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1 Introduction

Progress in string theory has often been driven by identifying backgrounds on which strings

can be quantized exactly as a Conformal Field Theory (CFT). Flat orbifold CFTs provide

some of the most easy examples [1–5]. However, generically in the process of deforming the

theory to live on a smooth Calabi-Yau geometry, typically the exact string quantization is

lost.

It is therefore quite remarkable that in [6] it was found that heterotic strings on a

warped Eguchi-Hanson space in a specific double scaling limit can still be quantized ex-

actly. In this double scaling limit both the blow-up radius and the string scale are send to

zero simultaneously while their ratio is kept fixed so that the coupling remains finite ev-

erywhere. The resulting CFT builds on Wess-Zumino-Witten (WZW) coset theories based

on an asymmetric gauging of SU(2)k × SL(2,R)k′ . (See e.g. the textbook of [7] and ref. [8]

for more concise descriptions.) We implement the line bundle in the coset CFT differently

with respect to [6], which allows us to exactly recover the integrated Bianchi identity in su-

pergravity from the anomaly cancellation condition on the worldsheet theory. In contrast,

the condition on the first Chern class of the line bundle, guaranteeing its stability, is now

stronger than the usual K-theory condition arising heterotic supergravity. This conditions

is nonetheless consistent with CFT results for heterotic strings on the non-compact C2/Z2

orbifold [9].

The exact CFT description of heterotic warped Eguchi-Hanson backgrounds involves

both continuous and discrete representations of the coset SL(2,R)/U(1): states falling in

continuous representations are generically massive non-localized bulk states concentrated

away from the blown-up two-cycle of the Eguchi-Hanson geometry, while discrete represen-

tations are localized in its vicinity. In particular, the presence of discrete representations

brings about the partial breaking of the gauge group. This exact coset CFT description

allows us to determine the full partition function for continuous representations for all

consistent gauge bundles. In contrast the partition function for discrete representations

has to be worked out on a case by case basis, since it partially breaks gauge invariance by

involving an SO(32)1/U(1) coset, where the gauging of the Abelian factor depends on the

line bundle chosen. Nevertheless, we can derive the full spectrum of massless states for

an arbitrary line bundle in the asymptotic limit for the radial coordinate of SL(2,R)/U(1)

by constructing the corresponding marginal vertex operators in the CFT. In particular,

bosonic states giving the CFT description of hyper multiplets in supergravity are shown to

be in discrete representations of SL(2,R)/U(1), while massless gauge multiplets are gener-

ically non-normalizable. We thus develop a systematic method to compute CFT spectra

for the near-horizon limit of heterotic warped Eguchi-Hanson backgrounds in this paper,

based on the new way of implementing the line bundle in the partition function. These

computations systematize and extend those performed in [6] and [10] for very specific line

bundle backgrounds.

A central aim of this paper is to compare the resulting massless CFT spectra with the

zero mode spectra determined within the supergravity approximation. To do so, we deter-

mine a representation dependent multiplicity operator (index) [11–14] for unwarped and
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warped Eguchi-Hanson spaces supporting line bundle backgrounds. Consistency of these

spectra is confirmed by showing that their irreducible gauge anomalies can be cancelled

by (anti-)five-brane contributions [15, 16]. As is well known anomaly cancellation in six

dimension is extremely restrictive [17–19], hence provides a stringent consistency check of

the perturbative and five-brane spectra we determined. As the CFT can be formulated

as a Z2 orbifold, the CFT spectra fall into two classes: untwisted and twisted. We show

that the untwisted CFT and the supergravity spectra can be matched identically while the

twisted states seem to be redundant. By using proposed dualities between asymptotically

linear dilaton CFTs to little string theories living on ns five-brane configuration [20], we

conjecture that the twisted CFT spectra describe to the same set of hyper multiplets as

the untwisted ones. Since the corresponding untwisted and twisted operators generate

marginal deformations of the CFT, we argue in particular that the couplings of the latter

are not independent so that they must be turned on simultaneously. We also show that the

corresponding twisted vertex operators are actually non-perturbative (in α′) and thus can

be seen in the supergravity limit as non-perturbative completion for the untwisted states.

The spectra on the warped Eguchi-Hanson space obtained in this paper can be used to

describe the spectrum on the blown up T 4/Z2 orbifold with different gauge fluxes localized

near different resolved orbifold singularities. In a specific model, studied before e.g. in

refs. [14, 21], the local Bianchi identities are violated near all fixed points; only the global

Bianchi identity is fulfilled. Hence locally near all the resolved singularities there are either

five-brane or anti-five-brane contributions. We show that they precisely compensate each

other leaving only the perturbative spectrum on a compact K3 as expected.

Paper overview

Section 2 describes the Eguchi-Hanson geometry and its warped extension. Subsection 2.1

gives the defining line element and the characteristic two-form it supports. In the next

subsection its characteristic topological data is obtained using toric geometry. In subsec-

tion 2.3 the five-brane charged is introduce as a measure of the amount of warping the

Eguchi-Hanson space experiences. The warped geometry admits two special limits dis-

cussed in the final part of this section. One of which, the double scaling limit, is of prime

interest in the CFT discussion in this work.

In section 3 we investigate heterotic supergravity on the warped Eguchi-Hanson space.

In its first subsection we characterize line bundle backgrounds on this geometry. In sub-

section 3.2 we determine the charged spectra on the (warped) Eguchi-Hanson space. Using

these results we investigate how either five-branes or anti-five-branes are involved in the

cancellation of irreducible six-dimensional gauge anomalies.

Section 4 discusses a CFT realization of the heterotic string on a warped Eguchi-Hanson

geometry in the double scaling limit. Subsection 4.1 shows that the resulting worldsheet

theory can be described as a asymmetrically gauged WZW model. In subsection 4.2 we

show that in a specific gauge a residual Z2 orbifold identification remains. This allows

us to obtain the partition function for the continuous representations of this CFT. In

subsections 4.4 and 4.5 we determine the massless hyper multiplet and gauge multiplet
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spectra, respectively, in the CFT description, by determining the corresponding marginal

vertex operators characterized in subsection 4.3.

In section 5 we compare the supergravity and CFT spectra. In order to achieve full

agreement we conjecture that the twisted states are related to the untwisted ones, as the

latter can be matched one-to-one to the supergravity states. To support this conjecture

we review some results on marginal deformations of asymptotically linear dilaton CFTs

and the conjectured duality between these CFTs and little string theories on NS five-brane

configurations, in subsections 5.2 and 5.4, respectively.

Section 6 investigates how the results obtained in the previous sections can be incor-

porated in a global compact description. Section 7 summarizes our main findings. Some

useful trace formulae in the analysis of anomalies in six dimensions are collected in ap-

pendix A. In appendix B we give some details of theta-functions and characters used to

represent the partition function in section 4.2.

2 Descriptions of (warped) Eguchi-Hanson backgrounds

In this section we describe the standard Eguchi-Hanson space both by giving its explicit

metric as well as using toric geometry. After that we consider its warped generalization.

This warped Eguchi-Hanson space, in addition to the conventional orbifold limit, admits

a special double scaling limit which zooms in to the near-horizon region of the warped

geometry.

2.1 Eguchi-Hanson geometry

The metric of the Eguchi-Hanson spaceMeh can be represented as [22, 23]

ds2eh = g−2(r) dr2 +
r2

4

[
(σL1)

2 + (σL2)
2 + g2(r)(σL3)

2
]
, (2.1)

with g(r) =
√
1− a4

r4
for r > a, in terms of the SU(2) left-invariant one-forms:

σL1 =sinψ dθ−cosψ sin θ dφ , σL2 =− cosψ dθ−sinψ sin θ dφ , σL3 =dψ+cos θ dφ .

(2.2)

The original periodicities of the Euler angles parameterizing the SU(2) group manifold read:

θ ∈ [0, π], φ ∈ [0, 2π] and ψ ∈ [0, 4π]. In the description of the smooth Eguchi-Hanson

space the periodicity of the ψ coordinate is modified and runs over half of its original span

ψ ∈ [0, 2π]: the extra Z2 orbifold action ψ → ψ + 2π is necessary to eliminate the bolt

singularity at r = a; ensuring that the Eguchi-Hanson geometry is smooth for any a > 0.

The metric defines a self-dual Kähler form:

Jeh = e0 ∧ e3 + e1 ∧ e2 , ∗ehJeh = Jeh , (2.3)

in terms of the associated vielbein one-forms ea with frame indices a = 0, . . . , 3:

e0 =
1

g(r)
dr , ea =

r

2
σla , a = 1, 2 , and e3 =

r

2
g(r)σl3 . (2.4)
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There is a two-cycle with the topology of P1 located within the Eguchi-Hanson space

at r = a. It is given geometrically as a non-vanishing two-sphere

ds2
P1 =

a2

4

(
dθ2 + sin2 θ dφ2

)
, JP1 = −1

4
σL1 ∧ σL2 =

1

4
sin θ dθ ∧ dφ . (2.5)

Its Poincaré dual two-form on the Eguchi-Hanson geometry has the local description:

Feh = − a
2

4π
d

(
σl3
r2

)
= − i

2

(a
r

)2
[
sin θ dθ ∧ dφ+

2

r
dr ∧ σL3

]
. (2.6)

This gauge field strength can be expressed in terms of the vielbein one-forms as

Feh =
a2

πr4
(
e0 ∧ e3 − e1 ∧ e2

)
, ∗ehFeh = −Feh , Jeh ∧ Feh = 0 , (2.7)

showing that Feh is anti-self-dual and orthogonal to the Kähler form of the Eguchi-Hanson

space. This two-form can be interpreted as the field strength associated to an Abelian

gauge background supported on the Eguchi-Hanson geometry with the following integral

properties: ∫

P1

Feh = 1 , and

∫

Meh

Feh ∧ Feh = −1

2
. (2.8)

Consequently, the second cohomology H2(Meh) is spanned by a single generator [Feh]; an

unique representative is given by the harmonic and anti-selfdual two-form (2.7).

2.2 Eguchi-Hanson geometry as a toric variety

It is also possible to describe the Eguchi-Hanson geometry using toric geometry, see e.g. [12,

24]. In the toric description the Eguchi-Hanson background is described in terms of three

complex coordinates(z1, z2, x) defining the toric variety,

(z1, z2, x) ∼ (λ z1, λ z2, λ
−2 x) ∈ C

3 −F
C

∗
, (2.9)

where λ ∈ C∗ and the exclusion set F is given F := {z1 = z2 = 0}. The ordinary divisors,

D1 := {z1 = 0}, D2 := {z2 = 0}, and exceptional divisor, E := {x = 0}, are subject to the

linear equivalence relations

2D1 + E ∼ 0 , 2D2 + E ∼ 0 . (2.10)

The unambiguously defined intersection numbers are

D1E = D2E = 1 , E2 = −2 , (2.11)

since they all involve the compact divisor E. The total Chern class is given via the splitting

principle c = (1 + D1)(1 + D2)(1 + E). Expanding this out using the linear equivalence

relations (2.10) we find

c1 = D1 +D2 + E ∼ 0 , c2 = D1D2 +D1E +D2E ∼ −
3

4
E2 =

3

2
. (2.12)

The first relation says that this toric variety is Calabi-Yau. The second Chern class agrees

with an explicit computation using the Eguchi-Hanson metric (2.1). Finally, we note that

the class [Feh] ∼ −1
2 E.
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2.3 Warped Eguchi-Hanson backgrounds

The Eguchi-Hanson geometry can be warped [6] by including a scalar factor H(r) in the

metric

ds2ehW
= H(r)ds2eh , H(r) = 1 +

4α′Q5

r2
, (2.13)

with the ds2eh given in (2.1). This defines a supergravity background provided that we

include a varying dilaton Φ(r) and a non-trivial three-form H given by

e2Φ(r) = g2s H(r) H = −H(r) ∗eh dH(r) = 8α′Q5

(
1− a4

r4

)
Vol(S3) , (2.14)

where volume of the three-sphere Vol(S3) = 1
8 σ

l
1 ∧ σl2 ∧ σl3 = 1

8 d(cos θ) ∧ dφ ∧ dψ is given

in terms of the Euler angles.

The presence of the three-form H leads to torsional spin-connections

Ω a
± b = ωab ±

1

2
Hab . (2.15)

where ωab denotes the spin-connection including warping and a, b are four dimensional

frame indices. Computing the second Chern class using the associated curvatures R± =

dΩ± +Ω2
± gives the same answer as in the unwarped case:

c2(R±) = −
1

2

∫
tr

(R±

2π

)2

=
3

2
. (2.16)

This background describes an Eguchi-Hanson geometry supporting a non-vanishing

three-form flux from the torsion H given by

2Q5 =
−1

4π2α′

∫

∂Meh

H . (2.17)

In blow down this can be interpreted as the brane charge of a stack of five-branes located

at the orbifold singularity. In blow-up these five-branes are no longer visible as the radial

coordinate r starts at r = a > 0, while according to (2.14) the five-branes remain positioned

at r = 0, hence only the effects of the torsion can be felt.

