆t
e
q̂
8

∆t (x−y)2

× exp

{
i

2

ωΩ

sinh Ω∆t

[(
(r2 −R)2 + (r1 −R)2

)
cosh Ω∆t − 2(r2 −R) · (r1 −R)

]}
,

where R ≡ (x + y)/2 and

Ω ≡ 1 + i√
2

√
q̂

ω
=

1 + i√
2

1

τ
br

(ω)
. (4.66)
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In the limit q̂ → 0 (no scattering), this reduces to the ‘non-relativistic’ propagator in the

vacuum, as it should (cf. eq. (2.10)): I → G0 with

G0(r2 − r1,∆t) =
−i

2π

ω

∆t
exp

{
iω
(
r2 − r1

)2
2∆t

}
. (4.67)

The perturbative (‘small q̂’) expansion of eq. (4.65), which would reconstruct the multi-

ple scattering series, turns out to be quite tedious. However, by inspection of this equation,

it is clear that such an expansion makes sense only for sufficiently small times ∆t� τ
br

(ω).

In this perturbative regime at early times, the convergence in ∆t is controlled by the free

propagator (4.67), which implies that the transverse size of the gluon fluctuation grows via

quantum diffusion: |r2 − r1| '
√

2∆t/ω. However, when ∆t approaches τ
br

(ω), the effects

of the interactions become non-perturbative. Via the Gaussian implicit18 in eq. (4.65),

they restrict the further growth of the transverse separation B⊥ ≡ max
(
|r2−R| , |r1−R|

)
to values B⊥ . 2/k

br
(ω), as anticipated below eq. (4.31). For even larger time separations

∆t & τ
br

(ω), we can use

1

2 sinh Ω∆t
' e−Ω∆t ∝ e−∆t/

√
2τ

br , (4.68)

showing that the long-lived gluon fluctuations are exponentially suppressed.

To summarize, the effect of multiple scattering is to limit the lifetime and the transverse

size of a gluon fluctuation with energy ω to values ∆t . τ
br

(ω) and respectively B⊥ .
2/k

br
(ω). These values are as expected: for them, the exponent in eq. (4.24), i.e. the

amplitude for a single scattering during the lifetime of the fluctuation, becomes of O(1).

Moreover, since the perturbative expansion of eq. (4.65) is truly an expansion in powers

of ∆t/τ
br

(ω) and B⊥kbr
(ω), it is clear that the single scattering approximation — which

corresponds to the first non-trivial term in this expansion — is valid only for fluctuations

which are hard enough (in the sense of having a sufficiently large transverse momentum) for

∆t � τ
br

(ω) and B⊥ � 1/k
br

(ω). These conditions have been often used in the previous

discussion in this section.

Using the explicit expression for the path integral in eq. (4.65), it is in principle possi-

ble the fully evaluate the r.h.s. of eq. (4.24) and thus compute the leading-order radiative

correction to the dipole amplitude beyond the double-logarithmic approximation. In gen-

eral this calculation is hindered by the complexity of the time integrations. In ref. [9], this

calculation has been pushed to single logarithmic accuracy — that is, one has explicitly

evaluated the subleading correction to q̂ of order ᾱ ln(L/λ). We shall not repeat here the

manipulations in ref. [9], but merely explain how the logarithmic enhancement at small ω

emerges in the regime controlled by multiple scattering, i.e. for the relatively large fluctua-

tions with transverse size B⊥ ∼ 1/k
br

(ω). In this regime, the integral over t2− t1 is cut off

by the exponential in eq. (4.68), hence the two integrals over t1 and t2 give a factor Lτ
br

.

This is multiplied by (i) the overall factor 1/ω3 in the r.h.s. of eq. (4.24), (ii) the factor

ωΩ ∼ ω/τ
br

explicit in the prefactor of eq. (4.65), and (iii) a factor k4
br

= 4q̂ω which is

18Notice that the complex exponential in the second line of eq. (4.65) is proportional to

exp{−ωB2
⊥/
√

2τbr(ω)}.
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generated as follows: the integrand of eq. (4.24) involves two transverse derivatives acting

on I(r2, r1,∆t), which bring down a factor k2
br

. Moreover, the r.h.s. of eq. (4.24) vanishes

when r = x − y → 0 (‘color transparency’) and in the regime of multiple scattering it

can be evaluated to leading order in the expansion in powers of r2. (Such an expansion

is indeed legitimate since r ∼ 1/Qs � B⊥.) This expansion introduces two additional

transverse derivatives, hence another factor of k2
br

. Altogether, one generates a factor 1/ω,

synonimuous of logarithmic enhancement. Incidentally, the above arguments also show

that the contribution of multiple scattering to the evolution equation for the scattering

amplitude per unit time reads, parametrically,

g2CF ω
∂Γω(r)

∂ω
∼ ᾱq̂ r2 . (4.69)

This has the right structure to be interpreted as a correction to the jet quenching parameter

(compare to eq. (4.34)). However, this is likely not the case for the single-logarithmic

corrections coming from the opposite limit, namely from the very small fluctuations with

sizes B⊥ ∼ 1/Qs, as described by the BFKL equation (4.29).

5 The high-energy evolution of the radiative energy loss

In the previous section, we have studied the high-energy evolution of the transverse mo-

mentum broadening for an energetic quark propagating through a dense QCD medium.

As well known, this physical problem is closely related to another one: the energy loss

by an energetic parton via medium-induced radiation, that is, gluon emissions which are

triggered by the interactions between the parent parton or the radiated gluon and the

constituents of the medium. Within the high-energy kinematics of interest, the differential

cross-section for such an emission involves Wilson line correlators which measure the color

coherence between the emitter and its radiation. This coherence is progressively washed

out via rescattering in the medium and thus is sensible to the physics of collisions, as en-

coded in q̂. This relation is manifest at tree level, where any (gauge-invariant) Wilson line

correlator can be expressed in terms of the ‘dipole cross-section’ (the exponent in eq. (4.4))

and hence in terms of q̂(0), eq. (4.6). In what follows, we would like to demonstrate that

this relation remains valid after including the effects of the high-energy evolution within

the double-logarithmic approximation. That is, in order to compute the radiative energy

loss in the presence of radiative corrections and to DLA accuracy, one can use the same

formulæ as at tree level, but with q̂(0) replaced by the solution q̂L(Q2
s) to eq. (4.42). A

similar conclusion has been obtained in refs. [15, 16], where the evolution equation (4.42)

for q̂ has been inferred via a diagrammatic argument, namely, by explicitly computing loop

corrections to the radiative energy loss in the double-logarithmic approximation.

5.1 The tree-level approximation: the BDMPSZ formalism

To start with, let us briefly review the relevant formalism at tree-level, namely the BDMPSZ

calculation of medium-induced gluon radiation [46–56].
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We consider the emission of a single gluon by an asymptotic quark and assume, for

simplicity, that the incoming quark is energetic enough to be treated in the eikonal approx-

imation. On the other hand, the eikonal approximation cannot be used for the emitted

gluon, because the transverse diffusion plays an essential role for the gluon formation.

