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1 Introduction

Quantum field theory Ward identities are relations among correlators that are derived using

the symmetry generators. They are valuable even when the symmetries are broken. Of

particular interest are Ward identities associated with space-time transformations. In this

paper we will derive quantum field theory Ward identities based on linear area preserving

and conformal transformations. The identities yield relations among different quantities

such as viscosities, conductivities and angular momentum of the system.

We will consider parity breaking quantum field theories in 2+1 space-time dimensions.

There is a large number of such systems of interest, for instance the Quantum Hall states.

They exhibit non-dissipative parity breaking transport properties, such as the well known

Hall viscosity ηH . The Hall viscosity in 2+1 dimensional quantum systems was studied first

in [1],1 and has been much studied since, see [3, 4] for reviews. Its value in topological states

such as Hall states or chiral superfluids has been computed in many different systems [1,

5–11], and it has been shown that its value divided by the particle number density is

quantized. This makes it particularly interesting, since it gives a characterization of the

state independent of the Hall conductivity. A closely related quantity is the torsional Hall

viscosity that was introduced for relativistic theories in [12, 13].

From an effective field theory point of view a non-zero Hall viscosity is expected on

general grounds in theories with broken parity [14–19], including hydrodynamics [20, 23].

Hall viscosity was also introduced in holographic models in [24, 25], and further studied

in [26–30].

A novel formula relating the Hall viscosity to the angular momentum density of the

system ℓ

ηH = ℓ/2 , (1.1)

was shown to hold in certain non-relativistic systems on the torus in [7, 9]. The relation

between the Hall conductivity and the angular momentum density has been studied in

various setups [14, 24, 26, 27]. In [24] it was argued that the relation between angular

momentum and Hall viscosity holds in a holographic chiral superfluid. However, angular

momentum can be introduced in several ways (see [31–33]) and generically it is not simply

related to the Hall viscosity [26], which could even vanish. These results are based on

bottom-up models. It is of interest to have a general field theory argument that clarifies the

relation between the angular momentum and the Hall viscosity, and that is also applicable

to relativistic theories. This is one of the motivations for the present work.

In [10] it has been shown that Ward identities of non-relativistic systems lead to a

non-trivial relation between Hall viscosity and conductivities, and between Hall viscosity

and angular momentum density. In this paper we will derive such identities for general

relativistic or non-relativistic 2 + 1 dimensional quantum field theories, at zero and at

finite temperature. We will consider systems with or without translation invariance, and

introduce an external magnetic field and viscous drag terms. In particular we will see under

what conditions does the relation (1.1) hold.

1Similar transport coefficients in classical magnetized plasmas were discussed before [2].
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The paper is organized as follows. In section 2 we will introduce the algebra of lin-

ear area preserving symmetries and derive the corresponding Ward identities in general

systems. Having angular momentum density breaks translation invariance and the Ward

identity takes the form (2.21). We will then introduce an external magnetic field and obtain

the relation (2.29) with the modified angular momentum (2.30). In the presence of viscous

drag terms, that are of relevance for instance to systems with a lattice or impurities, we

will derive the relation (2.32). In section 3 we will consider the relation between the Hall

viscosity and conductivities in translationally invariant systems. In particular, we will de-

rive the relation (3.14) and with viscous terms (3.16). We will show that these formulas

reduce in the non-relativistic limit and in the absence of drag terms to the one derived

in [10]. The latter has been verified explicitly in some models.

In section 4 we will derive the Ward identity relating the Hall viscosity to the angular

momentum density when translation invariance is broken. We will obtain (4.7) and (4.30)

that in particular for gapped system yield (1.1). We will argue that in the limit where

translation invariance is recovered the value of the Hall viscosity does not change. In

section 5 we will consider spatial conformal transformations on the plane and use them

in order to derive the Ward identity relation (5.13), which we use in order to show the

relation between the angular momentum density and the total pressure of the system

including the Hall bulk viscosity contribution (5.20). In the appendices we provide details

of the calculations as well as a generalization to nonzero temperature.

For convenience we introduced in table 1 all the notations that will be used in the

paper, and highlighted the main results in the different sections.

2 Ward identities from linear transformations

Ward identities are constraints among correlators that can be derived by taking advantage

of the symmetries of the theory. They are useful even when the would-be symmetries are

broken. In particular, when the symmetries are related to spacetime transformations, there

are various relations that are of much physical interest. Canonical examples are conformal

transformations, where Ward identities provide a deep insight about the properties of

the theory.

The generators of linear transformations in d+ 1 dimensions are

Qµν =

∫
ddxxxxµT 0ν , (2.1)

where Tµν is the energy-momentum tensor (We will use Greek indices µ, ν = 0, 1, · · · , d
for spacetime directions and Latin indices i, j = 1, 2, · · · , d for purely spatial directions).

If Lorentz invariance is broken then it may be of interest to study the generators of spatial

transformations Qij . An interesting subgroup comprises the area-preserving linear trans-

formations. It is quite natural to consider them for instance in Quantum Hall systems,

where the effective description is an incompressible fluid.

As was shown in [10] for non-relativistic systems, the Ward identities lead to a non-

trivial relation between Hall viscosity and conductivities, and between Hall viscosity and
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t, t̂ Time variables with Fourier frequency ω

xxx, x̂̂x̂x Space variables with Fourier momentum ppp,qqq

PPP = ppp+qqq
2 , kkk = ppp− qqq

Sµ
a Area preserving current density, a = 1, 2, 3

Qa =
∫
d2xxx S0

a Three corresponding charges

σ̄1 = σ1, σ̄2 = iσ2, σ̄3 = σ3 σa: Pauli matrices

Sijkl =
1
4(σ̄1)ij(σ̄3)kl

ℓ̃, ℓ̄ Angular momentum density, its average

k̃, k̄ Generalized ℓ̃, ℓ̄ for B 6= 0

〈Lxy〉 Total angular momentum

M(xxx) Space dependent magnetization

P0 Constant pressure

ǫǫǫ Regulator

δ Scale of breaking of translation invariance

ηH , η̄H Hall viscosity, its average

σij , κij , αij , ᾱij Electric, momentum, mixed conductivities

σH = 1
2ǫijσ

ij , κH = 1
2ǫijκ

ij Hall and Hall momentum conductivities

tr σ = δijσ
ij Trace of electric conductivity

tr α = δijα
ij , tr ᾱ = δijᾱ

ij Trace of mixed momentum-current conductivities

n̄ Charge density

ωc =
B
m Cyclotron frequency

λJ , λT , λNR = λJ

m + λT Drag coefficients

V i
1 = T 0i, V i

2 = ǫinJ
n T : energy-momentum tensor, J : current

Table 1. Definitions and notations.

angular momentum density. In the following we will extend the analysis to generic quantum

field theories in 2+1 dimensions, both relativistic and non-relativistic.

2.1 Area-preserving transformations in 2+1 dimensions

In 2+1 dimensions there are three generators that we can construct contracting with the

Pauli matrices2

Qa =
1

2
(σ̄a)ijQ

ij =

∫
d2xxxS0

a. (2.2)

Where the associated current density is

Sµ
a =

1

2
(σ̄a)ijx

iTµj . (2.3)

2σ̄a are the Pauli matrices for a = 1, 3 and σ̄2 = iσ2.
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This generates the algebra of SL(2,R)

[Qa, Qb] = if c
ab Qc. (2.4)

The structure constants are antisymmetric on the first pair of indices and

f 2
13 = f 3

12 = f 1
23 = +1. (2.5)

In general the charges Q1 and Q3 are not conserved, since

∂µS
µ
a =

1

2
(σ̄a)ijT

ij ⇒ ∂tQa =
1

2

∫
d2x (σ̄a)ijT

ij . (2.6)

Q2 is a symmetry because rotational symmetry implies T ij = T ji. It generates SO(2)

rotations in the plane. Note that all Qa can be accidentally conserved in isotropic states〈
T ij
〉
∝ δij . A representation of the generators acting on local operators is (xxx = (x, y))

Q1 = − i

2
(x∂y + y∂x), Q2 = − i

2
(x∂y − y∂x), Q3 = − i

2
(x∂x − y∂y). (2.7)

The generators should satisfy the symmetry algebra. Therefore, the equal time com-

mutator should satisfy the Ward identity

〈
[S0

a(t,xxx), S
0
b (t, x̂̂x̂x)]

〉
= if c

ab

〈
S0
c (t,xxx)

〉
δ(2)(xxx− x̂̂x̂x). (2.8)

In particular 〈
i[S0

1(t,xxx), S
0
3(t, x̂̂x̂x)]

〉
= −

〈
S0
2(t,xxx)

〉
δ(2)(xxx− x̂̂x̂x). (2.9)

Note that ∫
d2x

∫
d2x̂

〈
i[S0

1(t,xxx), S
0
3(t, x̂̂x̂x)]

〉
= 〈i[Q1, Q3]〉 = −〈Lxy〉

2
, (2.10)

where 〈Lxy〉 is the total angular momentum.

2.1.1 Systems with conserved momentum

If momentum is conserved ∂µT
µi = 0, we can use directly the generators constructed

with S0
a to derive a Ward identity that relates the Hall viscosity to current correlators

and angular momentum density. When momentum is not conserved the definition of the

SL(2,R) generators has to be modified, as we will discuss for systems with a background

magnetic field in the next section.

With the commutator of the area-preserving currents we can construct the retarded

correlator

G13(t− t̂;xxx, x̂̂x̂x) = iΘ(t− t̂)
〈
[S0

1(t,xxx), S
0
3(t̂, x̂̂x̂x)]

〉
, (2.11)

and similarly the retarded correlators of the energy-momentum tensor are defined as

Gµν,αβ
R (t− t̂;xxx, x̂̂x̂x) = iΘ(t− t̂)

〈
[Tµν(t,xxx), Tαβ(t̂, x̂̂x̂x)]

〉
. (2.12)

We are assuming time translation invariance but not necessarily space translation

invariance.
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We will compute the time derivatives of G13, integrated over the spatial directions. In

order to regulate the integrals we introduce a constant vector ǫǫǫ. Eventually we will take

the limit ǫǫǫ→ 000,3

I13(ǫǫǫ) ≡ ∂t∂t̂

∫
d2xxx d2x̂̂x̂x e−iǫǫǫ·xxx−iǫǫǫ·x̂̂x̂xG13(t− t̂;xxx, x̂̂x̂x)

= ∂t∂t̂

∫
d2xxx d2x̂̂x̂x e−iǫǫǫ·xxx−iǫǫǫ·x̂̂x̂x Sijklx

ix̂kG0j,0l
R (t− t̂;xxx, x̂̂x̂x),

(2.13)

Where we have defined the tensor

Sijkl =
1

4
(σ̄1)ij(σ̄3)kl. (2.14)

We collect some useful algebraic relations in eq. (A.1).