2.4 Limits of the warped Eguchi-Hanson space

The warped Eguchi-Hanson geometry admits the following two interesting limits:

i) In the blow down limit the parameter a is taken to a → 0 and we recover a warped

C
2/Z2 background with constant three-form H, which indicates the presence of ns

five-branes opening a throat at r = 0. Without warping the heterotic string can be

exactly quantized in this limit and e.g. its spectrum can be determined. The connec-

tion between the exact orbifold CFT and the supergravity in blow-up was studied

in [11, 14].

ii) The near-horizon limit is defined as the following double scaling limit [6]

a→ 0 , and gs → 0 keeping λ =
gs
√
α′

a
fixed . (2.18)
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In the double-scaling limit the constant piece in the warp-factor (2.13) can be neglected

against the 1/r2 contribution, assuming Q5 > 0. This will always be our assumption for

the resolved geometry. By taking this limit, after scaling out the blow-up parameter a from

the new radial variable, i.e. cosh ρ = (r/a)2, one zooms into the region near the blown up

two-cycle:

ds2nh = α′Q5

[
dρ2 + (σL1)

2 + (σL2)
2 + tanh2 ρ (σL3)

2
]
. (2.19)

In addition, the NSNS-three-form and the dilaton are also affected by the double-scaling

limit:

Hnh = −8α′Q5 tanh2 ρVol(S3) , e2Φnh(ρ) =
4λ2Q5

cosh ρ
, (2.20a)

Fnh = − 1

2 cosh ρ

(
tanh ρ dρ ∧ σL3 − σL1 ∧ σL2

)
. (2.20b)

The Abelian gauge field does not feel this limit; it is only written in terms of the new

radial variable ρ.

This means that the warped Eguchi-Hanson space stays resolved, but the asymptotical

properties of the metric at infinity have changed: the boundary of the warped Eguchi-

Hanson space has been decoupled. This is reflected in the fact that the second Chern

classes for torsional connections do not agree in the near-horizon limit:

c2(Rnh±) = −
1

2

∫
tr

(Rnh±

2π

)2

=
3

2
± 1

2
. (2.21)

The change of 1
2 unit with respect to (2.16) is a consequence of the near-horizon limit which

the boundary at infinity has been cut off.

3 Heterotic supergravity on (warped) Eguchi-Hanson spaces

A heterotic supergravity background is defined by the smooth warped Eguchi-Hanson ge-

ometryMeh supporting a gauge field strength F . In this paper we only consider an SO(32)

gauge field (the extension to the E8 × E′
8 case is straightforward). For consistency such a

background has to satisfy the Bianchi identity [25]:

− 1
α′ dH = trF ∧ F − trR(Ω−) ∧R(Ω−) . (3.1)

Here the traces tr are defined in the vector representations of the gauge group SO(32) and

the Lorentz group SO(1, 9), respectively. If the three-form (2.14) is not closed, the Bianchi

identity (3.1) requires a non-standard embedding of the Lorentz connection into the gauge

connection. For particular local solutions to this identity see e.g. [26, 27].

3.1 Line bundle embeddings

Since the study of non-standard embedding bundles is rather challenging, we focus here

only on line bundle gauge fluxes. These Abelian backgrounds can be studied systematically.

– 7 –
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In general the embedding of the direct sum of line bundles on the Cartan subalgebra of

SO(32) can be described by

FQ

2π
=
Feh

2π

16∑

I=1

QI H
I . (3.2)

The two-form Feh, defined in (2.6), is supported on the warped Eguchi-Hanson space. The

anti-Hermitean Cartan generators H
a ∈ h(SO(32)) are normalized such that trH

I
H
J =

−2δIJ . The Abelian gauge background is characterized by the line bundle vector Q =

(Q1, . . . , Q16) and is well-defined when the following conditions are met:

i) a Dirac quantization condition on the gauge instanton charge:

Q ∈ Λ16 , Λ16 = Z
16 ⊕

(
Z
16 +

1

2
e16

)
, (3.3)

where e16 = (1, . . . , 1) is the vector with sixteen entries equal to one. It has been

shown that the two possible choices of integral or half-integral line bundle vectors cor-

respond to the distinction between models characterized by gauge bundles V without

or without vector structure [28].

ii) A stability condition for the gauge bundle V requires that the first Chern class of the

line bundle L to be in the second even integral cohomology class of the Eguchi-Hanson

space [29–31]:

c1(L) ∈ H2(Meh, 2Z) ⇒ 1

2
e16 ·Q =

1

2

∑

I

QI ≡ 0 mod 1 . (3.4)

This allows for spinorial representations of V to appear at the massive level.

The metric (2.13), the NSNS-three-form (2.14), the dilaton (2.20a) and the line bundle

background (3.2) satisfy the Bianchi identity (3.1) in cohomology only in the large Q5

limit, in which c2(R−) can be neglected with respect to the line bundle contribution. For

finite values of the five-brane charge, the conformal factor H(r) and the dilaton generically

receive corrections in 1/Q5 (see for instance [32, 33]). Consistent heterotic backgrounds

nevertheless only correspond to tadpole free models, for which the defining line bundle

solves the integrated Bianchi identity (3.1).

3.2 Perturbative charged spectrum computation

We compute the perturbative charged spectrum, i.e. part of the spectrum that in heterotic

supergravity can be obtained as zero modes of the Dirac operator of the gaugino. This

spectrum can be computed by employing the following multiplicity operator [14]

NQ = −
∫

MEH

{
1

2

(FQ

2π

)2

+
1

24
tr

(R
2π

)2}
. (3.5)

This operator can be thought of as a generalization of a representation dependent index.

The integrals can be evaluated using the results of section 2.
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Given that the second Chern class in the near-horizon limit is different from that of the

non-warped Eguchi-Hanson space and depends on which torsion connection is employed,

it is useful to rewrite the multplicity operator (3.5) in a form which does not explicitly

depend on c2. Integrating the Bianchi identity (3.1) leads to a relation between the second

Chern class c2, the five-brane charge Q5 and the line bundle vector Q:

−Q5 = 2 c2 −
1

2
Q2 . (3.6)

By using this and computing the integrals in (3.5) we obtain an explicit formula for the

multiplicity operator

NQ =
1

4
H

2
Q −

1

12
c2 =

1

4
H

2
Q −

1

48
Q2 +

1

24
Q5 . (3.7)

To evaluate the multiplicity operator on the states that an SO(32) gaugino consists of,

we represent the SO(32) roots as sixteen component vectors with two entries±1 and the rest

zero, i.e.P = (±12, 014). (Here the powers denote the number of times an entry appears and

the underline means all possible permutations.) Consequently we have [HQ, EP] = Q·PEP

for the SO(32) generators EP associated with the roots P. The normalization of the mul-

tiplicity operator (3.5) is chosen such that it counts the number of hyper multiplets in a

complex representation. This means that a half-hyper multiplet, i.e. a hyper multiplet on

which an reality condition is enforced, gets half the multiplicity of that of a full hyper multi-

plet. Moreover, the sign of the multiplicity operator distinguishes between hyper multiplets

and vector multiplets. However, given that the vector multiplets take values in the adjoint

representation, we need to include an additional factor of a half for them in the spectrum.

As usual it is rather difficult to make statements about spectra in general, unless one

uses a specific ansatz. An ansatz which can describe a large class of models is defined by

a line bundle vector of the form

Q =
(
pN1
1 , . . . , pNn

n ; 0N
)
, N1 + . . .+Nn +N = 16 , (3.8)

Since a line bundle is actually determined by an equivalence class of such vectors under a

shift by any element of the Narain lattice of SO(32), we can take, without loss of generality:

p1 > . . . > pn > 0 with pi non-vanishing integers (or half integers when N = 0). This line

bundle background induces the gauge symmetry breaking

SO(32)→ U(N1)× . . .×U(Nn)× SO(2N) . (3.9)

This means that the gauge group contains n Abelian U(1) factors. The U(1)Q gauge field

associated to the Cartan direction set by Q becomes massive via the generalized Green-

Schwarz mechanism, while the other perpendicular combinations remain massless.

In table 1 we have listed the full perturbative spectrum computed using the multiplicity

operator (3.7). We classify the states according to their U(Ni), U(Nj) (with the indices

1 ≤ i < j ≤ n) and SO(2N) representations. The charges of these states are determined

by HQ. In this table we only indicate the NQ multiplicities of the various states. The first

four rows of the table give the gaugino states in the adjoints of the unbroken gauge groups;

the states below that denote the six-dimensional hyper multiplet matter. To emphasize

the systematics we do not make the breaking of U(1)Q explicit in this table.
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Gauge group: U(N1)× . . .×U(Nn)× SO(2N) NQ(P)

States SO(32)-Roots: P = (2c2=
1
2Q

2−Q5)

(. . .1,AdU(Ni),1 . . . ;1) (. . . 0, 1, -1, 0Ni−2, 0 . . . ; 0N ) − 1
12 c2

(. . .1;AdSO(2N)) (0 . . . 0,±12, 0N−2) − 1
12 c2

(. . .1, [Ni]2,1, . . . ;1) (. . . 0, 12, 0Ni−2, 0 . . . ; 0N ) p2i − 1
12 c2

(. . .1,Ni,1 . . . ;2N) (. . . 0, 1, 0Ni−1, 0 . . . ;±1, 0N−1) 1
4 p

2
i − 1

12 c2

(. . .1,Ni,1 . . .1,Nj,1 . . . ;1) (. . . 0, 1, 0Ni−1, 0 . . . 0, 1, 0Nj−1, 0 . . . ; 0N ) 1
4 (pi+pj)

2− 1
12 c2

(. . .1,Ni,1 . . .1,Nj,1 . . . ;1) (. . . 0, 1, 0Ni−1, 0 . . . 0, -1, 0Nj−1, 0 . . . ; 0N ) 1
4 (pi−pj)2− 1

12 c2

Table 1. Perturbative spectrum: the first two rows give the gauge multiplet representations while

the rows below that give the representations and the multiplicities NQ of the hyper multiplets.

To shorten the notation we write . . .1 for 1, . . . ,1, etc. and with underlined entries we mean this

set of entries and all possible permutations. [N]2 denotes the anti-symmetric rank-two tensor

representation of SU(N).

3.3 Eguchi-Hanson models without five-brane charge

In general the perturbative spectrum suffers from irreducible pure gauge SU(N1)
4, . . . ,

SU(N2)
4 and SO(2N)4-anomalies. Indeed, the resulting anomaly polynomial is propor-

tional to

I8|pert ⊃ Q5

{
trF 4

SU(N1)
+ . . .+ trF 4

SU(Nn)
+

1

2
trF 4

SO(32−2N)

}
, (3.10)

taking into account the additional factor of 1
2 for the gauge multiplets mentioned above and

using the trace identities given in appendix A. The traces are evaluated in the fundamental

representations of the respective gauge groups.

When Q5 vanishes, i.e. when Q2 = 4 c2, the perturbative spectrum is free of irreducible

anomalies. Such models are sometimes referred to as perturbative models [15]. For the

non-warped Eguchi-Hanson background the perturbative models were classified in [14] and

are for completeness given in table 2. As was confirmed in refs. [11, 14] these spectra are

compatible with that of heterotic C2/Z2 orbifold models (for a classification is e.g. [15]) in

blow-up.

In detail the interpretation of the multiplicities is as follows: the states with a positive

factor of 1
16 are untwisted, i.e. ten-dimensional bulk states, given that c2 = 3

2 in this case.

Since they are just the internal parts of the gauge fields they have an internal complex

space index, hence always come in pairs. In total these bulk untwisted matter thus have a

multiplicity 2
16 . Localized twisted states have an integral multiplicity. Finally, the orbifold

models often have an enhanced symmetry group, which is higgsed to gauge group in blow-
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up. In this process the massive gauginos pair up with a part of the twisted hyper multiplets,

this “eating of the Goldstone modes” is reflected in table 2 by the contributions 1− 2
16 .

3.4 Non-perturbative (anti-)five-brane states

The models that involve non-vanishing five-brane charge, i.e. Q5 6= 0, are called non-

perturbative models. Since the (warped) Eguchi-Hanson space is non-compact, it is possible

there is some anomaly inflow from infinity to ensure consistency. Hence in principle warped

Eguchi-Hanson models with Q5 6= 0 can be tolerated.

