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Abstract: The sudden injection of energy in a strongly coupled conformal field theory

and its subsequent thermalization can be holographically modeled by a shell falling into

anti-de Sitter space and forming a black brane. For a homogeneous shell, Bhattacharyya

and Minwalla were able to study this process analytically using a weak field approximation.

Motivated by event-by-event fluctuations in heavy ion collisions, we include inhomogeneities

in this model, obtaining analytic results in a long wavelength expansion. In the early-time

window in which our approximations can be trusted, the resulting evolution matches well
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with that of a simple free streaming model. Near the end of this time window, we find that

the stress tensor approaches that of second-order viscous hydrodynamics. We comment on

possible lessons for heavy ion phenomenology.
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1 Introduction

The holographic gauge-gravity duality provides a framework to model the behavior of

strongly coupled quantum liquids. Such liquids are studied in many experimental set-

tings: quark-gluon matter created in ultrarelativistic heavy ion collisions, strongly corre-

lated electrons in metals, cuprates and heavy-fermion materials, condensates of ultra-cold

atoms. Therefore there is ample motivation for using holographic models to gain insight

into strongly coupled dynamics. Holographic models are known to have a very low shear

viscosity to entropy density ratio in the strong coupling limit of the boundary quantum field

theory [1–3], which is also close to the values reported for quark-gluon matter produced at

the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC) [4], for a

cold atom gas near the unitarity limit [5–7], and for the electronic fluid in graphene [8]. The
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study of transport coefficients has also evolved to a more direct relation between gravity and

fluid dynamics: to the fluid/gravity correspondence [9, 10] where one finds that a particular

long wavelength limit of Einstein’s equations turns them to hydrodynamic equations. One

can even derive the complete second order hydrodynamic equations for conformal relativis-

tic fluids [9, 11] and generalize the standard Müller-Israel-Stewart theory. More recently

attention has been given to equilibration and thermalization from far-from-equilibrium ini-

tial conditions. A particularly interesting question is how and when a strongly coupled

quantum liquid approaches a regime in which hydrodynamics becomes a good approxima-

tion. This paper investigates that question in a particular analytically tractable model,

with additional motivation coming from the early dynamics of hot quark-gluon matter in

heavy ion collisions.

Relativistic heavy ion collisions have the dual advantage of forming almost perfectly

isolated microscopic quantum systems, for which the von Neumann entropy should be

exactly conserved, and of being studied in great detail experimentally at RHIC and at

the LHC. Experiments at these accelerators have shown that already at very early times,

at most 1 fm/c, the matter produced in the heavy ion collisions shows collective behav-

ior in agreement with what is expected from viscous hydrodynamics. The validity of a

hydrodynamical description generally relies on the fluid being near local thermal equilib-

rium, but some degree of collectivity may exist even before local thermal equilibrium is

reached. This conjecture is supported by recent experiments studying p+Pb collisions at

LHC [12, 13] and d+Au collisions at RHIC [14], which show indications of the presence

of hydrodynamic behavior in events producing a large particle multiplicity. On the other

hand, several theoretical approaches to the dynamics of thermalization in QCD, e.g. the

perturbative bottom-up thermalization framework [15] and classical gauge theory [16], pre-

dict substantially longer equilibration times. Heavy ion experiments thus offer a playground

for the study of equilibration and thermalization in gauge theories.

The argument about the presence of hydrodynamic behavior of the quark-gluon plasma

created in heavy ion collisions rests primarily on two observations. First, one observes a

cos(2φ) correlation between the azimuthal momentum direction of produced hadrons and

the collision plane, which is known as “elliptic” flow, see [17–20] and references therein.

This phenomenon can also be deduced from the azimuthal two-particle correlations among

emitted hadrons, and is sometimes referred to as the “ridge” or “double-ridge” effect in

studies in Pb+Pb collisions at LHC [20–23]. The second observation is related to event-

by-event fluctuations. Experimentally it was found for symmetric heavy ion collisions that

odd Fourier coefficients of the flow are not much smaller than even ones [20, 23, 24]. By a

symmetry argument, odd coefficients can only be generated by fluctuations, so one is forced

to conclude that fluctuations are large. The parton saturation model for the initial nuclear

state suggests also that they are of short range in the plane transverse to the beam axis (of

order of the inverse saturation scale 1/Qs). Detailed simulations [25–29] show that if one

assumes also these small size fluctuations to evolve hydrodynamically one gets excellent

fits to all flow coefficents.

The holographic description of strongly coupled gauge theories offers a framework for

the study of the rate of thermalization and the approach to hydrodynamical flow. In [30–
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33], it was found that in a simple model thermalization after the homogeneous, isotropic

injection of energy proceeds very fast. The initial state of heavy ion collisions is, however,

quite anisotropic and inhomogeneous. It is characterized by a strong asymmetry between

longitudinal and transverse pressure (the former may even be negative initially due to the

presence of strong longitudinal gauge fields) and by large density fluctuations in the trans-

verse direction. The effect of both can be studied with a refined AdS/CFT treatment.

The effect of the pressure anisotropy was studied in [34–36] under the assumption of lon-

gitudinal boost invariance and transverse homogeneity; it was found that hydrodynamic

behavior is reached on time scales of order 0.3 − 0.5 fm/c for many different initial con-

ditions. This “hydroization” is not equivalent to complete thermalization because viscous

hydrodynamic behavior at early times in a boost invariant expansion implies a rather large

pressure anisotropy and thus strong deviation from local thermal equilibrium.

In the present paper we analyze the second aspect, namely the question how the

approach to hydrodynamic behavior is affected by local density fluctuations, which has not

been studied in detail so far. A priori, there is no reason to believe that hydrodynamics,

which is a low-energy effective description, should describe the short-time evolution we

will be studying. However, since hydrodynamics turned out to apply unexpectedly early

in homogeneous models, it is interesting to ask to what extent this surprise extends to

inhomogeneous setups.

Thermalization in strongly coupled conformal field theories with a gravity dual cor-

responds to black brane formation in asymptotically anti-de Sitter (AdS) spacetimes. To

study gravitational collapse, one generically needs numerical general relativity, but inter-

esting situations exist where analytic computations are possible. Consider a massless scalar

minimally coupled to gravity in d+1 spacetime dimensions with negative cosmological con-

stant. In this setting, the authors of [37] considered the effect of a homogeneous boundary

source on the bulk geometry of an asymptotically AdS spacetime. Specifically, they turned

on for a finite lapse of time δt a homogeneous source φ0(t) for a marginal boundary operator

corresponding to the massless scalar field in the bulk. Solving the field equations in a weak

field approximation, i.e. in the limit where the amplitude of the scalar source is small in an

appropriate sense,1 in [37] it was shown that this generically leads to black brane formation

in the bulk (see also [38–40] for numerical analyses). For d+ 1 = 4 and to leading order in

the amplitude of the scalar source, the geometry is given by the AdS4-Vaidya metric

ds2 = −
(
r2 − M(v)

r

)
dv2 + 2dvdr + r2(dx2 + dy2) , (1.1)

with M(v) a non-decreasing function that vanishes for v ≤ 0. This geometry describes a

shell of null dust falling in from the boundary of AdS and collapsing into a black brane. A

schematic representation of the process is depicted in figure 1.

