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1 Introduction

In many N = 1 supersymmetric compactification of string theory down to 3+1 dimensions,

we have U(1) gauge fields with Fayet-Iliopoulos (FI) terms generated at one loop [1–4]

(see [5, 6] for a recent perspective on this). By choosing suitable linear combination of

these gauge fields we can ensure that only one gauge field has FI term. Typically there are

also massless scalars φi charged under this U(1) gauge field. If qi is the charge carried by

φi then the presence of the FI term generates a term in the potential of the form

1

g2

(
∑

i

qiφ
∗
iφi − C g2

)2

(1.1)

where C is a numerical constant that determines the coefficient of the FI term and g is

the string coupling. C could be positive or negative and qi’s for different fields could have

different signs. As a result when we expand the potential in powers of φi around the

perturbative vacuum φi = 0, some of these scalars can become tachyonic.1 It is clear from

the form of the effective potential that the correct procedure to compute physical quantities

is to shift the corresponding fields so that we have a new vacuum where
∑

i qi〈φ
∗
i 〉〈φi〉 =

C g2, and quantize string theory around this new background. However since classically

the C g2 term is absent from this potential (1.1), this new vacuum is not a solution to the

classical equations of motion. As a result on-shell methods [7–22], which require that we

begin with a conformally invariant world-sheet theory, is not suitable for carrying out a

systematic perturbation expansion around this new background.

1It was shown in [2] that for any compactification of SO(32) heterotic string theory preserving (2,2)

world-sheet supersymmetry, there is always at least one such tachyonic scalar, leading to the existence of a

stable supersymmetric vacuum.
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Although the above example provides the motivation for our analysis, we shall address

this in a more general context. At the same time we shall simplify our analysis by assuming

that only one scalar field is involved instead of multiple scalar fields. So we consider a

general situation in string theory where at tree level we have a massless real scalar with a

non-zero four point coupling represented by a potential

Aφ4 + · · · (1.2)

where · · · denote higher order terms. We suppose further that at one loop the scalar

receives a negative contribution −2Cg2 to its mass2. Here A and C are g-independent

constants. Then the total potential will be

Aφ4 − C g2 φ2 + · · · . (1.3)

This has a minimum at

φ2 =
1

2

C

A
g2 + · · · . (1.4)

Our goal will be to understand how to systematically develop string perturbation theory

around this new background and also to correct the expectation value of φ due to higher

order corrections. If we had an underlyng string field theory that is fully consistent at the

quantum level, e.g. the one described in [23], then that would provide a natural framework

for addressing this issue. Our method does not require the existence of an underlying

string field theory, although the requirement of gluing compatibility of the local coordinate

system that we shall use is borrowed from string field theory.

The method we shall describe can be used to address other similar problems in string

theory where loop correction induces small shift in the vev of a massless field. For example

suppose we have a massless field χ with a tree level cubic potential and suppose further

that one loop correction generates a tadpole for this field. Then from the effective field

theory approach it is clear that there is a nearby perturbative vacuum where the field χ

is non-tachyonic. Usual string perturbation theory does not tell us how to deal with this

situation, but the method we describe below can be used in this case as well.

There are of course also problems involving tadpoles of massless fields without tree

level potential, e.g. of the kind discussed in [24, 25] and many follow up papers. As of now

our method does not offer any new insight into such problems.

Earlier attempts to analyze string theory in a shifted background can be found in [30].

However unlike in [30], here by focussing on a concrete class of problems where the shift is

perturbative in the string coupling, and employing a stringy infrared regulator that renders

diagrams with arbitrary number of tadpoles finite at the intermediate steps, we shall give

a completely systematic procedure for computing amplitudes in the shifted vacuum to any

given order in the perturbation theory.

The rest of the paper is organised as follows. In section 2 we describe the procedure for

constructing amplitudes in the presence of a small shift in the vacuum expectation value of

a massless scalar following the procedure of [26–29]. We also discuss systematic procedure

for determining the shift by requiring absence of tadpoles. In section 3 we show that

the amount of shift in the scalar, needed to cancel the tadpole, depends on the choice of

– 2 –
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local coordinate system that we use to construct the amplitudes. However general physical

amplitudes in the presence of the shift are independent of the choice of local coordinate

system as long as we use a gluing compatible system of local coordinates for defining the

amplitude. This is our main result. For simplicity we restrict our analysis in section 2 and

section 3 to bosonic string theory, but in section 4 we discuss generalization of our analysis

to include NS sector states in heterotic and superstring theories. In section 5 we describe

the procedure for regulating the spurious infrared divergences in loops, arising from the

fact that the shift in the vacuum renders some of the originally massless states massive.

2 Systematic construction of the new vacuum

We shall carry out our analysis under several simplifying assumptions. These are made

mainly to keep the analysis simple, but we believe that none of these (except 4) is necessary.

1. We shall assume that there is a symmetry under which φ → −φ so that amplitudes

with odd number of external φ fields vanish.

2. We shall assume that φ does not mix with any other physical or unphysical states of

mass level zero even when quantum corrections are included.

3. Shifting the φ field can sometimes induce tadpoles in other massless fields. If there is

a tree level potential for this field then we can cancel the tadpole by giving a vacuum

expectation value (vev) to that field and determine the required vev by following the

same procedure that we used to determine the shift in φ. We shall assume that such a

situation does not arise and that φ is the only field that needs to be shifted. However

extension of our analysis to this more general case should be straightforward.