In blow down the Eguchi-Hanson geometry degenerates to an orbifold with five-branes

located at r = 0. The five-brane charge Q5 is then associated to this stack of five-branes:

−Q5 is equal to twice the number of five-branes in the stack denoted by Ñ . On the

five-branes one expects an Sp(Ñ) gauge group to be present [34]. The non-perturbative

spectrum is suggested by a conjectured S-duality with Type II orientifolds to be:

⊕

i

(. . .1,Ni,1 . . . ;1;2Ñ) +
1

2
(1, . . . ,1;32− 2N;2Ñ) + (1, . . . ,1;1; [2Ñ]2) . (3.11)

Here 2Ñ and [2Ñ]2 denote the fundamental and the anti-symmetric tensor representations

of Sp(Ñ), respectively. Using the trace identities given in appendix A it is not difficult

to check that the irreducible anomalies (3.10) of the perturbative spectrum are cancelled

by the (anti-)five-brane (anti-)hyper multiplet states in (3.11). In addition, the pure irre-

ducible Sp(Ñ) anomalies vanish as well. These findings are in agreement with the results

reported in [16]. The sign of Q5 is significant: when Q5 > 0 then the five-branes are

actually anti- five-branes that preserve supersymmetries with the opposite chirality as the

perturbative heterotic supergravity in six dimensions and five-branes do. This means that

if Q5 is negative (positive), the spectrum (3.11) is the spectrum of (anti-)hyper multiplets

with the same (opposite) chirality as the hyper multiplets of the perturbative sector.

When anti-hyper multiplets are required, this signals that six-dimensional supersym-

metry is broken by the presence of anti-five-branes. However, in blow-up, and therefore in

particular in the near-horizon limit, we have seen that the five-branes are not part of the

physical space, hence the anomaly inflow from infinity is the only way that the model can

become consistent. Therefore, because in the orbifold point with Q5 > 0 supersymmetry is

broken, it seems that this gives a dynamical mechanism that drives the system in blow-up.

4 CFT description of warped Eguchi-Hanson

4.1 Heterotic CFT for warped Eguchi-Hanson in the double scaling limit

The warped Eguchi-Hanson resolution with a line bundle background can be described as

a certain gauged WZW model [6]. The starting point is an SU(2)k × SL(2,R)k′ WZW

model with (1, 0)-worldsheet supersymmetry. From the group elements (g, g′) ∈ SU(2)k ×
SL(2,R)k′ ,

g = e
i
2
σ3φe

i
2
σ1θe

i
2
σ3ψ , g′ = e

i
2
σ3φ′e

1
2
σ1ρe

i
2
σ3ψ′

, (4.1)
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Q Gauge group Representation

(16, 010) SU(6)× SO(20) 2
16(6,20)1 + (1− 2

16) · (15,1)2
(2, 12, 013) SU(2)× SO(26) 2

16(2,26)1 +
2
16(2,1)1 + (1− 2

16) · (1,1)2
+(1− 2

16) · (1,26)2 + (2 + 2
16) · (2,1)3

(−3
2 ,

1
2

15
) SU(15) 2

16(105)1 +
2
16(15)1 + (1− 2

16) · (15)2

Table 2. The non-warped Eguchi-Hanson models without five-brane charge have been listed before

in [14] for the sake of completeness and facilitate comparisons we repeat them here. The HQ charge

is indicated as the subscript. In the text the explanation for the fractional multiplicities is given.

one constructs left- and right-moving (super-)currents: we have the following left-moving

super-currents,

(Jα
L
= (k − 2) (∂g g−1)α + i

2ε
α
βγ :ψ

β
L
ψγ
L
: , ψα

L
) ,

(Kα
L
= (k′ + 2) (∂g′ g′−1)α + i

2ε
α
βγ :ψ

′β
L
ψ′γ
L
: , ψ′α

L
) ,

(4.2)

forming the super-affine ŝu(2)k and super-conformal ŝl(2,R)k′ algebras, respectively. The

bosonic currents,

jα
R
= (k − 2) (g−1∂̄g)α and kα

R
= (k′ + 2) (g′−1∂̄g′)α , (4.3)

define the affine conformal algebras ŝu(2)k−2 and ŝl(2,R)k′+2, respectively, on the right-

moving side. In addition, we have an (1, 0)-SCFT for the six-dimensional flat space-time

part, with superfields (Xµ, ψµ
L
), with µ = 0, . . . , 5, regrouping the flat coordinate fields Xµ

and their super partners ψµ
L
. Furthermore, we have a system of 32 right-moving Majorana-

Weyl free fermions, ξIR, I = 1, . . . , 16, generating the target SO(32) gauge and matter

degrees of freedom. Finally, we have to include a (1, 0)-super-reparametrisation ghost sys-

tem (ϕL, ψ
ϕ
L
).

The worldsheet theory for the near-horizon limit of the warped Eguchi-Hanson het-

erotic background presented in section 2.4 was derived in [6] as a WZW model for the

asymmetric gauging:

R
1,5×SU(2)k×SL(2,R)k′×C16

U(1)L×U(1)R
:

(
g, g′; ξIR

)
→

(
eiσ3αg, eiσ3αg′eiσ3β ; ξIR e−iβQI

)
. (4.4)

The group action on the fermions is given in terms of a vector Q = (Q1, . . . , Q16), which

is for notational simplicity denoted by the same symbol as the vector of magnetic charges

defining the line bundle (3.2) in the heterotic supergravity discussion.

As the U(1) factors are gauged in a chiral way, the resulting model will be anomalous,

unless the following conditions,

k = k′ , k′ + 2 =
Q2

2
, (4.5)
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are satisfied by the levels of the left- and right-moving (super-)conformal algebras. The

calculation of the anomalous terms for the gauged WZW model (4.4) is similar to the

derivation in [35].

Next we identify the geometrical background that this CFT describes. The asymmetric

gauging (4.4) defines the coupling of the currents,

JL = J3
L
+K3

L
, JR = k3

R
+
i

2

16∑

I=1

QI :ξ
2I
R
ξ2I−1
R

: , (4.6)

to the non-dynamical gauge fields (AL, AL) and (AR, AR). Implementing this in the

SU(2)k × SL(2,R)k′ action yields:

Sgauged=
k − 2

8π

∫
∂2z

(
∂θ ∂̄θ+∂ψ ∂̄ψ+∂φ ∂̄φ+2 cos θ ∂φ ∂̄ψ

)

+
k′ + 2

8π

∫
∂2z

(
∂ρ ∂̄ρ+∂ψ′ ∂̄ψ′+∂φ′ ∂̄φ′+2 cosh ρ ∂φ′ ∂̄ψ′

)
+SFerm+S(A) .

(4.7)

Here SFerm is the corresponding fermion action induced by the worldsheet supersymmetry,

with simple derivatives, since we have grouped the torsion part of the covariant derivative

for fermions in the gauge field contribution:

S(A)=
1

8π

∫
d2z

[
2iĀLJL+2iJRAR+(k−2)ALĀL−(k′+2)(ALĀL+ARĀR+2 cosh ρARĀL)

]
.

When the anomalies are cancelled, one can simply integrate out the gauge fields over their

algebraic equations of motion. After gauge fixing the SL(2,R) fields ψ′ = φ′ = 0 and for

large level k,1 we obtain the following action for the bosonic sector:

Sbos. =
k

8π

∫
d2z

[
∂ρ ∂̄ρ+∂θ ∂̄θ+sin2 θ ∂φ ∂̄φ+tanh2 ρ (∂φ+cos θ ∂φ) (∂̄ψ+cos θ ∂φ)

+ cos θ (∂φ∂̄ψ − ∂ψ ∂̄φ)
]
.

(4.8)

This is precisely the worldsheet action one obtains when taking the background (2.19)

and (2.20) in the double scaling limit (2.18) (normalized by a factor of 1/2πα′), provided

one identifies the five-brane charges:

Q5 = k , (4.9)

with the level k of the WZW model, as can be established from the background solu-

tion (2.19). With this identification, the anomaly conditions (4.5) yields the relation:

k =
Q2

2
− 2 , (4.10)

which precisely reproduces the integrated Bianchi identity (3.6) for c2 = 1, i.e. for the

double-scaling limit of the generalized spin-connection Ω−. In particular, models with

1This in order to compare with the background (2.19)–(2.20), which is an exact solution to the Bianchi

identity (3.1) only in the large brane charge limit, but receives corrections for finite brane charge values, in

accordance with the supergravity discussion of section 3.1.
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Q2 = 4 with vanishing five-brane charge and hence no-throat opening in the geometry

consistently correspond to the flat k = 0 case.

Moreover, from integrating the gauge fields we infer the existence of a non-constant

dilaton:

Φ(ρ) = Φ0 −
1

2
ln cosh ρ . (4.11)

Finally, from the action for the fermions we extract the gauge field background:

A =
σL3

2 cosh ρ
QIH

I , (4.12)

with the generators HI defining the directions in the Cartan subalgebra h(SO(32)).

Notice at this point that we have not yet implemented in the WZW model the Z2

orbifold eliminating the bolt singularity in the Eguchi-Hanson geometry (2.1). This can

best be understood from the blowdown limit of the theory, as we will see subsequently.

4.2 The WZW Z2 orbifold

The use of the radial coordinate cosh ρ = (r/a)2 in the near-horizon limit (see section 2.4),

where the blow-up modulus a is scaled away, does not allow to perform the blow down in the

WZW model by taking a continuous limit. Starting from the background (2.1) for a = 0,

the worldsheet theory can be constructed in this case from a linear (1, 0)-super-dilaton

theory together with an N = (1, 0) SU(2)k WZW model.

Gauged fixed WZW model. To understand the worldsheet origin of the Z2 orbifold,

we go back to the gauge fixing procedure we performed to obtain the action (4.8), where

after integrating the gauge fields classically, use has been made of the U(1)L and U(1)R
gaugings in (4.4) to choose the gauge

ψ′ = φ′ = 0 , i.e. g′fixed = e
1
2
σ1ρ , ρ > 0 , (4.13)

for g′ generically given in (4.1). This gauge fixing does not fix the U(1)L and U(1)R
transformations in (4.4) completely: taking α = β = π s, s = 0, 1 leaves g′fixed inert.

This Z2 group acts as g → −g on the SU(2)k group elements in (4.4) and leaves the

current algebra invariant. Since it results from imposing the reduced periodicity on the S3

coordinate: ψ ∼ ψ + 2π, to avoid a bolt singularity in the Eguchi-Hanson, as explained in

section 2.1, this orbifold is in fact non-chiral. In order to preserve (1, 0) supersymmetry in

six dimensions, we let the orbifold act on the right-moving sector of the SU(2) CFT, i.e.

on representations of the bosonic ŝu(2)k−2 affine algebra.

Hence in this gauge, the CFT reproduces a Z2 orbifold of the Callan-Harvey-Strominger

(CHS) background [36] corresponding to a stack of k heterotic five-branes on a C
2/Z2

singularity:

R
5,1 × RQ ×

SU(2)k × C
16

Z2
:

(
g, ξIR

)
→

(
− g, ξIR e−πiQI

)
, (4.14)
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where RQ is the super-linear-dilaton theory (̺, ψ̺
L
) with the non-compact direction ̺ canon-

ically normalized, i.e. with background charge Q =
√
2/α′k, and the (1, 0)-supersymmetric

SU(2)k WZW model corresponds to the three-sphere of radius
√
α′k . In light of this it is

not surprising that the two seemingly very different partition functions for (4.4) and (4.26)

of ref. [6] are in fact the same: they are the partition functions corresponding to the same

background once described as a gauge theory and once in the gauge fixed version of an

SU(2)k × SL(2,R)k WZW model. As can be see in (4.14) on the right-moving fermion ξI
R

the residual orbifold action acts via the shift embedding defined by Q.

This analysis sheds new light on the appearance of the Z2 orbifold in the blow down

limit: in ref. [6] the presence of the orbifold in the CFT was justified by requiring the

existence of a Liouville potential in the twisted sector of the discrete representation

spectrum. The discussion here gives an understanding of the Z2 orbifold from the

viewpoint of the continuous representations.