The AdS-Vaidya model has been very useful as a simple, tractable model of holographic

thermalization. Many observables in the dual field theory have been identified whose time-

evolution can be computed relatively easily from geometric quantities in AdS-Vaidya [30–

1The “injection time” δt should be small compared to the inverse temperature of the black brane that

will eventually be formed.
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Figure 1. A schematic representation of the dynamical collapse process first studied in [37]. In

pure AdS spacetime, a scalar source φ0 on the boundary, corresponding to the asymptotic boundary

value of a massless bulk scalar field, is turned on for a lapse of time δt. This induces a non-vanishing

profile for the bulk scalar field which backreacts on the AdS geometry as a shock wave propagating

in the bulk leading to the formation of a black hole horizon.

33, 41–50]. When this model is used as a very crude analogue of the equilibrating quark-

gluon plasma in heavy ion collisions, an encouraging result is that, at least for the range of

length scales studied in [32, 33], thermalization for homogeneous energy density occurs as

fast as allowed by causality.2 This insight suggests that hydrodynamics can already describe

early stages of heavy ion collisions with strong coupling dynamics. Massive infalling shells

were studied in [51–59], charged shells in [60–63] and shells with angular momentum in [64].

Several holographic thermalization models have been proposed that are probably more

realistic than the AdS-Vaidya model. Examples include anisotropic homogeneous plas-

mas [65–71], boost invariant plasmas [34–36, 72–74], and colliding shock waves [75–83].

Still, a high degree of symmetry is usually assumed to keep the (mostly numerical) compu-

tations tractable. Also in these models, fast thermalization is often found [34, 35, 66, 79].

Holographic thermalization has also been used to model condensed matter systems [84–88].

Other models related to holographic thermalization are studied in [89–102].

In this paper we generalize the construction of [37] to the case of an inhomogeneous

scalar field source at the boundary. As in [37], we solve the equations of motion in a

perturbative expansion in the amplitude of the scalar field boundary value, which is here

allowed to depend on the spatial coordinates. Before the source is turned on, the solution

coincides with the pure AdS background. When introducing a dependence on the transverse

spatial coordinates, the situation becomes much more involved and finding an exact analytic

solution is complicated. In order to still get an analytic insight, in this paper we shall

therefore attack the problem under the simplifying assumption that the scale of spatial

variations is large as compared to all other scales, following a strategy suggested in [37].

As in [37], the case of a four-dimensional bulk space-time turns out to be technically

2For d > 2, it was found in [50] that on length scales larger than the inverse temperature, thermalization

happens at a smaller speed.
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simpler than the five-dimensional one.3 Ideally, one would like to introduce space de-

pendence for at least two directions, corresponding to the plane in which the pancaked

nuclei overlap in the collision, but for simplicity we consider the simplest case involving

spatial dependence on a single coordinate (in addition to the radial coordinate in the

bulk). So we consider an asymptotically AdS4 geometry with inhomogeneities along a

single spatial direction.

In section 2, we construct the bulk solution up to second order in the amplitude of

the source that drives the gravitational collapse and up to fourth order in the gradient

expansion. We argue that our solutions should be reliable for times short compared to

the inverse local temperature (of the black brane to be formed) and wavelengths large

compared to the inverse local temperature. In section 3, we extract from the bulk solution

the expectation value of the boundary stress-energy tensor, and study its time-evolution

after the inhomogeneous energy injection. We compare this evolution to that of a simple

free-streaming model as well as to first and second order hydrodynamics in section 4.

Section 5 contains a summary and a discussion of the possible relevance for heavy ion

phenomenology.

A short account of our main results can be found in the companion paper [103].

2 AdS4 weak field inhomogeneous collapse in the gradient expansion

We consider a massless scalar minimally coupled to gravity in four spacetime dimensions

with negative cosmological constant,

S =
1

16πGN

∫
d4x
√
g

(
R− 2Λ− 1

2
gµν∂µφ∂νφ

)
. (2.1)

Here Λ = −3 and the AdS radius has been set to one. The equations of motion following

from (2.1) read

Eµν ≡ Gµν −
1

2
∂µφ∂νφ+ gµν

(
−3 +

1

4
(∂φ)2

)
= 0 ,

2φ =
1
√
g
∂µ(
√
ggµν∂νφ) = 0 .

(2.2)

When assuming inhomogeneities along only one of the two boundary spatial directions,

say x, the ansatz in Eddington-Finkelstein coordinates consistent with the symmetries of

the problem can be written as

ds2 = −h(v, r, x)dv2 + 2dv (dr + k(v, r, x)dx) +

+ f(v, r, x)2eB(v,r,x)dx2 + f(v, r, x)2e−B(v,r,x)dy2 ,

φ = φ(v, r, x) ,

(2.3)

3Since in heavy ion collisions azimuthal anisotropies are studied in the directions transverse to the beam,

it is not even obvious that for our purposes a four-dimensional bulk geometry should be less relevant than

a five-dimensional geometry without a beam direction singled out. More realistic models would involve

nearly boost invariant setups or colliding shock waves, but for computational tractability these will not be

studied in the present paper.
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where v is an ingoing null coordinate, r the AdS radial coordinate and y denotes the other

spatial direction.

On the boundary, where the null coordinate v is identified with the gauge theory time

t, we turn on an inhomogeneous scalar field source

ϕ(v, x) = 0 ,

ϕ(v, x) = εϕ0(v, x) ,

ϕ(v, x) = 0 ,

v ≤ 0

0 < v < δt

v ≥ δt ,
(2.4)

over a time δt. Here we have singled out the explicit factor ε parametrizing the amplitude

of the scalar source for the bulk field, which with the non-canonical normalization (2.1) of

the bulk kinetic term is dimensionless. As in [37], we require the forcing function ϕ0(v, x)

and its first few time derivatives to be everywhere continuous.

The initial condition that the spacetime should be pure AdS for v ≤ 0 corresponds to

h(v ≤ 0, r, x) = r2

k(v ≤ 0, r, x) = 0

f(v ≤ 0, r, x) = r

B(v ≤ 0, r, x) = 0 ,
(2.5)

and

φ(v ≤ 0, r, x) = 0 , (2.6)

while the asymptotically AdS boundary conditions (with planar boundary geometry) read

lim
r→∞

h(v, r, x)

r2
= 1

lim
r→∞

k(v, r, x)

r2
= 0

lim
r→∞

f(v, r, x)2

r2
= 1

lim
r→∞

B(v, r, x) = 0 ,
(2.7)

and

lim
r→∞

φ(v, r, x) = ϕ(v, x) . (2.8)

The metric (2.3) supplemented with the boundary conditions (2.7) is not completely gauge

fixed. The form of the metric is left unchanged under the transformation r → r+s(v, x). We

use this residual freedom to choose the subleading behavior of f(v, r, x) to be f(v, r, x) =

r(1 +O(1/r2)).

