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order impact factor for the photon to photon transition, has been calculated by Balitsky and

Chirilli using an approach based on the operator expansion in Wilson lines. We extracted

the result for the photon impact factor in the original BFKL calculation scheme comparing

the expression for the photon-photon total cross section obtained in BFKL with the one

recently derived by Chirilli and Kovchegov in the Wilson-line operator expansion scheme.

We perform a detailed numerical analysis, combining different, but equivalent in next-

to-leading accuracy, representations of the cross section with various optimization methods

of the perturbative series. We compare our results with previous determinations in the

literature and with the LEP2 experimental data. We find that the account of Balitsky

and Chirilli expression for the photon impact factor reduces the BFKL contribution to the

cross section to very small values, making it impossible to describe LEP2 data as the sum

of BFKL and leading-order QED quark box contributions.
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1 Introduction

Similarly to the e+e− annihilation into hadrons, the total cross section for the collision of

two off-shell photons with large virtualities is an important test ground for perturbative

QCD. At a fixed order of αs and at low energies, the dominant contribution comes from

the quark box, calculated at the leading-order (LO) in refs. [1, 2] (see figure 1) and at the

next-to-LO (NLO) in ref. [3]. In ref. [4, 5] the resummation of double logs appearing in the

NLO corrections to the quark box was also studied. At higher energies, the gluon exchange

in the t-channel overwhelms the quark exchange contribution, due to the different power

asymptotics for s → ∞. At higher orders in αs, the contributions from t-channel gluons

lead to terms with powers of single logarithms of the energy, which must be resummed.

The BFKL approach [6–9] provides for a consistent theoretical framework for the re-

summation of the energy logarithms, both in the leading logarithmic approximation (LLA),

which means resummation of all terms (αs ln(s))
n, and in the next-to-leading approxima-

tion (NLA), which means resummation of all terms αs(αs ln(s))
n. In this approach, the

imaginary part of the amplitude (and, hence, the total cross section) for a large-s hard col-

lision process can be written as the convolution of the Green’s function of two interacting

Reggeized gluons with the impact factors of the colliding particles (see figure 2).

The study of the γ∗γ∗ total cross section in LLA BFKL has a long history [10–20]. For

the extension of these results to the NLA level one needs to consider corrections to both

the BFKL Green’s function and to the impact factors of colliding virtual photons.

The Green’s function is determined through the BFKL equation and is process-inde-

pendent. The NLO kernel of the BFKL equation for singlet color representation in the

t-channel and forward scattering, relevant for the determination of a total cross section in

the NLA, has been achieved in refs. [21, 22], after the long program of calculation of the

NLO corrections [23–36] (for a review, see ref. [37]).
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Figure 1. Quark box LO diagrams.

The other essential ingredient for the γ∗γ∗ total cross section is the impact factor for

the virtual photon to virtual photon transition. While its LO expression is known since

long, the NLO calculation, carried out in the momentum representation, turned out to be

rather complicated and was completed only after year-long efforts [38–44]. The lengthy

result was published over a few years in pieces, some of them available only in the form

of a numerical code, thus making it of limited practical use. Indeed, until very recently,

the inclusion of BFKL resummation effects in the NLA calculation of the γ∗γ∗ total cross

section was carried out only in approximate way, by taking the BFKL Green’s function in

the NLA while using the LO expression for impact factors. This is the case of the pioneer

paper in ref. [45] (see also ref. [46]) and of the later analysis in refs. [47] and [48].

The situation changed radically recently, when the NLO photon impact was calculated

in the coordinate space and then transformed to the momentum representation and to the

Mellin (or γ-representation) [49] (see also ref. [50]). The NLO expression for the photon

impact factor turns out to be very simple in all representations, thus confirming an already

well established evidence (see, for instance, refs. [51–53]) that the use of the coordinate

representation leads to much simpler expressions for the NLO BFKL kernel and impact

factors, which, in the momentum representation, would be the result of not so obvious

cancellations.

Now all ingredients are available to build the γ∗γ∗ total cross with full inclusion of

the BFKL resummation in the NLA. Indeed, already in ref. [50] there is a first numerical

estimate of the γ∗γ∗ total cross section in the NLA. Note that, the derivation of the results

for the γ∗γ∗ total cross section in ref. [50] follows closely the approach developed earlier in

ref. [54], where the high-energy limit of N = 4 SYM amplitudes was considered. Besides,

the authors of ref. [50] used their formulas for the eigenfunctions of the NLO BFKL kernel

derived in ref. [55].

As a matter of fact, previous studies of physical processes within the BFKL approach

in the NLA, such as the photoproduction of two light vector mesons [56–59] and the pro-

duction of Mueller-Navelet jets [60–67], have clearly shown that NLA expressions for an

observable (such as a cross-section or an azimuthal correlation), though being formally

equivalent up to subleading terms, may lead to somewhat different numerical estimates.
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Figure 2. Schematic representation of the elastic amplitude for the γ∗(p1) γ
∗(p2) forward scatter-

ing.