The partition function for continuous representations. The full partition function

of the CFT describing the warped Eguchi-Hanson background in the double scaling limit

receives contributions from both discrete and continuous SL(2,R)/U(1) representations:

continous representations of (bosonic) SL(2,R)k′+2/U(1) are labelled by a complex spin

J = 1
2+ip, given in terms of the continuous momentum p ∈ R+. They have eigenvalueM ∈

Z2k under the current k
3
R
. In the warped Eguchi-Hanson, these states correspond to massive

modes extending in the bulk of the space but which are still (delta-function) normalizable

and are concentrated away from the resolved P
1. In contrast, discrete (bosonic) represen-

tations have half integral spin values 1
2 < J < k′+1

2 . Note that J = 1
2 ,

k′+1
2 correspond to

boundary representations. Their k3 eigenvalue is related to the spin throughM = J+r, r ∈
Z. These representations correspond to states localized in the vicinity of the resolved P

1.

The partition function for continuous SL(2,R)/U(1) representations can be written

down for a generic line bundle of the type (3.4), while for discrete representations it has to

be determined case by case. As shown in [6], for a generic bundle vector Q the SU(2) ×
SL(2,R) coset WZW model (4.8) can be realized as CFT with enhanced (4, 0) worldsheet

supersymmetry, leading for the present implementation of the line bundle to the following

partition function for continuous representations:

Zcont. repr.(τ)=
1

(4π2α′τ2)2
1

(|η|2)4
∫ ∞

0
dp

(
|q|2

) p2

k

|η|2
1

2

1∑

γ,δ=0

k−2∑

2j=0

eπiδ(2j+
k−2
2
γ)χjχ̄j+γ(

k−2
2

−2j)×

× 1

2

1∑

a,b=0

(−)a+b
ϑ

[
a e4
b e4

]

η4
1

2

1∑

u,v=0

e−
πi
4
Q2γδ

ϑ̄

[
u e16 + γQ

v e16 + δQ

]

η̄16
. (4.15)

Let us briefly explain to which field the various factors in this partition function belong to:

the first factors proportional to 1/(τ22 (|η|2))2 correspond to the free CFT of the coordinate

fields Xµ in light-cone-gauge. The integral of (|q|2)p2/k/|η|2 is due to the linear dilation ρ,

and can alternatively be expressed in terms of continuous SL(2,R)/U(1) characters. The

affine ŝu(2)k−2 characters χj(τ) depend on the (half-)integral spin 0 ≤ j ≤ k−2
2 and are
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explicitly given in (B.5) and (B.6). Since the Z2 orbifold neither acts on the currents nor on

the left-moving fermions ψµ
L
, ψα

L
, ψρ

L
, the corresponding contribution in (4.15) result in the

free partition function, defined in terms of the genus-4 theta functions (B.3), with the sum

over the spin-structures labeled by a, b = 0, 1. Finally, the last factor involving the genus-16

theta functions results from the right-moving fermions ξI
R
all with the same spin-structure.

In comparison to the partition function written in [6] here we use a bundle vector Q

in (4.15) which in the normalization of that paper would be written as 1
2Q. This requires

an extra e−
πi
4
Q2γδ phase in the second line of (4.15) to ensure that the twisting by 1

2Q of

the SO(32)1 partition function results in a Z2 automorphism of the SO(32)1 lattice and

modular invariance (see e.g. [9, 37–39]).

As argued before the partition function also represents the partition function for the

warped C
2/Z2 geometry by virtue of the gauging procedure (4.13). Mathematically, this

equivalence can be shown by using the identity (B.7). Physically, this blowdown limit

corresponds to a stack of k heterotic five-branes at r = 0 in the coordinate system of (2.1).

Their back-reaction on the geometry opens an infinite throat, which microscopically does

not allow for the presence of localized modes in the spectrum. It is also worthwhile noting

that because of the of the presence of an infinite throat at r = 0, the Z2 orbifold has no fixed

point in the warped albeit singular geometry. This is mirrored by the form the Z2 orbifold

takes in the right-moving SU(2)k−2, where it acts as shift orbifold on the SU(2) spins.

Line bundle vector conditions. To determine the massless spectra we are primarily

interested in the discrete representations of the CFT corresponding to the warped Eguchi-

Hanson space in the double scaling limit. The partition function for such discrete repre-

sentations, completing (4.15) into the full partition function for the resolved geometry can

in principle be derived but turns out to be rather complicated. For the class of models

with Q = (2, 2q, 014), q ∈ N, the explicit form as been determined in [6].

Nevertheless, the partition function (4.15) for the continuous representations still

proofs quite useful in order to derive some consistency conditions on the input parameters

k and Q that hold for discrete representations as well. In particular, in order for (4.15) to

encode the standard GSOR projection we need to require that

1

4
e16 ·Q =

1

4

∑

I

QI = 0 mod 1 . (4.16)

This condition is more restrictive than the condition on c1(L) in supergravity (3.4). It is

nevertheless compatible with the consistency condition for gauge shifts in heterotic CFTs

on C
2/Z2 found in [9].

The other condition bears on the compatibility between the 1
2Q twist and the Z2

orbifold, which, in particular, requires that the Ramond sector of (4.15) is modular invariant

under the transformation τ → τ+2. This is ensured if the following condition is met [40, 41]:

1

4
Q2 = 0 mod 1 . (4.17)

In particular, from this condition we deduce that consistency with the Z2 orbifold requires

the level of the affine algebras, and subsequently the five-brane charge, to be even in the
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CFT:

Q5 = k = 0 mod 2 (4.18)

Finally, by looking at the fermionic sector of the partition function (4.15), we can give

a microscopic characterization of the distinction between gauge bundles with or without

vector structure arising in supergravity because of the Dirac quantization condition (3.3):

• models with Q ∈ Z
16 support a gauge bundle with vector structure: when Q

has m odd entries, the ground state in the twisted NS-sector is equivalent to an

R-groundstate for m complex fermions. Otherwise, for even integral Q the twist by

Q factorizes in (4.15), so that twisted and untwisted sector NS-grounds states are

equivalent.

• Models with Q ∈ Z
16 + 1

2 e16 support a gauge bundle without vector structure: on

the CFT side the twisted sector groundstate is described by operators exp( i2S ·Xr),

with S ∈ Z
16 + 1

2 e16, which are not spin fields.

In the following we will mainly concentrate on models with integral bundle vectors, due

to their simpler groundstates.

4.3 Marginal operators in the heterotic warped Eguchi-Hanson CFT

The spectrum of massless states of the CFT in the double-scaling limit of the warped

Eguchi-Hanson compactification can most easily be computed by determining its set of

marginal vertex operators. A target-space state in six dimensions, such as a hyper mul-

tiplet or gauge multiplet, is thus described in the CFT by a specific vertex operator V6D.
This operator contains free worldsheet (1, 0)-superfields (Xµ, ψµ

L
), µ = 0, . . . , 5, and the

reparameterization super-ghost system (ϕ, ψϕ
L
), whose SCFTs factorize. The contribution

from the internal CFT is packaged in a vertex operator we denote by V . It decomposes

in the tensor product of a left-moving operator VL, which encodes the contribution of the

(SU(2)k/U(1))× (SL(2,R)k′/U(1)) SCFT and the right-moving vertex operator VR of the

SU(2)k−2 × SL(2,R)k′+2/U(1)× SO(32)1/U(1) CFT.

Vertex operators for massless 6D states. Since we are looking for massless states

in six dimensions, we require the momenta pµ associated to the space-time target fields

to be light-like: pµp
µ = 0 and V to be marginal, i.e. with left- / right-conformal weights

(∆, ∆̄) = (1, 1). The hyper / vector multiplets are then described in the CFT by the

following vertex operators:

V6D = e−ϕ V
{
eipµX

µ

, hyper multiplet ,

ψµ , gauge multiplet ,
V = VL ⊗ VR , ∆(VL) = ∆(VR) = 1 .

(4.19)

The marginality condition for VR can then be satisfied by tensoring (anti-)chiral primaries

of SU(2)k/U(1) and SL(2,R)k′/U(1), and for VL primary operators of SU(2)k−2 and
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Left-moving (anti-)chiral SU(2)k
U(1)L

primaries (anti-)chiral SL(2,R)
k′

U(1)L
primaries R

1,5 fields

fields CL j AL j C ′

L J A′

L J ∂Xµ ψµ
L

∆ 1
2 −

j+1
k

j
k

J
k′

1
2 − J−1

k′
1 1

2

Right-moving SU(2)k−2 primaries
SL(2,R)

k′+2

U(1)R
primaries× SO(32)1

U(1)R
torus fields R

1,5 fields

fields VR jsh,m e−
√

2

α′k′
J̺−iPsh·XR Q · ∂̄XR e

−

√
2

α′k′
J̺−iPsh·XR ∂̄Xµ

∆ jsh(jsh+1)
k

−J(J−1)
k′

+ 1
2 P

2
sh 1− J(J−1)

k′
+ 1

2 P
2
sh 1

Table 3. In this table we give the primary operators of interest for discrete representations of

the warped Eguchi-Hanson CFT in the asymptotic limit along with their conformal weights. The

right-moving primaries correspond to SL(2,R)k′+2/U(1) representations (J,M) with M = J + r,

r ∈ N, and M = J − 1 respectively. The AdS3 radial direction ̺ is canonically normalized. As a

zero-mode it is non-chiral, but for simplicity has been grouped together with the right-moving fields.

The shifted right-moving momentum Psh and spin jsh are given in (4.23) and (4.24), respectively.

SL(2,R)k′+2/U(1) × SO(32)1/U(1). In the asymptotic limit ̺ → ∞, the corresponding

vertex operators acquire a particularly simple form, as the SO(32)1 part becomes a free

field theory. We give the operators relevant for the computation of the spectrum of

massless states in table 3, along with their conformal weights.

Vertex operators for discrete representations. The marginality condition for nor-

malizable states in (4.19) can only be satisfied by operators corresponding to discrete

SL(2,R)/U(1) representations, thus by states which are localized in the vicinity of blown-

up P
1. We now describe the properties of the vertex operators for discrete representations

in detail. The U(1)R which is gauged in (4.4) has direction in the Cartan subalgebra of

SO(32)1 corresponding to the level k + 2 current (4.6):

JR = k3
R
+

i√
2α′

Q · ∂̄XR , (4.20)

where we have bosonized the right-moving fermions ξI
R
via

:ξ2I−1
R

ξ2I
R
: =

√
2

α′
∂̄XI

R
, I = 1, . . . , 16 . (4.21)

For a general bundle vectorQ the SL(2,R) contribution to the partition function for discrete

representations is given in terms of bosonic SL(2,R)k′+2/U(1) characters. As mentioned

before, in addition to their (half-)integral spin J , such discrete representations are further

characterized by their eigenvalue M under k3. Given expression (4.20) we have:

M =
1

2
Q ·Psh , with M = J + r , r ∈ Z , (4.22)

in terms of the sixteen dimensional charge vector Psh of the gauge fermions (4.23).
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By exploiting the non-compactness of the group SL(2,R) it is possible to define a

limit in which one can obtain rather explicit forms for these vertex operators [20]. For

SL(2,R)k′/U(1) operators it is standard to use the non-compact radial direction ̺ of AdS3,

with the canonical normalization ̺ =
√
α′k′ ρ/2 with respect to the non-compact SL(2,R)k′

coordinate in (4.1). Then, in the asymptotic limit ̺ → ∞ and using the gauge (4.13) the

right-moving SL(2,R)k′/U(1) primary operators assume a free field expression, as given in

the second line of table 3, where the bosonized vertex operators associated to the fermions

ξI
R
are given in terms of so-called shifted momenta:

Psh = P+
γ

2
Q , P ∈ Λ16 =

{
N+

u

2
e16

∣∣∣ N ∈ Z
16 ;u = 0, 1

}
, and γ = 0, 1 ,

(4.23)

These shifted momenta encode NS (u = 0) or R (u = 1) boundary conditions of the corre-

sponding string state and whether the state belongs to the untwisted (γ = 0) or twisted sec-

tor (γ = 1) of the Z2 orbifold. In analogy to Psh we denote the right-moving SU(2) spin by:

jsh = j + γ
(k − 2

2
− 2j

)
, (4.24)

which takes into account the twisted and untwisted sector simultaneously.

Not all marginal vertex operators V correspond to physical target space states. Since

the vertex operator has to be inert under the asymmetric gauging (4.4), this enforces that

the SU(2) and SL(2,R) levels have to be identified. This corresponds to the first anomaly

condition (4.5) for the coset CFT, i.e.

k′ = k . (4.25)

In addition, the left- and right-moving vertex operators, VL,VR, have to satisfy their respec-

tive GSO projections. Finally, the vertex operator V as a whole has to be orbifold invariant.