With an ansatz of the form (2.3) one has, in addition to the scalar equation of motion,

seven equations coming from (2.2). In fact, of the ten components of Eµν , three turn out to

identically vanish and one of the remaining is a linear combination of the others together

with the scalar equation. The following linear combinations turn out to be a convenient

choice to work with:

Eφ ≡ 2φ = 0

E1 ≡ gvµEµr = 0

E2 ≡ gvµEµv = 0

E3 ≡ gvµEµx = 0

E4 ≡ gxµEµx = 0

E5 ≡ gyµEµy = 0

Ec1 ≡ grµEµv = 0

Ec2 ≡ gxµEµv = 0 ,

(2.9)

where Eci = 0, i = 1, 2 are conservation equations, and one of the equations is implied by

the others.

– 6 –
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The approach we adopt here is to solve the system (2.9) in a double expansion. Fol-

lowing [37], we perform a weak field expansion in the amplitude ε of the scalar field source.

On top of this, we consider a spatial gradient expansion along the non-homogeneous space

direction, i.e. an expansion in spatial derivatives.4 The metric components and scalar

field are then written in a double expansion in the parameters ε, which keeps track of the

order in the amplitude of the source, and µ, which acts as a formal derivative counting

parameter, as

h(v, r, x) =

∞∑
n,i=0

εnµihn,i(v, r, µx)

f(v, r, x) =

∞∑
n,i=0

εnµifn,i(v, r, µx)

φ(v, r, x) =

∞∑
n,i=0

εnµiφn,i(v, r, µx)

k(v, r, x) =

∞∑
n,i=0

εnµikn,i(v, r, µx)

B(v, r, x) =

∞∑
n,i=0

εnµibn,i(v, r, µx) . (2.10)

Accordingly, the boundary source is written as

ϕ(v, µx) = 0 ,

ϕ(v, µx) = εϕ0(v, µx) ,

ϕ(v, µx) = 0 ,

v ≤ 0

0 < v < δt

v ≥ δt ,
(2.11)

and we assume that the function ϕ0(v, µx) and its derivatives are everywhere continuous.

The derivative counting parameter µ shall be set to one in the solution at the end of the

computations. For compactness in what follows we refer to the order in the number of

derivatives as the order in µ.

2.1 General structure of the equations and of the solution

The different coefficients in the expansion (2.10) are determined order by order as a func-

tion of the previous orders solution. Implementing the pure AdS initial conditions (2.5)

and (2.6), as well as the asymptotically AdS conditions (2.7) and (2.8), this implies that

these coefficients involve only the forcing function ϕ for the bulk scalar profile.

There are a few general considerations about the structure of the two expansions (2.10)

worth making before explicitly solving the equations. The background solution of the

derivative expansion (O(µ0)) coincides with the homogeneous solution of [37], with the

x-dependence added by hand to the source ϕ. At zeroth order in µ and first order in ε,

φ1,0 is forced by its boundary condition to be non-zero. The background geometry is pure

AdS at this order, since there is no O(ε) source for the Einstein’s tensor coming from the

bulk scalar. Only at order O(ε2) are the metric components h2,0 and f2,0 sourced.

When we add the x-dependence to the homogeneous solution, it ceases to be a solution

to the equation of motion. At leading order in ε the equation for φ is just the massless

4The combination of amplitude and gradient expansions has also been used in [104, 105] to study non-

equilibrium Green functions and response.
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scalar equation in pure AdS4. By symmetry of the background, the terms violating the

homogeneous scalar equation are of order µ2, i.e. second x-derivatives of the source. The

background bulk scalar solution thus needs to be corrected with a term of order µ2. A

similar reasoning applies recursively at higher orders and for the metric which starts at

order ε2. Notice that the scalar profile at order ε receives only even order corrections in µ.

Similarly all metric coefficients at order ε2 receive only even order corrections in µ, with

the exception of k(v, r, x), which has only odd µ contributions.

Solving the equations (2.9), one recognizes a structure similar to that observed in [37].

In the amplitude and gradient expansion, the scalar equation of motion is solved using a 1/r

expansion and this automatically leads to metric components expressed as an expansion in

1/r. As illustrated in appendix A, the initial conditions are satisfied by imposing that the

1/r expansions should terminate at a finite order.

Order by order in ε and µ, E1 = 0 gives a differential equation in r for the metric

component fn,i, which is determined completely by imposing the asymptotic boundary

conditions. E2 = 0 similarly gives a differential equation in r for hn,i, which is completely

fixed imposing the boundary conditions together with the conservation equation Ec1 = 0.

In the same way, the coefficients kn,i are determined using E3 = 0 and Ec2 = 0. The former

gives a differential equation in r for kn,i while the latter is a conservation equation, which

together with the boundary conditions completely fixes the form of kn,i. Using the rest

of the equations, E4 = 0 and E5 = 0 follow from each other. The resulting independent

equation is the only equation involving bn,i and suffices to determine its expression.

2.2 Solution at first and second order in the source amplitude

Solving the system (2.9) following the strategy outlined in the previous section, we obtain

the following solution up to second order in the amplitude of the source field and up to

fourth order in the spatial derivative expansion. The compact form of the solution with

the different orders in the ε and µ expansions grouped according to their radial asymptotic

behaviour is given in appendix A for convenience. Here we present the solution as obtained

order by order in the two expansion parameters.

In the following we adopt the notation ∂vF (v, x) = Ḟ (v, x) and ∂xF (v, x) = F ′(v, x).

First order in ε. At zeroth order in µ (we set µ = 1 in writing the solution)

εφ1,0(v, r, x) = ϕ(v, x) +
ϕ̇(v, x)

r
, (2.12)

which, when removing the x-dependence, coincides with the homogeneous solution obtained

in [37]. The next non-vanishing contribution is at O
(
µ2
)

εφ1,2(v, r, x) =
ϕ′′(v, x)

2r2
, (2.13)

while at fourth order in µ one obtains the additional contribution

εφ1,4(v, r, x) =

∫ v
−∞ dτ ϕ

′′′′(τ, x)

8r3
. (2.14)

All the metric coefficients vanish at this order in ε.
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Second order in ε. The scalar profile in the bulk does not get contributions at this

order, while the metric at lowest (zeroth) order in µ is the one of the homogeneous case,

with the spatial dependence added. Explicitly, the solution of (2.9) reads

ε2f2,0(v, r, x) = −(ϕ̇(v, x))2

8r
,

ε2h2,0(v, r, x) = −3 (ϕ̇(v, x))2

4
+
C2,0(v, x)

r
,

(2.15)

where

C2,0(v, x) =
1

2

∫ v

−∞
dτ ϕ̇(τ, x)

...
ϕ(τ, x) , (2.16)

and all other coefficients vanish.

The coefficient of the cross component dvdx of the metric gets the first non-vanishing

contribution at order µ

ε2k2,1(v, r, x) =
1

2
ϕ̇(v, x)ϕ′(v, x) +

K2,1(v, x)

6r
, (2.17)

where

K2,1(v, x) =

∫ v

−∞
dτ
[
−2C ′2,0(τ, x) + ϕ̇′(τ, x)ϕ̈(τ, x)− ϕ̇(τ, x)ϕ̈′(τ, x)

]
=

∫ v

−∞
dτ 2

[
−ϕ̇(τ, x)ϕ̈′(τ, x) +

∫ τ

−∞
dt ϕ̈′(t, x)ϕ̈(t, x)

]
.