At the basis of this observation is the fact that NLO BFKL corrections, both of the kernel

and of impact factors, are typically of opposite sign with respect to the LO and large in

absolute value. For this reason a numerical estimate cannot be reliable (i) if some opti-

mization procedure for the perturbative series is not applied and (ii) if not corroborated by

a careful numerical analysis, aimed at assessing the stability of the result under variation

of the original NLA expressions for the observable of interest within a large enough class

of NLA-equivalent expressions.

The aim of this paper is to contribute to such analysis, by comparing several NLA-

equivalent representations of the γ∗γ∗ total cross section, in combination with two among

the most common methods of optimization of the perturbative series, namely the prin-

ciple of minimal sensitivity (PMS) [68, 69] and the Brodsky-Lepage-Mackenzie (BLM)

method [70]. Moreover, the results of this analysis will be contrasted with the only exper-

imental data available so far, obtained at LEP2 [71, 72].

The paper is organized as follows: in section 2 we present the general structure of

the γ∗γ∗ total cross section in the NLA and, by comparison with refs. [49, 50], extract

the NLO photon impact factor in the original BFKL calculation scheme; in section 3 we

use this information to build several NLA-equivalent representations of the cross section

and present, for each of them, the behavior with the energy in comparison with the LEP2

experimental data; finally, in section 4, we discuss our results and draw the conclusions.

2 BFKL contribution to the γ
∗
γ
∗ total cross section

The total cross section of two unpolarized photons with virtualities Q1 and Q2 can be

obtained from the imaginary part of the forward amplitude. In LLA BFKL and in the

Mellin-representation (also said γ- or ν-representation), it is given by the following expres-
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sion (see, for instance, ref. [45]):

σγ
∗γ∗

tot (s,Q1, Q2) =
∑

i,k=T,L

1

(2π)2Q1Q2

+∞
∫

−∞

dν

(

Q2
1

Q2
2

)iν

Fi(ν)Fk(−ν)
(

s

s0

)ᾱsχ(ν)

, (2.1)

where ᾱs ≡ αs(µR)Nc/π, with Nc the number of colors, χ(ν) is the so-called characteristic

BFKL function,

χ(ν) = 2ψ(1)− ψ

(

1

2
+ iν

)

− ψ

(

1

2
− iν

)

(2.2)

and

FT (ν) = FT (−ν) = ααs

(

∑

q

e2q

)

π

2

(

3
2 − iν

) (

3
2 + iν

)

Γ2
(

1
2 − iν

)

Γ2
(

1
2 + iν

)

Γ(2− iν)Γ(2 + iν)

= ααs

(

∑

q

e2q

)

π2

8

9 + 4ν2

ν (1 + ν2)

sinh (πν)

cosh2(πν)
, (2.3)

FL(ν) = FL(−ν) = ααs

(

∑

q

e2q

)

π
Γ
(

3
2 − iν

)

Γ
(

3
2 + iν

)

Γ(12 − iν)Γ(12 + iν)

Γ(2− iν)Γ(2 + iν)

= ααs

(

∑

q

e2q

)

π2

4

1 + 4ν2

ν (1 + ν2)

sinh (πν)

cosh2(πν)
(2.4)

are the LO impact factors for transverse and longitudinal polarizations, respectively. In

the previous equations, α is the electromagnetic coupling constant, the summation extends

over all active quarks (taken massless) and eq is the quark electric charge in units of the

electron charge. In the expression (2.1) for the LLA BFKL cross section the argument of

the strong and electromagnetic coupling constants, µR, and the value of the scale s0 are

not fixed.

Following the procedure of refs. [57, 58], it is possible to write down the NLA BFKL

cross section as follows:

σγ
∗γ∗

tot (s,Q1, Q2, s0, µR) =
1

(2π)2Q1Q2

+∞
∫

−∞

dν

(

Q2
1

Q2
2

)iν (
s

s0

)ᾱs(µR)χ(ν)

×
∑

i,k=T,L

Fi(ν)Fk(−ν)
{

1 + ᾱs(µR)

(

F
(1)
i (ν, s0, µR)

Fi(ν)
+
F

(1)
k (−ν, s0, µR)
Fk(−ν)

)

(2.5)

+ᾱ2
s(µR) ln

(

s

s0

)[

χ̄(ν) +
β0
8Nc

χ(ν)

(

−χ(ν) + 10

3
+ 2 ln

µ2R
Q1Q2

)]

}

,

where

χ̄(ν) = −1

4

[

π2 − 4

3
χ(ν)− 6ζ(3)− χ′′(ν)− π3

cosh(πν)

+
π2 sinh(πν)

2 ν cosh2(πν)

(

3 +

(

1 +
nf
N3

c

)

11 + 12ν2

16(1 + ν2)

)

+ 4φ(ν)

]

, (2.6)
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φ(ν) = 2

1
∫

0

dx
cos(ν ln(x))

(1 + x)
√
x

[

π2

6
− Li2(x)

]

, Li2(x) = −
x
∫

0

dt
ln(1− t)

t
, (2.7)

nf is the number of active quarks, F
(1)
L,T (ν, s0, µR) are the NLO corrections to the longitu-

dinal/transverse photon impact factor in the ν-representation and

β0 =
11

3
Nc −

2

3
nf . (2.8)

Note that our notations are slightly different in comparison to the ones used in refs. [57,

58]. The impact factors which we introduced here differ by some factors from the impact

factors c1,2 (and c
(1)
1,2) of refs. [57, 58]:

c1,i(ν) =
(

Q2
1

)iν−1/2
Fi(ν)

c2,k(ν) =
(

Q2
2

)

−iν−1/2
Fk(−ν) .