Right-moving SL(2,R)/U(1) representations and conformal weights. In table 3

the asymptotic limit ̺ → ∞ gives rise to operators where the dilaton and SO(32) torus

field dependences factorize. However, not all such operators are in the CFT defined

in (4.4). Only those that fall in representations of the right-moving SL(2,R)k′+2/U(1) ×
SO(32)1/U(1) conformal algebra are. This in particular restricts the charge vector Psh to

lie in the weight lattice of the unbroken gauge groups (3.9).

To better understand the conformal weights of right-movers in table 3, let us recall

that bosonic primaries of SL(2,R)k′+2/U(1) for discrete representation of spin J and k3

eigenvalue M = J + r, r ∈ Z have different expressions depending on whether r is positive

or negative, namely:

r ≥ 0 : ∆̄ = −J(J − 1)

k′
+

M2

k′ + 2
;

r < 0 : ∆̄ = −J(J − 1)

k′
+

M2

k′ + 2
− r .

(4.26)

In particular, SL(2,R)k′+2/U(1) primaries states with r < 0 are affine descendants of

bosonic primaries of lowest weight, i.e. with J = M , obtained by applying the SL(2,R)k′
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generator k−−1 = k1−1 − ik2−1 and thus have vacuum state (k−−1)
−r|J, J〉 (see [8, 42, 43] for

the N = 2 SL(2,R)/U(1) coset and [44] for the bosonic one). These affine descendants

correspond to vertex operators containing derivatives of target space fields. One should

note in particular that taking similarly descendants of primaries with M > J does not

give a primary state.

Since right-moving fermions from the SO(32)1/U(1) coset theory have conformal

weights given by:

∆̄ =
1

2
PT

sh

(
1− QQT

Q2

)
Psh =

1

2
P2

sh −
M2

k′ + 2
, (4.27)

where the second equality is obtained by using the anomaly condition (4.5) and expres-

sion (4.22). Consequently, the total conformal weight of a vertex operator composed of the

product of a right-moving SL(2,R)k′+2/U(1) primary and a SO(32)1/U(1) state sums up to:

∆̄ =





−J(J − 1)

k′
+

1

2
P2

sh , (M ≥ J)

−J(J − 1)

k′
+ J −M +

1

2
P2

sh , (M < J)

(4.28)

The operators e
−
√

2
α′k′

J̺−iPsh·XR correspond to primaries with r ≥ 0, while

Q · ∂̄XR e
−
√

2
α′k′

J̺−iPsh·XR , which contain only simple derivatives of target-space fields,

correspond to primary states k−−1|J, J〉 with r = −1 and thus with fixed k3 eigenvalues

M = J − 1. Along this line we could in principle also consider bosonic SL(2,R)k′+2/U(1)

primaries with r < −1. However, in this case the contribution J −M to the conformal

weight (4.28) can be shown to always lead to ∆̄tot > 1 for the whole SU(2)k × SL(2,R)k′

operator, once the marginality condition ∆tot = 1 is satisfied for left-movers.

4.4 Hyper multiplets

In order to construct vertex operators corresponding to massless hypermultiplets

in supergravity, we now construct the internal V operator in (4.19) by looking

for marginal operators in the CFT obtained by tensoring superconfromal chi-

ral or anti-chiral primaries of SU(2)k/U(1) × SL(2,R)k′/U(1) with primaries of

SU(2)k−2 × SL(2,R)k′+2/U(1)× SO(32)1/U(1).

Left-moving vertex operator. The left-moving part of such operators can easily be

realized by exploiting the super-conformal symmetry on the left. The idea is to start from a

primary of SU(2)k/U(1)×SL(2,R)k′/U(1) with ∆ = 1
2 and subsequently take a descendant

thereof by applying the supercharge G−1/2 = Gsu+−1/2 +Gsu−−1/2 +Gsl+−1/2 +Gsl−−1/2 of the (1, 0)

subalgebra of the total (4, 0) left-moving super-conformal algebra.

Table 3 provides us with two possibilities to combine operators of the supersymmetric

SU(2)k/U(1) and SL(2,R)k′/U(1) to form the scalars of the hyper multiplet: either one

tensors two chiral primaries CL j ⊗C ′
L J , or two anti-chiral primaries AL j ⊗A′

L J . Note that

(anti-)chiral primaries of SU(2)k/U(1) have fixed m = 2(j + 1) (m = 2j) and odd (even)
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fermion number, while (anti-)chiral primaries of SL(2,R)k′/U(1) have bosonic charge

M = J (M = J − 1) and even (odd) fermion number. For simplicity, we deliberately omit

the m, M and fermion number labels in our notation for (anti-)chiral primaries. For more

details on SU(2)/U(1) and SL(2,R)/U(1) characters and representations, see appendix A

in [10], for instance.

Using the anomaly condition, k = k′, in (4.25) and the conformal weights listed in

table 3, we may obtain ∆ = 1
2 by identifying J = j + 1. Since the vertex operator

thus constructed are complex fields, we can combine them to obtain the two left-moving

complex scalars expected from the lowest component of a hyper multiplet in 6 dimensions.

The left-moving part of the vertex operator (4.19) thus reads:

VL = G−1/2

(
CL j ⊗ C ′

L j+1 ⊕AL j ⊗A′
L j+1) . (4.29)

Right-moving vertex operator. The right-moving part VR of the vertex operators are

obtained by tensoring a primary VR jsh,m of the bosonic right-moving SU(2)k−2 with one of

the primaries of the right-moving SL(2,R)k′+2/U(1)×SO(32)1/U(1) CFT listed in table 3.

This gives rise to two families of vertex operators:

i) Type V(1)
R

operators: The first type of vertex operators reads in the asymptotic

limit:

V(1)
R

= e
−
√

2
α′k′

J̺−iPsh·XR ⊗ VR jsh;m , (4.30)

with SL(2,R)k′+2/U(1) charge (4.22) with r ∈ N. For the reason mentioned above

only representations with r ≥ 0 may lead to massless states. The marginality

condition

∆̄ =
jsh(jsh + 1)

k
− J(J − 1)

k′
+

1

2
P2

sh = 1 (4.31)

simplifies, by using condition (4.5), the definition of jsh (4.24), together with the

marginality condition on left-movers J = j + 1:

1

2
P2

sh +
(k − 2

4
− j

)
γ = 1 . (4.32)

ii) Type V(2)
R

operators: The second type of vertex operators we can construct from

table 3 are:

V(2)
R

= Q · ∂̄XR e
−
√

2
α′k′

J̺−iPsh·XR ⊗ VR jsh,m . (4.33)

Their SL(2,R)k′+2/U(1) charge is fixed by the spin:

M =
1

2
Q ·Psh = J − 1 , (4.34)

since their vacuum state is k−−1|J, J〉. Finally, we readily obtain from table 3 and the

same algebra as before the marginality condition in this case:

∆̄ = 1 +
1

2
P2

sh +
(k − 2

4
− j

)
γ = 1 . (4.35)
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mass-shell condition
SL(2,R)k+2/U(1)R rep

GSOR projection
SU(2)k−2R

and orbifold projection degeneracy

N · e16 = 0 mod 2 −jsh ≤ m ≤ jsh

V(1)
R

P2
sh+

(k − 2

2
−2j

)
γ=2 M =

Q ·Psh

2
= j + N

∗

V(2)
R

P2
sh+

(k − 2

2
−2j

)
γ=0 M =

Q ·Psh

2
= j

Table 4. This table gives a compact summary of the conditions satisfied by the full massless CFT

spectrum for the warped Eguchi-Hanson geometry in the double scaling limit.

GSO and orbifold projections. In addition to the conditions discussed above the mass-

less states undergo GSOR and orbifold projections. Although we are considering discrete

SL(2,R)k′/U(1) representations, they can be determined from the partition function (4.15),

as these projections are the same for continuous and discrete representations

Counting the fermionic number of (4.30) and (4.33) gives us the following GSOR

projection for the corresponding operators:

1

2
e16 ·Psh = 0 mod 1 ⇒ 1

2
e16 ·N = 0 mod 1 , (4.36)

where we have in particular used (4.16) and (4.21). For V(1)
R

the same GSOR projection

can alternatively be retrieved by extracting the v dependent phases from the partition

function (4.15).

Finally, we have to ensure that the states constructed here are invariant under the Z2

orbifold action (4.14) which acts as

XI
R
→ XI

R + πQI , I = 1, . . . , 16 , VR jsh,m → (−)2j+ k−2
2
γ VR jsh,m , (4.37)

on the constituents of the vertex operators. Hence for the vertex operators (4.30) and (4.33)

to be invariant, we require that

1

2
Q ·Psh +

1

8
γQ2 = j + γ

k − 2

4
mod 1 . (4.38)

The contribution 1
8 γQ

2 results from the so-called vacuum phase in the twisted sector.

As it is universal, it can be read off from the partition function (4.15) for the continuous

representations by identifying its δ-dependent phases. Notice that upon using the anomaly

condition (4.10) and the definition of the charge M (4.25), condition (4.38) simplifies to:

M = j mod 1 . (4.39)

Given the identification of left-moving spins J = j + 1, this condition is trivially satisfied

by right-moving SL(2,R)k′+2/U(1) discrete representations, which have M = J + r, r ∈ Z.
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The hyper multiplet spectrum. By solving the algebraic system in table 4 subject to

constraints (4.16) and (4.17), we are now in the position to compute in general the hyper

multiplet spectrum for the heterotic warped Eguchi-Hanson CFT. We restrict our analysis

to integer valued bundle vectors defined as in (3.8) (leaving the half-integer case for future

analysis). These vectors are subject to the GSOR and Z2 orbifold conditions, (4.16)

and (4.17), the first one corresponding to a more stronger version of the K-theory

condition (3.4) in supergravity, guaranteeing stability of the Abelian gauge bundle. For

the given choice of models, these conditions translate to:

n∑

i=1

Ni pi = 0 mod 4 , and
n∑

i=1

Ni p
2
i = 0 mod 4 . (4.40)

Also, the level of the affine algebras and the range of SU(2) and discrete SL(2,R) left

spins are in this case given by:

Q5 ≡ k =
1

2

n∑

i=1

Ni p
2
i − 2 , J − 1 = j = 0,

1

2
, 1,

3

2
, 2, . . . ,

1

4

n∑

i=1

Ni p
2
i − 2 . (4.41)

The hyper multiplet spectra are determined by the following vertex operators:

i) Type V(1)
R

operators: we first consider vertex operators built on the right-moving

V(1)
R

(4.30). The marginality condition (4.32) for these operators leads to the mass-

shell equation:

P2
sh = 2 +

[
2(j + 1)− 1

4

n∑

i=1

Ni p
2
i

]
γ . (4.42)

Untwisted sector (γ = 0): all solutions to equation (4.42) which are GSOR and

orbifold invariant are in the untwisted NS sector and therefore characterized by a

momentum Psh = N ∈ Z
16. Since in the untwisted sector we have j = jsh, the

multiplicity operators for such massless states simply counts the internal −j ≤ m ≤ j
degeneracy within given right-moving SU(2)k−2 representation of spin j. Given

the marginality condition j = J − 1 for left-movers, the multiplicity sums over

degeneracies for all spins j satisfying relation (4.22):

nQ(Psh) =





M−1∑

j=0

(2j + 1) =M2 =
(Q ·P)2

4
, M ∈ N

∗ ,

M− 3
2∑

j− 1
2
=0

(2j + 1) =M2 − 1

4
=

(Q ·P)2 − 1

4
, M ∈ 1

2
+ N ,

(4.43)
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Twisted sector (γ = 1): all massless states are in the twisted NS sector, in

accordance with what we found for the untwisted spectrum. In particular, if Q has

m entries pi which are odd, these operators correspond to untwisted r ground states

for m of the complex fermions. In this case however, since the relation between the

shifted momentum and the spin j is fixed by the mass-shell condition, all SU(2)

spins j which are solution to equation (4.40) are in one-to-one correspondence with

representations of the unbroken gauge group, determined by Psh. In the twisted

sector the multiplicity therefore takes the form:

nQ(Psh) = k − 1− 2j =
k + 4

2
−P2

sh . (4.44)

In particular, the twisted singlet in table 6 corresponds to the Liouville operator

giving the CFT description of the blow-up mode in the Eguchi-Hanson.

As was shown in [6], requiring the presence of the Liouville operator in the spectrum

accounts for the necessity of having a Z2 orbifold in the coset CFT (4.4) for the

resolved space, since this operator is in the twisted sector generated by the orbifold.