4. If on the other hand shifting φ leads to the tadpole of a massless field which has

vanishing tree level potential then it is not in general possible to find a nearby vacuum

where all tadpoles vanish. In this case the vacuum is perturbatively unstable. We

shall assume that this is not the case here.

5. When the theory has other massless fields besides φ but their tadpoles vanish, then

the situation can be dealt with in the manner discussed in section 7.2 of [7] and will

not be discussed here any further.2

6. In this section and in section 3 we shall restrict our analysis to the bosonic string

theory. However the result can be generalized to include the case where φ is Neveu-

Schwarz (NS) sector field in the heterotic string theory or NS-NS sector field in type

IIA or IIB string theory. This is discussed briefly in section 4.

As discussed in detail in [34, 35], for computing renormalized masses and S-matrix of

general string states we need to work with off-shell string theory. This requires choosing

2In the special case of the D-term potential in supersymmetric theories discussed in section 1 the dilaton

tadpole does not vanish in the perturbative vacuum [1, 7, 31–33], but is expected to vanish in the shifted

vacuum since the latter has zero energy density.
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a set of gluing compatible local coordinate system on the (super-)Riemann surfaces. The

result for off-shell amplitude depends on the choice of local coordinates, but the renormal-

ized masses and S-matrix elements computed from it are independent of this choice. Our

analysis will be carried out in this context.

The off-shell amplitudes do not directly compute the off-shell Green’s func-

tions. Instead they compute truncated off-shell Green’s functions. If we denote by

G(n)(k1, b1; · · · kn, bn) the n-point off-shell Green’s function of fields carrying quantum num-

bers {bi} and momenta {ki}, then the truncated off-shell Green’s functions are defined as

Γ(n)(k1, b1; · · · kn, bn) = G(n)(k1, b1; · · · kn, bn)
n∏

i=1

(
k2i +m2

bi

)
, (2.1)

where mb is the tree level mass of the state carrying quantum number b. We shall use only

connected component of the Green’s function in the definition of Γ(n) and remove from it

the overall momentum conserving delta function, at the same time choosing the external

momenta such that their sum vanishes. The usual on-shell amplitudes of string theory

compute Γ(n) at k2i = −m2
bi
. This differs from the S-matrix elements by multiplicative

wave-function renormalization factors for each external state and also due to the fact that

the S-matrix elements require replacing m2
bi
’s by physical mass2’s in this formula. However

from the knowledge of off-shell amplitude Γ(n) defined in (2.1) we can extract the physical

S-matrix elements following the procedure described in [34, 35].

Our goal is to study what happens when we switch on a vev of φ. For this we shall first

consider a slightly different situation. Suppose that φ is an exactly marginal deformation in

string theory and furthermore that it remains marginal even under string loop corrections.

In this case there is no potential for φ and we can give any vacuum expectation value

λ to φ. The effect of this is to deform the world-sheet action by a term λ
∫
d2z Vφ(z, z̄)

where Vφ is the vertex operator of the zero momentum φ state. In the string amplitude,

obtained by integrating the correlation functions of the underlying conformal field theory

(CFT) on moduli spaces of punctured Riemann surfaces, this introduces a term

exp

[
λ

∫
d2zVφ(z, z̄)

]
=

∞∑

m=0

λm

m!

(∫
d2zVφ(z, z̄)

)m

. (2.2)

The effect of the
(∫

d2zVφ(z, z̄)
)m

term is to convert Γ(n) to Γ(n+m) with m insertions of

zero momentum φ state. This if we denote by Γ
(n)
λ the deformed off-shell amplitudes then

we have the relation

Γ
(n)
λ (k1, b1; · · · kn, bn) =

∞∑

m=0

λm

m!
Γ(n+m)(k1, b1; · · · kn, bn; 0, φ; · · · 0, φ) , (2.3)

where we have denoted the quantum number b labelling the field φ by φ itself. There

are altogether m insertions of 0, φ in the argument of Γ(n+m) on the right hand side. In

any expression of this kind that we shall be using later, the number of insertions of (0, φ)

can be figured out by subtracting from the superscript of Γ the number of explicit (ki, bi)

factors in the argument of Γ. The insertion of (0, φ) factors in (2.3) has to be interpreted

– 4 –
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as the result of taking the zero momentum limit of a general amplitude where the external

φ states carry non-zero and different momenta. As we shall see, individual contributions to

the right hand side have tadpole divergence in the zero momentum limit. We shall discuss

ways to regulate this later. A direct proof of (2.3) in a quantum field theory has been given

in appendix A.

Now in our case the field φ has a potential even at the tree level and hence does not

represent an exactly marginal deformation. If we nevertheless go ahead and try to define

a deformed theory using (2.3), we encounter the following problem. We have

Γ
(1)
λ (0, φ) =

∞∑

m=0
m odd

λm

m!
Γ(1+m)(0, φ; 0, φ; · · · 0, φ) , (2.4)

where we have used the postulated φ → −φ symmetry to restrict the sum over m to odd

values only. It will be useful to express the right hand side as sum over contributions from

different genera. Thus we write3

Γ
(1)
λ (0, φ) =

∞∑

s=0

g2s
∞∑

m=0
m odd,m+2s≥3

λm

m!
Γ(1+m;s)(0, φ; 0, φ; · · · 0, φ) , (2.5)

where Γn;s denotes genus s contribution to the n-point function in the unperturbed theory.

The s = 0, m = 3 term on the right hand side is non-zero since it is proportional to the

four point function of zero momentum φ states and is proportional to A according to (1.2).