We will now do the Fourier transform with respect to time of the expression above

Ĩ13(ǫǫǫ) =

∫
d(t− t̂)e−iω(t−t̂)I13(ǫǫǫ), (2.15)

and use the Fourier transform of the retarded correlators

Gµναβ
R (t− t̂;xxx, x̂̂x̂x) =

∫
dp0d

2pppd2qqq

(2π)5
eip0(t−t̂)+ippp·xxx−iqqq·x̂̂x̂xG̃µναβ

R (p0, ppp,qqq). (2.16)

After some manipulations (the details are in the appendix A.1), the Fourier transform can

be written in the following form:

Ĩ13(ǫǫǫ) = ω2 Sijkl
∂

∂pi

∂

∂qk
G̃0j0l

R (ω,ppp,qqq)

∣∣∣∣∣
ppp=ǫǫǫ,qqq=−ǫǫǫ

. (2.17)

We will now use the conservation equations of the energy-momentum tensor to relate this

result to the correlator of two stress tensors. In the end this will give us a formula for the

Hall viscosity.

Starting with (2.11) and taking the time derivatives explicitly we can also

write (2.13) as

I13(ǫǫǫ) =

∫
d2xxx d2x̂̂x̂x e−iǫǫǫ·xxx−iǫǫǫ·x̂̂x̂x

[
δ′(t− t̂)δ(2)(xxx− x̂̂x̂x)

〈
S0
2(xxx)

〉

+Sijklx
ix̂k∂n∂m̂G

njml
R (t− t̂;xxx, x̂̂x̂x)

]
.

(2.18)

Where we have used the Ward identity for the equal time commutator (2.8) and we have

assumed that there is a time-independent angular momentum density
〈
S0
2(xxx)

〉
. The result

is (see the appendix A.1)

Ĩ13(ǫǫǫ) = iω
ℓ̃(2ǫǫǫ)

2
+ Sijkl

∂

∂pi

∂

∂qk

[
pnqmG̃

njml
R (ω,ppp,qqq)

]

ppp=ǫǫǫ,qqq=−ǫǫǫ
. (2.19)

3Alternatively, one can think of the calculation as taking the Fourier transform of the correlator and

taking the zero momentum limit in a symmetric way.
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Where we have defined the Fourier transform of the angular momentum density as

ℓ̃(kkk) = 2

∫
d2xxx e−ikkk·xxx

〈
S0
2(xxx)

〉
. (2.20)

Note that ℓ̃(000) = 〈Lxy〉 is the total angular momentum if it is finite. Equating (2.17)

and (2.19) we obtain the relation

iω
ℓ̃(2ǫǫǫ)

2
+Sijkl

∂

∂pi

∂

∂qk

[
pnqmG̃

njml
R (ω,ppp,qqq)

]

ppp=ǫǫǫ,qqq=−ǫǫǫ

= ω2 Sijkl
∂

∂pi

∂

∂qk
G̃0j0l

R (ω,ppp,qqq)
∣∣∣
ppp=ǫǫǫ,qqq=−ǫǫǫ

.

(2.21)

In the absence of angular momentum density the relation above follows simply from the

conservation of the energy-momentum tensor in a translationally invariant system. This

shows that if there is a non-zero total angular momentum translation invariance should

be broken.

2.1.2 Systems with a magnetic field

The Hall viscosity was first computed in Quantum Hall systems, where a background

magnetic field is turned on. It is then of interest to extend the analysis to this case. In the

presence of a magnetic field B, the conservation equation of the energy-momentum tensor

is modified to

∂µT
µi = BǫijJ

j , (2.22)

where Jµ is the electromagnetic current and we assume that the magnetic field is constant.

Note that the angular momentum density as defined above is not conserved, since

∂µS
µ
2 = −B

2
xiJ

i. (2.23)

It is possible to define shear and angular momentum operators that obey the same conser-

vation equations at zero and non-zero magnetic field4

Sµ
B a =

(σ̄a)ij
2

xi
(
Tµj − B

2
ǫjnx

nJµ

)
. (2.24)

The SL(2,R) algebra is actually generated by these operators, rather than by the original

Sµ
a . We will discuss this in more detail when we present the relation to angular momen-

tum density.

Even though Sµ
2 is not a conserved current anymore, we will assume that time trans-

lation invariance is not broken so that the time derivative vanishes ∂t
〈
S0
2(t,xxx)

〉
= 0.

Since we allow space translation invariance to be broken, in principle there could be a

non-zero current 〈
J i(xxx)

〉
= ǫij∂jM(xxx), (2.25)

4We thank Moshe Goldstein for discussions on this point.
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whereM(xxx) is the space-dependent part of the magnetization. This will enter in the spatial

components of the angular momentum current

∂i
〈
Si
2(xxx)

〉
= −∂j

(
B

2
ǫijxiM(xxx)

)
. (2.26)

Given that Si
2 =

1
2ǫjkx

jT ik, by direct comparison we find that the expectation value of the

stress tensor should be 〈
T ij(xxx)

〉
= (P0 −BM(xxx))δij , (2.27)

where P0 is a constant contribution to the pressure.

Because of the term depending on the current density in the conservation equation,

we should also consider current-current and mixed retarded correlators

Gµν,α
R (t− t̂, xxx, x̂̂x̂x) = iΘ(t− t̂)

〈[
Tµν(t,xxx), Jα(t̂, x̂̂x̂x)

]〉
,

Gα,µν
R (t− t̂, xxx, x̂̂x̂x) = iΘ(t− t̂)

〈[
Jα(t,xxx), Tµν(t̂, x̂̂x̂x)

]〉
,

Gµν
R (t− t̂, xxx, x̂̂x̂x) = iΘ(t− t̂)

〈[
Jµ(t,xxx), Jν(t̂, x̂̂x̂x)

]〉
,

(2.28)

Although due to the presence of the magnetic field the calculation is technically more

involved, one can follow the same steps to derive the Ward identity as in the previous

section. We have included the details in the appendix A.2. The original form (2.17) is still

valid, but (2.19) should be modified to

Ĩ13(ǫǫǫ) =− iω
k̃(2ǫǫǫ)

2
+ Sijkl

∂

∂pi

∂

∂qk

([
pnqmG̃

njml
R (ω,ppp,qqq)

]

ppp=ǫǫǫ,qqq=−ǫǫǫ

+ iωB
[
ǫlmG̃

0j,m
R (ω,ppp,qqq)− ǫjnG̃

n,0l
R (ω,ppp,qqq)

]

ppp=ǫǫǫ,qqq=−ǫǫǫ

−B2
[
δjlδnmG̃

nm
R (ω,ppp,qqq)− G̃lj

R(ω,ppp,qqq)
]

ppp=ǫǫǫ,qqq=−ǫǫǫ

)
.

(2.29)

where k̃ substitutes the angular momentum density and is defined as

k̃(2ǫǫǫ) = ℓ̃(2ǫǫǫ)− B

2

∫
d2xxx e−i2ǫǫǫ·xxxx2x2x2

〈
J0(xxx)

〉
. (2.30)

2.1.3 Adding dissipative terms

So far we have assumed that momentum is conserved, except for the presence of an external

magnetic field. This is not necessarily the case in many systems of interest, in particular

if the microscopic theory is not translation invariant but there is a lattice or impurities

with which the degrees of freedom that carry charge and momentum can scatter. A simple

way to model the momentum loss is by adding drag terms to the conservation equation

of momentum

∂µT
µi = BǫijJ

j − λJJ
i − λTT

0i. (2.31)

This is a purely phenomenological characterization of a system where the only effect of

the scatterers is to change the momentum, as it happens in the Drude model. This kind

of approximation has been used for instance in graphene [34] and in the description of

– 8 –
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strongly coupled critical points with a dilute concentration of impurities [35]. This simple

approximation is not expected to hold in more general cases like impurities with magnetic

momentum or when the scattering with the impurities is strong.

It is straightforward to repeat the same steps that we used to derive the Ward identity

with the new terms. We find that (2.19) should be modified to

Ĩ13(ǫǫǫ) = Sijkl
∂

∂pi

∂

∂qk

([
pnqmG̃

njml
R (ω,ppp,qqq)− λ2T G̃

0j0l
R (ω,ppp,qqq)

]

ppp=ǫǫǫ,qqq=−ǫǫǫ

+ (iω + λT )(Bǫ
l
m − λJδ

l
m)
[
G̃0j,m

R (ω,ppp,qqq)
]

ppp=ǫǫǫ,qqq=−ǫǫǫ

+ (−iω + λT )(Bǫ
j
n − λJδ

j
n)
[
G̃n,0l

R (ω,ppp,qqq)
]

ppp=ǫǫǫ,qqq=−ǫǫǫ

−(Bǫjn − λJδ
j
n)(Bǫ

l
m − λJδ

l
m)
[
G̃nm

R (ω,ppp,qqq)
]

ppp=ǫǫǫ,qqq=−ǫǫǫ

)

+ contact terms.

(2.32)

We do not write the contact terms explicitly because we will be interested mainly in using

this formula in systems where expectation values are constant, where the contact terms

will vanish.

3 Relation between Hall viscosity and conductivities

A non-zero angular momentum requires an expectation value of the momentum density of

the form 〈
T 0i(xxx)

〉
=

1

2
ǫij∂jℓ(xxx). (3.1)

This is compatible with rotational symmetry if ℓ is a function of x2x2x2. The angular momentum

is, after integrating by parts,

〈Lxy〉 =
∫
d2xxx ǫijx

i
〈
T 0j(xxx)

〉
=

∫
d2xxxℓ(x2x2x2). (3.2)

Note however, that if translational invariance was exact, then necessarily
〈
T 0i(xxx)

〉
= 0

and 〈Lxy〉 = 0.

In a translationally invariant theory correlators have the form

G̃µναβ
R (ω,ppp,qqq) = (2π)2Γµναβ

(
ω,
ppp+ qqq

2

)
δ(2)(ppp− qqq). (3.3)

We will define PPP = (ppp+ qqq)/2 and kkk = ppp− qqq.

Then (2.17) becomes

Ĩ13(ǫǫǫ)

(2π)2
=
ω2

4
Sijkl

∂2

∂Pi∂Pk
Γ0j0l(ω,PPP )δ(2)(2ǫǫǫ)

∣∣∣
PPP=000

+
ω2

2
Sijkl

[
∂

∂Pk

∂

∂ki
− ∂

∂Pi

∂

∂kk

]
Γ0j0l(ω,PPP )δ(2)(kkk)

∣∣∣
PPP=000,kkk=2ǫǫǫ

− ω2SijklΓ
0j0l(ω,000)

∂2

∂ki∂kk
δ(2)(kkk)

∣∣∣
kkk=2ǫǫǫ

.