As a byproduct, the GSOR invariance condition for the Liouville operator precisely

gives the gauge bundle stability condition (4.16). The marginal deformation of

the CFT generated by this operator is called the Liouville potential, and encodes

non-perturbative worldsheet instanton effects. Thus, from the perspective of

discrete representations, both the presence the Z2 orbifold and the gauge bundle

stability condition depend on the existence of the Liouville potential and hence of a

non-perturbative (in α′) completion of the theory.

ii) Type V(2)
R

operators: the marginality condition for these operators reads:

P2
sh =

[
2(j + 1)− 1

4

n∑

i=1

Nip
2
i

]
γ . (4.45)

Requiring the right-moving SL(2,R)k′+2/U(1) states to be primaries fixes

M = J − 1 = j.

Untwisted sector (γ = 0): in the untwisted sector, the only GSOR and orbifold

invariant massless state is the gauge group singlet with zero shift momentum and

therefore nQ = 1. It corresponds to the asymmetric current-current operator which

gives rise to the dynamical deformation resolving the singular background geometry

in (4.14). As such, it gives the CFT description of the volume modulus of the

blown-up P
1 and is always turned on together with the Liouville operator in table 6.

This state is given in the last line of table 5.

Twisted sector (γ = 1): in the twisted sector, only SO(2N) singlet representations

appear with multiplicities given by:

nQ(Psh) =
k

2
−P2

sh . (4.46)

In this case, there are no massless twisted states in the 2N of SO(2N). The

fundamental of SO(2N) can be fermionized to give a state ξa
R−1/2|0〉ns, where

ξa
Rn+1/2 are oscillators from the free gauge sector SO(2N). Combining this with the

Q · ∂̄XR always leads to massive states in any U(Ni) representation.
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Gauge group: U(N1)× . . .U(Nn)× SO(2N)

Representation Psh = P = M J = j + 1 nQ(Psh)

(. . . ,1, [Ni]2,1, . . . ;1) (. . . , 0, 12, 0Ni−2, 0, . . . ; 0N ) pi 1, 2, . . . , pi p2i

(. . . ,1,Ni,1, . . . ,1,Nj,1, . . . ;1) (. . . , 0, 1, 0Ni−1, 0, . . . , 0, 1, 0Nj−1, 0, . . . ; 0N )
pi + pj

2

1, 2, . . . ,
pi + pj

2

(pi + pj)
2

4

3

2
,
5

2
, . . . ,

pi + pj
2

(pi + pj)
2

4
− 1

4

(. . . ,1,Ni,1, . . . ,1,Nj,1, . . . ;1) (. . . , 0, 1, 0Ni−1, 0, . . . , 0,−1, 0Nj−1, 0, . . . ; 0N )
pi − pj

2

1, 2, . . . ,
pi − pj

2

(p1 − p2)
2

4

3

2
,
5

2
, . . . ,

pi − pj
2

(pi − pj)
2

4
− 1

4

(. . . ,1,Ni,1, . . . ;2N) (. . . , 0, 1, 0Ni−1, 0, . . . ;±1, 0N−1)
pi
2

1, 2, . . . ,
pi
2

p2i
4

3

2
,
5

2
, . . . ,

pi
2

p2i
4

− 1

4

(1, . . . ,1;1) (016−N ; 0N ) 0 1 1

Table 5. This table gives the spectrum of untwisted massless bosonic states of the heterotic warped Eguchi-Hanson CFT. This table covers all

models for integer valued bundle vectors Q given in (3.8). The third column distinguishes between spins J corresponding to even or odd values of

M . The second horizontal double line separates states corresponding to the untwisted operators of type V(1)
R

from the singlet state described by

the the untwisted operator V(2)
R

.

–
25
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Gauge group: U(N1)× . . .U(Nn)× SO(2N)

Representation Psh = P+ 1
2 Q , P = J = j + 1 M nQ(Psh)

V(1)
R

(. . . ,1, [Ni]2,1, . . . ;1) (. . . , 0,−12, 0Ni−2, 0, . . . ; 0N )

k

2
− pi + 1 J 2pi − 1

V(2)
R

k

2
− pi + 2 J − 1 2pi − 3

V(1)
R

(. . . ,1,Ni,1, . . . ,1,Nj,1, . . . ;1) (. . . , 0,−1, 0Ni−1, 0, . . . , 0,−1, 0Nj−1, 0, . . . ; 0N )

k − pi − pj
2

+ 1 J pi + pj − 1

V(2)
R

k − pi − pj
2

+ 2 J − 1 pi + pj − 3

V(1)
R

(. . . ,1,Ni,1, . . . ,1,Nj,1, . . . ;1) (. . . , 0,−1, 0Ni−1, 0, . . . , 0, 1, 0Nj−1, 0, . . . ; 0N )

k − pi + pj
2

+ 1 J pi − pj − 1

V(2)
R

k − p1 + p2
2

+ 2 J − 1 pi − pj − 3

V(1)
R

(. . . ,1,Ni,1, . . . ;2N) (. . . , 0,−1, 0Ni−1, 0, . . . ;±1, 0N−1)
k − pi

2
+ 1 J pi − 1

V(1)
R

(1, . . . ,1;1) (016−N ; 0N )
k

2
J + 1 1

Table 6. This table gives the spectrum of twisted massless bosonic states of the heterotic warped Eguchi-Hanson CFT. It covers all models for

integer valued bundle vectors Q of the form given in (3.8).
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The full massless spectra for untwisted and twisted V(1)
R

and V(2)
R

operators are given

in tables 5 and 6. In table 5 we observe that for a marginal operator with half integral spin

values, the overall multiplicity of massless states nQ for a particular representation of the

unbroken gauge group is reduced by a factor 1
4 with respect to the integral spin case. This

phenomenon is related to the absence of SL(2,R)/U(1) discrete boundary representations

in the spectrum. These discrete representations appear as a branching of the continuous

representations in the limit where their momentum p→ 0+ and have SL(2,R)/U(1) spins

J = {12 , 12(k+1)} (see for instance [8]). However, one can check that these representations

are projected out of the partition function (4.15), as they would lead to states with an

SU(2) spin outside the allowed range 0 ≤ j ≤ 1
2(k − 2).

4.5 Gauge multiplets

Massless gauge states. Generically, the vertex operator corresponding to a gauge field

in space-time contains as R5,1 component the operator ψµ
L
, µ = 0, . . . , 5, in the NS sector,

i.e. ψµ
L−1/2|0〉ns. Since this operator already has conformal weight ∆ = 1/2, the marginality

condition for the left-moving vertex operator VL dictates we tensor ψµ
L
with a descendant of

a left-moving state with j = 0 = J , which corresponds to the tensor product of the identity

operators in SU(2)k/U(1)× SL(2,R)k′/U(1). For SU(2)k/U(1) the identity representation

is the anti-chiral primary with j = 0. For SL(2,R)k′/U(1) in contrast, the identity is non-

normalizable, as its spin J = 0 is outside of the range 1
2 < J < (k+1)/2 characterizing dis-

crete representations. Then the identification of SL(2,R)k′ spins entails on the right-moving

side the identity representation for the bosonic SL(2,R)k′+2/U(1), with (J,M) = (0, 0).

With this in mind, one can verify that the marginality condition for right-movers

can only be solved in the untwisted NS sector, leaving again no other choice but the

identity representation for SU(2)k+2 with (j,m) = (0, 0). The complete vertex operators

corresponding to massless gauge multiplets take the form:

Vg = ψµ
L

(
G−1/2AL 0,0 Id

′
L

)
⊗ e−iPsh·XRVR 0,0 . (4.47)

with the untwisted momenta Psh satisfying the mass-shell condition:

∆̄ =
1

2
P2

sh = 1 , (4.48)

Since the SL(2,R)k′+2/U(1) charge has value M = 0, the only solutions to (4.48) are

untwisted NS ground states carrying the adjoint representations of the massless unbroken

gauge group, as can be seen from table 7. In particular, by fermionizing the Psh-dependent

constituent of the operator (4.47) for solutions in table 7, we observe that in the CFT de-

scription the string states associated to massless gauge bosons are consistently constructed

by tensoring the identity representations in SU(2)k−2 × (SL(2,R)k′+2/U(1)) with states

ξI
R−1/2ξ

J
R−1/2|0〉ns, which is what we expect.

As mentioned, the identity representation corresponds to a non-normalizable string

state. As a consequence the wave-functions of the unbroken gauge group bosons do not have

support on the resolved two-cycle of the warped Eguchi-Hanson space and thus correspond

to a global symmetry of the interacting theory localized on the blown-up P
1. In table 7
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Gauge group: U(N1)× . . .×U(Nn)× SO(2N)

Representation Psh M = 1
2Q ·Psh j = J

Massless non-normalizable gauge multiplets

(1, . . . ,1,AdU(Ni),1, . . . ,1;1) (0, . . . , 0, 1, -1, 0Ni−2, 0, . . . , 0; 0N ) 0 0

(1, . . . ,1;AdSO(2N)) (0, . . . , 0;±12, 0N−2) 0 0

Massive Abelian gauge field, with mass 4√
α′(Q2−4)

U(1)Q (016−N ; 0N . . . 0) 0 1

Table 7. This table give the non-normalizable massless and the massive U(1)Q gauge multiplets.

we give the relevant representations for gauge multiplets as determined from the CFT for

models defined by the line bundle vector (3.8).

The massive U(1)Q gauge field. As we recalled in subsection 3.2, turning on a line

bundle gauge background in six-dimensional heterotic compactifications generically entails

the appearance of massive U(1) factors, whose masses originate from the generalized Green-

Schwarz mechanism. In the worldsheet CFT description, we have a single massive U(1)Q
factor, determined by the affine Abelian current JR (4.20).

In analogy to how massless gauge multiplet operators (4.47) are constructed, we

can build the vertex operator associated the massive U(1)Q gauge field in the following

way: we tensor on the left-moving side the space-time contribution ψµ
L−1/2|0〉ns with the

descendent of the tensor product of an anti-chiral primary of SU(2)k/U(1) with a chiral

primary of SL(2,R)k′/U(1), with spins identified j = J . Such left-moving states have total

conformal weight:

∆ =
1

2
+

1

2
+
j

k
+
J

k′
= 1 +

2j

k
. (4.49)

The right-moving part of the U(1)Q vertex operator is identical to the operator V(2)
R

(4.33)

seen previously. Upon identifying j = J , its total conformal weight is:

∆̄ = 1 +
1

2
P2

sh +
2j

k
+
(k − 2

4
− j

)
γ . (4.50)

Level matching then leads to the equation:

P2
sh +

(
k − 2

2
− 2j

)
γ = 0 . (4.51)

We require the SL(2,R) spin to be identified as J = j and to satisfy condition (4.22) and

moreover the SU(2) spin j to lie in the allowed range. It can then be shown that the

only state corresponding to an Abelian gauge field must be in the untwisted NS sector,
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with fermions characterized by the charge vector Psh = (016) and hence in the discrete

SL(2,R)k′+2/U(1) representation (J,M) = (1, 0). This is consistent with condition (4.34)

for the operator V(2)
R

. The complete vertex operator describing the massive U(1)Q then

reads:

VU(1)Q = ψµ
L

(
G−1/2AL 1C

′
L 1

)
⊗Q · ∂̄XR e

−
√

2
α′k′

̺
VR 1,m . (4.52)

This state has J > 0 so, unlike the unbroken gauge group multiplets, is normalizable.

Finally the mass of the U(1)Q can be determined from its conformal weights ∆ = ∆̄ = 1+ 2
k

to be:

m = 2

√
2

α′k
=

4√
α′(Q2 − 4)

. (4.53)

5 Comparison between CFT and supergravity results

In this section we compare the spectra computed in the supergravity approximation of

section 3 with that of the CFT computations in section 4. We will see that the spectra

indeed agree provided we conjecture a correspondence between the untwisted and twisted

sectors of the warped Eguchi-Hanson CFT.

5.1 Matching the charge supergravity and untwisted CFT spectra

Although we are dealing with local heterotic models and not full-fledged compactifications,

the spectra of massless states should for consistency be gauge anomaly free. For non-

compact warped backgrounds, as the ones under scrutiny in this paper, we have shown

in section 3.4 that the presence of five-brane charge Q5 induces the right content of ex-

tra (anti-)five-brane (anti-)hyper multiplet states to cancel all irreducible gauge anomalies.

We thus expect the spectrum of massless states computed in the CFT to concur with the

supergravity results of table 1. We observe that we have a precise matching between the

untwisted localized CFT spectra of table 5 and the hyper multiplet spectra in table 1 up to

two minor caveats: in the untwisted CFT spectra an extra −1
4 correction to multiplicities

has to be taken into account for vector bundles with some odd entries, see section 4.4. Sec-

ondly, there is a single universal correction − 1
12 c2 in the supergravity spectra of section 3.2.