The energy lost by the quark is the energy taken away by the emitted gluon and can be

computed from the respective spectrum as

∆E =

∫ ωc

0
dk+ k+ dNg

dk+
=

∫ ωc

0
dk+

∫
d2k k+ dNg

dk+d2k
. (5.1)

The upper cutoff ωc stems from the fact that only gluons with energies k+ < ωc can be

emitted via the mechanism at hand (see below). Moreover, the spectrum k+(dNg/dk
+)

of the radiated gluons is such that the integral over k+ in eq. (5.1) is dominated by this

upper cutoff. Accordingly, in what follows we shall focus on the emission of relatively hard

gluons, with k+ ∼ ωc.
As before, we assume that the medium correlations at tree-level are Gaussian and

local in x+. Under these assumptions, one can deduce the following formula for the

spectrum of the medium-induced gluon radiation [52] (see also refs. [1, 4, 5, 76, 77] for

pedagogical discussions)

k+ dNg

dk+d2k
=
αsCF
2π2

1

(k+)2
Re

∫ ∞
−∞

dx+

∫ x+

−∞
dy+

×
∫

d2x e−ik ·x Sadj

L,x+(x) ∂ix∂
i
yK(x+,x; y+,y; k+)

∣∣∣
y=0

. (5.2)

As announced, we consider an on-shell (or ‘asymptotic’) quark which enters the medium

coming from far away.19 eq. (5.2) is a cross-section, so it is obtained by multiplying the

direct amplitude (DA) times the complex conjugate amplitude (CCA), as illustrated in

figure 4. The time variables y+ and x+ are the emission times in the DA and respectively

the CCA, so their difference ∆x+ = x+ − y+ is indicative of the formation time. We have

chosen x+ > y+ and multiplied the result by 2 to account for the opposite time ordering.

Also, x0 = 0 is the transverse position of the quark, which remains unchanged during the

process (eikonal approximation) and is the same in the DA and the CCA (since we do

not measure the transverse momentum broadening of the quark). In writing eq. (5.2), we

have already set x0 = 0, but in the subsequent discussion we shall keep the notation x0

at intermediate stages, for more clarity. On the other hand, the transverse momentum

of the emitted gluon is measured, so the respective transverse coordinates are different in

the DA and the CCA. Their difference is denoted as x in eq. (5.2) and it is conjugated

to the transverse momentum k via the Fourier transform. With these differences in mind,

eq. (5.2) is quite similar to eq. (4.22) for the emission of a virtual gluon and can be read

by analogy with the latter.

Once again, the locality of the medium correlations in x+ has allowed us to factorize

the process into three stages, like in eq. (4.15), and thus express the cross-section for

19The case of an off-shell quark which is produced by a hard process occurring at some finite time x+0
can be obtained be replacing −∞→ x+0 in the lower limits of the time integrations in eq. (5.2).
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0 L x+ 0Lx+

k

0x

y+ y+8

Figure 4. Feynman graph contributing to the cross-section for producing a gluon with 3-momentum

k = (k+,k), as computed in eq. (5.2). The l.h.s. corresponds to the DA and the r.h.s. to the CCA.

Both emissions times y+ and x+ are chosen inside the medium, 0 < y+ < x+ < L, since this is the

most interesting configuration for our present purposes.

Ly x++0

u x(t)

0x0 =

Figure 5. Alternative representation for the cross-section in figure 4, in terms of dipole ampli-

tudes, which is obtained after performing the medium average in the Gaussian approximation. The

‘vertical’ lines closing the two dipoles represent the sum over the color indices.

gluon radiation in terms of scattering amplitudes for effective dipoles (see figure 5 for an

illustration of this representation):

(i) Prior to the first gluon emission, i.e. for time values smaller than y+: the

Wilson lines describing the color precession of the quark mutually cancel between the DA

and the CCA, by unitarity. Accordingly, there is no imprint of this first stage on the

cross-section in eq. (5.2).

(ii) During the formation time, i.e. for time values between y+ and x+: the

partonic system consists in a quark-gluon pair in the DA and the original quark in the

CCA. The relevant Wilson line correlator reads〈
U † ab
x+y+

[u]
tr

Nc

(
ta V †

x+y+
(x0)tb Vx+y+(x0)

)〉
=

1

2Nc

〈
TrU †

x+y+
[u]Ux+y+(x0)

〉
=CF S

adj

x+,y+
(
[u],x0

)
, (5.3)
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where ta and tb are color matrices at the emission vertices, u(t) represents the trajectory

of the gluon in the DA for times y+ ≤ t ≤ x+, and Sadj
is the average S-matrix for a color

dipole in the adjoint representation,

Sadj

x+,y+
(
x,y

)
≡ 1

N2
c − 1

〈
TrU †

x+y+
(x)Ux+y+(y)

〉
. (5.4)

The dipole in eq. (5.3) is built with one adjoint Wilson line for the emitted gluon and

another one for the precession of the color current of the quark (a color vector in the

adjoint representation). The ‘dipole propagator’ K(x+,x; y+,y; k+) which enters eq. (5.2)

represents the functional average of the Wilson line correlator (5.3) over the quantum

trajectories of the gluon:

K(x+,x; y+,y; k+) =

∫
[Du] e

i k
+

2

x+∫
y+

dt u̇2(t)

Sadj

x+,y+
(
[u(t)],x0

)
, (5.5)

with boundary conditions u(y+) = y and u(x+) = x.

(iii) After the gluon formation, i.e. for time values larger than x+: in this case

too, the quark Wilson lines from the DA and the CCA mutually cancel, so we are left with

two adjoint Wilson lines, which both refer to the emitted gluon (one for the DA, the other

one for the CCA). These Wilson lines combine in the adjoint dipole Sadj

L,x+(x− x0), which

describes the transverse momentum broadening acquired by the gluon after formation (so

long as x+ < L, of course). The average transverse size of this dipole is constant, due to

the medium homogeneity in the transverse plane, and hence it is equal to its original value

at time x+, which is x− x0 = x.

If one is not interested in the k⊥-spectrum of the produced gluon, but only in the

energy lost by the quark, then one can integrate eq. (5.2) over k and use Sadj

L,x+(0) = 1,

to deduce

k+ dNg

dk+
=

2αsCF
(k+)2

Re

∫ ∞
−∞

dx+

∫ x+

−∞
dy+ ∂ix∂

i
yK(x+,x; y+,y; k+)

∣∣∣
x=y=0

. (5.6)

To be more specific, consider the situation where the emission occurs within the

medium in both the DA and the CCA: 0 < y+ < x+ < L. This situation yields the

dominant contribution for sufficiently small energies k+ � ωc, but the corresponding re-

sult can also be used when k+ ∼ ωc, at least for parametric estimates. Then the average

dipole S-matrix in eq. (5.3) can be computed as in eqs. (4.4)–(4.6) and reads (we set x0 = 0

from now on)

Sadj

x+,y+ [u] ' exp

{
−1

4

∫ x+

y+
dt q̂g(1/u2)u2(t)

}
, q̂g(Q2) ≡ Nc

CF
q̂(Q2), (5.7)

where the subscript ‘g’ in q̂g refers to ‘gluon’. (The quantity q̂(Q2) without any subscript

refers to a quark in the fundamental representation and has been introduced in eq. (4.6).)