(3.4)

– 9 –
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Note that, if rotational invariance is not broken, the correlator can depend only on even

powers of the momentum, PPP 2 or P jP l. On the other hand, conservation of the energy-

momentum tensor implies that ω2Γ0j0l(ω,000) = 0. Therefore, the last two terms vanish and

Ĩ13(ǫǫǫ)

(2π)2
=
ω2

4
Sijkl

∂2

∂Pi∂Pk
Γ0j0l(ω,PPP )δ(2)(2ǫǫǫ)

∣∣∣
PPP=000

. (3.5)

3.1 Systems with conserved momentum

For a translationally invariant system (2.19) becomes

Ĩ13(ǫǫǫ)

(2π)2
=

1

4
Sijkl

∂2

∂Pi∂Pk

[
PnPmΓnjml(ω,PPP )

]

PPP=000
δ(2)(2ǫǫǫ). (3.6)

We have used that, as a distribution,

∂

∂ki

[
kn · · · δ(2)(kkk)

]
≡ 0, (3.7)

where the dots denote a polynomial on the components of kkk.

Collecting all the terms proportional to δ(2)(2ǫǫǫ) we get

(Sijkl + Skjil)Γ
ijkl(ω,000) = ω2 Sijkl

∂2

∂Pi∂Pk
Γ0j0l(ω,PPP )

∣∣∣
PPP=000

. (3.8)

We present an alternative way to obtain the same result in the appendix B, where it is not

necessary to use the regulator ǫǫǫ.

If there is rotational invariance then we can expand the stress-tensor correlator as

Γijkl(ω,000) = −iω
[
η(ω)(δikδjl + δilδjk + (ζ(ω)− η(ω))δijδkl

]

− iω
ηH(ω)

2
(ǫikδjl + ǫilδjk + ǫjkδil + ǫjlδik).

(3.9)

Where the coefficients can be complex functions of the frequency. The real part of the

coefficients are the usual transport coefficients. Note that viscosity terms describe the

response of the system to time-dependent spatial deformations. In general, there is also a

response to time-independent deformations (elastic response) determined by contact terms

in the correlators, such as the inverse compressibility contribution in [10]. Due to the

contraction with the tensor Sijkl, these terms will drop from our expressions, and we will

neglect them in the following.

Introducing this in (3.8) we find the relation

ηH(ω) = −iωSijkl
∂2

∂Pi∂Pk
Γ0j0l(ω,PPP )

∣∣∣
PPP=000

. (3.10)

3.2 Systems with a magnetic field

If we use the expression (2.29) for a constant magnetic field, we find

Ĩ13(ǫǫǫ)

(2π)2
=

1

4
(Sijkl + Skjil)Γ

ijkl(ω,000)δ(2)(2ǫǫǫ)

+ i
ωB

4
Sijkl

∂2

∂Pi∂Pk

[
ǫlmΓ0j,m(ω,PPP )− ǫjmΓm,0l(ω,PPP )

]

PPP=000
δ(2)(2ǫǫǫ)

− B2

4
Sijkl

∂2

∂Pi∂Pk

[
δjlδnmΓnm(ω,PPP )− Γlj(ω,PPP )

]

PPP=000
δ(2)(2ǫǫǫ).

(3.11)
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The terms proportional to the second derivatives of the delta function cancel each other

(see (A.18)). We will now define the (complex) conductivities

Γij = −iωσij , Γ0i0j = −iωκij , Γ0i,j = −iωαij , Γi,0j = −iωᾱij , (3.12)

where σ, κ and α, ᾱ can be identified as the electric, “momentum” and “mixed current-

momentum” conductivities respectively. In a relativistic system T 0i = T i0 so κ and α

are combinations of thermal, thermoelectric and electric conductivities. There can also

be a diamagnetic term in the correlator that describes the response to time-independent

perturbations, but it will drop from our formulas after contracting with the tensor Sijkl,

so we will neglect it in the following.

The Hall electric and momentum conductivities are defined as

σH =
1

2
ǫijσ

ij , κH =
1

2
ǫijκ

ij . (3.13)

We will also define the trace of the mixed conductivity as tr α = δijα
ij . Then, we can

write the Ward identity for the Hall viscosity as5

ηH(ω) = ω2∂κH

∂P 2P 2P 2
+B2∂σH

∂P 2P 2P 2
+ i

ωB

2

[
∂ tr α

∂P 2P 2P 2
+
∂ tr ᾱ

∂P 2P 2P 2

] ∣∣∣∣
PPP=000

. (3.14)

Or, in matrix form,

ηH(ω) =
∂

∂P 2P 2P 2

(
ω B

)( κH
i tr α
2

i tr ᾱ
2 σH

)(
ω

B

)∣∣∣∣
PPP=000

. (3.15)

3.3 Adding dissipative terms

The generalization of the formula above when momentum dissipation is included is straight-

forward using (2.32) as starting point. The result is

ηH(ω) = (ω2 + λ2T )
∂κH

∂P 2P 2P 2
+ (B2 + λ2J)

∂σH

∂P 2P 2P 2

+ (iω + λT )

[
B

2

∂ tr α

∂P 2P 2P 2
+ λJ

∂αH

∂P 2P 2P 2

]
+ (iω − λT )

[
B

2

∂ tr ᾱ

∂P 2P 2P 2
− λJ

∂ᾱH

∂P 2P 2P 2

] ∣∣∣∣
PPP=000

.

(3.16)

We can also express the result in matrix form as

ηH(ω) =
∂

∂P 2P 2P 2

(
ω − iλT B − iλJ

)

 κH i

B
2
tr α+λJαH

B+iλJ

i
B
2
tr ᾱ−λJ ᾱH

B−iλJ
σH



(
ω + iλT
B + iλJ

)∣∣∣∣
PPP=000

.

(3.17)

3.4 Galilean invariant theories

Our results are completely general for relativistic and non-relativistic theories. Previous

results [10, 15, 16] were obtained in special cases with Galilean invariance and an universal

5Details of the derivation are in appendix A.2.1.
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charge to mass ratio. In such systems it is possible to make the following identification

between the current and the momentum density

T 0i = mJ i. (3.18)

For particles of unit charge and mass m.

Therefore, the κ and α conductivities are not independent, but are related to the

electric conductivity as

κij = m2σij , αij = ᾱij = mσij . (3.19)

Starting with the most general expression (3.16), this leads to

ηH(ω) = m2 ∂

∂P 2P 2P 2

[
(ω2 + ω2

c + λ2NR)σH + iωωc tr σ
]
PPP=000

. (3.20)

Where ωc = B/m is the cyclotron frequency and the non-relativistic drag coefficient is

λNR =
λJ
m

+ λT . (3.21)

Momentum dissipation was not considered previously, so in order to make a comparison we

should set λNR = 0. Then, equation (3.20) agrees with the Kubo formula (4.14) in [10].6

This result, obtained from a formal derivation using the Ward identity, was checked in

several examples in [10] and is also confirmed by the effective field theory analysis of Hall

systems [15] (where this type of relation was originally derived) and chiral superfluids [16].

In a recent paper [36] it was shown using non-relativistic diffeomorphism invariance

that when parity is broken the relation between momentum and current can be modified to7

T 0i = mJ i − g − 2s

4
ǫij∂jJ

0, (3.22)

where g is the g-factor or gyromagnetic ratio that determines the coupling to an exter-

nal magnetic field and s determines the coupling to the spin connection. Using current

conservation, this will modify the relation between conductivities to

κij = m2σij − im
g − 2s

4ω
PkPl

[
ǫjkσil − ǫikσlj

]
+

(g − 2s)2

16ω2
ǫikǫjlPkPlPnPmσ

nm, (3.23)

αij = mσij + i
g − 2s

4ω
ǫikPkPlσ

lj , (3.24)

ᾱij = mσij − i
g − 2s

4ω
ǫjkPkPlσ

il. (3.25)

Using these formulas in (3.14), it is straightforward to check that the Hall viscosity is

shifted respect to (3.20) by a term

∆ηH(ω) = im
g − 2s

4

[
ω

2
tr σ − iωcσH

]
, (3.26)

in agreement with the result of [36].

6Up to the sign of the imaginary part that is due to the conventions used to define the correlators.
7For related works on the application of non-relativistic diffeomorphisms to effective theories see [37]

and also [38, 39] for systems without Galilean invariance.
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4 Relation to angular momentum density

In Quantum Hall systems and other topological states such as chiral superfluids, the Hall

viscosity is proportional to the shift S [6–9]. More precisely,

ηH =
S
4
n̄, (4.1)

where n̄ is the average particle number density. When put on a curved space, the shift

determines the change in the number of particles relative to flat space

N = ν−1Nφ − (1− g)S, (4.2)

where g is the genus of the two-dimensional surface, ν is the filling fraction for a Hall

system (for chiral superfluids ν−1 = 0) and Nφ is the number of magnetic flux quanta.

In the superfluid S is the orbital angular momentum of the Cooper pair. For free non-

relativistic fermions in a magnetic field it is a mean orbital angular momentum per particle,

defined as S = 2E0/ωc, where E0 is the energy of the ground state and ωc the cyclotron

frequency [10].

In general the relation between Hall viscosity and angular momentum is not expected

to hold, specially if the theory is gapless. An illustration of this are gauge/gravity models

where the two quantities seem to be independent [26]. However, in [24] it was found that

for a relativistic p-wave superfluid the relation seems to be valid even at finite temperature.

Even though (4.1) may not hold in general, it is quite clear that in the presence of

an angular momentum density there will be a contribution to the Hall viscosity. In the

absence of magnetic field, from (2.19) we have the relation

0 = iω
ℓ̃(2ǫǫǫ)

2
+ SijklG̃

ijkl
R (ω,ǫǫǫ,−ǫǫǫ)− ω2Sijkl

∂

∂pi

∂

∂qk
G̃0j0l

R (ω,ppp,qqq)
∣∣∣
ppp=ǫǫǫ,qqq=−ǫǫǫ

. (4.3)

We assume that rotational invariance is not broken but translation invariance can be. ℓ̃(000)

equals the total angular momentum of the system, if it is finite. If the system is made of

N particles carrying an amount of angular momentum ℓ̄ on average, then ℓ̃(000) = Nℓ̄. This

diverges in the thermodynamic limit N → ∞. In a system where the number of particles is

not conserved and the density of angular momentum is approximately constant throughout

space, then ℓ̃(000) has a volume divergence. In principle the same scaling with the volume is

expected in the other terms.

Let us introduce the system in a finite volume V2, in this case it is more convenient to

work with the coordinate-dependent expressions

0 = iω
V2ℓ̄

2
+ Sijkl

∫

V2

d2xxx

∫

V2

d2x̂̂x̂x G̃ijkl
R (ω,xxx, x̂̂x̂x)− ω2Sijkl

∫

V2

d2xxx

∫

V2

d2x̂̂x̂xxix̂k G̃0j0l
R (ω,xxx, x̂̂x̂x).