(2.18)

At order µ2 all other coefficients get sourced in Einstein’s equations. Their expressions are

ε2f2,2(v, r, x) = − ϕ̇(v, x)ϕ′′(v, x)

12r2
,

ε2h2,2(v, r, x) = −(ϕ′(v, x))2

4
+
C2,2(v, x)

r

− ϕ̇(v, x)ϕ̇′′(v, x)− 2ϕ̈(v, x)ϕ′′(v, x)

12r2
−
K ′2,1(v, x)

12r2
,

ε2b2,2(v, r, x) =
(ϕ′(v, x))2

4r2
+
β2,2(v, x)

r3
,

(2.19)

with

C2,2(v, x) =
1

4

∫ v

−∞
dτ

[
−
(
ϕ̇′(τ, x)

)2 − 4ϕ̇(τ, x)ϕ̇′′(τ, x)

+ 2ϕ̈(τ, x)ϕ′′(τ, x) + 2ϕ̈′(τ, x)ϕ′(τ, x)−K ′2,1(τ, x)

]
,

β2,2(v, x) =
1

8

∫ v

−∞
dτ

[(
ϕ̇′(τ, x)

)2
+

1

3
K ′2,1(τ, x)

]
.

(2.20)

Going further with the expansion in spatial derivatives, a third order contribution to the

coefficient for the cross component dvdx of the metric comes into play

ε2k2,3(v, r, x) =
K2,3(v, x)

6r
− ϕ̇′(v, x)ϕ′′(v, x)

8r2
+

3β2,2(v, x)

4r2
, (2.21)
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where

K2,3(v, x) =

∫ v

−∞
dτ
[
− 2C ′2,2(τ, x) + 6β′2,2(v, x)

+ ϕ̇(τ, x)ϕ′′′(τ, x)− 2ϕ̇′(τ, x)ϕ′′(τ, x)
]
.

(2.22)

Finally, at fourth order in the gradient expansion

ε2f2,4(v, r, x) = −(ϕ′′(v, x))2

48r3
−
ϕ̇(v, x)

∫ v
−∞ dτ ϕ

′′′′(v, x)

64r3
,

ε2h2,4(v, r, x) =
C2,4(v, x)

r
−
K ′2,3(v, x)

2r2
− (ϕ′′(v, x))2

6r2

+
ϕ̇(v, x)

∫ v
−∞ dτ ϕ

′′′′(t, x)

16r2
−
β′′2,2(v, x)

4r3
+

(ϕ̇′(v, x)ϕ′′(v, x))′

24r3

− ϕ′′′′(v, x)ϕ̇(v, x)+

96r3
+
ϕ̈(v, x)

∫ v
−∞ dτ ϕ

′′′′(t, x)

32r3
,

ε2b2,4(v, r, x) =
β2,4,3(v, x)

r3
+
β2,4,4(v, x)

r4
,

(2.23)

with

C2,4(v, x) =
1

4

∫ v

−∞
dτ

[
−
(
ϕ′′(τ, x)

)2 − ϕ′(τ, x)ϕ′′′(τ, x)− 6K ′2,3(τ, x)

+
3

4
ϕ̇(τ, x)

∫ τ

−∞
dw ϕ′′′′(w, x)

]
,

β2,4,3(v, x) =
1

8

∫ v

−∞
dτ
[(
ϕ′(τ, x)ϕ′′′(τ, x)

)
+ 2K ′2,3(τ, x) + 8β2,4,4(τ, x)

]
,

β2,4,4(v, x) =
1

24

∫ v

−∞
dτ
[(
ϕ̇′(τ, x)ϕ′′′(τ, x)− ϕ̇′′(τ, x)ϕ′′(τ, x)

)
+ 6β′′2,2(τ, x)

]
.

(2.24)

A simple consistency check on the different terms entering in the components of the metric

and in the bulk scalar comes from their scaling, with derivatives contributing with weight

1 and factors of 1/r and integrations contributing with weight −1.

All solutions reduce exactly to the homogeneous formulae [37] when the spatial depen-

dence of the scalar source is suppressed.

2.3 Regime of validity

Before continuing and analyzing the evolution of the stress-energy tensor of the dual field

theory, let us pause to comment on the features of the solution, the details of the expansions

and on their regime of validity.

Let us start from the metric itself. As stated above, it describes the dynamical process

of black hole formation due to a wave of energy triggered by the forcing function at the

boundary, which propagates into the bulk. For simplicity, we shall first refer to the homo-

geneous limit where ϕ(v, x) = φ0(v). The metric in this case takes the form (cf. h2,0(v, r, x)
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and f2,0(v, r, x) in (2.15))

ds2 = −

(
r2 −

3
(
φ̇0(v)

)2
4

−
∫ v
−∞ dτ φ̇0(τ)

...
φ 0(τ)

2r

)
dv2 + 2dvdr

+ r2

(
1−

(
φ̇0(v)

)2
8r

)
(dx2 + dy2) .

(2.25)

Away from the energy injection period 0 < v < δt, the metric (2.25) has the AdS-

Vaidya form

ds2 = −
(
r2 − M(v)

r

)
dv2 + 2dvdr + r2(dx2 + dy2) . (2.26)

The spacetime is AdS4 for v ≤ 0 (M(v) = 0); for v ≥ δt, on the other hand, M(v) is a

constant M determined by the integral in (2.25) and the geometry approximates a black

hole geometry with temperature T ∼ M1/3 ∼ ε2/3

δt . (See [37] for a more detailed analysis

including a discussion of the horizon formation.) By analogy, in our case, we identify the

coefficient of the 1/r term in h(v, r, x) as a notion of local “temperature” (by which we do

not mean to suggest local equilibrium has yet been established). Once the forcing function

has been turned off, we have

M(v, x) = − (C2,0(v, x) + C2,2(v, x) + C2,4(v, x)) , (2.27)

with the explicit form of C2,i given above in (2.16), (2.20) and (2.24).

We have obtained the solution in a weak field approximation for the boundary source,

i.e. assuming the amplitude of ϕ is small (as indicated by the formal expansion parameter ε).

An extensive discussion of the regime of validity of this approximation has been presented

in [37]. The conclusion is that the amplitude expansion is perturbative in tT ,5 and it is

therefore reliable as long as t � 1/T . In order to capture the evolution for longer times,

a resummed perturbation theory is needed, where one expands around AdS-Vaidya rather

than AdS. This amounts to working exactly in T and perturbatively in all other appearances

of ε, which is similar to absorbing temperature-dependent masses in propagators in thermal

perturbation theory. At late times, observables approach their thermal values exponentially

in tT . In naive (non-resummed) perturbation theory in T ∼ ε2/3/δt, the exponential series

are truncated to finite order, leading to polynomial expressions that diverge at late times.

Notice, however, that in the homogeneous case this effect is not yet present up to second

order in the ε expansion, in the sense that there are no divergent terms at this order. At

leading order in ε, the scalar field vanishes at late times, while the metric has the black

hole form (2.26) following from (2.25).