For Eguchi-Hanson models without warping, i.e. Q5 = 0, we recall that in section 3.3

this − 1
12 c2 correction could be interpreted as a Higgsing process: upon blowing up the

C
2/Z2 singularity two bulk gauginos acquire mass by pairing up with twisted hyper mul-

tiplet states. It is not unreasonable to assume the same interpretation of the correction

− 1
12 c2 for warped Eguchi-Hanson models with non-vanishing five-brane charge. However,

as stressed in section 4.5, because of the non-compactness of the SL(2,R)/U(1) factor the

six dimensional gauge fields correspond to non-normalizable vertex operators and hence

are not part of the spectrum. Consequently, the CFT multiplicities for hyper multiplets,

determined by the indices in (4.43), (4.44) and (4.46), are simply blind to such fractional

corrections due to non-normalizable states.
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The situation of the matching between the spectra of the supergravity and the CFT,

obtained so far, can be summarized as follows: we have seen that the untwisted states

of the CFT given in table 5 correctly reproduce the anomaly free heterotic supergravity

spectra of table 1, taking the universal − 1
12 c2 correction into account. Hence, either the

twisted states of table 6 are all massive or they are somehow related to the untwisted

sector. Based on [20, 45] we have reasons to believe that marginal deformations of the

worldsheet Lagrangian (4.8) by vertex operators listed in table 5 and 6 have couplings

which are not independent.

In the next subsection we recall the results of [45] on two singlet marginal deformations

of SL(2,R)/U(1) to show that the corresponding twisted and untwisted states in the CFT

represent the same uncharged hyper multiplet in supergravity. In subsection 5.3 we observe

that untwisted and twisted operators correspond to perturbative versus non-perturbative

states in the α′-expansion in the supergravity limit. Finally, in subsection 5.4 we generalize

the argument of subsection 5.2 to an SU(2)×SL(2,R) coset theory. In particular, we use the

holographic correspondence in [20] to give arguments in favor of how the relation between

couplings of marginal operators should apply to all twisted and untwisted states of the

warped Eguchi-Hanson CFT in the double scaling limit.

5.2 Cigar and Liouville CFT deformations

Consider the asymmetric current-current deformation and the (2, 0) Liouville interaction

generated by the untwisted (table 5) and twisted (table 6) operators in the singlet repre-

sentation of the unbroken gauge group,

δScur-cur = µ1,0

∫
d2z

(
J3
L
+ :ψ̺

L
ψ3
L
:
)
Q · ∂̄XR e

−
√

2
α′k

̺
+ c.c. , (5.1)

δSLiouv. = µ k
2
, k+2

2

∫
d2z

(
ψ̺
L
+ iψ3

L

)
e
−
√

k
2α′

(̺+iYL)−
i
2
Q·XR + c.c. , (5.2)

respectively.2 The relation between the right-moving SU(2)k supercurrent and the chiral

boson YL is given by:

J3
L
= i

√
k

α′
∂YL . (5.3)

The first operator corresponds to the volume of the resolved two-cycle of the Eguchi-

Hanson space, while the second operator gives the SCFT description of the blow-up mode.

Consequently, the two deformations (5.1) and (5.2) cannot be turned on independently;

their couplings are related.

The exact relation between these two coulings has been determined by [45] for

the SL(2,R)k/U(1) CFT with (2, 2)-worldsheet supersymmetry, which underlies the

cigar background geometry. This CFT gives therefore a microscopic description of a

two-dimensional Euclidean black hole in type-II string theory. By looking at the conformal

weights of chiral primaries of the SL(2,R)k/U(1) SCFT in table 3 we see that the only

2For simplicity we give these operators in the 0-picture, thereby omitting the bosonized ghosts. We also

leave out the R
5,1 contribution.
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marginal deformations in this case are the cigar and the (2, 2) Liouville deformations,

corresponding to (5.1) and (5.2), respectively. These now read:

δScigar = µ1,0

∫
d2z ∂XL ∂̄XR e

−
√

2
α′k

̺
+ c.c. , (5.4)

δSLiouv. = µ k
2
, k+2

2

∫
d2z

(
ψ̺
L
+ iψX

L

)(
ψ̺
R
− iψX

R

)
e
−
√

k
2α′

(̺+i(XL−XR) + c.c. , (5.5)

where X = XL + XR is the SL(2,R)k/U(1) compact boson parametrizing the circle

coordinate of the cigar. A two-point function calculation shows that the couplings of these

two interactions are related through [45]:

µ1,0 = Ck
(
µ k

2
, k+2

2

) 2
k , with Ck =

(
−π
k

) 2
k Γ

(
k−1
k

)

π Γ
(
1
k

) . (5.6)

This result, although only established for the SL(2,R)k/U(1) model, holds for (5.1)

and (5.2) as well. This confirms that in the heterotic warped Eguchi-Hanson theory the two

singlet operators leading to (5.1) and (5.2) do not correspond to different massless bosons

in the low-energy theory. Thus, the untwisted singlet in table 5 gives the CFT description

of the blow-up modulus in supergravity, the relation being the following (see [46]):
∣∣∣∣
µ1,0
Ck

∣∣∣∣ =
(gs
λ

)2
=
a2

α′
. (5.7)

Since the Liouville potential encodes worldsheet instanton corrections to the resolved back-

ground geometry, the twisted singlet state in table 6 gives in contrast an expression for its

non-perturbative α′-completion. This will be study in more detail in the next subsection.

5.3 Twisted and untwisted vertex operators as perturbative or non-

perturbative states

Here, we comment on the behaviour in the supergravity limit of twisted and untwisted

vertex operators corresponding to the spectra of tables 5 and 6: in section 3.1 we recalled

that the conformal factor (2.13) and dilaton (2.14) receive 1/Q5 corrections in the finite

five-brane charge limit. This translates on the CFT side to 1/k corrections to the

background metric (4.8) and dilaton (4.11), which can be computed by a method similar

to the one used in [35] for light-like asymmetric gaugings of WZW models. As the CFT

at level k is related to the curvature of the background geometry, this 1/k expansion

corresponds to a (higher derivative) α′-expansion in supergravity. As can be seen from

the multiplicities in tables 5 combined with 6 and spin values (4.41) we have:

sector dynamical marginal deformation scaling of J for large k

untwisted perturbative J . O(
√
k)

twisted non-perturbative J ∼ O(k)

(5.8)

Hence, the normalizable marginal deformations involving the vertex operators (4.30)

and (4.33) can be classified as perturbative or non-perturbative depending on their
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SL(2,R)/U(1) spin: as all these operators are in discrete SL(2,R)/U(1) representations,

they are localized and therefore generically contain a factor exp(−
√

2/α′kJ̺). Conse-

quently, the vertex operators with J ∼ k are exponentially suppressed in the supergravity

limit, k → ∞, while for J ∼
√
k the factors of

√
k in the exponential cancel and the

corresponding operators are not suppressed.

Thus all massless bosonic states of table 5, which correspond to untwisted marginal

vertex operators, are perturbative, while all the twisted states of table 6, which are sup-

pressed in the large k limit, are non-perturbative in the supergravity limit.

5.4 Relating twisted and untwisted massless states through holography: a

conjecture

In this final subsection we propose a conjecture that relates massless CFT states in the

twisted sector (table 6) with the untwisted sector (table 5), by generalizing the conclusion

of subsection 5.3 to the couplings of their corresponding marginal deformations.

For this purpose, we consider a four dimensional CFT closely related to the warped

Eguchi-Hanson CFT (4.4), namely the symmetric gauging of SL(2,R)k × SU(2)k giving

the (4, 4) CFT:

R
5,1 ×

(
SL(2,R)k

U(1)
× SU(2)k

U(1)

)
/Zk , (5.9)

studied in [20]. This CFT was shown to provide a T-dual description of the near-horizon

geometry of k NS-five-branes evenly distributed on a circle of radius a.

It has been proposed in [20] that in the double-scaling limit there exists a holographic

correspondence between the string theory describing the background (5.9) and the little

string theory (LST), i.e. the non-gravitational theory, living on the world-volume of the

five-branes. In particular, in the asymptotic limit where ̺ → ∞, these authors have

conjectured a duality, similar to the AdS/CFT correspondence, between vertex operators

in the CFT and multi-trace operators in the dual LST.

In the asymptotic limit the CFT operators for the asymmetrically gauged WZW

model (5.9) can be expressed in terms of vertex operators of the CHS theory

R
5,1 × RQ × SU(2)k modded out by a discrete symmetry. On the LST side the op-

erators of the low-energy gauge theory are built from scalars in the adjoint representation

of SU(k), denoted by Φi, i = 6, . . . , 9, which result from promoting the four transverse

coordinates of the k NS-five-brane to SU(k) matrices.

The holographic dictionary established in [20] thus relates normalizable vertex oper-

ators corresponding to discrete SL(2,R)/U(1) representations to multi-trace operators in

the LST in a similar spirit as the AdS/CFT correspondence:

eipµx
µ

e−ϕL−ϕR

(
ψLψRVj)j+1;m,m̄e

−
√

2
α′k

(j+1)̺ ←→ t̃r
(
Φ(i1Φi2 · · ·Φi2j+2)

)
, (5.10)

where t̃r denotes multi-traces that are symmetric and traceless in the (i1, . . . , i2j+2) indices.

In addition, ϕL,R denote the left- and right-moving bosonized super-conformal ghost system.

Also ψa
L,R, a = 3,± represent the left- and right-moving fermions of the supersymmetric
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SU(2)k, which combine with a bosonic SU(2)k−2 affine primary Vj into a supersymmetric

primary
(
ψLψRVj

)
j+1;m,m̄

of total spin and charges (j + 1;m, m̄).

Perturbing the worldsheet action S0 of the CFT defined in (5.9) by a marginal defor-

mation involving a primary operator (5.10), as

S0 + µj;m,m̄

∫
d2z eipµx

µ

e−ϕL−ϕR G− 1
2
Ḡ− 1

2

(
ψLψRVj)j+1;m,m̄e

−
√

2
α′k

(j+1)̺
, (5.11)

results in a displacement of the five-branes away from their initial circular configuration in

some particular direction, and thus corresponds to turning on a VEV for the gauge theory

operator in (5.10). In particular, this breaks the SU(k) gauge symmetry to U(1)k−1. Since

the moduli space of the six-dimensional LST is determined by the position of the k ns

five-branes in the four transverse dimensions, the VEVs 〈t̃r(Φ(i1Φi2 · · ·Φi2j+2)
)
〉 are in

general related to one another through the moduli of the LST. Using the dictionary (5.10)

then shows that the couplings µj;m,m̄ in (5.11) are related likewise, with (5.7) being a

particular case of this dependence between couplings of marginal deformations. Since

the holographic dictonary (5.10) involves multi-trace operators in the LST, for general

couplings µj;m,m̄ the correspondence is not necessarily one-to-one.

Even though the LST dual to the warped Eguchi-Hanson heterotic CFT (4.4) is un-

known, we believe that a holographic correspondence similar to (5.10) should exist: ref. [20]

gives evidence that such a duality can be verified for various known examples of CFTs un-

derlying NS-five-brane backgrounds that asymptote to a linear dilaton theory, which is

the case for (4.4). In this perspective, we propose that the untwisted and the twisted

massless states of section 4.3 are related to one another through the moduli of the dual

low-energy gauge theory in the fashion just explained. As emphasized, this correspondence

need not be one-to-one, which could account for the mismatch between the multiplicities

of the untwisted and twisted states in tables 5 and 6, respectively. Furthermore, in light

of subsection 5.3 we propose that the hyper multiplets in table 1 are described in the CFT

and their multiplicities given by the untwisted states in table 5, while the twisted states in

table 6 represent their non-perturbative in α′ completion.

Verifying this conjecture using holography is unfortunately beyond the scope of this

paper, since this would require uncovering first the gauge theory dual to the CFT given

in (4.4). Alternatively, one might be able to prove this conjecture by computing and

comparing n-point functions with insertions of the relevant marginal vertex operators, and

thus understand the relations between the multiplicities of twisted and untwisted states.

That however would be a formidable task for the CFT under consideration, with its large

and complicated set of marginal deformations.

6 Compact T 4/Z2 resolution models

In this section we apply our analysis of non-compact warped Eguchi-Hanson spaces to the

compact orbifold T 4/Z2 and its smooth resolution. To this end we first give a description

of the intersection ring of the Divisors of the resolved T 4/Z2. Using this topological data

we compute the spectrum on such K3 resolutions.
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6.1 Global description of the compact T 4/Z2 orbifold resolution

Following the methods described in the works [47, 48] (see also [49, 50]) we can extend

the description of the local resolution of a single C2/Z2 singularity to a global description

of the resolution of the compact orbifold T 4/Z2. Since this orbifold has 16 C
2/Z2

singularities, one introduces 4+4 ordinary divisors D1,n1 and D2,n2 with n1, n2 = 1, 2, 3, 4.