(4.4)

Where the average angular momentum is defined as

ℓ̄ =
1

V2

∫

V2

d2xxxℓ(xxx). (4.5)
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The tensor structure of the correlator G̃ijkl
R (ω,xxx, x̂̂x̂x) = −iωηijkl(ω,xxx, x̂̂x̂x) is the same as

in (3.9), but with coefficients that depend on the coordinates. We can define an average

viscosity tensor as

η̄ijkl(ω) =
1

V2

∫

V2

d2xxx

∫

V2

d2x̂̂x̂x ηijkl(ω,xxx, x̂̂x̂x). (4.6)

If translation invariance was unbroken η̄ would be the same as the zero momentum viscos-

ity tensor.

Then, we find the following relation between the average Hall viscosity and the average

angular momentum density

η̄H(ω) = − ℓ̄
2
− iωSijkl

1

V2

∫

V2

d2xxx

∫

V2

d2x̂̂x̂xxix̂k G̃0j0l
R (ω,xxx, x̂̂x̂x). (4.7)

The confinement of the theory to finite volume could be due to an effective potential

that depends on the scale V2 = 1/δ. The potential will break translation invariance, and

should affect to the conservation equations of the energy-momentum tensor, but in the limit

δ → 0+ the breaking goes away and translation invariance is recovered. For simplicity we

will assume that rotational invariance is not broken. In a situation like this, it should be

possible to approximate the correlation function of the stress tensor as

G̃ijkl
R (ω,ppp,qqq) ≃ (2π)2Γijkl

(
ppp+ qqq

2

)
ηδ(ppp− qqq) + · · · , (4.8)

where ηδ(ppp− qqq) is a function that becomes a Dirac delta when δ → 0+. An example is

ηδ(ppp− qqq) =
e−(ppp−qqq)2/(2δ)

2πδ
. (4.9)

If we now take the ǫǫǫ→ 000 limit,

G̃ijkl
R (ω,ppp,qqq) ≃ 2π

δ
Γijkl (ω,000) + · · · , (4.10)

and similarly, ℓ̃(000) = (2π/δ)ℓ̄+ · · · . The dots are terms that will vanish in the limit where

translation invariance is restored δ → 0+. The function Γijkl can be expanded in the same

way as in the translationally invariant case, so the term proportional to 1/δ introduces the

Hall viscosity.

Although in the end we are interested in the δ → 0+ limit, we will show that in

a gapped system, for any finite δ the static Hall viscosity satisfies the relation with the

angular momentum

lim
ω→0

ηH(ω) = − ℓ̄
2
. (4.11)

Note that if the order of limits is changed, so δ → 0 is taken before ǫǫǫ → 000, the angular

momentum density should vanish and we should recover the formula that relates the Hall

viscosity to the conductivities. In principle this does not mean there is any contradiction.

Physically, taking the ǫǫǫ → 000 limit in the correlators means probing the system at longer

wavelengths, while the δ → 0 limit removes the scale at which translation invariance is
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Figure 1. Schematic picture of various length scales. If the wavelength satisfies 1

M
≪ λ1 ≪ 1

√

δ
,

where M is the gap and
√
δ is the scale of translation symmetry breaking, the Hall viscosity can be

related to the momentum derivative of Hall conductivity as (3.14) or (3.20). If λ2 ≫ 1
√

δ
, the Ward

identity (4.7) holds. On the one hand, taking the δ → 0+ limit makes the relation to conductivity

valid at zero momentum (λ1 → ∞). On the other hand, the value of the static Hall viscosity (4.11)

is independent of δ.

broken to larger distances. We can expect then that if we study wavelengths much larger

than the inverse of the gap or other scales but much smaller than 1/
√
δ, the relation between

Hall viscosity and conductivities will be approximately valid, and this will improve as δ → 0

for larger wavelengths. On the other hand, if we consider wavelengths of the order of 1/
√
δ

or larger, we are sensitive to the breaking of translation invariance and the value of the

static Hall viscosity is fixed. Moreover, the value of the Hall viscosity is independent of

δ if the angular momentum density is kept constant, so the relation should be valid even

when δ → 0.

4.1 Systems with magnetic field

In the case of free fermions in a magnetic field, the Hamiltonian has the form

H =
Π2

i

2m
, Πi = pi −Ai. (4.12)

Where the ‘kinetic’ momentum operators satisfy the commutation relations

[Πi,Πj ] = iǫijB, i[H,Πi] = ωcǫ
j
i Πj . (4.13)

In the rotationally invariant gauge the single-particle wavefunctions in the lowest Landau

level can be expanded in a basis (z = x+ iy)

ψn(z) = Nnz
ne−B|z|2/4. (4.14)

For the usual definition of the angular momentum operator Lp
xy = xpy − ypx with pi the

canonical momentum operators, these wavefunctions carry n units of angular momentum.
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The total momentum of N fermions in the lowest Landau level will be then of order N2.

However, Lp
xy is not gauge-invariant and has no direct physical interpretation. A gauge-

invariant definition involves the kinetic momentum operator LΠ
xy = xΠy − yΠx. For this

operator, the angular momentum is independent of n and is actually −1. For the N th

Landau level, the single particle states have angular momentum −(2N +1). In the case of

ν filled Landau levels we can use the fact that each Landau level is equally degenerate, so

the average value is

LΠ
xy

N
= −1

ν

ν−1∑

N=0

(2N + 1) = −ν. (4.15)

These are the values that determine the shift.

In our analysis T 0i is a gauge-invariant operator, we can see that it is indeed related to

the kinetic momentum operators in quantum mechanics. In the presence of the magnetic

field the conservation equation is ∂µT
µi = BǫijJ

j . In addition, in a theory with Galilean

invariance T 0i = mJ i, in which case we can write the conservation equation as

∂µT
µi = ωcǫ

i
jT

0j , (4.16)

The momentum operators P i =
∫
d2xxxT 0i then satisfy

∂tP
i = ωcǫ

i
jP

j ⇒ i[H, P i] = ωcǫ
i
jP

j , (4.17)

where H is the Hamiltonian. This agrees with the commutation relation for the kinetic mo-

mentum operators Πi. Therefore, the angular momentum Lxy =
∫
d2xxxǫijx

iT 0j corresponds

to LΠ
xy and should capture the right value of the shift.

From (2.30) we see that in the presence of a magnetic field not only the angular mo-

mentum contributes but there is a term which would be divergent in the infinite volume

limit if the density remains constant. This divergence is related to the static Hall conduc-

tivity. In the presence of the magnetic field we may extract a contribution from the current

correlator of the form

Gij
R(ω;xxx, x̂̂x̂x) = iωǫij

n̄

B
δ(2)(xxx− x̂̂x̂x) + Ĝij

R(ω;xxx, x̂̂x̂x), (4.18)

where n̄ is the average charge density. This leads to

Ĩ13(ǫǫǫ) =

∫
d2xxx e−i2ǫǫǫ·xxx iω

[〈
S0
2(xxx)

〉
− B

4
x2
(〈
J0(xxx)

〉
− n̄

)]

+

∫
d2xxx d2x̂̂x̂x e−iǫǫǫ·xxx−iǫǫǫ·x̂̂x̂x Sijklx

ix̂k
(
∂n∂m̂G

njml
R (ω;xxx, x̂̂x̂x)− iωBǫjnG

n,0l
R (ω;xxx, x̂̂x̂x)

+iωBǫlmG
0j,m
R (ω;xxx, x̂̂x̂x)−B2ǫjnǫ

l
mĜ

nm
R (ω;xxx, x̂̂x̂x)

)
.

(4.19)

So the contact term vanishes when the density is constant
〈
J0(xxx)

〉
= n̄. There can also be

a diamagnetic term in the current correlator Gij
R ∼ n̄δij , but it will drop after contracting

with Sijkl.
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4.2 Spectral representation

In [10] it was argued that the static Hall viscosity will be exactly (4.1) in a system with

a mass gap and no magnetic field. The argument uses the spectral representation of

correlators, we generalize it to other field theories. First, let us define the vector operators

V i
1 = T 0i, V i

2 = ǫinJ
n. (4.20)

Then, the Ward identity for the average Hall viscosity can be written as

η̄H(ω) = − k̄

2
+ Sijkl

1

V2

∫

V2

d2xxx

∫

V2

d2x̂̂x̂xxix̂kMab
〈
V j
a V

l
b

〉

R
, (4.21)

where k̄ is the full contact term (k̄ = ℓ̄ if B = 0) and

Mab =

(
−iω −B
B −iB2

ω

)
. (4.22)

Using the usual relations between correlators (see appendix D) we find (ǫ→ 0+)

〈
V j
a V

l
b

〉

R
= 2i

∫
dk0
2π

1

ω − k0 − iǫ
ρjlab(k0,xxx, x̂̂x̂x). (4.23)

Where ρijab is the spectral function.

There are no divergences as ω → 0 coming from the integral over k0 as long as

lim
ω→0

ρijab(ω,xxx, x̂̂x̂x) <∞. (4.24)

This can be checked from the decomposition of the pole in the principal value part and a

delta function
1

k0 − ω + iǫ
= P 1

k0 − ω
− iπδ(k0 − ω). (4.25)

Then, we find that
∫
dk0
2π

1

ω − k0 − iǫ
ρjlab(k0,xxx, x̂̂x̂x) =

i

2
ρjlab(ω,xxx, x̂̂x̂x)− P

∫
dk0
2π

1

k0 − ω
ρjlab(k0,xxx, x̂̂x̂x). (4.26)

Both the principal value and the imaginary term contribute to the real part of the Hall

viscosity. Let us define

Fab(k0) =
1

V2
Sijkl

∫

V2

d2xxx

∫

V2

d2x̂̂x̂x xix̂k ρjlab(k0,xxx, x̂̂x̂x). (4.27)

Then, for the real part we have

Re η̄H(ω) = − k̄
2
−2ωP

∫
dk0
2π

F11(k0)

k0 − ω
−2B

ω
P
∫
dk0
2π

F22(k0)

k0 − ω
+B (F12(ω)− F21(ω)) . (4.28)

The expression for the imaginary part is

Im η̄H(ω) = iωF11(ω) +
iB

ω
F22(ω) + 2iBP

∫
dk0
2π

F12(k0)− F21(k0)

k0 − ω
. (4.29)
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In the absence of a magnetic field, the formula for the Hall viscosity takes the simpler form

η̄H(ω) = − ℓ̄
2
− 2ωP

∫
dk0
2π

F11(k0)

k0 − ω
+ iωF11(ω). (4.30)

If ωF11(ω) → 0 as ω → 0, then only the angular momentum density will contribute to

the Hall viscosity. This will happen if there is an energy gap in the spectrum. Indeed the

spectral function can be formally expanded as a sum over energy eigenstates of the form

ρij11(ω,xxx, x̂̂x̂x) = 2π
∑

α 6=0

δ(ω − εα) Im
(
〈0|T 0i(xxx)|α〉〈α|T 0j(x̂̂x̂x)|0〉

)
, (4.31)

where |α〉 are the energy eigenstates and εα is the energy difference with the ground state

|0〉. Clearly, for εα 6= 0 the function ρij11(ω,xxx, x̂̂x̂x) vanishes at ω = 0. Note that there are no

special requirements on the form of the spectrum above the gap. The situation is different

at finite temperature, where the spectral function has the form (see appendix D.1)

ρijab(ω,xxx, x̂̂x̂x)T = π
∑

α,β;εα 6=εβ

[
e−εβ/T δ(ω − (εα − εβ)) Im

(
〈β|V i

a (xxx)|α〉〈α|V j
b (x̂̂x̂x)|β〉

)

+e−εα/T δ(ω + (εα − εβ)) Im
(
〈β|V j

b (x̂̂x̂x)|α〉〈α|V i
a (xxx)|β〉

)]
.