Thus in the deformed theory there is a zero momentum φ tadpole proportional to λ3. This

is clearly not an acceptable vacuum at the tree level since it will give divergent results for

higher point amplitudes.

But now consider the effect of one loop correction given by the m = 1, s = 1 term on

the right hand side of (2.5). This is non-zero and represents the second term in (1.3). We

now see that by a suitable choice of λ, given by the solution to

1

6
λ3 Γ(4;0)(0, φ; 0, φ; 0, φ; 0, φ) + λ g2 Γ(2;1)(0, φ; 0, φ) = 0 (2.6)

we can cancel the net contribution to the φ tadpole to order g3. This vanishes for three

distinct values of λ, one of which is given by λ = 0 and the other two are related by φ→ −φ

symmetry. We shall be considering the situation where in the λ = 0 vacuum the field φ is

tachyonic and hence this solution needs to be avoided. This fixes λ to a specific value of

order g up to the φ→ −φ symmetry.

3We have dropped an overall 1/g2 factor from the definition of Γ(n) so that we can drop a g2 factor from

the definition of the propagator later in (2.9). If we use the standard convention where 1/g2 appears as an

overall multiplicative factor in the tree level action, then the propagator ∆ will have an extra factor of g2

and the Γ(n)’s will have extra factor of 1/g2. If we denote these by Γstandard = g−2Γ and ∆standard = g2∆,

then it is straightforward to check that all our subsequent equations hold with Γ replaced by Γstandard and

∆ replaced by ∆standard without any extra factor of g2.
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With this choice of λ we make Γ
(1)
λ (0, φ) vanish to order g3. To extend the analysis to

higher order in g we express the condition of vanishing of (2.5) as

1

6
λ2 Γ(4;0)(0, φ; 0, φ; 0, φ; 0, φ) + g2 Γ(2;1)(0, φ; 0, φ)

= −
∞∑

m,s=0
m odd;m+2s≥5

1

m!
λm−1 g2s Γ(1+m;s)(0, φ; 0, φ; · · · 0, φ) , (2.7)

and then solve this equation iteratively using the leading order solution (2.6) as the starting

point. Note that in arriving at (2.7) we have divided (2.5) by λ, thereby removing the trivial

solution λ = 0. To each order in iteration we substitute on the right hand side of (2.7) the

solution for λ to the previous order and then solve (2.7). Due to the φ → −φ symmetry

and the fact that the genus expansion is in powers of g2, the solution for λ takes the form

λ2 =
∞∑

n=0

Ang
2n+2 , (2.8)

for constants An. Furthermore note that by adjusting λ2 to order g2n+2, we can satisfy (2.7)

to terms of order g2n+2, i.e. make the right hand side of (2.5) vanish to order g2n+3.4

There are however some additional subtleties in this analysis, since the individual terms

on the right hand side of (2.7) can diverge due to φ tadpole. These divergences arise from

regions of moduli integral where a Riemann surface degenerates into two distinct Riemann

surfaces connected by a long handle. As mentioned at the end of section 1, we shall proceed

with the assumption that the only relevant divergences are associated with tadpoles of φ.

To deal with these divergences we need to first regularize these divergences, solve for λ, and

at the end remove the regulator. For this we shall work with a choice of gluing compatible

local coordinates according to the procedure described in section 3.2 of [35] and express a

general amplitude contributing to the right hand side of (2.4) as a sum of products of ‘one

particle irreducible’ (1PI) amplitudes joined by the propagator

∆ =
1

4π

∫ ∞

0
ds

∫ 2π

0
dθ e−(s−iθ)L0−(s+iθ)L̄0 . (2.9)

The divergence in individual contributions come from the s → ∞ limit on the right hand

side of (2.9). We shall regulate the divergence by replacing ∆ by

1

4π

∫ Λ

0
ds

∫ 2π

0
dθ e−(s−iθ)L0−(s+iθ)L̄0 , (2.10)

where Λ is a fixed large number. The relevant divergence in ∆ comes from the choice where

the propagating state is a zero momentum φ. Since L0 and L̄0 vanish for zero momentum

4Due to the φ → −φ symmetry and the fact that the genus expansion is in powers of g2, the contributions

to Γ
(1)
λ (0, φ) involve only odd powers of g after using (2.8). Thus making Γ

(1)
λ (0, φ) vanish to order g2n+3

also makes it vanish to order g2n+4.
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Γ
(1)
λ

= Γ̄
(1)
λ Γ̄

(2)
λ Γ̄

(3)
λ

Γ
(1)
λ Γ

(1)
λ

Γ
(1)
λ

+ + 1
2× × × × + · · ·

Figure 1. Pictorial representation of (2.12). The × denotes the vertex operator associated with

the external φ state. The φ vertex operators carrying factors of λ are not displayed explicitly. The

thick line denotes the φ propagator ∆φ.

φ, the contribution to ∆ from this term goes as Pφ Λ/2, where Pφ denotes projection to

the CFT state corresponding to zero momentum φ. It will be convenient to define,5

∆φ =
1

2
ΛPφ, ∆̄ = ∆−∆φ for momentum k = 0 ,

∆̄ = ∆ for k 6= 0 . (2.11)

We furthermore denote by Γ̄ the contribution to an amplitude obtained by taking sum of

products of 1PI contributions joined by the modified propagator ∆̄. Thus the difference

between the full amplitude Γ and the modified amplitude Γ̄ is controlled by ∆φ. We expect

the individual contributions to Γ̄ to be free from divergence associated with zero momentum

propagator in the Λ → ∞ limit, since the contribution to ∆̄ from a massive state of mass

m is given by
(
1− e−Λm2/2

)
/m2, while the contribution from the other massless states

are expected to vanish due to the assumed vanishing of the corresponding tadpoles. From

this argument it is also clear that the Λ dependence of Γ̄ will come through exponentially

suppressed terms for large but finite Λ. The full amplitude is obtained as sum of products

of Γ̄’s joined by ∆φ’s.