To compute the path integral in eq. (5.5), we perform the ‘harmonic approximation’ in

eq. (5.7), that is, we replace q̂g(1/u2)→ q̂g(k2
br

), where k2
br

(k+) ≡
√

2k+q̂g is the transverse
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momentum acquired by the gluon during formation. This approximation is appropriate

for gluon emissions triggered by multiple soft scattering in the medium. Then the path

integral yields

K(x+,x; y+,y; k+) =
−i

2π

k+Ω

sinh Ω∆τ
exp

{
i

2

k+Ω

sinh Ω∆τ

[
(x2 + y2) cosh Ω∆τ − 2x · y

]}
,

(5.8)

where ∆τ = x+ − y+ and20

Ω =
1 + i√

2

1

τ
br

(k+)
, τ

br
(k+) =

√
2k+

q̂g
. (5.9)

Note that, even if the values x and y of the endpoints are chosen to be small (e.g. x = y = 0

in the case of eq. (5.6)), the path integral (5.5) is dominated by paths u(t) along which the

dipole (5.7) is close to saturation, that is, such that the exponent in eq. (5.7) is ofO(1). Such

paths are indeed favored by the competition between the quantum phase in the integrand

of (5.5), which describes transverse diffusion, and the dipole S-matrix, which describes

multiple scattering (recall also the discussion after (4.67)). Thus the spectrum (5.6) is

indeed controlled by dipole sizes in the vicinity of the saturation line, as anticipated in the

Introduction.

It is now straightforward to evaluate the transverse derivatives in eq. (5.6) and then

perform the time integrals within the range 0 < y+ < x+ < L. In this process, one must

subtract the vacuum piece of eq. (5.8), this is, its limit when q̂g → 0: this would give a

spurious contribution, which is moreover divergent. This procedure yields the BDMPSZ

spectrum for soft energies k+ � ωc:

k+ dNg

dk+
' 2αsCF

π

√
ωc

2k+
with ωc =

1

2
q̂gL

2 . (5.10)

When inserted into eq. (5.1), this gives an energy loss scaling like L2:

∆E(L) = κ
2αsCF
π

ωc = κ
αsCF
π

q̂g L
2 , (5.11)

with κ a number of O(1). (eq. (5.10) would predict κ =
√

2 but this value changes after

using the correct version of the BDMPSZ spectrum, which remains valid when k+ ∼
ωc [48, 49, 51].)

This result can be used to check that the integral in eq. (5.1) is indeed dominated by

its upper limit. The general result valid for any k+ can be found in refs. [48, 49, 51].

Concerning the k⊥-spectrum, notice that the dominant dependence upon x within the

integrand of eq. (5.2) is contained in the following product of two Gaussians:

exp

{
i

2
k+Ω coth Ω∆τ x2

}
exp

{
− q̂g

4
(L− x+)x2

}
. (5.12)

20The current expressions for τbr(k
+) and kbr(k

+) are consistent with their respective definitions in

section 4 in view of the relation q̂g ' 2q̂ valid at large Nc. (Recall that the discussion in section 4 was

carried mostly at large Nc.)
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The first factor arises after letting y = 0 in eq. (5.8), while the second one is the two-gluon

dipole Sadj

L,x+(x) with q̂g evaluated at a momentum scale ∼ Q2
s. The transverse momentum

spectrum obtained via the Fourier transform of the above is clearly Gaussian and peaked

at a typical value

〈k2
⊥〉 '

√
2k+q̂g + q̂g(L− x+) ∼ Q2

s ≡ q̂gL , (5.13)

where Q2
s now denotes the gluon saturation momentum. In eq. (5.13) we recognize the

sum of the momentum broadening acquired via collisions during the formation time and

that acquired after the formation. For k+ ∼ ωc, both contributions are parametrically of

O(Q2
s). More details on the k⊥-spectrum can be found in refs. [52, 53, 78].

Returning to eq. (5.8), this can be used to read the characteristic scales for gluon

formation. The r.h.s. of eq. (5.8) is exponentially suppressed for time separations ∆τ � τ
br

and for transverse separations (x−x0)2 � 1/k2
br

(recall that we set x0 = 0). Accordingly,

the emission of a gluon with energy k+ via the present mechanism takes a time of order

τ
br

(k+). Also, the maximal transverse separation between the emitted gluon and its parent

parton is of order 1/k
br

(k+). When k+ ∼ ωc, as relevant for the calculation of the energy

loss, these scales become τ
br
∼ L and 1/k

br
∼ 1/Qs — that is, they are parametrically

similar to those underlying the physics of transverse momentum broadening, as discussed

in section 4. Hence, no surprisingly, the respective discussions of the radiative corrections

will be quite similar as well.

5.2 The dominant radiative corrections

Without loss of generality, we can restrict our discussion of the evolution to the case

where the gluon with longitudinal momentum k+ ∼ ωc (the one which is responsible

for the energy loss) is emitted inside the medium, in both the direct and the complex

conjugate amplitudes. (Indeed this case is the most complicated one, in terms of medium

interactions.) We keep the same conventions as before: the gluon is first emitted in the

DA, at time y+, and then in the CCA, at time x+.

As in section 4, we assume that the high-energy evolution preserves the Gaussian

nature of the medium correlations, cf. eq. (4.14). It is then quite clear that this evolution

will also preserve the factorization of the cross-section into the three stages discussed in

section 5.1. This is so because the relevant quantum fluctuations are short-lived: their

coherence time τcoh = 2ω/p2
⊥ is much shorter than the typical duration of any of these

three stages. As before, in section 4, the variables ω and p⊥ denote the ‘energy’ (in the

sense of p+) and the transverse momentum of the evolution gluon, and the most interesting

situation is such that ω � k+ and p⊥ � Qs. In this situation, the quantum fluctuations

which overlap with two different stages (and thus could break down the factorization) are

suppressed by the smallness of their longitudinal phase-space.

Consider e.g. a fluctuation where the soft gluon is emitted by the quark at some time

t1 < y+ and then absorbed by either the quark or the nascent gluon at some time t2 during

the ‘formation’ stage (y+ < t2 < x+). This fluctuation has a lifetime t2 − t1 ∼ τcoh, so

both t1 and t2 must lie within an interval ∼ τcoh around y+. Accordingly, the respective
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longitudinal phase-space is of order τ2
coh and thus is much smaller than that, of order

(x+−y+)τcoh, corresponding to fluctuations which fully develop during the formation time

(y+ < t1 < t2 < x+). We have indeed x+ − y+ ∼ τ
br

(k+) � τcoh(ω) for ω � k+. This

discussion implies that the cross-section for medium-induced radiation can still be given

the factorized structure in eq. (5.2), but with the individual factors generally modified by

radiative corrections.

With reference to eq. (5.2), it is quite obvious that the evolution has no influence on

the first stage at t < y+, i.e. prior to the emission of the nascent gluon in the DA. During

that stage, the quarks in the DA and the CCA make up a zero-size ‘dipole’, which does not

interact, so its high-energy evolution cannot be measured. It is furthermore clear that the

main effect of the evolution during the last stage at t > x+ (after gluon formation) is to

renormalize the jet quenching parameter within the two-gluon dipole amplitude Sadj

L,x+(x),

in the way explained in section 4.3.2: to double-logarithmic accuracy, the renormalized

adjoint dipole S-matrix reads

Sadj

L,x+(x) ' exp

{
−1

4
q̂g(L,Q2

s)(L− x+)x2

}
, (5.14)

with q̂g(L,Q2
s) the solution to eq. (4.42) for Q2

s = q̂gL. This differs from the corresponding

quark transport coefficient merely by a color factor: q̂g(L,Q2
s) = (Nc/CF )q̂L(Q2

s). In

choosing the scales for q̂g above, we have used the fact that, parametrically, L − x+ ∼ L

and x2
⊥ ∼ 1/Q2

s.