(4.32)

We see that if the spectrum is discrete the spectral function will vanish at zero frequency

even at non-zero temperature. However, for a continuous spectrum this does not need to

be true in general.

In conclusion, in the absence of magnetic fields, for any field theory with an energy

gap, the static Hall viscosity at zero temperature will be given by Read’s formula

ηH = − ℓ̄
2
. (4.33)

If the theory does not have a gap, the relation depends on the matrix elements of T 0i. In

a theory with spontaneous breaking we can have massless Goldstone bosons separated by

an energy gap from other kind of excitations. In such a case the energy-momentum tensor

at low energies will be proportional to derivatives of the Goldstone field φ

T 0i ≃ ∂0φ∂iφ, (4.34)

in which case one expects the matrix element of the momentum density to be proportional

to the energy of the eigenstates

〈0|T 0i|α〉 ≃ iεα〈0|φ∂iφ|α〉. (4.35)

Even though the continuous of excitations of the Goldstone bosons reaches zero energy,

this factor would prevent them from contributing to the Hall viscosity.
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5 Conformal transformations on the plane

We have seen how the angular momentum density enters as a contact term in the Ward

identity for area-preserving transformations, as was also derived by [10] for non-relativistic

theories. In general we expect it to enter in any relation between symmetry genera-

tors that includes rotations. As we will show now, this is indeed the case of spatial

conformal transformations.

The commutator of a spatial translation with a special spatial conformal transforma-

tion is proportional to a spatial dilatation plus a spatial rotation

[Pi,Kj ] = −2iMij + 2iδijDs. (5.1)

A representation of the algebra is

Pi = −i∂i, Ki = −i(xxx2∂i − 2xix
k∂k), Ds = −ixk∂k, Mij = −i(xi∂j − xj∂i). (5.2)

If the expectation value of the angular momentum 〈Mij〉 = 〈Lxy〉 ǫij is non-zero, the com-

mutator of Ki and Pi will be non-zero as well

1

2
ǫij 〈[Pi,Kj ]〉 = −2i 〈Lxy〉 . (5.3)

This implies the following Ward identity for the equal time commutator

1

2
ǫij
〈[
T 0i(t,xxx), κ0j(t, x̂̂x̂x)

]〉
= −4i

〈
S0
2(t,xxx)

〉
δ(2)(xxx− x̂̂x̂x). (5.4)

Where we have defined the current density

κµi(t,xxx) = xxx2Tµi(t,xxx)− 2xixkT
µk(t,xxx). (5.5)

Note that

∂µκ
µi = −2xiT k

k, (5.6)

is not conserved.

Analogously to the derivation for area-preserving transformations, we will consider

time derivatives of the retarded correlator

GPK(t− t̂, xxx, x̂̂x̂x) = iΘ(t− t̂)
1

2
ǫij
〈[
T 0i(t,xxx), κ0j(t̂, x̂̂x̂x)

]〉
. (5.7)

For this, we will define

IPK(ǫǫǫ) = ∂t̂

∫
d2xxxd2x̂̂x̂xe−iǫǫǫ·xxx−iǫǫǫ·x̂̂x̂xGPK(t− t̂, xxx, x̂̂x̂x). (5.8)

More explicitly,

IPK(ǫǫǫ) =
1

2
ǫij∂t̂

∫
d2xxxd2x̂̂x̂xe−iǫǫǫ·xxx−iǫǫǫ·x̂̂x̂x

[
x̂2x̂2x̂2δjk − 2x̂j x̂k

]
G0i0k

R (t− t̂, xxx, x̂̂x̂x). (5.9)
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We now Fourier transform IPK with respect to t− t̂ and use the form of the correlators in

momentum space

ĨPK(ǫǫǫ) =
iω

2
ǫij

[
δjk

∂2

∂ql∂ql
− 2

∂2

∂qj∂qk

]
G0i0k

R (ω,ǫǫǫ, qqq)
∣∣∣
qqq=−ǫǫǫ

. (5.10)

If we use the explicit form of the retarded correlator, the conservation of the energy-

momentum tensor and the Ward identity (5.4), we find the following expression

IPK(ǫǫǫ) = − 4δ(t− t̂)

∫
d2xxxe−2iǫǫǫ·xxx

〈
S0
2(xxx)

〉

− 1

2
ǫij

∫
d2xxxd2x̂̂x̂xe−iǫǫǫ·xxx−iǫǫǫ·x̂̂x̂x

[
x̂2x̂2x̂2δjk − 2x̂j x̂k

]
∂m̂G

0imk
R (t− t̂, xxx, x̂̂x̂x).

(5.11)

We now Fourier transform

ĨPK(ǫǫǫ) = − 2ℓ̃(2ǫǫǫ) +
i

2
ǫij

[
δjk

∂2

∂ql∂ql
− 2

∂2

∂qj∂qk

]
qmG̃

0imk
R (ω,ppp,qqq)

∣∣∣
ppp=ǫǫǫ,qqq=−ǫǫǫ

. (5.12)

This leads to the relation

2ℓ̃(2ǫǫǫ) =
i

2
ǫij

[
δjk

∂2

∂ql∂ql
− 2

∂2

∂qj∂qk

](
qmG̃

0imk
R (ω,ppp,qqq)− ωG̃0i0k

R (ω,ppp,qqq)
)

ppp=ǫǫǫ,qqq=−ǫǫǫ
. (5.13)

5.1 Conformal Ward identity

In addition to the Hall viscosity, we can also discuss the consequences of the Ward identity

derived from spatial conformal transformations (5.13). To leading order in ǫǫǫ, we have

non-zero contributions coming from terms of the form

G̃0imk
R (ω,ppp,qqq) = iδmkǫilqlχΩ + · · · ,
G̃0i0k

R (ω,ppp,qqq) = i
(
ǫilqlq

k + ǫklqlq
i
)
ΠΩ + · · · .

(5.14)

Where the dots denote other terms with a different tensor structure that do not contribute

to the Ward identity. The Ward identity becomes

− 2ℓ̃(2ǫǫǫ) + 4 (χΩ − ωΠΩ) = 0. (5.15)

Then, normalizing by the volume, the coefficient χΩ is

χΩ =
ℓ̄

2
+O(ω). (5.16)

Note that if translation invariance was unbroken ℓ̄ = 0 and χΩ = 0 at zero frequency. The

value of χΩ is related to the Hall bulk viscosity term in parity-breaking fluids. This term

is relevant in fluids where the vorticity of the fluid Ω is non-zero. For a relativistic fluid

with three-velocity uµ, Ω = −ǫµνλuµ∂νuλ. For small velocities Ω = ǫij∂ivj . The Hall bulk

viscosity term at small velocities takes the form8

T ij
H bulk = −x̃ΩδijΩ (5.17)

8This is in the ‘magneticovortical’ frame, where the value of the energy in the perfect fluid energy-

momentum tensor is shifted by the magnetic field and the vorticity, see [20] for details.
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Then, to leading order in derivatives, the change in the stress tensor due to the vorticity is

δT ij =

(
∂P

∂Ω
− x̃Ω

)
δijΩ, (5.18)

where P is the pressure appearing in the energy-momentum tensor at the ideal order. As

was discussed in [20], in a translationally invariant system

∂P

∂Ω
− x̃Ω = 0. (5.19)

Therefore, the total change in the pressure, understood as the trace of the stress tensor, is

actually zero. In view of this, if we define the total pressure to be pT = δij
〈
T ij
〉
/2, the

conformal Ward identity that we have derived implies that

∂pT
∂Ω

=
ℓ̄

2
. (5.20)

In [20] it was argued that ∂P
∂Ω is also related to angular momentum density.9 From the

analysis of the hydrostatic generating functional [21, 22] one can see that in the presence

of space-dependent metric and gauge fields, there is a contribution that generates angular

momentum. In the generating functional it appears as a term of the form

WΩ[gµν , Aµ] =

∫
d2x c1 (g00, A0) ǫ

ij∂ig0j . (5.21)

Where the vorticity is Ω = ǫij∂ig0j . The variation with respect to g0i leads to

T 0i
Ω = ǫij∂ic1, (5.22)

and c1 can be identified with ∂P
∂Ω . Therefore

∂P
∂Ω is proportional to the angular momentum

density. Note that nevertheless it is necessary to break translation invariance in order to

have a non-zero angular momentum, understood as the expectation value of the angular

momentum operator. In principle one could give an alternative definition of ‘angular

momentum density’ in terms of the contact terms that appear in two-point functions.

In the derivation of the generating functional it is assumed that in the absence of

sources the ground state will be translationally invariant. This makes a difference with the

analysis we have made where the angular momentum is generated spontaneously. Note

that WΩ is independent of gij , so there is no contribution to the stress tensor from this

term T ij
Ω = 0, while we found that the stress tensor depends on the vorticity (5.20) if the

ground state is not translationally invariant in the absence of sources.

6 Discussion

In this work we derived a Ward identity relation between Hall viscosity and Hall conduc-

tivities that is valid for general relativistic or non-relativistic 2 + 1 dimensional quantum

field theories. The relation reduces to the known results of Galilean invariant theories [10],

9We thank Kristan Jensen for discussions about this point.
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including the very recent result of [36]. We further generalized the relation by adding the

effect of a drag viscous term. It would be of interest to verify these identities in explicit

models. One suitable setup is the holographic p-wave superfluid [40] for which the Hall

viscosity was calculated in [24].

Ward identities introduce constraints among transport coefficients, which should be

valid in holographic models that have quantum field theory dual descriptions. Since most

holographic models in the context of the gauge/gravity correspondence have a bottom-up

description, the Ward identities can be used to test which of these models may have a field

theory dual. A more interesting relation is between Hall viscosity and conductivities, since

the relation to angular momentum can be shown to hold only in very special cases.

The analysis of Ward identities that we carried out can be extended to other linear

transformations. In Galilean invariant theories they give relations between shear and bulk

viscosities and other components of the conductivity. We expect that a similar generaliza-

tions will apply for relativistic as well as non-boost invariant theories, such as Lifshitz field

theories [41–44].