We now define Γ̄
(n)
λ as in (2.3) with all the Γ’s replaced by Γ̄’s on the right hand side.

This allows us to express Γ
(1)
λ (0, φ) as (see figure 1)

Γ
(1)
λ (0, φ) =

∞∑

k=0

1

k!
Γ̄
(1+k)
λ (0, φ; 0, φ; · · · ; 0, φ)

(
∆φΓ

(1)
λ (0, φ)

)k
. (2.12)

By repeated use of (2.12) we can express Γ
(1)
λ (0, φ) as sum of products of Γ̄λ factors and

∆φ’s, but we shall not write down the explicit formula.

5For computation of Γ
(1)
λ using (2.5) all propagators carry zero momentum and hence the second line

of (2.11) is irrelevent, but this definition will be useful for analyzing Γ
(n)
λ in the next section.
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Now suppose that λ to order g2n+1, obtained by solving (2.7) to order g2n+2, or

equivalently by demanding the vanishing of Γ
(1)
λ (0, φ) to order g2n+3, has finite limit as

Λ → ∞. Our goal will be to prove that the result also holds with n replaced by n+1. For

determining λ to next order, we need to compute Γ
(1)
λ (0, φ) to order g2n+5 and then require

this to vanish. Using the result that Γ̄
(2)
λ (0, φ; 0, φ) has its expansion beginning at order

g2, one can show that in order to compute the right hand side of (2.12) to order g2n+5 we

need to know the Γ
(1)
λ (0, φ) appearing on the right hand side of (2.12) at most to order

g2n+3. By assumption this contribution vanishes. Thus only the k = 0 term contributes

on the right hand side of (2.12), showing that to order g2n+5, Γ
(1)
λ (0, φ) = Γ̄

(1)
λ (0, φ). This

means that in order to determine the order g2n+3 correction to λ we can replace Γ by Γ̄ on

the right hand side of (2.7).6 Since Γ̄’s by construction are finite as Λ → ∞ we see that

the order g2n+3 correction to λ is also finite as Λ → ∞. This proves the desired result.

We shall see in section 3 that even though λ determined using this procedure is finite

in the Λ → ∞ limit, it is ambiguous i.e. it depends on the choice of local coordinate system

used for the computation. Nevertheless all physical amplitudes will turn out to be free

from this ambiguity.

3 General amplitudes at the new vacuum

Once λ is determined, we can use (2.3) to compute the general n-point amplitude in the

deformed theory. However we need to ensure that this has finite Λ → ∞ limit and that

it is unambiguous, e.g. independent of the choice of local coordinates used to define the

1PI amplitudes. Our discussion will follow closely that of section 7.6 of [7]. However in [7]

the massless tadpoles were assumed to cancel at every genus while here we consider the

case where the cancelation is between the contributions from different genera. Furthermore

in [7] the massless fields were assumed to have flat potential while here the relevant field φ

has a potential even at the tree level.

First we examine the issue of finiteness in the Λ → ∞ limit. We shall assume that

all the external states (labelled by 1, · · ·n in (2.3)) carry generic non-zero momentum.

Thus possible source of zero momentum propagators on the right hand side of (2.3) are

propagators which connect two Riemann surfaces, one of which carry all the external states

1, · · ·n and possibly some of the zero momentum φ vertex operators and the other one

carries only zero momentum φ vertex operators. For studying the divergences associated

with these zero momentum propagators, we shall define ∆̄ as in (2.11) and introduce the

amplitudes Γ̄ by following the procedure described below (2.11). It is easy to see that we

now have the following generalization of (2.12) (see figure 2)

Γ
(n)
λ (k1, b1; · · · kn, bn)=

∞∑

k=0

1

k!
Γ̄
(n+k)
λ (k1, b1; · · · kn, bn; 0, φ; · · · 0, φ)

(
∆φΓ

(1)
λ (0, φ)

)k
. (3.1)

Now λ has been chosen so that Γ
(1)
λ (0, φ) vanishes. This shows that only the k = 0 term

contributes to the right hand side of (3.1). Since Γ̄
(n)
λ (k1, b1; · · · kn, bn) is finite as Λ → ∞,

this establishes that Γ
(n)
λ (k1, b1; · · · kn, bn) also has a finite limit as Λ → ∞.

6Γ’s appearing on the left hand side of (2.7) are in any case equal to the corresponding Γ̄’s.
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Γ
(n)
λ

= Γ̄
(n)
λ Γ̄

(n+1)
λ Γ̄

(n+2)
λ

Γ
(1)
λ Γ

(1)
λ

Γ
(1)
λ

+ + 1
2×

×
×

×
×

×
×

×

×
×

×
×

×

×
×

×
×

×

×
×

+ · · ·

Figure 2. Pictorial representation of (3.1). The × denotes the vertex operator associated with

the external states carrying quantum numbers (k1, b1; · · · kn, bn). The φ vertex operators carrying

factors of λ are not displayed explicitly. The thick line denotes the propagator ∆φ.