As compared to section 4, the only situation which is somewhat new is when the

fluctuation lives during the formation time of the radiated gluon. This is new since, unlike

in section 4, we do not assume anymore the eikonal approximation for the evolving dipole:

the trajectory u(t) of the nascent gluon, which is the same as the size of the effective dipole

(since the quark is fixed at x0 = 0), is randomly varying via transverse diffusion. Yet, this

transverse motion looks relatively slow on the typical time scale for quantum fluctuations

(since the respective ‘transverse mass’ k+ is comparatively hard), so we expect some kind

of ‘adiabatic approximation’ to be applicable for the fluctuations. This will be detailed in

what follows.

The respective evolution equation is obtained as in section 4.2, that is, by first acting

with the Hamiltonian ∆H on the (adjoint) dipole scattering operator Ŝ
adj

x+,y+ [u] and then

performing the medium average within the Gaussian approximation (4.14). This proce-

dure implies

Sadj

x+,y+([u];ω) = exp

{
−g2Nc

∫ x+

y+
dtΓω(u(t))

}
(5.15)

with the function Γω(r) now obeying (compare to eq. (4.24))∫ x+

y+
dt
∂Γω(u(t))

∂ω
=

1

4πω3

∫ x+

y+
dt2

∫ t2

y+
dt1 ∂

i
r1∂

i
r2

{∫ [
Dr
]

e
i ω
2

t2∫
t1

dt′ ṙ2(t′)

(5.16)

×

[
e
− g

2Nc
2

t2∫
t1

dt
(

Γω(u(t)−r(t))+Γω(r(t))−Γω(u(t))
)
− 1

]}∣∣∣∣∣
r2=u(t2)

r2=0

∣∣∣∣∣
r1=u(t1)

r1=0

.
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Within the present approximations, these equations hold for arbitrary Nc. The main

difference w.r.t. eq. (4.24) is the fact that the endpoints r1 and r2 of the path integral

in eq. (5.16) (i.e. the transverse positions of the virtual gluon at the emission points) are

time-dependent whenever they refer to emissions by the nascent gluon.

Once again, we are mostly interested in the situation where the partonic system created

by the fluctuation scatters only once in the medium. This is illustrated in figure 6 and is

described by the linearized version of eq. (5.16), as obtained by expanding the exponential.

After manipulations similar to those in section 4.3, this can be written as (cf. eq. (4.27))∫ x+

y+
dt
∂Γω(u(t))

∂ω
= −αsNc

2

1

ω3

∫ x+

y+
dt

∫
d2z

[
Γω(u(t)− z) + Γω(z)− Γω(u(t))

]
×
∫ t

y+
dt1

∫ x+

t
dt2 ∂

i
r1∂

i
r2

{
G0(t2 − t, r2 − z;ω)G0(t− t1, z − r1;ω)

}∣∣∣∣∣
r2=u(t2)

r2=0

∣∣∣∣∣
r1=u(t1)

r1=0

,

(5.17)

where we recall that z denotes the position of the virtual gluon at the interaction time

t, with t1 < t < t2. For the corresponding equation in section 4.3, we have been able to

explicitly perform the integrals over t1 and t2. Here, however, these integrals are compli-

cated by the time dependence of the endpoints r1 and r2. To overcome this difficulty, we

shall exploit the separation of time scales between the radiated gluon with energy k+ and

the virtual one with energy ω � k+. During the lifetime ∆t ≡ t2 − t1 . τ
br

(ω) of the

fluctuation, the transverse position of the hard gluon changes by an amount

∆u2
⊥ ∼

2∆t

k+
.

2τ
br

(ω)

k+
, (5.18)

which is small compared to the typical separation < u2
⊥ >' 4/k2

br
(k+) between the hard

gluon and the quark:

∆u2
⊥

< u2
⊥ >

∼ τ
br

(ω)

τ
br

(k+)
∼
√

ω

k+
� 1 . (5.19)

Hence, when evaluating the endpoints r1 and r2 in eq. (5.17), one can neglect the small

difference between u(t2) and u(t1) and approximate them both with the intermediate value

u(t) (the transverse size of the parent dipole at the interaction time). Then the integrals

over t1 and t2 can be done as in eq. (4.28), and one is led to∫ x+

y+
dt ω

∂Γω(u(t))

∂ω
=

ᾱ

2π

∫ x+

y+
dt

∫
z

u2(t)

(z − u(t))2z2

[
Γω(u(t)− z) + Γω(z)− Γω(u(t))

]
.

(5.20)

This holds for generic values of the integration limits y+ and x+ (recall that these variables

are themselves integrated over in eq. (5.2)), hence it must hold locally in t:

ω
∂Γω(u(t))

∂ω
=

ᾱ

2π

∫
z

u2(t)

(z − u(t))2z2

[
Γω(u(t)− z) + Γω(z)− Γω(u(t))

]
. (5.21)
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y+ x+t1 2tt

u

z

x

y

u(t)

Figure 6. A diagram contributing to the evolution of a non-eikonal dipole, as described by

eq. (5.17). The evolving dipole lives fully inside the medium (0 < y+ < x+ < L). The grey

areas prior and after the fluctuation are regions of multiple scattering. During the lifetime of the

fluctuation, between t1 and t2, the partonic system (effectively made with three gluons) scatters

only once, at some intermediate time t.

This is recognized as the BFKL equation for a dipole with time-dependent transverse size

u(t). As clear from its above derivation, this equation is valid so long as the relative change

in u(t) remains negligible during the lifetime of the typical fluctuations.

In particular, the time-dependence of u(t) is irrelevant for the double-logarithmic ap-

proximation that we are primarily interested in. As explained in section 4.3.2, this is con-

trolled by fluctuations with relatively large transverse sizes, which are only logarithmically

sensitive to the parent dipole size. At DLA, eq. (5.21) reduces to an equation like eq. (4.43)

which describes the evolution of the jet quenching parameter q̂g(τ, p2
⊥) with the longitudi-

nal (τ) and transverse (p2
⊥) resolution scales. For the problem at hand, the relevant scales

are τ = τ
br

(k+) (the formation time for the radiated gluon) and p2
⊥ = k2

br
(k+) = q̂gτbr(k

+)

(the transverse momentum squared acquired by this gluon during formation). Hence, the

leading-order radiative correction reads (compare to eq. (4.41))

δq̂(1)
g = q̂(0)

g

ᾱ

2
ln2 τbr(k

+)

λ
= q̂(0)

g

ᾱ

8
ln2 k

+

ω0
, (5.22)

with ω0 ≡ q̂gλ
2/2. For the energy-loss problem, k+ ∼ ωc and τ

br
(k+) ∼ L, hence we return

to the original version of the logarithm, as appearing in eqs. (4.41) or (4.46).