We showed that the relation between Hall viscosity and angular momentum density

holds in special cases, i.e. at zero temperature and for gapped systems. In order to show the

relation it was necessary to break translation invariance and take a limit. This deserves

additional analysis as there may be some subtleties, in particular if the energy of some

states approaches the energy of the ground state in this limit.

We argued that the relation can be expected to hold also for systems with spontaneous

breaking of symmetry, if there is a gap between the Goldstone bosons and other excitations.

This is in agreement with results from effective field theory. It would be interesting to have

a more rigorous proof of this including an explicit verification in particular models.

For systems with a background magnetic field, the relation between Hall viscosity and

angular momentum is modified. This is expected since in the static limit the conductivity

terms entering the Ward identity should give some contributions as well. Such a modifica-

tion has already been discussed in the Galilean invariant cases [10]. Since the Hall viscosity

is related to the shift, which is topologically protected, it would be interesting to identify

all the terms that enter in the Hall viscosity. They may be related to the existence of

gapless modes.

We introduced nonzero temperature in the analysis. In comparison to the zero temper-

ature case, here not only the energy difference with respect to the ground state is relevant,

but also the energy differences among all excited states. While the matrix elements are

suppressed by factors of the frequency as at zero temperature, there are potential contri-

butions to the Hall viscosity at non-zero magnetic field or if the density of states grows at

small frequencies. It would also be interesting to further study these cases.

Acknowledgments

We would like to thank Moshe Goldstein for valuable discussions and Kristan Jensen and

Nicholas Read for useful comments. This work is supported in part by the I-CORE program

of Planning and Budgeting Committee (grant number 1937/12), and by the US-Israel

Binational Science Foundation (BSF).

– 22 –



J
H
E
P
1
0
(
2
0
1
4
)
0
5
4

A Details of the calculation of Ward identities

In this appendix we collect technical results and useful formulae that we used in the deriva-

tion of the Ward identities in section 2, and give an alternative derivation in the absence of

magnetic fields and dissipation in § B. In all cases we used the following algebraic relations

for the tensor S:

Sijkl = Sjikl, Sijkl = Sijlk, δijSijkl = 0, δklSijkl = 0,

Sijklδ
ik = −1

4
ǫjl, Sijklδ

jl = −1

4
ǫik, Sijklǫ

ik = −1

4
δjl, Sijklǫ

jl = −1

4
δik.

(A.1)

A.1 Systems with conserved momentum

Written explicitly, the Fourier transform (2.15) is

Ĩ13(ǫǫǫ) = ω2 Sijkl

∫
d2xxx d2x̂̂x̂x

d2pppd2qqq

(2π)4
e−iǫǫǫ·xxx−iǫǫǫ·x̂̂x̂x ∂

∂pi

∂

∂qk

[
eippp·xxx−iqqq·x̂̂x̂x

]
G̃0j0l

R (ω,ppp,qqq). (A.2)

Where we have used that

xix̂keippp·xxx−iqqq·x̂̂x̂x =
∂

∂pi

∂

∂qk
eippp·xxx−iqqq·x̂̂x̂x. (A.3)

We now integrate by parts the derivatives with respect to pq and qk and perform the

integrals over space.10 This gives a factor δ(2)(ppp− ǫǫǫ)δ(2)(qqq+ ǫǫǫ) that we use to compute the

integrals over momentum. The result is (2.17).

From (2.18) we get

Ĩ13(ǫǫǫ) = iω

∫
d2xxx e−2iǫǫǫ·xxx

〈
S0
2(xxx)

〉

+ Sijkl

∫
d2xxx d2x̂̂x̂x

d2pppd2qqq

(2π)4
e−iǫǫǫ·xxx−iǫǫǫ·x̂̂x̂x pnqm

∂

∂pi

∂

∂qk

[
eippp·xxx−iqqq·x̂̂x̂x

]
G̃njml

R (ω,ppp,qqq).

(A.4)

Integrating by parts the derivatives with respect to momentum and doing first the integrals

over the space directions and then over momentum we get (2.19).

A.2 Systems with a magnetic field

As in the previous case, first we compute two time derivatives of the retarded correlator

G13 (defined with Sµ
a ) integrated over space

I13(ǫǫǫ) =

∫
d2xxx d2x̂̂x̂x e−iǫǫǫ·xxx−iǫǫǫ·x̂̂x̂xSijklx

ix̂k
[
−iδ′(t− t̂)

〈
[T 0j(t,xxx), T 0l(t, x̂̂x̂x)]

〉

− 2iδ(t− t̂)∂t

〈
[T 0j(t,xxx), T 0l(t, x̂̂x̂x)]

〉

+ ∂n∂m̂G
njml
R (t− t̂;xxx, x̂̂x̂x)−Bǫjn∂m̂G

n,ml
R (t− t̂;xxx, x̂̂x̂x)

−Bǫlm∂nGnj,m
R (t− t̂;xxx, x̂̂x̂x) +B2ǫjnǫ

l
mG

nm
R (t− t̂;xxx, x̂̂x̂x)

]
.

(A.5)

10One can show that the boundary terms vanish by doing the integrals over space.
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We will now add and subtract B/2ǫinx
nJ0 to the operators T 0i in the equal time commu-

tators and use the SL(2,R) algebra to simplify the expressions

I13(ǫǫǫ) =

∫
d2xxx d2x̂̂x̂x e−iǫǫǫ·xxx−iǫǫǫ·x̂̂x̂x

[
(δ′(t− t̂) + 2δ(t− t̂)∂t)

(〈
S0
B 2(t,xxx)

〉
δ(2)(xxx− x̂xx)

− iB

4
(σ̄1)ij x̂

ix̂j
〈
[S0

B 1(t,xxx), J
0(t, x̂̂x̂x)]

〉
+
iB

4
(σ̄3)ijx

ixj
〈
[J0(t,xxx), S0

B 3(t, x̂̂x̂x)]
〉

+
iB2

4
Sklijx

ixj x̂kx̂l
〈
[J0(t,xxx), J0(t, x̂̂x̂x)]

〉)

+ Sijklx
ix̂k
(
∂n∂m̂G

njml
R (t− t̂;xxx, x̂̂x̂x)−Bǫjn∂m̂G

n,ml
R (t− t̂;xxx, x̂̂x̂x)

−Bǫlm∂nGnj,m
R (t− t̂;xxx, x̂̂x̂x) +B2ǫjnǫ

l
mG

nm
R (t− t̂;xxx, x̂̂x̂x)

)]
. (A.6)

We can use the conservation equations of the energy-momentum tensor to rewrite

∂nG
nj,m
R (t− t̂;xxx, x̂̂x̂x) = − ∂tG

0j,m
R (t− t̂;xxx, x̂̂x̂x) +BǫjnG

nm
R (t− t̂;xxx, x̂̂x̂x)

+ iδ(t− t̂)
〈
[T 0j(t,xxx), Jm(t, x̂̂x̂x)]

〉
.

It will be convenient to write the equal time commutator in the contact term as

〈
[T 0j(t,xxx), Jm(t, x̂̂x̂x)]

〉
=

〈[
T 0j(t,xxx)− B

2
ǫjnx

nJ0(t, x̂̂x̂x), Jm(t, x̂̂x̂x)

]〉

+
B

2
ǫjnx

n
〈
[J0(t,xxx), Jm(t, x̂̂x̂x)]

〉
.

Plugging it back in the expression for I13, we find

I13(ǫǫǫ) =

∫
d2xxx d2x̂̂x̂x e−iǫǫǫ·xxx−iǫǫǫ·x̂̂x̂x

[
(δ′(t− t̂) + 2δ(t− t̂)∂t)

(〈
S0
B 2(t,xxx)

〉
δ(2)(xxx− x̂xx).

− iB

4
(σ̄1)klx̂

kx̂l
〈
[S0

B 1(t,xxx), J
0(t, x̂̂x̂x)]

〉
+
iB

4
(σ̄3)ijx

ixj
〈
[J0(t,xxx), S0

B 3(t, x̂̂x̂x)]
〉

+
iB2

4
Sklijx

ixj x̂kx̂l
〈
[J0(t,xxx), J0(t, x̂̂x̂x)]

〉)

− iB

2
δ(t− t̂)

(
(σ̄1)klx̂

k
〈
[SB 1(t,xxx), J

l(t, x̂̂x̂x)]
〉
− (σ̄3)ijx

i
〈
[J j(t,xxx), SB 3(t, x̂̂x̂x)]

〉)

+
iB2

2
δ(t− t̂)Sklijx

ix̂k
(
xj
〈
[J0(t,xxx), J l(t, x̂̂x̂x)]

〉
+ x̂l

〈
[J j(t,xxx), J0(t, x̂̂x̂x)]

〉)

+ Sijklx
ix̂k
(
∂n∂m̂G

njml
R (t− t̂;xxx, x̂̂x̂x) +Bǫjn∂t̂G

n,0l
R (t− t̂;xxx, x̂̂x̂x)

+Bǫlm∂tG
0j,m
R (t− t̂;xxx, x̂̂x̂x)−B2ǫjnǫ

l
mG

nm
R (t− t̂;xxx, x̂̂x̂x)

)]
. (A.7)

The operators S0
B a produce infinitesimal deformations

i
〈
[S0

B a(t,xxx), J
µ(t, x̂̂x̂x)]

〉
= −(σ̄a)ij

2
xi∂j 〈Jµ(xxx)〉 δ(2)(xxx− x̂̂x̂x). (A.8)

We show this explicitly for free Dirac fermions in appendix C.
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The equal time commutators of the current should vanish, and time derivatives of

expectation values as well. Then, after integrating by parts and neglecting terms O(ǫǫǫ)

I13(ǫǫǫ) =

∫
d2xxx d2x̂̂x̂x e−iǫǫǫ·xxx−iǫǫǫ·x̂̂x̂x

[
δ′(t− t̂)

(〈
S0
B 2(xxx)

〉
δ(2)(xxx− x̂xx)− B

2
x2
〈
J0(xxx)

〉
δ(2)(xxx− x̂xx)

)

− δ(t− t̂)
B

2
xi
〈
J i(xxx)

〉
δ(2)(xxx− x̂̂x̂x)

+ Sijklx
ix̂k
(
∂n∂m̂G

njml
R (t− t̂;xxx, x̂̂x̂x) +Bǫjn∂t̂G

n,0l
R (t− t̂;xxx, x̂̂x̂x)

+Bǫlm∂tG
0j,m
R (t− t̂;xxx, x̂̂x̂x)−B2ǫjnǫ

l
mG

nm
R (t− t̂;xxx, x̂̂x̂x)

)]
. (A.9)

For a current of the form (2.25), the contact term proportional to xiJ
i will drop upon

integration by parts. Then, one is left with

I13(ǫǫǫ) =

∫
d2xxx e−i2ǫǫǫ·xxxδ′(t− t̂)

[〈
S0
B 2(xxx)