We now have to show that Γ
(n)
λ (k1, b1; · · · kn, bn) is independent of the choice of local co-

ordinate system, except for the expected dependence associated with the off-shell external

states carrying momenta k1, · · · kn. These latter dependences can be analyzed and treated

in the same way as in [34, 35], and we shall not discuss them any further. To focus on the

real issue we can for example concentrate on the case where these external states are mass-

less states that do not suffer from mass renormalization so that the corresponding vertex

operators do not introduce any dependence on the choice of local coordinates.7 The prob-

lematic dependence on local coordinates arises from the following source [7] (section 7.6).

Let us consider two Riemann surfaces A and B, glued at their punctures P1 and P2 by

plumbing fixture procedure:

w1w2 = e−s+iθ (3.2)

where w1 and w2 are the local coordinates around the punctures P1 and P2 and (s, θ)

are the same variables which appear in the definition (2.9) of the propagator. Having the

cut-off s ≤ Λ then corresponds to requiring

|w1w2| ≥ e−Λ . (3.3)

Now suppose we change the local coordinates to w′
1, w

′
2 related to w1 and w2 via the

relations

w1 = f(w′
1), w2 = g(w′

2) , (3.4)

where f and g are some specific functions satisfying f(0) = 0, g(0) = 0. Since for small w1

and w2 we have

w1 = f ′(0)w′
1, w2 = g′(0)w′

2 , (3.5)

7The wave-function renormalization factors do depend on the choice of local coordinates, but this can

be treated as in [7].
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we can express (3.3) as

|w′
1w

′
2| ≥ e−Λ′

, Λ′ = Λ+ 2ξA + 2ξB, ξA ≡
1

2
ln |f ′(0)|, ξB ≡

1

2
ln |g′(0)| . (3.6)

Here A andB refer to the two Riemann surfaces that are connected by the propagator whose

change we are considering. A and B are abstract symbols which characterize information

on the external legs, genus, as well as the point in the moduli space we are in, since f ′(0)

and g′(0) could depend on all these informations. Note however that ξA does not depend

on the Riemann surface B and ξB does not depend on the Riemann surface A provided we

choose a gluing compatible local coordinate system.

(3.6) shows that changing the local coordinates correspond to effectively changing the

cut-off. This in turn changes the regulated propagator (2.10) by

δΛ∆ = (ξA + ξB)Pφ . (3.7)

We have ignored the change in the propagator due to massive states since they are ex-

ponentially suppressed in the Λ → ∞ limit, and also from other massless states with

vanishing tadpole since their effect can be taken care of by following the procedure de-

scribed in [7] (see also [36]). This justifies the appearance of the projection operator Pφ to

zero momentum φ states.

Now consider the right hand side of (2.7). Individual terms in this expression are

divergent in the Λ → ∞ limit, but when we use the value of λ by solving (2.7) to cer-

tain order, and then substitute this on the right hand side of (2.7) to compute λ to the

next order, the right hand side of (2.7) has been shown to have a finite Λ → ∞ limit.

Nevertheless since under a general change of local coordinates different terms on the right

hand side of (2.7) could have their effective Λ’s changed differently, there is no guarantee

that the right hand side of (2.7) will remain unchanged. In other words, although we have

argued that λ determined by solving (2.7) has a finite Λ → ∞ limit, it could depend on the

choice of local coordinates. Similar arguments show that the right hand side of (3.1) could

also depend on the choice of local coordinates. Our goal will be to show that the explicit

dependence of the right hand side of (3.1) on the choice of local coordinates through the

cut-off Λ cancels against the implicit dependence of (3.1) on the choice of local coordinates

through λ, so that the final result for Γ
(n)
λ (k1, b1; · · · kn, bn) is independent of the choice of

local coordinates.

From now on we shall consider infinitesimal changes in local coordinates so that the

ξA and ξB in (3.7) are infinitesimal. Using (3.7) the change in Γ
(n)
λ (k1, b1; · · · kn, bn) due to

a change in Λ induced by change of local coordinates take the form

δΛΓ
(n)
λ (k1, b1; · · · kn, bn) =

∑

A,B

Γ
(n+1)
λ,A (k1, b1; · · · kn, bn; 0, φ) (ξA + ξB)Γ

(1)
λ,B(0, φ) , (3.8)

where sum over A and B denotes sum over all Riemann surfaces (including integration over

moduli and sum over genus) that contributes to Γ
(n+1)
λ (k1, b1; · · · kn, bn; 0, φ) and Γ

(1)
λ (0, φ)
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respectively. This can be expressed as

{
∑

A

ξAΓ
(n+1)
λ,A (k1, b1; · · · kn, bn; 0, φ)

}
∑

B

Γ
(1)
λ,B(0, φ)

+

{
∑

A

Γ
(n+1)
λ,A (k1, b1; · · · kn, bn; 0, φ)

}
∑

B

ξBΓ
(1)
λ,B(0, φ) ,

=

{
∑

A

ξAΓ
(n+1)
λ,A (k1, b1; · · · kn, bn; 0, φ)

}
Γ
(1)
λ (0, φ)

+ Γ
(n+1)
λ (k1, b1; · · · kn, bn; 0, φ)

∑

B

ξBΓ
(1)
λ,B(0, φ) . (3.9)

The first term on the right hand side vanishes since λ has been chosen so that Γ
(1)
λ (0, φ)

vanishes. This allows us to write (3.9) as

δΛΓ
(n)
λ (k1, b1; · · · kn, bn) = Γ

(n+1)
λ (k1, b1; · · · kn, bn; 0, φ)