Moreover, in the derivation of the last term of eq. (2.5) the symmetry property of the LO

photon impact factors, FL,T (ν) = FL,T (−ν), was used.
Our goal now is to extract the NLO parts of the photon impact factors, F

(1)
L,T (ν, s0, µR),

which enter the cross section eq. (2.5) in the original BFKL approach, by comparing

eq. (2.5) with the results for the γ∗γ∗ cross section obtained recently in the Wilson-line op-

erator expansion scheme by Chirilli and Kovchegov [50]. According to eqs. (3.40) and (3.41)

of ref. [50], the cross section in the case of transverse and longitudinal polarizations reads

σ
(CK)
TT =

(

∑

q

e2q

)2
α2α2

s

Q1Q2

π2

28

∫ +∞

−∞

dν

(

Q2
1

Q2
2

)iν (
s

Q1Q2

)ᾱsχ(ν)+ᾱ2
sχ

(1)(ν)

×
[

(

9 + 4ν2
)

ν (1 + ν2)

sinh (πν)

cosh2(πν)

]2
[

1 +
αs

π
+
ᾱs

2
F1 (ν)

] [

1 +
αs

π
+
ᾱs

2
F1 (−ν)

]

×{1 + ᾱsℜ [F (ν)]} , (2.9)

σ
(CK)
LL =

(

∑

q

e2q

)2
α2α2

s

Q1Q2

π2

28

∫ +∞

−∞

dν

(

Q2
1

Q2
2

)iν (
s

Q1Q2

)ᾱsχ(ν)+ᾱ2
sχ

(1)(ν)

×
[

(

9 + 4ν2
)

ν (1 + ν2)

sinh (πν)

cosh2(πν)

]2
[

11 + 12ν2

9 + 4ν2

(

1 +
αs

π
+
ᾱs

2
F2(ν)

)

−
(

1 +
αs

π
+
ᾱs

2
F1 (ν)

)

][

11 + 12ν2

9 + 4ν2

(

1 +
αs

π
+
ᾱs

2
F2(−ν)

)

−
(

1 +
αs

π
+
ᾱs

2
F1 (−ν)

)

]

{1 + ᾱsℜ [F (ν)]} , (2.10)

where in the r.h.s. the strong coupling without argument stands for the coupling at the

symmetric point, αs = αs(
√
Q1Q2), ℜ [F (ν)] is given in eq. (3.37) of ref. [50] and the

explicit expressions for F1,2 (ν) in eq. (52) of ref. [49]; for the definition of χ(1) (ν), see

eqs. (2.9) and (2.11) of ref. [50], so that

χ(1) (ν) = χ̄(ν) +
β0
8Nc

χ(ν)

(

−χ(ν) + 10

3

)

. (2.11)
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Note that working with NLA accuracy, we replaced in eqs. (2.9) and (2.10) the original

factors αs (Q1)αs (Q2) present in eqs. (3.40) and (3.41) of ref. [50] by α2
s

(√
Q1Q2

)

, since

αs (Q1)αs (Q2) = α2
s

(

√

Q1Q2

)

+O(α4
s) .

Another point is that the terms αs/π which appear in the r.h.s. of eqs. (2.9) and (2.10) are

due to the QCD vacuum polarization contribution, which actually reads as 3CFαs/(4π),

where CF = (N2
c − 1)/(2Nc).

1

Now we are ready to compare eqs. (2.9) and (2.10) with the BFKL cross section eq. (2.5)

taken for the particular choice of scales µ2R = s0 = Q1Q2. Expanding eqs. (2.9) and (2.10)

into a form similar to eq. (2.5) and requiring the coincidence of the two representations

for the cross section with NLA accuracy allows us to extract without ambiguity the NLO

parts of the BFKL impact factors F
(1)
L,T (ν, s0, µR) (at the scale setting s0 = µ2R = Q1Q2):

F
(1)
T (ν, s0, µR)

FT (ν)
=
χ(ν)

2
ln
s0
Q2

+
β0
4Nc

ln
µ2R
Q2

(2.12)

+
3CF

4Nc
− 5

18

nf
Nc

+
π2

4
+

85

36
− π2

cosh2(πν)
− 4

1 + 4ν2
+

6χ (ν)

9 + 4ν2

+
1

2 (1− 2iν)
− 1

2 (1 + 2iν)
− 7

18 (3 + 2iν)
+

20

3 (3 + 2iν)2
− 25

18 (3− 2iν)

+
1

2
χ (ν)

[

ψ

(

1

2
− iν

)

+ 2ψ

(

3

2
− iν

)

− 2ψ (3− 2iν)− ψ

(

5

2
+ iν

)]

and

F
(1)
L (ν, s0, µR)

FL(ν)
=
χ(ν)

2
ln
s0
Q2

+
β0
4Nc

ln
µ2R
Q2

(2.13)

+
3CF

4Nc
− 5

18

nf
Nc

+
π2

4
+

85

36
− π2

cosh2(πν)
− 8 (1 + 4iν)

(1 + 2iν)2 (1− 2iν) (3 + 2iν)

+
4

3− 4iν + 4ν2
χ (ν)

+
1

2
χ (ν)

[

ψ

(

1

2
− iν

)

+ 2ψ

(

3

2
− iν

)

− 2ψ (3− 2iν)− ψ

(

5

2
+ iν

)]

.