To summarize, the dominant effect of the radiative corrections on the calculation of

medium-induced gluon radiation consists in the renormalization of the jet quenching pa-

rameter within the corresponding tree-level calculation. In particular, to DLA accuracy,

the energy loss by an energetic quark can be estimated as

∆E(L) = κ
αsCF
π

q̂g(L,Q2
s)L

2 . (5.23)
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By comparing this to eq. (5.11), we conclude that the radiative corrections have the effect

to increase the value of the energy loss (via the corresponding increase in q̂g) and also

to enhance its dependences upon the medium size L and its temperature T = 1/λ. In

particular, if the medium is sufficiently large, one may approach the asymptotic scaling

∆E(L) ∝ L2+γs with γs = 2
√
ᾱ the ‘saturation exponent’ introduced in eq. (4.63). A

similar observation has been made in [15, 16].

6 Conclusions and perspectives

In this paper we have developed the theory for the non-linear evolution of jet quenching and

related phenomena to leading order in perturbative QCD at high energy. This theory can be

viewed as a generalization of the BK-JIMWLK evolution for ‘dilute-dense’ scattering to the

case of a target with an arbitrary longitudinal extent. This generalization is complicated

by the need to go beyond the eikonal approximation in the treatment of multiple scattering

and also to explicitly take into account the non-locality of the quantum fluctuations in time.

Accordingly, the general evolution equations, such as the generalized BK equation (4.22),

are extremely complicated and the construction of exact solutions appears to be prohibitive,

except perhaps via numerical methods.

Fortunately, this theory allows for a drastic simplification in so far as the dominant

radiative corrections are concerned: as originally noticed in ref. [9], these corrections are

enhanced by the double logarithm ln2(L/λ). This ultimately originates in the familiar,

soft and collinear, divergences of bremsstrahlung in QCD. What is non-trivial though, and

specific to the problem at hand, is the way how these divergences are cut off by the non-

linear physics of multiple scattering in the medium. These double-logarithmic corrections

can be resumed to all orders by solving the relatively simple, linear, equation (4.42), where

the non-linear effects enter only via the restriction on the transverse phase-space for single

scattering. This equation, which here emerges via controlled approximations from the

generalized BK equation alluded to above, has also been inferred from a directly calculation

of the relevant Feynman graphs to DLA accuracy [9, 16].

One of our main results here is to explain the emergence of this remarkable simplifica-

tion, which is the DLA, from a physical perspective. As we discuss in section 4.4, this is a

consequence of the special way how gluon saturation occurs in a medium: the saturation

momentum Q2
s(x) is proportional to the longitudinal wavelength of the gluons and hence

it increases very fast with 1/x already in the absence of the quantum evolution. This in

turn implies that the transverse phase-space grows as fast as the longitudinal one when

increasing the medium size L, thus favoring a double-logarithmic evolution.

Within this double-logarithmic approximation, the radiative corrections are sufficiently

mild to be absorbed into a renormalization of the jet quenching parameter, which then

evolves according to eq. (4.42). Here, we have demonstrated this property for two particular

observables, the transverse momentum broadening and the radiative energy loss, which in

the approximations of interest are both related to the S-matrix of a color dipole. It would

be interesting to understand whether a similar property remains true in more general

situations and for more complicated observables, which are sensitive to other correlations
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of the Wilson lines, like the quadrupole. Examples in that sense include the calculation

of the medium-induced gluon radiation beyond the eikonal approximation (for the parent

parton) [49, 51, 56], the study of color (de)coherence for multi-gluon emissions inside a

medium [77, 79–81], and the evolution of a jet via successive medium-induced parton

branchings [71, 78, 82]. A more general calculation, involving a 3-point function of the

Wilson lines in the context of medium-induced gluon branching, has been presented in [16].

It would be furthermore interesting to have a deeper understanding of the systematics

of the single-logarithmic corrections, i.e. the terms of order ᾱ ln(L/λ), or ᾱ ln(1/x), in the

evolution equations. As discussed in section 4.5, the situation is quite different in that

respect from the BK-JIMWLK evolution: the individual terms in the multiple scattering

series are not separately enhanced by a large logarithm ln(1/x), yet they contribute to

leading-logarithmic accuracy in a non-perturbative way — their resummation limits the

phase-space for the single scattering approximation. It is not clear to us whether, in this

context, it is possible or even useful to explicitly isolate the terms enhanced by ln(1/x)

within the evolution equations.

An obviously important, open, problem refers to the inclusion of perturbative correc-

tions of higher loop order, such as the running of the QCD coupling. As noticed in sec-

tion 4.4, the leading order correction to the saturation exponent is quite large for realistic

values of αs, a situation which generally signals the importance of higher-order corrections.

A similar problem occurs for the saturation exponent of a shockwave and in that case we

know that the resummation of higher-order effects drastically reduces the leading-order

estimate (roughly by a factor of 3) [83, 84]. The calculation of the NLO corrections to the

BK-JIMWLK equations has just been completed [85, 86], but the corresponding program

for the physics of jet quenching is still awaiting.

Also, it would be important to develop numerical techniques for attacking functional

evolution equations like the generalized BK equation (4.22). The original BK equation

turned out to be a formidable tool for the phenomenology of particle production in pp,

pA, and even AA collisions (especially after being supplemented with running coupling ef-

fects) [36, 87], and it would be very useful to dispose of a similar tool for the phenomenology

of jet quenching.

Last but not least, it is interesting to notice the convergence between some of the

present results at weak coupling, e.g. the saturation exponent for the plasma, or the L-

dependence of the renormalized q̂ and of the energy loss, and the corresponding results

at strong coupling21 [72–74, 90–92]. One may view this as merely a coincidence, but we

do not believe so: as discussed in refs. [73, 74], the dominant mechanism for transverse

momentum broadening in a strongly coupled plasma is the recoil associated with medium-

induced radiation. (That is, at strong coupling, the same mechanism is responsible for

both energy loss and momentum broadening.) The perturbative corrections that we have

considered here at weak coupling are themselves associated with radiation, so their in-

clusion naturally interpolates towards the physical scenario expected at strong coupling.

21More precisely, we mean here the results concerning the energy loss and momentum broadening of light

partons, which is the most interesting case in the high-energy limit. For a more general survey of the related

AdS/CFT literature, including the important case of a heavy quark, we refer to the review papers [88, 89].
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And indeed, the present perturbative results, which as we have seen predict a (global)

saturation momentum Q2
s(L) = q̂(L)L ∝ L1+γs and an energy loss ∆E(L) ∝ L2+γs with

γs = 2
√
ᾱ, suggest a relatively smooth approach towards the respective trends at strong

coupling, namely Q2
s(L) ∝ L2 [72, 74] and respectively ∆E(L) ∝ L3 [73, 74, 90–92]. It

remains to be seen whether such a smooth convergence survives after including higher order

perturbative corrections.
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A A succinct derivation of the evolution Hamiltonian

In this appendix, we shall provide a succinct proof of the evolution Hamiltonian (2.4),

by generalizing the original construction of the JIMWLK Hamiltonian [21–29] to the case

where the target is a extended medium, as opposed to a shockwave. Our subsequent discus-

sion is rather schematic and we refer to the original literature on JIMWLK for more details.