∑

B

ξBΓ
(1)
λ,B(0, φ) . (3.10)

Now suppose δλ denotes the compensating change in λ required to make Γ
(1)
λ (0, φ) vanish

with the new choice of local coordinates. Using (2.3) we see that this induces a change in

Γ
(n)
λ (k1, b1; · · · kn, bn) of the form

δλΓ
(n)
λ (k1, b1; · · · kn, bn) = δλ Γ

(n+1)
λ (k1, b1; · · · kn, bn; 0, φ) . (3.11)

Adding (3.10) to (3.11) we get the total change in Γ
(n)
λ (k1, b1; · · · kn, bn):

δΓ
(n)
λ (k1, b1; · · · kn, bn) = Γ

(n+1)
λ (k1, b1; · · · kn, bn; 0, φ)

{
δλ+

∑

B

ξBΓ
(1)
λ,B(0, φ)

}
. (3.12)

Now setting n = 1 in (3.12) we get

δΓ
(1)
λ (0, φ) = Γ

(2)
λ (0, φ; 0, φ)

{
δλ+

∑

B

ξBΓ
(1)
λ,B(0, φ)

}
. (3.13)

δλ has to be adjusted so that δΓ
(1)
λ (0, φ) vanishes since Γ

(1)
λ (0, φ) vanishes both before and

after the change. This means that we must have

δλ+
∑

B

ξBΓ
(1)
λ,B(0, φ) = 0 . (3.14)

This in turn makes the right hand side of (3.12) vanish, showing that Γ
(n)
λ (k1, b1; · · · kn, bn)

remains invariant under a change in the local coordinate system.

Before concluding this section we would like to emphasize one important ingredient

underlying our analysis. In arriving at (3.8), (3.9) it was crucial that the change in Λ under

a change of local coordinates had the form ξA + ξB and not a quantity that has general

dependence on both A and B. This follows from the fact that we used a set of gluing
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compatible local coordinates to define 1PI and 1PR amplitudes. If instead we had chosen

a more general local coordinate system — e.g. one where the choice of local coordinate on

the puncture of the first Riemann surface depends on the genus of the Riemann surface to

which it is being glued — and used it for introducing the cut-off Λ then this property will

not be respected.

4 Extension to superstring and heterotic string theories

We shall now briefly discuss the extension of our analysis to superstring and heterotic

string theories when the field φ arises from the Neveu-Schwarz (NS) sector of heterotic

string theory or NSNS sector of type II string theory. Let us for definiteness focus on the

heterotic string theory — the generalization to the case of superstrings is straightforward.

The analysis proceeds more or less as in the case of bosonic string theory; however in this

case the local coordinate system at a puncture requires specifying the holomorphic super-

coordinates (w, ζ) and anti-holomorphic coordinate w̃. The generalization of (3.2) takes

the form [7]

w1w2=e
−s+iθ, w2ζ1=ε e

−(s−iθ)/2ζ2, w1ζ2=−ε e−(s−iθ)/2 ζ1, ζ1ζ2=0, w̃1w̃2=e
−s−iθ , (4.1)

with the s integral running from 0 to Λ in the definition of the propagator. ε takes value ±1

and we have to sum over both values at the end to implement GSO projection. Now under

a change of local (superconformal) coordinates Λ still gets shifted by a term of the form

ξA+ξB as in (3.6), but with ξA possibly containing even nilpotent parts that depend on the

super-moduli of the punctured Riemann surface A and ξB containing even nilpotent parts

that depend on the super-moduli of the punctured Riemann surface B. As a result our

analysis still goes through, with the sums over A and B in various equations in section 3

now being interpreted to include integration over supermoduli space.

5 Spurious infrared divergences

Observations made below (3.1) show that the n-point truncated Green’s function Γ
(n)
λ is

equal to Γ̄
(n)
λ . Since the latter is manifestly free from tadpole divergences, the n-point am-

plitude computed in the shifted background is free from tadpole divergences. However the

individual contributions to Γ̄
(n)
λ can still suffer from spurious infrared divergence from loop

momentum integral since (2.3) (with Γ replaced by Γ̄ on both sides) involves computing

amplitudes with zero momentum external φ legs in the original vacuum. To understand the

origin of these divergences and their resolution it will be useful to work with a finer triangu-

lation of the moduli space than the one discussed in [34, 35] for dividing the contributions

into 1PI and 1PR parts. This is done as follows:

1. We begin with a three punctured sphere with some specific choice of local coordinates

at the three punctures. The local coordinates are chosen to be symmetric under the

exchange of any two of the punctures.
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k k k k

Figure 3. A subdiagram containing spurious infrared divergence. The thick line denotes a massless

φ propagator carrying momentum k and the dashed lines denote λ insertions.

2. Now we can generate a family of one punctured tori by gluing two of the punctures

of the sphere by the propagator (2.9). We declare these one punctured tori to be

composite one punctured tori. The rest of the one punctured tori are labelled as

elementary. For the latter we can choose the local coordinate at the puncture in

an arbitrary fashion but it must match smoothly to those on the composite one

punctured tori across the codimension one subspace of the moduli space that divides

composite one-punctured tori from elementary one punctured tori.

3. Similarly by gluing two three punctured spheres across one each of the punctures

we can get a family of four punctured spheres. We declare them to be composite

four punctured spheres. The rest of the four punctured spheres are declared as

elementary. The choice of local coordinates at the punctures of the latter is arbitrary

subject to the requirement of symmetry and smoothness across the codimension one

subspace of the moduli space that separates the elementary four punctured spheres

from composite four punctured spheres.