The first lines of eqs. (2.12) and (2.13) describe the dependencies of the photon impact

factors on the renormalization and energy scales, which are restored by the requirement

that the BFKL cross section, eq. (2.5), does not depend on s0 and µR with NLA accuracy.

3 Numerical analysis

In this section we are going to compare several different representations of the NLA γ∗γ∗

total cross section, which differ one from the other only by terms beyond the NLA. In

1We are very grateful to the authors of ref. [50] for the clarification of this issue and for establishing the

overall normalization factor in their results for the cross section.

– 6 –



J
H
E
P
1
0
(
2
0
1
4
)
0
5
8

a well-behaved perturbative series, the change of representation should not be numeri-

cally relevant. This is not the case in the BFKL framework, where it is well known that

NLO corrections to kernel and impact factors are opposite in sign with respect to the LO

contributions and large in absolute value.

It is very likely that also the (unknown) next-to-NLO corrections maybe opposite in

sign with respect the NLO ones and large in absolute value, thus suggesting that fixing the

BFKL energy scale s0 and the renormalization scale µR at the “natural” values dictated by

the kinematics of the process, i.e. s0 = µ2R = Q1Q2, may well be not the best choice. For

this reason, we will consider in the following two alternative procedures to fix the energy

scales.

The first one is inspired by the PMS optimization method [68, 69]: for each value of

the center-of-mass energy s and of the virtualities of the colliding photons, we choose as

optimal scales s0 and µR those for which the given representation of the NLA cross section

exhibits the minimum sensitivity under variation of these scales.

The other optimization procedure we consider is inspired by the BLM method [70]:

again, for fixed s and photon virtualities, we perform a finite renormalization to a momen-

tum (MOM) scheme and then choose the renormalization scale µR in order to remove the

β0-dependent part in the given representation of the NLA cross section, while keeping the

scale s0 fixed at the natural value Q1Q2. In fact, there is some freedom in implementing

the BLM optimization in this context and in the following we consider two different vari-

ants, dubbed (a) and (b), and give all necessary formulas, but relegate their derivation to

a separate paper [73].

Below we will present predictions for the kinematic range relevant for the OPAL and

L3 experiments at LEP2, considering equal photon virtualities, Q1 = Q2 ≡ Q, with

Q2=17GeV2, and the energy range Y = 2÷ 6, where Y ≡ ln(s/Q2).

3.1 Chirilli-Kovchegov representation

As a first case, we try to apply to the description of LEP2 data the representation of the

NLA γ∗γ∗ total cross section given in ref. [50]. It is given, with obvious meaning of the

notation, by

σ
(CK)
tot (s,Q) = σ

(CK)
TT + σ

(CK)
LL + σ

(CK)
TL + σ

(CK)
LT + σLO box , (3.1)

where we have included the LO contribution from the quark box, given in refs. [1, 2], and

contributions of different polarization states of virtual photons. The explicit expressions

for the first two terms in eq. (3.1) are given in eqs. (2.9) and (2.10) (for Q1 = Q2 = Q),

the contributions of other polarizations can be obviously presented as follows:

σ
(CK)
TL =

(

∑

q

e2q

)2
α2α2

s

Q2

π2

28

∫ +∞

−∞

dν

(

s

Q2

)ᾱsχ(ν)+ᾱ2
sχ

(1)(ν)

×
[

(

9 + 4ν2
)

ν (1 + ν2)

sinh (πν)

cosh2(πν)

]2
[

1 +
αs

π
+
ᾱs

2
F1 (ν)

]

– 7 –
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Figure 3. σ
(CK)
tot versus Y atQ2 = 17GeV2 (nf = 4) (magenta line), together with the experimental

data from OPAL (blue points, Q2 = 18GeV2) and L3 (green points, Q2 = 16GeV2); the cyan line

represents the LO quark box contribution only.

×
[

11 + 12ν2

9 + 4ν2

(

1 +
αs

π
+
ᾱs

2
F2(−ν)

)

−
(

1 +
αs

π
+
ᾱs

2
F1 (−ν)

)

]

{1 + ᾱsℜ [F (ν)]} , (3.2)

σ
(CK)
LT =

(

∑

q

e2q

)2
α2α2

s

Q2

π2

28

∫ +∞

−∞

dν

(

s

Q2

)ᾱsχ(ν)+ᾱ2
sχ

(1)(ν)

×
[

(

9 + 4ν2
)

ν (1 + ν2)

sinh (πν)

cosh2(πν)

]2
[

1 +
αs

π
+
ᾱs

2
F1 (−ν)

]

×
[

11 + 12ν2

9 + 4ν2

(

1 +
αs

π
+
ᾱs

2
F2(ν)

)

−
(

1 +
αs

π
+
ᾱs

2
F1 (ν)

)

]

{1 + ᾱsℜ [F (ν)]} , (3.3)

where αs = αs(Q), F1,2(ν) and ℜ[F (ν)] are given in eq. (52) of [49] and in eq. (3.37) of [50],

respectively.