A central ingredient in this construction is a factorization scheme for the S-matrix

describing the high-energy scattering between a dilute projectile and a dense target. This

scheme is most naturally formulated in a ‘target infinite momentum frame’, i.e. a Lorentz

frame where the target propagates at nearly the speed of light, so that the typical time

scales for its internal dynamics are Lorentz dilated. In the same frame, the interaction

with an external projectile appears as a relatively fast process, whose duration is set by

the Lorentz-contracted size of the projectile. Hence, for the purposes of computing that

scattering, one can describe the target as a ‘frozen’ configuration of color fields, which

is random — since determined by the instantaneous distribution of fast moving ‘color

sources’ (the medium constituents) — and must be averaged over in the calculation of the

observables. This discussion motivates the ‘color glass condensate factorization’, which has

originally been formulated for the case of a shockwave target [35, 36, 67, 68], but on the

basis of very general ideas, which apply to an extended medium as well.

To describe this factorization, we shall assume that the target is a left mover (hence the

projectile is a right mover), and that the rapidity separation between the valence degrees

of freedom of the two hadronic systems is equal to Y . We work in a Lorentz frame where

Y = YT + YP , with the positive quantities YT and YP denoting the magnitudes of the

rapidities for the target and the projectile, respectively. The partonic constituents of the

projectile couple to the component A− of the target color field via Wilson lines, as shown in

eq. (2.3). The overall S-matrix is then represented by some color-singlet operator ÔYP [A−],

built with these Wilson lines. This is an ‘operator’ since defined for a given configuration of
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the color fields in the target. But the physical observable is of course the average S-matrix,

as obtained after averaging this operator over all the realizations of the random field A−,

with some suitable (functional) probability density, known as the ‘CGC weight function’

WYT [A−]:

〈Ô〉Y =

∫
[DA−]WYT [A−] ÔYP [A−]. (A.1)

As indicated by the notations above, the average S-matrix depends only upon the total

rapidity separation Y , by boost invariance. The CGC weight function WYT [A−] encodes

the relevant information about the target wavefunction (including its high-energy evolution

up to rapidity YT ) in the approximations of interest.

So far, the CGC factorization in eq. (A.1) is merely an assumption. At ‘tree-level’ (i.e.

in the zeroth order approximation of pQCD, valid so long as ᾱY � 1), this is motivated by

the separation of scales between the valence degrees of freedom in the target and the pro-

jectile, as discussed. But in order to justify this factorization for a larger rapidity difference

Y & 1/ᾱ, one needs to demonstrate that it is preserved by the quantum corrections re-

sponsible for the high-energy evolution. In what follows, we shall construct a proof in that

sense via induction. Namely, assuming that eq. (A.1) holds after a generic number of steps

in the evolution, we shall explicitly perform one additional such a step — by integrating

out one layer of (relatively soft) quantum fluctuations within pQCD — and show that the

result of that calculation can be rewritten as in eq. (A.1), but with a modified expression

for the S-matrix operator (‘projectile evolution’), or, alternatively, for the CGC weight

function (‘target evolution’). The respective change in either the S-matrix, or the CGC

weight function, can be used to deduce the evolution Hamiltonian and thus check eq. (2.4).

In turns out that it is easier to perform one step in the high-energy evolution by

boosting the projectile, rather than the target. Indeed, since the projectile is dilute, the

evolution of its wavefunction remains linear (i.e. of the BFKL type). Then the only non-

linear effects that one needs to take into account are those associated with the multiple

scattering off the target field, as encoded in the Wilson lines. By boost invariance, one is

guaranteed that the same evolution Hamiltonian would also be obtained by boosting the

target, albeit the respective calculation would be more involved, because of the need to

deal with gluon saturation in the dense target wavefunction. (For the case of a shockwave

target, both the projectile and the target evolutions have been explicitly worked and shown

to be equivalent with each other [19–29]. The viewpoint of projectile evolution naturally

leads to the Balitsky hierarchy of coupled equations for S-matrices, while that of target

evolution yields the functional JIMWLK equation for the CGC weight function.)

So, let us increase the rapidity of the projectile according to YP → YP + ∆Y . To

understand the consequences of this boost, let us first remind some general facts about the

high-energy evolution:

(i) The wavefunction of the projectile with rapidity YP includes quanta — the valence

partons and the relatively soft gluons produced via radiation — with longitudinal

momenta p+ within the strip Λ0 < p+ < Λ0eYP . Here, Λ0 is the infrared cutoff used
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to properly define the wavefunction (the softest longitudinal momentum that can

be measured).

(ii) When the projectile is boosted by an amount ∆Y , the already existing partons act

as sources for the emission of additional gluons within the range Λ0 < p+ < Λ0e∆Y .

The new gluons are much softer than their sources (whose typical p+ momenta are

very large as compared to Λ0e∆Y ), so their emission can be computed in the ‘soft

gluon’ approximation, i.e. by using eikonal vertices.

(iii) Albeit soft relative to their sources, the ‘evolution’ gluons are still fast enough as

compared to the target, so their scattering off the latter can be described by Wil-

son lines.

(iv) The probability for a soft gluon emission within the range Λ0 < p+ < Λ0e∆Y is of or-

der ᾱ∆Y , with ᾱ ≡ αsNc/π. Hence, by keeping ∆Y � 1/ᾱ, one can ensure that there

is only one additional gluon emission, which can be treated in perturbation theory.

These general considerations hold irrespectively of the nature of the dense target —

a shockwave or an extended medium. However, the respective calculations differ in one

important aspect: the emission of a soft gluon in the background of a shockwave can be

treated in the eikonal approximation, that is, one can neglect the transverse diffusion of the

gluon while crossing the shockwave; but for an extended medium the eikonal approximation

fails, since gluon fluctuations can scatter during their whole lifetime.

We are now prepared to describe the calculation of one step in the high-energy evo-

lution. To that aim, we need a generalization of eq. (A.1) which allows for the relevant

quantum fluctuations. This is obtained by inserting into eq. (A.1) the QCD path integral

which describes the dynamics of the quantum gluons with longitudinal momenta within the

range Λ0 < |p+| < Λ0e∆Y , in the high-energy approximations of interest. The appropriate

generalization of eq. (A.1) reads

〈Ô〉Y+∆Y =

∫
[DA−]WYT [A−] Z−1

∆Y

∫
∆Y

[Daµ] δ(a+) eiS0[aµ;A−] ÔYP [A− + a−] . (A.2)

Here aµ(x) are the gauge fields representing the quantum fluctuations and we use the

projectile light-cone gauge a+ = 0. The normalization factor Z∆Y is given by a similar

path integral, but without the factor ÔYP .