4. We now repeat the process iteratively. At the end we declare as composite all punc-

tured Riemann surfaces which are obtained by gluing two or more punctures of one or

more elementary Riemann surfaces of lower genus and/or lower number of punctures

by propagators. The rest of the Riemann surfaces are declared as elementary. The

full set of punctured Riemann surfaces contributing to an amplitude are then built in

the same way that Feynman diagrams are built by gluing vertices with propagators,

with the elementary punctured Riemann surfaces playing the role of the vertices.

Indeed this is exactly the way the off-shell amplitudes are constructed in string field

theory in the Siegel gauge [23], although we do not assume that the triangulation of

the moduli space we are using necessarily comes from any underlying gauge invariant

string field theory.

With this triangulation of the moduli space it is easy to see the origin of the spurious

infrared divergences. Consider for example the case where we have an internal φ propagator

carrying momentum k propagating in the loop. Then by inserting a pair of external zero

momentum φ through the Γ(4,0)(k, φ;−k, φ; 0, φ; 0, φ) vertex we can increase the number

of internal φ propagators carrying the same momentum k by 1. Repeating this process we

can get a factor of (see figure 3) (
1/k2

)n
(5.1)

with arbitrary n inside a diagram. For sufficiently large n the integration over loop mo-

mentum k will give an infrared divergent contribution, invalidating perturbation theory.
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If we use the language of quantum field theory with all the heavy fields integrated out,

then the solution to this problem is clear. Let c denote the net contribution to 1PI 2-point

function of the originally masless fields in the shifted background. Then the full propagator

is given by
1

k2
+

1

k2
c
1

k2
+

1

k2
c
1

k2
c
1

k2
+ · · · =

1

k2 − c
. (5.2)

Thus we can replace the massless propagator by (5.2) and drop all diagrams containing

one or more insertions of 1PI 2-point function of massless fields. In this case there are no

infrared divergences arising from internal factors of the kind given in (5.1).

The procedure described above requires computing the full 1PI two point function c to

a given order for determining the modified propagator, but this is not necessary. Suppose

c has a power series expansion in the coupling constant g of the form
∑

n≥1 cng
2n ≡

c1g
2+δc. Then it is sufficient to use the leading order correction c1g

2 to define the modified

propagator 1/
(
k2 − c1g

2
)
. The full propagator will now have an expansion of the form

1

k2−c1g2−δc
=

1

k2−c1g2
+

1

k2−c1g2
δc

1

k2−c1g2
+

1

k2−c1g2
δc

1

k2−c1g2
δc

1

k2−c1g2
+ · · · .

(5.3)

For k2 ∼ g2 the factors of 1/
(
k2 − c1g

2
)
can become of order 1/g2 but each such factor

will be accompanied by δc ∼ g4 and hence the successive terms in this expansion will give

smaller contributions.8 Thus these terms can be treated perturbatively. In fact we can

add an arbitrary order g4 and higher contribution to c1g
2 in the definition of the modified

propagator and subtract the corresponding contribution from δc without changing the

final result.

In order to implement this procedure systematically in string theory we proceed

as follows:

1. From the triangulation of the moduli space described above it is clear that possible

infrared divergent contributions come only from the composite Riemann surfaces

where the integration variable s of (2.9) associated with one or more propagators

becomes large. To isolate this divergence we split the propagator into its contribution

∆massless from massless states9 and the rest of the contribution ∆̃:

∆ = ∆massless + ∆̃ . (5.4)

Note that unlike in the case of (2.11), no cut-off Λ on s-integration is necesasry for

definining ∆massless since we are working at non-zero momentum.

2. We also define Γ̃ as the net contribution to an amplitude where all the ∆’s are replaced

by ∆̃. Γ̃ defined this way is manifestly free from infrared divergences. Furthermore

the full amplitude can now be obtained by gluing Γ̃’s by the propagator ∆massless.

These are generically infrared divergent from the loop momentum integrals. Note

8The integration contour of k can always be deformed in the complex plane to make |k2−c1g
2| remain of

order g2 or larger. Note however that the k-integration will introduce non-analytic dependence on the shifted

mass which in the present context will translate to non-analytic dependence on the string coupling constant.
9Here massless states refer to fields which were massless in the original vacuum. For simplicity we shall

ignore the possibility of mixing between physical massless states with unphysical states of the kind discussed

in [35], but it should be possible to relax this assumption.
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that diagrams where ∆massless connects a tadpole to the rest of the diagram vanish

by our previous construction since all massless tadpoles have been made to cancel.

3. Let C(k) denote the contribution to the two point function of massless fields carry-

ing momentum k which are 1PI in massless states, i.e. do not contain an internal

∆massless propagator that is not part of a loop. If there are more that one massless

states then C(k) is a matrix. We now sum over all insertions of C(k) into a propagator

by using

∆massless +∆masslessC(k)∆massless +∆masslessC(k)∆masslessC(k)∆massless + · · ·

=
(
∆−1

massless − C(k)
)−1

. (5.5)

The rule for computing the amplitudes to a given order in perturbation theory is now

to replace all internal ∆massless factors by
(
∆−1

massless − C(k)
)−1

with C(k) computed

to that particular order, and at the same time drop all contributions to the amplitude

that contain a C(k) factor on an internal leg. This renders the amplitudes free from

infrared divergence.