In figure 3 we report the behavior of σ
(CK)
tot with Y ≡ ln(s/Q2) for Q2=17GeV2 with

nf = 4 and contrast it with the experimental data from CERN LEP2, namely three data

points from OPAL [72] (Q2=18GeV2) and four data points from L3 [71] (Q2=16GeV2).

We see that the original Chirilli-Kovchegov representation for the cross section (at natural

values of the scales, s0 = µ2R = Q2) gives a very small BFKL contribution and does not

agree well with data above Y = 4.

In the following subsections, we are going to consider other representations of the cross

section, equivalent to the Chirilli-Kovchegov one within the NLA, and admit the possibility

– 8 –
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of moving the energy scale s0 and the renormalization scale µF from the “natural” kinematic

value to some “optimal” scales, determined according the PMS or the BLM methods.

3.2 Series representation with PMS optimization

A convenient representation of the total cross section is the so-called “series representa-

tion”, already used in refs. [57–59], which has the advantage of making manifest the BFKL

resummation of leading and subleading energy logarithms and is very practical in numerical

computations. It consists in writing the total cross section as follows

σ
(series)
tot (s,Q) = σ

(series)
TT + σ

(series)
LL + σ

(series)
TL + σ

(series)
LT + σLO box , (3.4)

where for i, k = L, T

Q2σ
(series)
ik =

1

(2π)2

{

bik0 +
∞
∑

n=1

ᾱn
s (µR) b

ik
n

[

(Y − Y0)
n + dikn (s0, µR) (Y − Y0)

n−1
]

}

,

(3.5)

with Y0 ≡ ln(s0/Q
2) and

bikn =

∫ +∞

−∞

dνFi (ν)Fk (−ν)
χn (ν)

n!
, (3.6)

dikn = n ln
s0
Q2

+
β0
4Nc

[

bikn−1

bikn

(

(n+ 1) ln
µ2R
Q2

+
5

3
(n− 1)

)

− n (n− 1)

2

]

(3.7)

+
1

bikn

∫ +∞

−∞

dν Fi (ν)Fk (−ν)
[

χn−1 (ν)

(n− 1)!

(

F̄
(1)
i (ν)

Fi(ν)
+
F̄

(1)
k (−ν)
Fk(−ν)

)

+
χn−2 (ν)

(n− 2)!
χ̄ (ν)

]

,

where we denoted for shortness F̄
(1)
i (ν) ≡ F

(1)
i

(

ν, s0 = Q2, µR = Q
)

.

Our results for σ
(series)
tot at Q2=17GeV2, obtained after truncation of the series at

n = 40, are summarized in table 1, where we report, for each of the Y values considered,

also the optimal values of the energy scale Y0 and renormalization scale µR found by the

PMS method. In figure 4 we compare an interpolation of the data given in table 1 with

the experimental data from LEP2 and with the result obtained in ref. [47] by the same

method, but in the approximation where LO photon impact factors were used instead of

NLO ones (i.e. the same approach as here, but with F̄
(1)
i (ν) → 0). We observe that the

large optimal values for the scales we find in this approach lead to a very low contribution

to the cross section from the BFKL resummation and the overall scenario is basically the

same as for the Chirilli-Kovchegov representation. We note that the big difference between

this and the approximated result obtained in ref. [47] is a clear indication that the effect

of NLO corrections to the impact factors is very substantial.

3.3 Exponential representation with PMS optimization

Here we consider representations of the NLA total cross section where the NLO corrections

to the kernel are exponentiated, in two options, which differ by a subleading term given by

the product of the two NLO corrections of the photon impact factors:

σ
(exp, 1)
tot (s,Q) = σ

(exp, 1)
TT + σ

(exp, 1)
LL + σ

(exp, 1)
TL + σ

(exp, 1)
LT + σLO box , (3.8)
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Y σ
(series)
tot [nb] µR/Q Y0

2 7.3141 18 1

3.5 3.1095 10 3

4.5 1.9187 10 4

6 1.1909 16 5

Table 1. Values of σ
(series)
tot for several values of Y at Q2 = 17GeV2; the last two columns give the

optimal values of the renormalization and energy scales.