The ‘soft’ gluons aµ couple to their ‘sources’ (the projectile partons at higher rapidities

that have been included in the S-matrix ÔYP ) and to the target color field Aµ ' δµ−A−

(the ‘background field’). The coupling to the ‘sources’ is implemented via the shift A− →
A− + a− in the functional argument of the scattering operator ÔYP . This is correct since

the fast partons interact in the same way — via Wilson lines — with both the target

and their (comparatively soft) quantum fluctuations. The coupling to A− is encoded in

the action S0[aµ;A−], which is obtained by keeping only the terms quadratic in aµ in the

expansion of the Yang-Mills action SYM [Aµ + aµ] around the background field:

S0[aµ;A−] =
1

2

∫
d4x
[
ai
(
−D2

)
ai +

(
∂+a− + ∂ia

i
)2]

, (A.3)
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where D2 = 2∂+D− − ∇2
⊥, with D− = ∂− − igA− (the covariant derivative built with

the background field) and ∂i = ∂/∂xi = −∂i. The action (A.3) is formally written as a

4-dimensional integral, but the integrand is homogeneous in x− and it is understood that

the integral over the corresponding modes p+ is restricted to the strip Λ0 < |p+| < Λ0e∆Y .

The quadratic action (A.3) generates, as usual, the propagator Gµν of the soft gluons in

the background field and in the LC gauge a+ = 0. Namely, eq. (A.3) is tantamount to

iS0[aµ;A−] = −1

2

∫
strip

dp+

2π

∫
x+,y+

∫
x,y

aµb (x+,x, p+)G−1,bc
µν (x+,x; y+,y; p+) aνc (y+,y, p+) ,

(A.4)

where Gµν is the background-field gluon propagator in the LC gauge, to be constructed

in appendix B. This propagator encodes both the transverse diffusion and the multiple

scattering off the target field.

In writing the action (A.3) we have ignored the self-interactions of the quantum gluons,

which is indeed justified to leading order in αs. (As a general rule, the target field is

strong, gA− ∼ O(1), and must be treated exactly, whereas the quantum fields are weak,

gaµ � 1, and should be expanded out in perturbation theory.) For consistency, one must

also expand the scattering operator ÔYP [A− + a−] in powers of a−, up to quadratic order.

This is tantamount to considering a single gluon emission, as expected for one step in the

high-energy evolution. The linear term in this expansion vanishes after computing the

path integral over aµ, whereas the quadratic term yields a contribution proportional to

G−−. In fact, this quadratic term can be recognized as the action of the Hamiltonian ∆H

introduced in eq. (2.4) on the original operator ÔYP [A−]. After this expansion, eq. (A.2)

reduces to

〈Ô〉Y+∆Y − 〈Ô〉Y =

∫
[DA−]WYT [A−] ∆HÔYP [A−] , (A.5)

with ∆H given by eq. (2.4) with Λ ≡ Λ0e∆Y and x ≡ e−∆Y (and therefore xΛ = Λ0).

Eq. (A.5) represents the result of one step in the high-energy evolution to the ac-

curacy of interest. This equation can be interpreted as an evolution equation for the

S-matrix operator:

ÔYP+∆Y [A−] − ÔYP [A−] = ∆H ÔYP [A−] . (A.6)

From this perspective, ∆H describes the evolution of the projectile wavefunction as mea-

sured by the multiple scattering off the dense target. This is the sense in which we have

generally used ∆H as an ‘evolution Hamiltonian’ throughout this paper. Eq. (A.6) can be

viewed as the generalization of the Balitsky equations to the case of an extended target.

Alternatively, within the functional integral in eq. (A.5), one can integrate by parts the

functional derivatives implicit in the structure of ∆H (cf. eq. (2.4)) and thus make them

act on the CGC weight function WYT [A−]. Accordingly, the effect of the evolution can be

reinterpreted as a renormalization of the CGC target wavefunction (a generalization of the

JIMWLK equation):

WYT+∆Y [A−] − WYT [A−] = ∆HWYT [A−] . (A.7)

– 67 –



J
H
E
P
1
0
(
2
0
1
4
)
0
9
5

To summarize, the effect of integrating out quantum gluons in one layer of rapidity

amounts to replacing the starting point formula (A.1) by either

〈Ô〉Y+∆Y =

∫
[DA−]WYT [A−] ÔYP+∆Y [A−] , (A.8)

or

〈Ô〉Y+∆Y =

∫
[DA−]WYT+∆Y [A−] ÔYP [A−] , (A.9)

with ÔYP+∆Y [A−] and WYT+∆Y [A−] defined in eqs. (A.6) and (A.7), respectively. Any

of these expressions shows that the CGC factorization is preserved by one step in the

high-energy evolution, which closes our inductive argument.

B The background field gluon propagator

In this appendix, we construct the background field gluon propagator in the light-cone

gauge A+ = 0 and collect some related formulæ that were used in the main text. Our

presentation will be brief since similar constructions can be found in the literature. (See e.g.

section 6 in ref. [26] for a related discussion.) The propagator is defined as in appendix A,

that is,

Gµνab (x, y) ≡ 〈T aµa(x) aνb (y)〉

=Z−1

∫
[Daµ] δ(a+) aµa(x) aνb (y) eiS0[aµ;A−] , (B.1)

where the symbol T refers to operator ordering in LC time (x+) and xµ = (x+, x−,x).

It is implicitly assumed that the longitudinal momentum p+ of the quantum fluctuations

is restricted to the strip (2.5), whereas the background field Aµ = δµ−A− carries no p+

momentum (i.e. it is homogeneous in x−). The action S0[aµ;A−] is shown in eq. (A.3) and

is quadratic in the quantum fields aµ. It is convenient to bring this action to a diagonal

form, by replacing a− → ã− with

ã−(x) ≡ a−(x) +
∂i

∂+
ai(x) . (B.2)

Then the action becomes (we recall that D2 = 2∂+D− −∇2
⊥ and D− = ∂− − igA−)

S0[ã−, ai;A−] =
1

2

∫
d4x
[
ai
(
−D2

)
ai +

(
∂+ã−

)2]
, (B.3)

which implies that the propagator Gij of the transverse fields is the same as the ‘scalar’

propagator: Gij = δijG, with Gab(x, y) obeying eq. (2.9) (after a Fourier transform x− −
y− → p+). Also,

〈
T ã−a (x) ã−b (y)

〉
= δab

∫
d4p

(2π)4
e−ip·(x−y) i

(p+)2
,

〈
T ã−a (x) aib(y)

〉
= 0 . (B.4)

– 68 –



J
H
E
P
1
0
(
2
0
1
4
)
0
9
5

After inverting the transformation in eq. (B.2), we finally obtain [in the mixed Fourier

representation (~x, p+) with ~x ≡ (x+,x) and color indices suppressed]

G−i(~x, ~y; p+) =
i

p+
∂ixG(~x, ~y; p+) , Gi−(~x, ~y; p+) = − i

p+
∂iyG(~x, ~y; p+) ,

G−−(~x, ~y; p+) =
1

(p+)2
∂ix∂

i
yG(~x, ~y; p+) +

i

(p+)2
δ(3)(~x− ~y) . (B.5)

The propagator is to be considered with the Feynman prescription for the pole at the

mass-shell. For instance, the free (A− = 0) scalar propagator reads G0, ab = δabG0, with

G0(p) =
i

2p+p− − p2 + iε
, (B.6)

in momentum space. This implies e.g.