The second expansion we introduced is the derivative expansion along the inhomoge-

neous direction. At finite temperature this corresponds to asking that the scalar source

should be slowly varying in x over distances set by the local inverse temperature [37]. After

5As we are mostly interested in the consequences of our analysis on the dual field theory, we focus on

the near-boundary region where the field theory time t can be identified with the bulk time cordinate v.

The discussion for the bulk theory goes similarly, replacing tT by vT .
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the injection of energy has taken place, if λ is the typical length scale over which the source

ϕ(v, x) varies, the derivative expansion holds for λ � 1/T . However, here the situation

is more involved. For v > δt, (2.27) incorporates the general structure of the solution,

which very schematically we can write up to second order in the derivative expansion as

(see (3.26) for the derivation)

M(v, x) ' ε2

δt3

(
λ0A(x) +

δt2

λ2

[
B(x) +

v2

δt2
C(x) +

v

δt
D(x)

]
+O(λ−4)

)
. (2.28)

The correction proportional to B(x) can be considered small compared to the leading order

term as long as λ� δt. Since 1/T ∼ δt/ε2/3, the condition λ� δt is automatically implied

by λ � 1/T for ε � 1. Moreover, there is a perturbative structure in v/λ that is similar

to the effective perturbative structure in tT of the amplitude expansion.6 In order to have

small corrections coming from the gradient expansion, it is therefore also necessary that

v � λ, which is also automatically satisfied since 1/T � λ and v � 1/T .

There is an additional subtlety regarding the period 0 < v < δt during which the

energy is injected. This is apparent in the analysis of the scalar field solution at order ε

(see (2.12)–(2.14))

φ(v, r, x) = ϕ(v, x) +
ϕ̇(v, x)

r
+
ϕ′′(v, x)

2r2
+ . . . . (2.29)

The first correction involving spatial derivatives is present only as long as the scalar forcing

function is turned on. At this order the background is pure AdS, for which the local

temperature is effectively zero and the condition λ � 1/T is not satisfied. However, as

long as the correction obtained at order λ−2 is small compared to the leading λ0 term,

one can reliably work within the derivative expansion. This translates into the condition

1/r � λ; at smaller values of the radius we lose control over the perturbative description.

For large λ, the part of the v ≈ 0 region that is uncontrolled is deep into the bulk and

can only affect the boundary at late times, so that close to the boundary the perturbative

expansion is reliable except at late times.

All in all, we can conclude that our expansions are reliable as long as we ensure that

t� 1/T � λ.

3 Evolution of the boundary stress-energy tensor

3.1 Boundary stress-energy tensor

The relation between an asymptotically AdS solution for the action (2.1) and the expecta-

tion values of the boundary stress-energy tensor and of the boundary operator associated

to the massless bulk scalar has been obtained in appendix B. For a solution written in

Fefferman-Graham coordinates the relation is summarized in equations (B.12)

〈Tαβ〉 =
3

16πGN
g(3),αβ , (3.1)

6Here this structure appears through the leading time dependent term in the order λ−2 coefficient of M .

This structure is generically repeated at all orders in the gradient expansion, and it is due to the presence

of the nested time integrals.
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and (B.13)

〈O〉 =
3

16πGN
φ(3) , (3.2)

where α and β are indices over the boundary coordinates. For notational simplicity we

henceforth omit the expectation value symbol.

To read out the stress-energy tensor corresponding to our solution we thus need to

perform a change of coordinates to reach the Fefferman-Graham form. The ansatz we

started with has the form

ds2 = −h(v, r, x)dv2 + 2dv (dr + k(v, r, x)dx) +

+ f(v, r, x)2eB(v,r,x)dx2 + f(v, r, x)2e−B(v,r,x)dy2 ,
(3.3)

and the metric we obtained up to order ε2 and µ4 is schematically of the form

h(v, r, x) = r2

(
1 +
H(2)

r2
+
H(3)

r3
+
H(4)

r4
)

)
+O

(
ε3, µ5

)
,

f(v, r, x) = r +
F(1)

r
+
F(2)

r2
+
F(3)

r3
+O

(
ε3, µ5

)
,

k(v, r, x) = K(0) +
K(1)

r
+O

(
ε3, µ5

)
,

B(v, r, x) =
B(2)

r2
+
B(3)

r3
+
B(4)

r4
+O

(
ε3, µ5

)
,

(3.4)

while the scalar field solution can be written as

φ(v, r, x) = Ψ(0) +
Ψ(1)

r
+

Ψ(2)

r2
+

Ψ(3)

r3
+O

(
ε3, µ5

)
. (3.5)

By comparison with the explicit form of the solution obtained in the previous section one

can identify the expressions of the various coefficients (see also appendix C). The relevant

ones here are

H(2) = −3 (ϕ̇)2

4
− (ϕ′)2

4

H(3) = C2,0 + C2,2 + C2,4

F(1) = −(ϕ̇)2

8

F(2) = − ϕ̇ϕ
′′

12

K(0) =
1

2
ϕ̇ϕ′

K(1) =
K2,1

6
+
K2,3

6

B(2) =
(ϕ′)2

4

B(3) = β2,2 + β2,4,3

(3.6)

and

Ψ(0) = ϕ , Ψ(1) = ϕ̇ , Ψ(2) =
ϕ′′

2
, Ψ(3) =

∫ v
−∞ ϕ

′′′′

8
, (3.7)

where we have suppressed the explicit coordinate dependence.

Any asymptotically AdS solution can be brought into Fefferman-Graham form close

enough to the boundary (r → ∞). We therefore look for a change of coordinates of the
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form (v, r, x, y)→ (t, %, χ, y), such that the metric in the new coordinates takes the form

ds2 =
d%2

%2
+ %2gαβ(t, %, χ)dxαdxβ

gαβ(t, %, χ) = g(0),αβ(t, χ) +
g(2),αβ(t, χ)

%2
+
g(3),αβ(t, χ)

%3
+ . . . ,

(3.8)

where xα = (t, χ, y). Any dependence on y, both in the change of coordinates itself and in

the metric, has been excluded a priori for symmetry reasons. Notice that the coordinate

% is simply related to the coordinate used in appendix B by % = 1/z. We find it more

convenient to work with the coordinate % here, so that the boundary r → ∞ corresponds

to %→∞. In these coordinates, the scalar field has the Fefferman-Graham expansion

φ(t, %, χ) = φ(0)(t, χ) +
φ(2)(t, χ)

%2
+
φ(3)(t, χ)

%3
+ . . . . (3.9)

Let us remark that we do not look for an exact change of coordinates, but we work in a

large radius expansion at a sufficiently high order to determine the boundary field theory

stress-energy tensor.