〉
− B

2
x2
〈
J0(xxx)

〉]

+

∫
d2xxx d2x̂̂x̂x e−iǫǫǫ·xxx−iǫǫǫ·x̂̂x̂x Sijklx

ix̂k
(
∂n∂m̂G

njml
R (t− t̂;xxx, x̂̂x̂x) +Bǫjn∂t̂G

n,0l
R (t− t̂;xxx, x̂̂x̂x)

.+Bǫlm∂tG
0j,m
R (t− t̂;xxx, x̂̂x̂x)−B2ǫjnǫ

l
mG

nm
R (t− t̂;xxx, x̂̂x̂x)

)
. (A.10)

Using the explicit form of S0
B 2 we get a contribution to the contact term from the angular

momentum density and another from the charge density:

I13(ǫǫǫ) =

∫
d2xxx e−i2ǫǫǫ·xxxδ′(t− t̂)

[〈
S0
2(xxx)

〉
− B

4
x2
〈
J0(xxx)

〉]

+

∫
d2xxx d2x̂̂x̂x e−iǫǫǫ·xxx−iǫǫǫ·x̂̂x̂x Sijklx

ix̂k
(
∂n∂m̂G

njml
R (t− t̂;xxx, x̂̂x̂x) +Bǫjn∂t̂G

n,0l
R (t− t̂;xxx, x̂̂x̂x)

+Bǫlm∂tG
0j,m
R (t− t̂;xxx, x̂̂x̂x)−B2ǫjnǫ

l
mG

nm
R (t− t̂;xxx, x̂̂x̂x)

)
. (A.11)

We will now do the Fourier transformation with respect to time

Ĩ13(ǫǫǫ) =

∫
d2xxx e−i2ǫǫǫ·xxx iω

[〈
S0
2(xxx)

〉
− B

4
x2
〈
J0(xxx)

〉]

+

∫
d2xxx d2x̂̂x̂x e−iǫǫǫ·xxx−iǫǫǫ·x̂̂x̂x Sijklx

ix̂k
(
∂n∂m̂G

njml
R (ω;xxx, x̂̂x̂x)− iωBǫjnG

n,0l
R (ω;xxx, x̂̂x̂x)

+iωBǫlmG
0j,m
R (ω;xxx, x̂̂x̂x)−B2ǫjnǫ

l
mG

nm
R (ω;xxx, x̂̂x̂x)

)
. (A.12)

The same standard manipulations that we used in the case without magnetic field in the

spatial and momentum integrals lead to (2.29).

A.2.1 Relation to conductivities

If rotational invariance is not broken, we can expand the correlation functions as follows

(all the form factors Π are functions of ω and P 2P 2P 2):11

Γij
AB(ω,PPP ) = δijΠδ

AB + ǫijΠǫ
AB + P iP jΠp2

AB + (P iǫjn + P jǫin)PnΠ
p2ǫ
AB, (A.13)

where A,B = J, T label current J i or momentum T 0i correlators.

11Note that the combination (P iǫjn − P jǫin)Pn = −P 2P 2
P 2ǫij is not independent.
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Note that, for any of the correlators with two spatial indices

∂2

∂P i∂P k
Γnm
AB = 2δnmδik

∂Πδ
AB

∂P 2P 2P 2
+ 2ǫnmδik

∂Πǫ
AB

∂P 2P 2P 2
+ (δnkδmi + δmkδni)Πp2

AB

+ (δnkǫmi + δmkǫni + δniǫmk + δmiǫnk)Πp2ǫ
AB. (A.14)

Equating (3.11) to (2.17), we find

ηH(ω) = ω2 ∂κ
ǫ

∂P 2P 2P 2
+B2 ∂σ

ǫ

∂P 2P 2P 2
+ iωB

[
∂αδ

∂P 2P 2P 2
+
∂ᾱδ

∂P 2P 2P 2
+

1

2

(
αp2 + ᾱp2

)] ∣∣∣∣
PPP=000

. (A.15)

The first terms are the Hall electric and momentum conductivities defined as

σǫ =
1

2
ǫijσ

ij ≡ σH ,

κǫ =
1

2
ǫijκ

ij ≡ κH . (A.16)

The last term depend on the trace of the mixed conductivity

∂

∂P 2P 2P 2
tr α

∣∣∣
PPP=000

= 2
∂αδ

∂P 2P 2P 2
+ αp2

∣∣∣
PPP=000

. (A.17)

A.3 Coefficients of second derivatives of delta function

In the presence of magnetic field, terms proportional to the second derivatives of delta

function are generated. These terms cancel out with the following condition

ω2Γ0j0l(ω,000) = B2[δjlδnmΓnm(ω,000)− Γlj(ω,000)]. (A.18)

The relation is strictly valid at zero momentum. It is used to derive (3.11).

Once we add the drag terms, the terms proportional to the second derivatives of delta

function are more complicated. They need to satisfy

(ω2 + λ2T )Γ
0j0l(ω,000) = (Bj

m − λJδ
j
m)(Bl

n − λJδ
l
n)Γ

mn(ω,000)

+ i(ω + iλT )(B
j
m − λJδ

j
m)Γm,0l(ω,000)

− i(ω − iλT )(B
l
n − λJδ

l
n)Γ

0j,n(ω,000). (A.19)

This relation is used to get (3.16).

B Alternative derivation in systems with translation invariance

In this appendix we present an alternative derivation of the Ward identity for the Hall

viscosity (at zero magnetic field) in translationally invariant systems that does not require

to introduce a regulator.

We will compute the following time derivatives of the G13 retarded correlator, inte-

grated over the difference x− x̂:

I13 ≡ ∂t∂t̂

∫
d2(x− x̂)G13(t− t̂;x, x̂) = ∂t∂t̂

∫
d2(x− x̂)Sijklx

ix̂kG0j,0l
R (t− t̂,x− x̂)

(B.1)
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We now change variables

x = X+
1

2
y, x̂ = X− 1

2
y. (B.2)

Then, we can expand I13 in powers of the Xi components as

I13(X, t− t̂) = XiXkAik(t− t̂) +XiBi(t− t̂) + C(t− t̂), (B.3)

where, using time-translation invariance

Aik = − ∂2

∂(t− t̂)2

∫
d2ySijklG

0j,0l
R (t− t̂,y),

Bi = −1

2

∂2

∂(t− t̂)2

∫
d2y (Skjil − Sijkl) y

kG0j,0l
R (t− t̂,y),

C =
1

4

∂2

∂(t− t̂)2

∫
d2ySijkly

iykG0j,0l
R (t− t̂,y). (B.4)

If we take the time derivatives on I13 more explicitly, using the form of the retarded

correlator we find

I13 =

∫
d2(x− x̂)

[
− iδ′(t− t̂)

〈[
S0
1(t,x), S

0
3(t̂, x̂)

]〉

+iΘ(t− t̂)Sijklx
ix̂k
〈[
∂tT

0j(t,x), ∂t̂T
0l(t̂, x̂)

]〉]
. (B.5)

In the translationally invariant case
〈
S0
2(t,x)

〉
= 0. We will now use translation

invariance and the conservation of the energy-momentum tensor to write:

iΘ(t− t̂)
〈[
∂tT

0j(t,x), ∂t̂T
0l(t̂, x̂)

]〉
= iΘ(t− t̂)

〈[
∂nT

nj(t,x), ∂̂mT
ml(t̂, x̂)

]〉

= ∂n∂̂mG
nj,ml
R (t− t̂,x− x̂)

= − ∂

∂yn
∂

∂ym
Gnj,ml

R (t− t̂,y). (B.6)

Therefore,

I13 =

∫
d2y

[
− iδ′(t− t̂)Sijklx

ix̂k
〈[
T 0j(t,x), T 0l(t̂, x̂)

]〉

− Sijklx
ix̂k

∂

∂yn
∂

∂ym
Gnj,ml

R (t− t̂,y)

]
. (B.7)

As before, we can expand in powers of the Xi components

I13(t− t̂,X) = XiXjĀij(t− t̂) +XiB̄i(t− t̂) + C̄(t− t̂), (B.8)
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where, using translation invariance

Āik = −
∫
d2ySijkl

[
iδ′(t− t̂)

〈[
T 0j

(
t,
y

2

)
, T 0l

(
t,−y

2

)]〉

+
∂

∂yn
∂

∂ym
Gnj,ml

R (t− t̂,y)

]
,

B̄i =− 1

2

∫
d2y [Skjil − Sijkl] y

k

[
iδ′(t− t̂)

〈[
T 0j

(
t,
y

2

)
, T 0l

(
t,−y

2

)]〉

+
∂

∂yn
∂

∂ym
Gnj,ml

R (t− t̂,y)

]
,

C̄ =
1

4

∫
d2ySijkly

iyk
[
− iδ′(t− t̂)

〈[
T 0j

(
t,
y

2

)
, T 0l

(
t,−y

2

)]〉

+
∂

∂yn
∂

∂ym
Gnj,ml

R (t− t̂,y)

]
. (B.9)

Since Xi are arbitrary the following conditions must be satisfied Aik = Āik, Bi = B̄i, C =

C̄. We now use the equal time commutators. The commutator of Āik vanishes because it’s

the commutator of the momentum densities T 0j . The commutator in B̄i is the commutator

of the densities S0
1,3 and the momentum densities. Assuming the expectation value of the

momentum density is zero, this commutator also vanishes. The commutator in C̄ is the

commutator between S0
1 and S0

3 , which is proportional to the angular momentum density:

i

4

∫
d2ySijkly

iyk δ′(t− t̂)

〈[
T 0j

(
t,
y

2

)
, T 0l

(
t,−y

2

)]〉

=− i

∫
d2y δ′(t− t̂)

〈[
S0
1

(
t,
y

2

)
, S0

3

(
t,−y

2

)]〉

=−
∫
d2y δ′(t− t̂)

〈
S0
2

(
t,
y

2

)〉
δ(2)(y) = −δ′(t− t̂)

〈
S0
2 (t,0)

〉
= 0. (B.10)

Then, the condition C = C̄ leads to

1

4

∫
d2ySijkly

iyk
∂

∂yn
∂

∂ym
Gnj,ml

R (t− t̂,y) =
1

4

∂2

∂(t− t̂)2

∫
d2ySijkly

iykG0j,0l
R (t− t̂,y).