2 3 4 5 6
Y0

2

4

6

8

10

12

14

Σtot
HseriesL@nbD

Figure 4. σ
(series)
tot versus Y at Q2 = 17GeV2 (nf = 4) (magenta line), together with the exper-

imental data from OPAL (blue points, Q2 = 18GeV2) and L3 (green points, Q2 = 16GeV2); the

cyan line represents the result of ref. [47] (see figure 3 there).

and

σ
(exp, 2)
tot (s,Q) = σ

(exp, 2)
TT + σ

(exp, 2)
LL + σ

(exp, 2)
TL + σ

(exp, 2)
LT + σLO box , (3.9)

with

σ
(exp, 1)
ik =

1

(2π)2Q2

∫ +∞

−∞

dν e
(Y−Y0)

[

ᾱs(µR)

(

1+
ᾱs(µR)β0

4Nc
ln

µ2R
Q2

)

χ(ν)+ᾱ2
s(µR)χ(1)(ν)

]

×Fi(ν)Fk(−ν)
[

1 + ᾱs (µR)

(

F
(1)
i (ν)

Fi(ν)
+
F

(1)
k (−ν)
Fk(−ν)

)]

(3.10)
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Y σ
(exp, 1)
tot [nb] µR/Q Y0 σ

(exp, 2)
tot [nb] µR/Q Y0

2 7.36281 18 1 7.57706 8 1

3.5 3.23512 18 3 3.25243 8 1

4.5 1.98923 18 4 1.9419 8 1

6 1.20222 18 5 1.09588 8 1

Table 2. Values of σ
(exp, 1,2)
tot for several values of Y at Q2 = 17GeV2; the columns 3-4 and 6-7

give the optimal values of the renormalization and energy scales.

and

σ
(exp, 2)
ik =

1

(2π)2Q2

∫ +∞

−∞

dν e
(Y−Y0)

[

ᾱs(µR)

(

1+
ᾱs(µR)β0

4Nc
ln

µ2R
Q2

)

χ(ν)+ᾱ2
s(µR)χ(1)(ν)

]

×Fi(ν)Fk(−ν)
[

1 + ᾱs (µR)

(

F
(1)
i (ν)

Fi(ν)
+
F

(1)
k (−ν)
Fk(−ν)

)

+ᾱ2
s (µR)

(

F
(1)
i (ν)

Fi(ν)

F
(1)
k (−ν)
Fk(−ν)

)]

. (3.11)

In these equations we denote for shortness F
(1)
i,k (ν) ≡ F

(1)
i,k (ν, s0, µR).

We used these two exponentiated representations together with the PMS method to

fix the values of the energy scales and obtained the results given in table 2. We can see that

the variant (2) of the exponentiated cross section gets lower values for the optimal energy

scales, thus implying that the inclusion of the subleading term with the product of the NLO

impact factors catches a relevant part of the unknown next-to-NLA corrections. However,

as shown in figure 5, the absolute value of the cross section remains low and undershoots

LEP2 data substantially in the same fashion as the two previous representations.

3.4 Exponential representation with BLM optimization

Here we consider the first variant of the exponentiated cross section discussed in the previ-

ous subsection, combined with two different implementations (variants (a) and (b)) of the

BLM method (for a justification of the formulas below, we refer to [73]):

σ
(BLM, a)
tot (s,Q) = σ

(BLM, a)
TT + σ

(BLM, a)
LL + σ

(BLM, a)
TL + σ

(BLM, a)
LT + σLO box , (3.12)

where

σ
(BLM, a)
ik =

1

(2π)2Q2

∫ +∞

−∞

dν e
(Y−Y0)

[

ᾱs(µBLM
R,a )χ(ν)+(ᾱs(µBLM

R,a ))
2
(

−
Tβ

Nc
χ(ν)+χ̄(ν)−

β0
8Nc

χ2(ν)
)]

×Fi(ν)Fk(−ν)
[

1 + ᾱs

(

µBLM
R,a

)

(

F̃
(1)
i (ν)

Fi(ν)
+
F̃

(1)
k (−ν)
Fk(−ν)

− 2
T β

Nc

)]

, (3.13)

with
(

µBLM
R,a

)2
= Q2 exp

[

2

(

1 +
2

3
I

)

− 5

3

]

, (3.14)
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Figure 5. σ
(exp, 1)
tot (magenta line) and σ

(exp, 2)
tot (cyan line) versus Y at Q2 = 17GeV2 (nf = 4),

together with the experimental data from OPAL (blue points, Q2 = 18GeV2) and L3 (green points,

Q2 = 16GeV2).

and

σ
(BLM, b)
tot (s,Q) = σ

(BLM, b)
TT + σ

(BLM, b)
LL + σ

(BLM, b)
TL + σ

(BLM, b)
LT + σLO box , (3.15)

where

σ
(BLM, b)
ik =

1

(2π)2Q2

∫ +∞

−∞

dν e
(Y−Y0)

[

ᾱs(µBLM
R,b )χ(ν)+(ᾱs(µBLM

R,b ))
2
(

−
Tβ

Nc
χ(ν)+χ̄(ν)

)]

×Fi(ν)Fk(−ν)
[

1 + ᾱs

(

µBLM
R,b

)

(

F̃
(1)
i (ν)

Fi(ν)
+
F̃

(1)
k (−ν)
Fk(−ν)

)

+ᾱs

(

µBLM
R,b

)

(

−2T β

Nc
+

β0
4Nc

χ (ν)

)

]

, (3.16)

with
(

µBLM
R,b

)2
= Q2 exp

[

2

(

1 +
2

3
I

)

− 5

3
+

1

2
χ (ν)

]

. (3.17)

In eqs. (3.13) and (3.16) the LO impact factors have to be evaluated with αs = αs

(

µBLM
R,a

)

and αs = αs

(

µBLM
R,b

)

respectively. In both cases, we have

T β = −β0
2

[

1 +
2

3
I

]

, I ≃ 2.3439 .