For v ≤ 0 the spacetime is pure AdS; the change of coordinates is exact and it reduces

to the standard coordinate transformation relating Eddington-Finkelstein and Poincaré

coordinates. In practice we shall look for a change of coordinates such that g(0),αβ =

ηαβ = diag(−1, 1, 1). Working perturbatively in the radial variable one constructs the

transformation that brings the scalar field and the metric in the required form. The details

are worked out in appendix C, the net result is

v → t− 1

%
+
v3

%3
+O(%−4) ,

r → %

(
1−
H(2) − 3v3

3%2
+
r3

%3
+O(%−4)

)
, (3.10)

x → χ+
K(0)

3%3
+O(%−4) ,

where

v3 =
1

12
H(2) (3.11)

and

r3 = −1

6

(
H(3) + 4F(2) − 4Ḟ(1) −

1

3
Ḣ(2) +

2

3
K′(0)

)
. (3.12)

For the scalar field one obtains in the large % expansion

φ(t, %, χ) = ϕ(t, χ)− ϕ̈(t, χ)− ϕ′′(t, χ)

2%2
(3.13)

+
8
...
ϕ(t, χ)− 12ϕ̇′′(t, χ) + 3

∫ t
−∞ dτ ϕ

′′′′(τ, χ)

24%3
+O

(
ε3, µ5, %−4

)
.

It has exactly the structure expected from the analysis in appendix B: there is no 1/% term

while φ(2) =
2(0)φ(0)

2 , as in (B.8).
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For what concerns the metric gαβ: g(0),αβ = ηαβ = diag(−1, 1, 1), while g(2),αβ can be

written as

g(2),αβ =
1

2

(
∂αϕ∂βϕ−

ηαβ
4

(∂ϕ)2

)
, (3.14)

which is the condition obtained in (B.8). After some algebra (see appendix C)

g(3),αβ =
1

3

 −2H(3) −H′(2) − 2K̇(0) + 3K(1) 0

−H′(2)−2K̇(0)+3K(1) −H(3)−3B(3)+3Ḃ(2)+K′(0) 0

0 0 −H(3)+3B(3)−3Ḃ(2)−K′(0)

 .
(3.15)

The last relation in (B.8) involving g(3)αβ

∂αg(3),αβ = φ(3)∂βφ(0) (3.16)

is also satisfied, as one can check by explicit computation.

From this analysis the stress-energy tensor and the operator expectation values (3.1)

and (3.2) can be readily obtained. Renaming the boundary coordinates in a natural way

we have

Ttt = − 2

16πGN
H(3) Txx = − 1

16πGN

(
H(3) − 3B(3) + 3Ḃ(2) −K′(0)

)
Ttx = − 1

16πGN

(
H′(2) + 2K̇(0) − 3K(1)

)
Tyy = − 1

16πGN

(
H(3) + 3B(3) − 3Ḃ(2) +K′(0)

)
.

(3.17)

The explicit expression in terms of the scalar source can be obtained from (3.6). For the

operator dual to the bulk scalar instead one has

O =
1

16πGN

8
...
ϕ(t, x)− 12ϕ̇′′(t, x) + 3

∫ t
−∞ dτ ϕ

′′′′(τ, x)

8
. (3.18)

In the homogeneous limit (ϕ(t, x) = φ0(t)) (3.17) reduces to

T hom
tt = 2T hom

xx = 2T hom
yy = − 1

16πGN

∫ t

−∞
dτ φ̇0(τ)

...
φ 0(τ) , (3.19)

which is the stress-energy tensor of a perfect conformal fluid in three spacetime dimensions.

3.2 Evolution following the energy injection

The explicit expression of the boundary stress-energy tensor in terms of the forcing function

ϕ(t, x) can be directly read from (3.17), although it is quite involved. Some of the main

features have been already outlined in the previous section. We refer to appendix D for

the complete expressions of the stress-energy tensor up to second order in the scalar source

and up to fourth order in the gradient expansion. As an example, we give here the explicit

form of Ttt, at second order in the derivative expansion

Ttt(t, x) = − 1

16πGN

{
1

2

∫ t

−∞
dτ

[
2ϕ̇(τ, x)

...
ϕ(τ, x)−

(
ϕ̇′(τ, x)

)2
−4ϕ̇(τ, x)ϕ̇′′(τ, x) + 2ϕ̈(τ, x)ϕ′′(τ, x) + 2ϕ̈′(τ, x)ϕ′(τ, x) (3.20)

+2
∂

∂x

∫ τ

−∞
ds

[
ϕ̇(s, x)ϕ̈′(s, x)−

∫ s

−∞
dw ϕ̈′(w, x)ϕ̈(w, x)

] ]}
.
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To make progress in the analysis and to simplify the subsequent numerical treatment, we

shall now assume that the temporal dependence of the source function is factorized with

respect to the space profile and write

ϕ(t, x) = u(x)ϕ0(t) , (3.21)

with
ϕ0(t) = 0 , t ≤ 0

ϕ0(t) = εϕ̃0(t) , 0 < t < δt

ϕ0(t) = 0 , t ≥ δt .

(3.22)

Substituting this ansatz in (3.20) and performing a number of integrations by parts, the

corresponding energy density profile takes the form

Ttt(t, x) =
1

16πGN

{
u(x)2A(t) +

1

2

∂2

∂x2
u(x)2C(t) +

1

2

∂2

∂x2
u(x)2D(t)

−1

2

(
u′(x)2 + 4u(x)u′′(x)

)
E(t)

}
.

(3.23)

For a source profile that is well localized in time between 0 and δt as in (3.22), the time

dependent functions in (3.23) have the following simple behaviour:

A(t) =


α(t) = −

∫ t

−∞
dτ ϕ̇0(τ)

...
ϕ0(τ) t < δt

Ā = −
∫ δt

−∞
dτ ϕ̇0(τ)

...
ϕ0(τ) = const t ≥ δt

C(t) =


γ(t) =

∫ t

−∞
dτ

∫ τ

−∞
dw α(w) t < δt

C̄ + (t− δt)B̄ +
1

2
(t2 − δt2)Ā t ≥ δt

D(t) =


∆(t) = −

∫ t

−∞
dτ ϕ̈0(τ)ϕ0(τ) t < δt

D̄ = −
∫ δt

−∞
dτ ϕ̈0(τ)ϕ0(τ) = const t ≥ δt

E(t) =


Υ(t) = −

∫ t

−∞
dτ (ϕ̇0(τ))2 t < δt

Ē = −
∫ δt

−∞
dτ (ϕ̇0(τ))2 = −D̄ t ≥ δt

where

B̄ =

∫ δt

−∞
dτ α(τ) = constant , (3.24)

C̄ = γ(δt) =

∫ δt

−∞
dτ

∫ τ

−∞
dw α(w) = constant . (3.25)
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Correspondingly, after all energy has been injected into the system, Ttt has a simple poly-

nomial time dependence

Ttt(t > δt, x)=
1

16πGN

{
u(x)2Ā+

1

2

∂2

∂x2
u(x)2

(
C̄ + (t− δt)B̄ +

1

2
(t2 − δt2)Ā

)
+

1

2

(
3(u′(x))2 + 6u(x)u′′(x)

)
D̄

}
.

(3.26)

As already pointed out in section 2.3, this structure comes from the nested integrals over

time and gives an effective expansion in t times the inverse length scale of spatial variations.

The structure, which at first seems to lead to a divergent profile at arbitrary late time, has

to do with our approximations, which fail for large times. Notice there is no contradiction

with energy conservation. In fact time dependent terms in (3.26) involve spatial derivatives

and their contribution to the total energy is vanishing. (The same is true at fourth order

in the gradient expansion, as one can check from the explicit expression of Ttt in (D.1).