G−−0 (p) =
p2

(p+)2
G0(p) +

i

(p+)2
=

2p−

p+

i

2p+p− − p2 + iε
, (B.7)

The ‘axial’ pole at p+ = 0 needs no special prescription, since p+ cannot vanish within the

present context, as manifest on eq. (2.5). The expression of the free propagator in mixed

Fourier representation will also be useful:

G0(t,x; p+) =
1

2p+

[
θ(t)θ(p+)− θ(−t)θ(−p+)

] ∫ d2p

(2π)2
eip·x e

−i
p2⊥
2p+

t
. (B.8)

Note that modes with positive (negative) values of p+ propagate forward (backward)

in time.

A formal expression for the ‘scalar’ propagator, which is valid for an arbitrary back-

ground field but involves a path integral, has been presented in eq. (2.10). Using this formal

expression, we shall now to derive a fully explicit formula for the case where the target is

a shockwave localized near x+ = 0. When x+ and y+ are both positive, or both negative

(i.e. they are on the same side of the shockwave), then the propagator in eq. (2.10) reduces

to the free propagator G0. Consider now the case where the gluon crosses the shockwave:

y+ < 0 and x+ > 0. Then for a localized target field A−(t, z) ∼ δ(t), one can approximate

the Wilson line in eq. (2.10) as

U †
x+y+

[r(t)] ' P eig
∫

dt A−(t,r(0)) =

∫
d2z δ(2)

(
z − r(0)

)
P eig

∫
dt A−(t,z) , (B.9)

and the path integral can be computed as follows:∫ [
Dr(t)

]
exp

{
i
p+

2

∫ x+

y+
dt ṙ2(t)

}
δ(2)
(
z − r(0)

)
= G0(x+,x− z; p+)G0(−y+, z − y; p+),

(B.10)

where G0 = 2p+G0 is the free ‘reduced’ propagator. The last remaining case, where y+ > 0

and x+ < 0, can be deduced by using the symmetry property (2.11). One finally has

G(x+,x; y+,y; p+) =G0(x+ − y+,x− y; p+)
[
θ(x+)θ(y+) + θ(−x+)θ(−y+)

]
+ 2p+

∫
z
G0(x+,x− z; p+)G0(−y+, z − y; p+)

×
[
θ(x+)θ(−y+)U †z − θ(−x+)θ(y+)Uz

]
. (B.11)
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C A sum rule for the light-cone gauge propagator

In this appendix, we shall demonstrate the identity (2.13) which has played an important

role in the construction of the high-energy evolution equations, notably in relation with

the probability conservation and the cancellation of ultraviolet divergences. The careful

treatment of the ε-dependence introduced by the adiabatic prescription will be essential for

this purpose. Specifically, we shall show that the double time integral in the l.h.s. of (2.13)

gives a result of O(ε) and hence vanishes in the limit ε→ 0.

We separately consider the two pieces in the decomposition (B.7) of the free propagator

and use the mixed Fourier representation G0(t2 − t1,p; p+), cf. eq. (B.8). We focus on the

case p+ > 0 for definiteness. Then the ‘radiation’ piece of the propagator is retarded

(∝ θ(t2 − t1)) and yields∫
dt1

∫
dt2G

−−
0, rad(t2 − t1,p; p+) e−ε(|t1|+|t2|)

=
p2
⊥

2(p+)3

∫ ∞
−∞

dt2

∫ t2

−∞
dt1 e−ip−(t2−t1) e−ε(|t1|+|t2|)

=
p2
⊥

2(p+)3

1

2ε

[
1

ip− + ε
+

1

ip− − ε

]
= −1

ε

i

(p+)2
+ O(ε) , (C.1)

where p− ≡ p2
⊥/2p

+. Note that, as compared to the previous, related, calculation in

eq. (3.12), the final result here is a purely divergent contribution, without any additional

finite term. The respective contribution of the Coulomb piece is, clearly,∫
dt1

∫
dt2G

−−
0, Coul(t2 − t1,p; p+) e−ε(|t1|+|t2|) =

i

(p+)2

∫ ∞
−∞

dt e−2ε|t| =
1

ε

i

(p+)2
. (C.2)

As anticipated, this precisely cancels the divergent piece of the ‘radiative’ contribution,

thus leaving a net result of O(ε).

D Finite-Nc corrections within the mean field approximation

When constructing the evolution equation for a dipole in a medium, in section 4.2, we have

used the large-Nc limit to simplify some arguments and the various formulæ. But as also

announced there, all the results obtained within the Gaussian approximation (4.14) for the

medium correlations can be extended to finite values for Nc. In this appendix, we present

some tools which are useful in that sense. Such tools have been developed in applications

of the CGC formalism and we refer to the original literature for their derivation and more

details [37, 39–41, 43, 44].

As visible e.g. on (4.15), the evolution of the dipole S-matrix within the Gaussian

approximation involves only two distinct Wilson line correlators: the dipole itself and a

correlator built with three Wilson lines for the partonic system which exists during the

fluctuation. For more generality, let us consider a dipole in some generic representation

R of the SU(Nc) algebra. Then, the relevant correlators read (within the mean field

approximation, of course)

SR(x,y) ≡ 1

dR

〈
trR
[
V †R(x)VR(y)

]〉
= exp

{
−g2CR

∫
dtΓ(t,x,y)

}
, (D.1)
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and respectively (see e.g. appendix B in ref. [40] for a rapid derivation)〈
U † ab(z)

trR
dR

(
taR V

†
R(x)tbR VR(y)

)〉
= CR e

−g2
∫

dt

[
Nc
2

(
Γ(t,x,z)+Γ(t,z,y)

)
−
(
Nc
2
−CR

)
Γ(t,x,y)

]
(D.2)

In these expressions, dR is the dimension of the representation (dF = Nc for the fun-

damental, dA = N2
c − 1 for the adjoint, etc.), CR is the corresponding second Casimir

(CF = (N2
c − 1)/2Nc, CA = Nc, etc.), and the integrals over t run over some arbitrary

time interval (e.g. the width of the target, or a slice of it). Also, the transverse coordinates

x, y, and z need not be constant during that time interval, that is, eq. (D.2) also holds

for generic trajectories x(t), etc. Finally, the function Γ(t,x,y) is related to the function

Γ̄(t,x,y) which enters the 2-point function (4.14) via

Γ(t,x,y) =
1

2

[
Γ̄(t,x,x) + Γ̄(t,y,y)

]
− Γ̄(t,x,y) . (D.3)

Using these formulæ, it is straightforward to generalize the results in section 4.2 to arbitrary

Nc. For instance, for a dipole in the color representation R, the analog of eq. (4.22) is

obtained by replacing

Nc

2

[
St2,t1(x, r)St2,t1(r,y)S−1

t2,t1
(x,y) − 1

]
→ CR

{
e
− g

2Nc
2

t2∫
t1

dt
[
Γω(t,x,r)+Γω(t,r,y)−Γω(t,x,y)

]
− 1

}
(D.4)

within the r.h.s. of eq. (4.22). Also, the respective l.h.s. should more generally read

− ∂ lnSR(x,y)

∂ω
= CR

∫ L

0
dt

∂Γω(t,x,y)

∂ω
. (D.5)

After these replacements, the overall factor of CR cancels out and eq. (4.22) reduces to

eq. (4.24) for Γω(x,y) for any value of Nc. Hence, as already mentioned in the main

text, this equation is independent of the color representation R of the dipole that we have

started with.
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