(B.11)

We will now do the Fourier transform with respect to time of this expression

∫
d(t− t̂)e−iω(t−t̂)

[
C(t− t̂)− C̄(t− t̂)

]
= 0, (B.12)

and use the Fourier transform of the retarded correlators

Gµναβ
R (t− t̂,x− x̂) =

∫
dp0d

2p

(2π)3
eip0(t−t̂)+ip·(x−x̂)G̃µναβ

R (p0,p). (B.13)
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We will also use that
∫
d(t− t̂)e−iω(t−t̂)

∫
d2y yiyk

∂

∂yn
∂

∂ym
Gnj,ml

R (t− t̂,y)

=

∫
d2p

(2π)2

∫
d2y

[
∂

∂pi

∂

∂pk
eip·y

]
pmpnG̃

nj,ml
R (ω,p)

=

∫
d2p

(2π)2

∫
d2y

∂

∂pi

∂

∂pk

[
eip·ypmpnG̃

nj,ml
R (ω,p)

]

− ∂

∂pi

[
eip·y

∂

∂pk

[
pmpnG̃

nj,ml
R (ω,p)

]]
+ (i↔ k)

+ eip·y
∂

∂pi

∂

∂pk

[
pmpnG̃

nj,ml
R (ω,p)

]
. (B.14)

We can regulate the momentum integrals with a cutoff Λ, the first term vanishes since is

the derivative of a derivative, while the other derivative terms will vanish upon integration

on y, that gives delta functions at zero momentum. Then, the relation becomes

Sijkl
∂

∂pi

∂

∂pk

(
pnpmG̃

nj,ml
R (ω,p)

) ∣∣∣
p=0

= ω2Sijkl
∂

∂pi

∂

∂pk
G̃0j,0l

R (ω,p)
∣∣∣
p=0

. (B.15)

Which agrees with the result derived in the main text (3.8).

C Shear generators for free fermions in a magnetic field

For free Dirac fermions ψ in a background gauge field Aµ the energy-momentum tensor

and current operators are

Tµ
ν = − i

2
ψ̄γµ

↔
Dνψ +

1

2
δµν

(
iψ̄γσ

↔
Dσψ − 2mψ̄ψ

)
, Jµ = ψ̄γµψ. (C.1)

Where the covariant derivative is Dµψ = (∂µ − iAµ)ψ and Dµψ̄ = (∂µ + iAµ)ψ. Using the

equations of motion

(iγµDµ −m)ψ = 0, iDµψ̄γ
µ +mψ̄ = 0, (C.2)

and the algebra of the gamma matrices (the signature of the metric is mostly minus)

{γµ, γν} = 2ηµν1, (C.3)

one can check that

∂µT
µ
ν = FνσJ

σ. (C.4)

In order to compute the equal time commutators we will use the following identity for the

commutator of composite operators:

[AB,CD] = A{B,C}D −AC{B,D}+ {A,C}DB − C{A,D}B, (C.5)

and the equal time anti-commutator of two fermions

{ψα(x), ψ̄β(y)} = δ(2)(xxx− yyy)γ0αβ ,

{ψα(x), ψβ(y)} = {ψ̄α(x), ψ̄β(y)} = 0. (C.6)
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Let us first compute the equal time commutator between two currents

[Jµ(x), Jν(y)] = ψ̄(x)
(
γµγ0γν − γνγ0γµ

)
ψ(x) δ(2)(xxx− yyy). (C.7)

If any of the currents is the time component J0 the commutator vanishes, as expected.

The equal time commutator with the momentum density is

xi[T 0
j(x), J

µ(y)] = i
(
xi∂jJ

µ(x) + δijJ
µ(x)

)
δ(2)(xxx− yyy). (C.8)

Then, for

S0
B a(x) =

(σ̄a)
j
i

2
xi
[
T 0

j −
B

2
ǫjnx

nJ0

]
. (C.9)

The equal time commutator with the current is

i
[
S0
B a(x), J

µ(y)
]
= −(σ̄a)ij

2
xi∂jJ

µ(x)δ(2)(xxx− yyy). (C.10)

Note that for the current S0
a has the same equal time commutator as S0

B a. However, the

action over the fermionic fields is different. Using

[AB,C] = A{B,C} − {A,C}B, (C.11)

we find

i
[
S0
B a(x), ψ(y)

]
= −(σ̄a)ij

2

[
xiDj −

iB

2
xiǫjnx

n

]
ψ(x) δ(2)(xxx− yyy). (C.12)

The term proportional to B would be absent in the commutator with S0
a. This term

is necessary in order to satisfy the right SL(2,R) algebra. It is most easily seen in the

symmetric gauge

Ai = −B
2
ǫinx

n, (C.13)

where the commutator reduces to the usual shear transformation

i
[
S0
B a(x), ψ(y)

]
= −(σ̄a)ij

2
xi∂jψ(x) δ

(2)(xxx− yyy). (C.14)

Here we used the canonical energy-momentum tensor for simplicity, in principle the shear

transformations can be generalized for the symmetric energy-momentum tensor.

D Spectral decomposition and retarded correlators

We will label by |α〉 the eigenstates of the Hamiltonian and denote by |0〉 the ground state.

We can write the correlator of two currents as

〈0|V i
a (t,xxx)V

j
b (t̂, x̂̂x̂x)|0〉 =

∑

α

〈0|V i
a (t,xxx)|α〉〈α|V j

b (t̂, x̂̂x̂x)|0〉

=
∑

α

eiεα(t−t̂)〈0|V i
a (xxx)|α〉〈α|V j

b (x̂̂x̂x)|0〉

=

∫
dω

2π
eiω(t−t̂)Dij

ab(ω,xxx, x̂̂x̂x), (D.1)
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where εα is the difference between the energies of the state |α〉 and the ground state. The

Fourier transform of the two-point function is then

Dij
ab = 2π

∑

α

δ(ω − εα)〈0|V i
a (xxx)|α〉〈α|V j

b (x̂̂x̂x)|0〉. (D.2)

Using that the step function is (ǫ→ 0+)

θ(t− t̂) = i

∫
dk0
2π

e−ik0(t−t̂)

k0 + iǫ
, (D.3)

the time Fourier transform of the retarded correlator is

〈
V j
a V

l
b

〉

R
(ω,xxx, x̂̂x̂x) =

∫
dk0
2π

1

ω − k0 − iǫ

(
Dij

ab(k0,xxx, x̂̂x̂x)−Dji
ba(k0, x̂̂x̂x,xxx)

)

= 2i

∫
dk0
2π

1

ω − k0 − iǫ
ρijab(k0,xxx, x̂̂x̂x). (D.4)

Where the spectral density is

ρijab(k0,xxx, x̂̂x̂x) = 2π
∑

α

δ(ω − εα) Im
(
〈0|V i

a (xxx)|α〉〈α|V j
b (x̂̂x̂x)|0〉

)
. (D.5)

Note that for |α〉 = |0〉, the expectation value of V i
a is real, so the ground state contribution

drops from the sum.

The Fourier transform respect to space can be defined as

〈
V j
a V

l
b

〉

R
(ω,ppp, q̂̂q̂q) =

∫
d2xxxd2x̂̂x̂xe−ippp·xxx+iqqq·x̂̂x̂x

〈
V j
a V

l
b

〉

R
(ω,xxx, x̂̂x̂x). (D.6)

Then,

∂

∂pi

∂

∂qk

〈
V j
a V

l
b

〉

R

∣∣∣
ppp=qqq=000

=

∫
d2xxxd2x̂̂x̂xxix̂k

〈
V j
a V

l
b

〉

R
(ω,xxx, x̂̂x̂x)

= 2i

∫
dk0
2π

1

ω − k0 − iǫ

∫
d2xxxd2x̂̂x̂xxix̂kρijab(k0,xxx, x̂̂x̂x). (D.7)

D.1 Finite temperature

At finite temperature T the correlators are

〈
V i
a (t,xxx)V

j
b (t̂, x̂̂x̂x)

〉

T
= tr

(
V i
a (t,xxx)V

j
b (t̂, x̂̂x̂x)e

−(H−E0)/T
)

=
∑

α,β

e−εβ/T ei(εα−εβ)(t−t̂)〈β|V i
a (xxx)|α〉〈α|V j

b (x̂̂x̂x)|β〉

=
∑

α,β

e−εα/T e−i(εα−εβ)(t−t̂)〈β|V j
b (x̂̂x̂x)|α〉〈α|V i

a (xxx)|β〉. (D.8)
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Therefore,

Dij
ab(ω,xxx, x̂̂x̂x)T = 2π

∑

α,β

e−εβ/T δ(ω − (εα − εβ))〈β|V i
a (xxx)|α〉〈α|V j

b (x̂̂x̂x)|β〉

= π
∑

α,β

[
e−εβ/T δ(ω − (εα − εβ))〈β|V i

a (xxx)|α〉〈α|V j
b (x̂̂x̂x)|β〉

+e−εα/T δ(ω + (εα − εβ))〈β|V j
b (x̂̂x̂x)|α〉〈α|V i

a (xxx)|β〉
]

= 2πδ(ω)
∑

α,β

δεαεβe
−εβ/TRe

(
〈β|V i

a (xxx)|α〉〈α|V j
b (x̂̂x̂x)|β〉

)

+ π
∑

α,β;εα 6=εβ

[
e−εβ/T δ(ω − (εα − εβ))〈β|V i

a (xxx)|α〉〈α|V j
b (x̂̂x̂x)|β〉

+e−εα/T δ(ω + (εα − εβ))〈β|V j
b (x̂̂x̂x)|α〉〈α|V i

a (xxx)|β〉
]
.

(D.9)

The δ(ω) term corresponds to the static susceptibilities. The spectral function is then

ρijab(ω,xxx, x̂̂x̂x)T = − i

2

(
Dij

ab(ω,xxx, x̂̂x̂x)T −Dji
ba(ω, x̂̂x̂x,xxx)T

)

= π
∑

α,β;εα 6=εβ

[
e−εβ/T δ(ω − (εα − εβ)) Im

(
〈β|V i

a (xxx)|α〉〈α|V j
b (x̂̂x̂x)|β〉

)

+e−εα/T δ(ω + (εα − εβ)) Im
(
〈β|V j

b (x̂̂x̂x)|α〉〈α|V i
a (xxx)|β〉

)]
.

(D.10)

The retarded correlator turns out to be

〈
V j
a V

l
b

〉

R
(ω,xxx, x̂̂x̂x)T

= i
∑

α,β;εα 6=εβ

e−
εβ

T
ω(1− e−

εαβ

T ) + εαβ(1 + e−
εαβ

T )

(ω − iǫ)2 − ε2αβ
Im
(
〈β|V i

a (xxx)|α〉〈α|V j
b (x̂̂x̂x)|β〉

)

= 2i
∑

α,β;εα 6=εβ

e−
(εα+εβ)

2T
ω sinh

εαβ

2T + εαβ cosh
εαβ

2T

(ω − iǫ)2 − ε2αβ
Im
(
〈β|V i

a (xxx)|α〉〈α|V j
b (x̂̂x̂x)|β〉

)
, (D.11)

where εαβ = εα− εβ. The main difference we observe with respect to the zero temperature

case is that not only the energy difference with respect to the ground state is relevant, but

also the energy differences among all excited states. The matrix elements are suppressed

by factors of the frequency in the same way at zero temperature, but there could be a

contribution to the Hall viscosity at non-zero magnetic field or if the density of states

grows at small frequencies.
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