After the injection of energy has completed (t ≥ δt), time dependent contributions to

Ttt correspond to terms involving nested time integrals in (D.1), all of which are total

spatial derivatives.)

In order to study the stress-energy tensor in more detail and to better understand its

evolution, we shall use a Gaussian profile to mimic the time dependence of the source

ϕ(t, x) = εu(x)e−
(t−ν)2

σ2 . (3.27)

Such a replacement retains the main featurlarger thanes of the evolution discussed above:

when t − ν is large enough, the scalar source can be considered to vanish for all practi-

cal purposes.

Consider first the simple case where the spatial profile u(x) has the form of a Gaussian

on top of a homogeneous background

ϕ(t, x) = ε
(

1 + e−µ
2x2
)
e−

(t−ν)2

σ2 . (3.28)

Here we insert the explicit factor µ ∼ 1/λ in the space dependence of the source in order

to implement more easily the slowly varying regime. We have considered a homogeneous

component in the source field, which gives a non-zero energy density everywhere. In this

way the local “temperature” is everywhere non-vanishing and we can keep under good

computational control both the weak field and the gradient expansion.

In figure 2 (top-left panel) we report a sample plot of the Ttt component of the stress-

energy tensor for ν = 0.5, σ2 = 0.1, µ = 0.01 and ε = 0.005. In order to stop the

evolution at a time which is reliably within the range of validity of our approximations,

we examine the effects of sub-leading contributions in the gradient expansion. For a fixed

spatial interval, the expansion is valid till times at which the sub-leading contributions

become comparable to the leading order result. In line with our general discussion of the

regime of validity of the amplitude expansion, we also impose that t � 1/T , with T the

local “temperature” defined in the previous section by analogy to the equilibrium case.
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Figure 2. Spatial dependence of Ttt, Txx, Tyy, Ttx for a Gaussian temporal and spatial profile of the

source (3.28), for ν = 0.5, σ2 = 0.1, µ = 0.01 and ε = 0.005. The plots show three different instants

in the evolution of the profiles (rescaled by 16πGN ) at fourth order in the gradient expansion. As

time increases, Ttt, Txx and Tyy decrease in the region around x = 0 and increase for large |x|; while

the maximal amplitude of Ttx increases in time. A general tendency towards spatial homogeneity

is shown both for Txx and Tyy, which is however faster for the former.

From the point of view of Ttt, the evolution seems to point towards homogenization,

although we cannot follow the evolution for arbitrarily large times. The same qualitative

conclusion seems to hold looking at the evolution of the other diagonal components. In the

top-right and bottom-left panels of figure 2, the Txx and Tyy components of the stress-energy

tensor are plotted for the same values of the parameters, while the only non-vanishing off-

diagonal component Ttx is plotted in the bottom-right panel. As opposed to the diagonal

components, Ttx grows in time, departing from a homogeneous configuration. However, the

off-diagonal component of the boundary stress-energy tensor also gets a contribution from

the local boost velocity, and the corresponding profile seems to be qualitatively compatible

with this interpretation: Intuitively, a lump of energy with a density profile as in figure 2

would start spreading outward and the local velocity with respect to the background is

maximal where the gradient of the energy density is large.

To have a better understanding of the situation it is convenient to perform the boost

that locally brings the stress-energy tensor in the diagonal form Tαβ = diag(ε, px, py). This

boost in the x direction with rapidity α relates the components in the two frames as

T tt = ε cosh2 α+ px sinh2 α T tx = −ε+ px
2

sinh 2α

T xx = ε sinh2 α+ px cosh2 α T yy = py .
(3.29)
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Figure 3. The energy density in the rest frame ε = px+py, pressures px and py computed in (3.29)

(and rescaled with 16πGN ) for the solution with ν = 0.5, σ2 = 0.1, µ = 0.01 and ε = 0.005. As

time increases, ε, px and py decrease in the region around x = 0 and increase for large |x|. On the

bottom-right panel the plasma local velocity V , which maximal amplitude increases in time.

The local velocity of the plasma in the stationary frame is V = − tanhα, where

tanh 2α = − 2T tx

T tt + T xx
. (3.30)

Using (3.29) and (3.30), we can plot in figure 3 the energy density and pressures of the fluid

in the local rest frame, as well as its local velocity V . The energy density and pressures

tend to flatten out as expected, while the pressures anisotropies still build up in this phase

as shown in figure 4. In order to ensure that the gradient expansion is reliable, in figure 4

we restrict the time range such that third (fourth) order terms in the gradient expansion

are at least two orders of magnitude smaller than first (second) order terms. In figures 2

and 3 we relax the time range such that the corrections coming from the subleading order

in the gradient expansion should be one order of magnitude smaller than the leading order

result, because otherwise the time evolution of the various quantities would not be visible

in the plots. Similar evolution was found for instance by Chesler and Yaffe in [71], where

it was observed that the generation of anisotropies in the stress-energy tensor due to an

anisotropic source continues even after the end of energy injection. The regime where

the anisotropy is built up should then be followed at later times by an evolution towards

isotropy. As expected from the discussion in section 2.3, this relaxation dynamics is not

visible in naive perturbation theory and should start over timescales set by the inverse

temperature. Also, the local boost velocity is qualitatively consistent with that of a lump

of fluid that spreads out. It decreases for large values of |x|, consistently with expectations

for a lump of fluid with higher density than the surrounding homogeneous medium.
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Figure 4. The spatial profile of the pressures anisotropies px − py (rescaled by 16πGN ) for the

pressures plotted in figure 3. The plot is limited to shorter times as compared to those considered

in figure 3 to ensure that the corrections to px and py coming from higher orders in the derivative

expansion are negligible compared to the pressure anisotropies at leading order. In the plot time

increases from the top curve down.

4 Comparison with free streaming and hydrodynamics

In order to gain some insight into these results, we next compare them with the evolution

of the stress-energy tensor in a free-streaming model as well as in hydrodynamics.

4.1 Anisotropic free streaming

To compare the evolution we find using AdS/CFT with a simple model of free-streaming

particles, we construct a kinetic model of the injected energy distribution. Our model is

obtained by assuming that the distribution is massless noninteracting dust, composed of

particles moving at the speed of light. In terms of the phase space distribution f(t, ~x,~k),

the components of the stress-energy tensor are given by

Tαβ(t, ~x) =

∫
d2k

kαkβ

kt
f(t, ~x,~k) . (4.1)

If we assume the phase space distribution at some time t = δt to have the factorized form

f(~x,~k) = n(~x)F (~k) = n(x)F (k), then at a later time

f(t, ~x,~k) = n(~x− ~v(t− δt))F (~k) = n(x− vx(t− δt))F (k), (4.2)

where ~v = ~k/kt is the particle velocity, and F (k) only appears in (4.1) in an overall

normalization factor. It turns out that the specific form of the function F (k) is irrelevant,

what matters is that all particles move at the speed of light. When comparing with our

AdS/CFT results, we start the free streaming evolution just after the energy injection has

ended, namely at t = δt, and choose n(x) and F (k) such that the energy density in the

laboratory frame coincides with that computed using AdS/CFT.