Besides, in eqs. (3.13) and (3.16) we denote

F̃
(1)
i (ν)

Fi(ν)
≡ F

(1)
i (ν, s0, µR)

Fi(ν)
− β0

4Nc

(

ln
µ2R
Q2

+
5

3

)

. (3.18)
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Figure 6. σ
(BLM, a)
tot (cyan line) and σ

(BLM, b)
tot (magenta line) versus Y at Q2 = 17GeV2 (nf = 4),

together with the experimental data from OPAL (blue points, Q2 = 18GeV2) and L3 (green points,

Q2 = 16GeV2); the green line represents the result of ref. [47] (see figure 3 there).

The results in this approach, calculated at s0 = Q2, are shown in figure 6, where we

can see that the cross section is very low and starts even to be negative at larger values of

Y . In the same figure, we show also the result obtained in ref. [47] by a similar approach,

but in the approximation where photon impact factors were taken at the LO.

4 Discussion

In this paper we have studied the γ∗γ∗ total cross section in the NLA BFKL approach.

First we have extracted the NLO corrections to the photon impact factor from two recent

papers [49, 50], then we have used them to build several representations of the total cross

section, equivalent within the NLA, but taking into account in a different way pieces of

the (unknown) subleading contributions. We have combined these different representa-

tions with two among the most common methods for the optimization of a perturbative

series, namely PMS and BLM, and compared their behavior with the energy with the

only available experimental data, those from the LEP2 collider. We have considered also

the numerical implementation of formulas describing the BFKL contribution to γ∗γ∗ total

cross section, derived originally by Chirilli and Kovchegov [50].

We have found that, in general, the effect of the BFKL resummation is small and

changes only by little the determination coming from the LO quark box diagrams. This

means that, in the considered range of energies, the NLO corrections to the photon impact

factor compensate almost exactly the LO ones. Indeed, previous estimates of the cross

section [45–48] using LO impact factors together with the NLA BFKL Green’s function

showed a better agreement with LEP2 data.
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Figure 7. Behavior of rTNLO/LO(ν, s0, µR) (green), r
L
NLO/LO(ν, s0, µR) (blue) and r

(mesons)
NLO/LO(ν, s0, µR)

(violet) for the following cases: Q2 = µ2
R = 17GeV2, Y0 = 0 on the left and Q2 = 17GeV2,

µ2
R = (10Q)2, Y0 = 2.2 on the right.

In other words, the account of the Balitsky and Chirilli expression for NLO photon

impact factor reduces the BFKL contribution to the cross section to very small values

making it impossible to describe LEP2 data as a sum of BFKL and LO QED quark box

contributions. Note that, the LO QED quark box itself receives, at higher QCD orders,

large corrections enhanced by double logs. Their resummation is important and leads to

a considerable enhancement of the quark box contribution — see ref. [4, 5] for details, but

still these effects are not large enough for a good description of LEP2 data at Y = 3.5÷ 6

without a sizable BFKL contribution.

There could be many reasons for this problem at Y = 3.5÷ 6. The first, obvious one,

is that even at such high energies the BFKL contribution could be still not the dominant

one in comparison with terms which are suppressed by powers of the energy ∼ 1/s, and

are not included in the present consideration. In particular, terms, subleading in energy,

coming from diagrams with gluon exchange in the t-channel, see figure 2, can be impor-

tant. We could also argue that the presumably large effects in the next-to-NLA are not

reduced under enough satisfactory control by the representations of the cross section and

by the optimization methods we have considered in this work. In this respect, it would be

interesting to test also approaches based on collinear improvement [74–84]. However, the

consideration of these issues goes beyond the scope of present paper.

Definitely, the problems with our description of LEP2 data in the present context

originate from the large negative value of NLO contributions to the photon impact factor.

For this reason, we will discuss several issues related with this quantity. First, we want to

illustrate our statement that the NLO corrections to the photon impact factor turned to be

very large. For this purpose we plot in figure 7 the factors which, in the case of transverse

and longitudinal photon polarizations, control the normalization of the cross section in the

case of the exponential representation (3.10),

r
(T,L)
NLO/LO(ν, s0, µR) ≡ 1 + ᾱs(µR)





F
(1)
T,L(ν, s0, µR)

FT,L(ν)
+
F

(1)
T,L(−ν, s0, µR)
FT,L(−ν)



 . (4.1)

For the sake of comparison, we present in figure 7 also the similar quantity r
(mesons)
NLO/LO which
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appeared in the description of the process γ∗γ∗ to two light vector mesons, see refs. [57–59],

r
(mesons)
NLO/LO(ν, s0, µR) ≡ 1 + ᾱs(µR)