4. Note that the computation of C(k) itself could suffer from infrared divergences of

the kind discussed above from subdiagrams. Thus the construction of C(k) needs

to be carried out iteratively. We begin with the lowest order contribution to C(k)

which is free from infrared divergence and define the lowest order modified propagator

via (5.5). This is then used to compute the next order contribution to C(k) following

the procedure described above. This process is then repeated. In fact since the

computation of λ via (2.7) also suffers from such spurious infrared divergences, this

iterative procedure must be carried out simultaneously for determining λ and C(k)

to successively higher order.

5. The expression for C(k) obtained this way would in general depend on the choice of

local coordinates — only the locations of the poles of the propagator in the k2 plane

are free from ambiguity [34, 35]. This ambiguity essentially reflects the freedom

of moving some contributions from the propagators to the vertices and vice versa.

However due to the argument given below (5.3) we expect that the final result for any

physical amplitude should not suffer from any ambiguity as long as the procedure we

are using renders them free from any spurious infrared divergences.
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A Effect of shifting a massless field

Let us consider a quantum field theory containing a massless field φ and a set of other

massless and massive fields. Let us suppose that we have computed the 1PI amplitude

involving these fields. Then the truncated Green’s functions can be computed by summing

up the contributions from tree level graphs with the propagators and vertices constructed

from the 1PI amplitudes. We shall study how these truncated Green’s functions change

when we shift the background value of the field φ by a constant λ, without necessarily

assuming that the background is a solution to the equations of motion. Our goal will be

to prove (2.3).

Now since eventually we shall be interested in setting the background value of φ to a

solution to its equations of motion, or equivalently demand that the tadpole of the field

φ vanishes, it will be natural to demand that all other fields also satisfy their equations

of motion. Does this require shifting other fields as well? As in the text, we shall assume

that none of the other massless fields need to be shifted even when φ is shifted, so we

only have to worry about a possible shift of the massive fields. To this end we note that

only zero momentum modes of the massive fields may be shifted. Since our goal will be to

analyze amplitudes where all the external states carry generic non-zero momentum, except

possibly some zero momentum φ fields, we shall integrate out all the zero momentum

modes of massive fields, i.e. include in the 1PI amplitude also those which are one particle

reducible in one or more zero momentum propagator of massive states. Now the only shift

will be in the φ field, and eventually when we require φ to satisfy its equation of motion

all the massive fields will automatically satisfy their equations of motion.

To proceed we note that (2.3) is equivalent to

∂Γ
(n)
λ (k1, b1; · · · kn, bn)

∂λ
= Γ

(n+1)
λ (k1, b1; · · · kn, bn; 0, φ) . (A.1)

Thus it is enough to establish (A.1) for arbitrary λ. To compute the left hand side we

shall divide the 1PI action into its kinetic term and the interaction term, and include in

the kinetic term only genuine tree level contributions at λ = 0, including the rest of the

contribution into the interaction term. Then neither the kinetic terms, nor the
∏

i(k
2
i +m

2
bi
)

terms appearing in (2.1), have any dependence on λ. Let ψ̃b(k) denote the general set of

fields in the momentum space. If Vλ denotes the interaction term in the 1PI action in the

shifted background, then, by noting that φ and λ must appear in the combination φ + λ

in the interaction part of the 1PI action, we see that

∂Γ
(n)
λ (k1, b1; · · · kn, bn)

∂λ
=

n∏

i=1

(
k2i +m2

bi

)
〈

n∏

i=1

ψ̃bi(ki)

(
−
∂Vλ
∂λ

)〉

=
n∏

i=1

(
k2i +m2

bi

)
〈

n∏

i=1

ψ̃bi(ki)

(
−
δVλ

δφ̃(0)

)〉
, (A.2)

where 〈 〉 denotes the tree level amplitude computed with the 1PI action. Let us now

examine the right hand side of (A.1). This has to be interpreted as the k → 0 limit of the
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expression where 0, φ is replaced by k, φ. Since the genuine tree level mass of φ is zero,

we have

Γ
(n+1)
λ (k1, b1; · · · kn, bn; k, φ) =

n∏

i=1

(
k2i +m2

bi

)
〈

n∏

i=1

ψ̃bi(ki)
(
k2 φ̃(k)

)〉
. (A.3)

Now the equation of motion of φ computed from the 1PI action is

k2 φ̃(k) +

(
δVλ

δφ̃(−k)

)
= 0 . (A.4)

Since equation of motion inserted into tree level amplitude computed from 1PI action

vanishes for connected Green’s function, we get

n∏

i=1

(
k2i +m

2
bi

)
〈

n∏

i=1

ψ̃bi(ki)
(
k2 φ̃(k)

)〉
=

n∏

i=1

(
k2i +m

2
bi

)
〈

n∏

i=1

ψ̃bi(ki)

(
−

δVλ

δφ̃(−k)

)〉
. (A.5)

Taking the k → 0 limit of this expression we establish the equivalence of (A.2) and (A.3).

This in turn proves (A.1).

We would like to end with the remark that the individual Feynman diagrams contribut-

ing to both sides of (A.1) (and (2.3)) are divergent as they may contain zero momentum

internal φ-propagators. Thus at this stage our analysis should be taken as a proof of equal-

ity of the combinatorial factors which appear when we express the two sides of (2.3) as

a sum of Feynman diagrams in the λ = 0 theory. Once the infrared divergences on both

sides of (2.3) are regularized using (2.10), it becomes a true algebraic equality.
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