Each pair of (D1,n1 , D2,n2) intersects at one of these 16 fixed points. In blow-up each

of them is replaced by an exceptional divisor En1n2 . They intersect with the ordinary

divisors dictated by the local C2/Z2 resolution description, i.e.

D1,n1En′

1n
′

2
= δn1n′

1
, D2,n2En′

1n
′

2
= δn2n′

2
. (6.1)

In addition the four-torus has two-torus subspaces. In blow-up they lead to so-called

inherited divisors R1 and R2 subject to the linear equivalence relations

D1,n1 =
1

2

(
R1 −

∑

n2

En1n2

)
, D2,n2 =

1

2

(
R2 −

∑

n1

En1n2

)
. (6.2)

Their non-vanishing basic intersections are

R1D2,n2 = R2D1,n1 = 1 , R1R2 = 2 . (6.3)

The linear equivalence tell us that a basis of H2 is provided by R1, R2 and En1n2 . Given

the intersection numbers given above their non-vanishing (self-)intersection read

R1R2 = 2 , En1n2En′

1n
′

2
= −2 δn1n′

1
δn2n′

2
. (6.4)

Using the splitting principle and the linear equivalences one finds that for the resolution

of T 4/Z2 we get

c1 ∼ 0 , c2 ∼ −
3

4

∑

n1,n2

E2
n1n2

. (6.5)

Inserting the self-intersection numbers we find that c2 = −3
4 ∗ 16 ∗ (−2) = 24, as expected

for a K3 surface [51].

6.2 Model building on compact resolutions

In addition to describe models on the resolution of T 4/Z2 we also have to specify the gauge

background. Just like the non-compact case we take a combination of line bundles:

F
2π

= −1

2

∑

n1,n2,I

En1n2 Qn1n2 I H
I , (6.6)

in terms of a set of line bundle vectors Qn1n2 labeled by the fixed point indices (n1, n2).

In this case we find for the non-integrated Bianchi identity

1

4π2α′
∂H =

∑

n1,n2

(
1

4
Q2
n1n2
− 3

2

)
E2
n1n2

. (6.7)
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When we insert the self-intersections we can express this as

−Q5 = 24− 1

2

∑

n1,n2

Q2
n1n2

. (6.8)

Since we here describe a compact model, Q5 > 0 means we need anti-five-branes and

consequently six-dimensional supersymmetry is broken. In the case that Ñ = −Q5/2 > 0

we know that we need Ñ NS five-branes to cancel the anomalies.

It is also possible that Q5 = 0, while the non-integrate Bianchi identity (6.7) is

non-vanishing. This means that locally near each of the resolved singularities one would

infer that there are either five-branes or anti-five-branes, but their charges in total precisely

compensate. A concrete example of such a configuration was presented in [14, 21]: in this

model one has the bundle vectors

Q1n2 = (−12, 014) , Q2n2 = Q3n2 = (12, 014) , Q1n2 = (32, 014) . (6.9)

Hence, at each of the 12 fixed points, (n1, n2) with n1 = 1, 2, 3 and n2 = 1, 2, 3, 4, one

needs a single five-brane. While at each of the four remaining fixed points, (4, n2) with

n2 = 1, 2, 3, 4, there are three anti-five branes present. Clearly their contributions exactly

cancel out: this means that the anti-hyper multiplets from the anti-five-branes have paired

up with corresponding hyper multiplet states and decouple from the massless spectrum.

Consequently, the combined perturbative spectrum, given by

10 · (2,28) + 46 · (1,1) (6.10)

w.r.t. the unbroken gauge group SU(2) × SO(28), is anomaly free. Up to one additional

singlet (1,1) this is the spectrum of the model using the standard embedding, i.e. where

the gauge connection is set equal to the spin connection (see e.g. [14]).

7 Conclusions

We considered the heterotic string on the warped Eguchi-Hanson space in the presence of

line bundle gauge backgrounds. We reviewed and compared two alternative descriptions of

such heterotic backgrounds: in the leading order α′-expansion we employed supergravity

techniques. In the double scaling limit, in which both the blow-up radius a and the string

coupling gs tend to zero simultaneously, we exploited an exact CFT description. The

underlying worldsheet description was built on an asymmetric U(1)L × U(1)R gauging of

the WZW model on the group space SU(2)k × SL(2,R)k′ . In particular, by studying the

residual gauge invariance in the blow down limit we were able to identify the origin of the

Z2 orbifold of the Eguchi-Hanson space from the perspective of continuous SL(2,R)/U(1)

representations in the CFT. This completes an argument in [6] which relied on the existence

of a Liouville potential in the spectrum of discrete representations.

For both regimes there are methods at our disposal to compute the massless spectrum

of the heterotic string on these backgrounds: in the supergravity approximation we used

a multiplicity operator (which may be thought of as a representation dependent index) to
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determine the spectra. In the double scaling limit we determined the massless states by

classifying all the marginal operators that the CFT admits. In either regime we computed

the spectra in a systematic way for a large class of models simultaneously, by concentrating

on a general line bundle vector Q = (pN1
1 , . . . , pNn

n , 0N ) with N1+ . . .+Nn+N = 16 where

pi are some different positive integers.

The spectra in the supergravity approximation can be read off from table 1. As this

table shows the multiplicities are not necessarily integral, which is an artifact due to the

non-compactness of the (warped) Eguchi-Hanson space. This effect has been observed for

various other non-compact resolutions in the literature [12, 14, 24].

The second way to determine the spectra on the warped Eguchi-Hanson space takes

the full (anti-)five-brane backreacted geometry into account. Given that the CFT in the

double scaling limit contains a Z2 orbifold acting on its SU(2)k contribution, the CFT

spectra fall into two classes. The corresponding untwisted and twisted massless states

are collected in tables 5 and 6, respectively. By comparing the results for supergravity

and CFT spectra, it follows immediately that untwisted spectra in table 5 is essentially

identical to the supergravity spectra collected in table 1. There is a difference in the fine

print of the spectra calculated in either regime: the untwisted CFT and the supergravity

spectra differ up to a universal fractional correction, which is due to a Higgsing process.

The CFT multiplicity index appears to be blind to this effect.

Furthermore, to interpret the apparent redundancy of the twisted and untwisted CFT

spectra as compared to the supergravity results, we propose that the couplings of the

corresponding marginal deformations of the coset CFT are related: the untwisted and

twisted massless CFT states provide perturbative and non-perturbative α′-descriptions of

the same hyper multiplets in the supergravity regime. To support our conjecture, we rely

on the proposed duality of ref. [20] relating an asymptotically linear dilaton CFT to a little

string theory living on a configuration of NS-five-branes.

Proving this conjecture is unfortunately beyond the scope of this work because the

low-energy gauge theory dual to the warped Eguchi-Hanson CFT is unknown. Of course,

the perspective of uncovering a heterotic AdS/CFT type correspondence for the warped

Eguchi-Hanson with line bundle and five-brane flux is extremely interesting. In this case

the dual low-energy gauge theory would likely be given by a type of little string theory.

However, in the absence of such a low-energy description one could verify this proposal

by computing and comparing the n-point functions of the appropriate marginal operator

insertions. This would not only be instrumental in reconciling the difference between

the combined twisted/untwisted CFT and supergravity spectra, but would also improve

the understanding of the apparent mismatch between the multiplicities of untwisted and

twisted CFT states.

When the five-brane charge is non-vanishing, these untwisted CFT or supergravity

spectra appear to be anomalous. However, following the logic of refs. [15, 16] we showed

that these spectra are free of irreducible gauge anomalies provided that five-brane states

are included. Given that the chirality in six dimensions of gauginos and hyperinos is

fixed by supersymmetry, it turns out that it is simply impossible to cancel the anomalies

without breaking supersymmetry in most cases: the only way to construct models free
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of irreducible anomalies is to allow for anti-hyper multiplets (i.e. hyper multiplets with

the opposite chirality as that in the perturbative string sector) to live on anti-five-branes.

Hence, possibly at the price of supersymmetry breaking, the anomalous perturbative string

spectra can be completed by non-perturbative five-brane states to become anomaly free.

Since the (warped) Eguchi-Hanson space is non-compact, it is a bit premature to

conclude from this analysis that supersymmetry is indeed broken. To see what happens

when various locally (warped) Eguchi-Hanson spaces are glued together, we investigate

the resolution of the T 4/Z2 orbifold in which the local Bianchi identities are never satisfied

near the resolved singularities; only the global Bianchi identity is fulfilled. We find that

the local five-branes and anti-five-branes precisely compensate each other and the full

model is free of anomalies while supersymmetry is preserved.
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A Some trace identities

This appendix summarizes some trace identities relevant for anomaly investigations in six

dimensions.

The adjoint representationAd of SU(N) is obtained asN⊗N⊖1 withN the fundamen-

tal andN the anti-fundamental representation and he anti-symmetric tensor representation

is defined as [N]2 =
1
2
N(N− 1). Consequently we have the following trace identities:

TrAdF
4
SU(N) = 2NTrNF

4
SU(N) + 6

(
TrNF

2
SU(N)

)2
, (A.1)

Tr[N]2F
4
SU(N) = (N − 8)TrNF

4
SU(N) + 3

(
TrNF

2
SU(N)

)2
. (A.2)

The adjoint representation Ad of SO(M) equals the anti-symmetric tensor represen-

tation [M]2 with M the vector representation of SO(M). This leads to

TrAdF
4
SO(M) = (M − 8)TrMF

4
SO(M) + 3

(
TrMF

2
SO(M)

)2
. (A.3)

The fundamental representation of the symplectic group Sp(2Ñ) is denoted by

2Ñ. The adjoint representation Ad of Sp(2Ñ) is its symmetric tensor representation

Ñ(2Ñ+ 1). The irreducible anti-symmetric tensor representation [2Ñ]2 = Ñ(2Ñ− 1)− 1

is traceless w.r.t. its symplectic form η. This gives the following:

TrAdF
4
Sp(2Ñ)

= (2Ñ + 8)Tr
2Ñ
F 4
Sp(2Ñ)

+ 3
(
Tr

2Ñ
F 2
Sp(2Ñ)

)2
, (A.4)

Tr
[2Ñ]2

F 4
Sp(2Ñ)

= (2Ñ − 8)Tr
2Ñ
F 4
Sp(2Ñ)

+ 3
(
Tr

2Ñ
F 2
Sp(2Ñ)

)2
. (A.5)
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B Theta functions and characters

B.1 Dedekind and higher genus theta functions

The Dedekind function η(τ) is given by

η(τ) = q
1
24

∏

n≥1

[
1− qn

]
, (B.1)

where q = e2πiτ with τ in the complex upper-half-plain. The genus one theta function with

characteristics α, β is defined as

ϑ[αβ ](τ |ν) =
∑

n

q
1
2
(n+α

2
)2e2πi(n+

α
2
)(ν+β

2
) , (B.2)

The genus-n theta function with vector valued characteristics α = (α1, . . . , αn) and β =

(β1, . . . , βn) is obtained as a product of n genus

ϑ[αβ ](τ) =
n∏

i=1

θ[αi

βi
](τ) . (B.3)

B.2 ŝu(2)k−2 characters

As SU(2) characters can be found in standard CFT textbooks, like [7, 52], we will be brief

here. The ŝu(2)k theta functions is given by

Θm,k(τ, ν) =
∑

n∈Z

qk(n+
m
2k )

2

zk(n+
m
2k ) , (B.4)

where z = e2πiν andm can be restricted to lie within the rangem = 0, . . . 2k−1. In terms of

these theta functions the characters χj of the bosonic affine algebra ŝu(2)k−2 are defined as

χj(ν|τ) = Θ2j+1,k(ν|τ)−Θ−2j−1,k(ν|τ)
Θ1,2(ν|τ)−Θ−1,2(ν|τ)

, (B.5)

for the integral or half-integral spin in the range 0 ≤ j ≤ k−2
2 . By carefully taking the

limit ν → 0 one finds

χj(τ) = χj(0|τ) = 1

η3(τ)
q

(2j+1)2

4k

∑

n∈Z

(
2j + 1 + 2k n

)
qn(2j+1+k n) , (B.6)

where the expansion is set up such that the powers of q are always positive.

We also mention an identity on ŝu(2)k theta functions, which we use in the present

work:

Θm/p,k/p(ν|τ) =
∑

n∈Zp

Θm+2kn,pk

(
ν

p

∣∣∣∣τ
)
. (B.7)
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