(

c
(1)
1 (ν, s0, µR)

c1(ν)
+
c
(1)
2 (−ν, s0, µR)

c2(−ν)

)

. (4.2)

The ν dependence of these quantities is shown on the left panel of figure 7 in the case of

natural scale choice, s0 = µ2R = Q2, whereas on the right panel we show the same quantities

calculated for µ2R = (10Q)2, Y0 = 2.2, the values of scales which were obtained in refs. [57–

59] during PMS optimization procedure applied to γ∗γ∗ → V V process. In the region

of large-ν the results are similar in all the three cases, whereas in the low-ν region they

differ substantially. For natural scales (left panel) and ν ≤ 0.25 all the three quantities

are negative; note that it is the region of ν that dominates the ν-integral appearing in

the cross section. We see that in this ν-region the NLO corrections to the impact factors

are negative and turn to be much larger for γ∗ → γ∗ (especially in the case of transverse

polarization) in comparison to the case of γ∗ → V impact factor. Such a difference remains

to be understood.

The impact factors in BFKL approach depend on the scales s0 and µR, see eqs. (2.12)

and (2.13). Comparing the left and right panels of figure 7, one can see that this effect

is important. In particular, γ∗ → V and γ∗L → γ∗L impact factors become positive in the

whole ν range when one goes from the natural choice of scales to µ2R = (10Q)2, Y0 = 2.2.

But it is not the case for the γ∗T → γ∗T impact factor, which remains negative-valued

for a substantial range of small ν. Note that the transverse polarization gives the most

important contributions (σTT ) to the effective γ∗γ∗ cross section which we consider in this

paper. This observation explains, on the qualitative level, the very high values of optimal

scales in tables 1 and 2, which we found with PMS method for the γ∗γ∗ total cross section.

The other issue we want to mention here is the color structure of the NLO parts of

the photon impact factors. We observe that the NLO impact factors as extracted from [50]

have very simple subleading ∼ 1/N2
c contributions, which appear only in the trivial third

terms of eqs. (2.12) and (2.13). This is in sharp contrast with what happens in the case of

the NLO virtual photon to light vector meson impact factor [56] and of the NLO forward jet

impact factor [60–63]. It would be interesting to understand the reason for the practically

complete cancellation of the subleading 1/N2
c terms which takes place here.

Finally, we want to compare the results for the photon impact factor which we used in

this paper (derived from the results in [49, 50]) with the ones obtained in the conventional

BFKL approach by Bartels and collaborators [38–44]. Unfortunately, some information (in

numerical form) about the final result for the impact factor is available only for the case

of transverse polarization — see ref. [85] in the “Diffraction 2006” workshop proceedings.

To make such a comparison we need to transfer the photon impact factor from the ν- to

the transverse momentum representation:

ΦT (x, s0, µR) =

∞
∫

−∞

dν
(x)−iν+ 1

2

π
√
2

[

FT (ν) + ᾱs(µR)F
(1)
T (ν, s0, µR)

]

, (4.3)

where the variable x is defined as a dimensionless ratio of the Reggeon transverse mo-

mentum ~q and the photon virtuality squared: x ≡ ~q 2/Q2. The plot of ΦT (x, s0, µR) as
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Figure 8. Behavior of the photon impact factor (the transverse polarization) with the Reggeon

transverse momentum ~q, through the variable x ≡ ~q 2/Q2. The black curve represents the LO

impact factor, the green curve the sum of LO and NLO parts derived from eq. (2.12) and the blue

curve the same as the green curve, but with the NLO part reduced by the factor 1.87.

a function of x is presented in figure 6 of ref. [85]. Here we perform the ν integration

in (4.3) using eq. (2.12), the Balitsky-Chirilli result for the transverse photon impact fac-

tor transformed to the conventional BFKL scheme. In our figure 8 we present results

for ΦT (x, s0, µR)/(ααs

(

∑

q e
2
q

)

), where we used the following settings in order to com-

pare with [85]: s0 = 10GeV2 , Q2 = µ2R = 15GeV2; moreover, we take nf = 1 and

αs = 0.177206.2 In figure 8 we show the behavior of the photon impact factor with the

Reggeon transverse momentum ~q, through the variable x. In figure 8 the black curve

represents the LO impact factor, the green curve gives LO plus NLO parts derived from

eq. (2.12), and the blue curve LO plus NLO parts derived from eq. (2.12), when NLO con-

tribution is reduced by the factor 1.87. We see that the NLO corrections are rather large

and it is clear that the x-shape of Φ(x, s0, µR) is rather sensitive to their value. Comparing

the shape of the x-dependence in figure 6 of [85] with the NLO curves in figure 8, we

should conclude that the results of Balitsky and Chirilli are not in agreement with those

presented in [85]. Interestingly, a qualitative agreement for the x-shape of Φ(x, s0, µR)

could be obtained only reducing the NLO result given in eq. (2.12) by the factor ∼ 1.87.

To summarize this discussion we would like to stress that it would be very important

if the authors of [85] could finally publish their results for the photon impact factor, since

it would be an independent test of the results obtained by Balitsky and Chirilli using a

completely different approach.
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