We can introduce polar coordinates and write

kx = k cosφ, ky = k sinφ, vx = cosφ, vy = sinφ. (4.3)
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One easily finds that T xy = 0, which means that for this particular choice there is no

effective flow developing. This does not have to be the case when the k and x dependence

are not factorized. The non-vanishing components of Tαβ are:

T tt(x, t) =
ε0

2π

∫ 2π

0
dφ n(x− (t− δt) cosφ),

T tx(x, t) =
ε0

2π

∫ 2π

0
dφ cosφ n(x− (t− δt) cosφ),

T xx(x, t) =
ε0

2π

∫ 2π

0
dφ cos2 φ n(x− (t− δt) cosφ),

T yy(x, t) =
ε0

2π

∫ 2π

0
dφ sin2 φ n(x− (t− δt) cosφ), (4.4)

where the common factor is given by the initial average energy per particle:

ε0 = 2π

∫ ∞
0

k2dkF (k). (4.5)

The tracelessness of Tαβ is easily seen from these expressions.

Notice that at t = δt, the stress-energy tensor in (4.4) is isotropic, while in (3.17)

anisotropies start to develop already during the energy injection. However, their relative

amplitude only starts to build up considerably after a time δt, and therefore the difference

between the two stress-energy tensors at t = δt is not significant.

In figure 5, we plot the rest frame energy density ε, the pressures px and py and the

local velocity V of the plasma during a free streaming evolution. The curves closely resem-

ble those obtained from the holographic computation in figure 3, although the maximal

amplitude of the energy density and pressures decreases more slowly under anisotropic free

streaming. Nevertheless, the pressure anisotropy in the local rest frame matches well that

obtained within AdS/CFT, as shown in figure 6.

4.2 Viscous hydrodynamics

Hydrodynamics is a low-energy description that is not meant to be valid on time scales

smaller than the inverse local temperature. Nevertheless, viscous hydrodynamics turns

out to give surprisingly good results in several homogeneous holographic thermalization

setups [34–36]. Motivated by this, we now compare our AdS/CFT results with what one

would obtain by naively applying the formulas of viscous hydrodynamics. In fact, in [37]

it has been suggested that the anisotropies present after the injection of energy could be

interpreted in terms of first order viscous hydrodynamics, for which the stress-energy tensor

is completely expressed in terms of the local temperature and of the local velocity of the

fluid (a review of the basic ingredients can be found for instance in [10]).

Given the local velocity V (t, x) and the energy density in the local rest frame ε(t, x),

we can ask what the stress-tensor would be if hydrodynamics were valid at a given time

t. Agreement with the stress tensor we computed using AdS/CFT would be a necessary

condition for the validity of a hydrodynamical description from time t onwards.
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Figure 5. The energy density in the rest frame εfs = px,fs + py,fs, pressures px,fs and py,fs (rescaled

with 16πGN ) and local boost velocity Vfs within free streaming. The match of the free streaming

and the AdS/CFT energy densities in the laboratory frame has been performed at t = 0.009/µ,

when about 96% of the energy has been injected. The evolution closely resembles that obtained

with the AdS/CFT correspondence and plotted in figure 3.

Figure 6. The pressure anisotropies (rescaled with 16πGN ) obtained within anisotropic free stream-

ing evolution and following from figure 5 (in dashed) closely approximate those obtained with the

AdS/CFT computation (solid lines) in the range of times we are able to explore.

4.2.1 First order viscous hydrodynamics

First order hydrodynamics requires the equation of state and the shear and bulk viscosi-

ties, which can be found, for instance, in [10, 106] for the three-dimensional CFT under

consideration. The first-order hydrodynamical stress tensor reads

Tαβviscous = (ε+ pideal)u
αuβ + pideal η

αβ + Παβ
(1) . (4.6)
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Here pideal = ε/2 and uα is the local three-velocity of the fluid (which we determine from

V (t, x)). The first order viscous contributions to the stress-energy tensor in flat three-

dimensional space are given by [10]

Παβ
(1) ≡ −2ησαβ − ζθPαβ , (4.7)

where Pαβ ≡ uαuβ + ηαβ is the projector onto space in the local fluid rest frame,

σαβ ≡ PαρP βσ
(
∂(ρuσ) −

1

2
Pρσθ

)
(4.8)

is the fluid shear tensor and θ ≡ ∂ρu
ρ is the expansion. The shear viscosity η and bulk

viscosity ζ are [10, 106]

η =
1

16πGN

(
4

3
πT

)2

, ζ = 0 , (4.9)

where we define a local “temperature” T (t, x) by using the thermodynamic relation that

would be valid in equilibrium in the local rest frame [106],

ε =
2

16πGN

(
4

3
πT

)3

. (4.10)

To compare with the stress tensor we have worked out, we use the fluid velocity V =

− tanhα determined in the previous section for a single Gaussian scalar profile.

Determining the pressure components px,hydro and py,hydro in the local rest frame, the

first order pressure anisotropy reads

px,hydro − py,hydro = −2ηθ. (4.11)

In figure 7, this is compared with the pressure anisotropies computed in the gradient

expansion. The two have amplitudes of the same order of magnitude and similar shape,

although they do not coincide. In particular the ones computed in the gradient expansion

are everywhere smaller in amplitude than the hydrodynamics ones.

4.2.2 Second order hydrodynamic corrections

Since first order viscous hydrodynamics did not give a sufficiently accurate description of

the time-evolution of the initial inhomogeneities, we move to second order formalism.

Second order hydrodynamics for relativistic conformal fluids was derived in [9, 11], pro-

viding a nonlinear generalization of Müller-Israel-Stewart theory, used in modeling heavy

ion collisions. The relevant second order contribution to the dissipative part of the stress

tensor is (see eqn (3.11) of [11])

Παβ
(2) = ητΠ

[
〈Dσαβ〉 +

1

2
σαβθ

]
+ · · · (4.12)

where “ + · · · ” refers to terms that are not relevant here, as they either contain the Rie-

mann/Ricci tensor or terms that vanish for irrotational flow. In the above, D is the

directional derivative along the 3-velocity:

D ≡ uα∂α = −ut∂t + ux∂x , (4.13)
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Figure 7. Comparison of the spatial profile of the pressure anisotropies px − py (rescaled with

16πGN ) of figure 4 with that resulting from first order hydrodynamics. The pressures anisotropies

computed in the gradient expansion (solid curves) are everywhere smaller in amplitude than those

computed in first order viscous hydrodynamics (in dot-dashed).

while 〈〉 denotes the transverse traceless part. The new parameter τΠ is a relaxation

timescale, which for a strongly coupled conformal fluid depends on harmonic numbers [106]

and in 2+1 dimensions

τΠ =
3

4πT

[
1 +

1

3
Harmonic

(
−1

3

)]
≈ 0.180

T
. (4.14)

The central feature of the second order theory is that now hydrodynamics becomes causal,

with the discontinuities/inhomogeneities propagating at finite velocity [9, 11]

vdisc =

√
η

τΠ(ε+ pideal)
=

√
1

3 + Harmonic
(
−1

3

) ≈ 0.665 . (4.15)

For the second order term in (4.12) we need to evaluate first

Dσαβ = 2(Dθ)Mαβ + 2θDMαβ, (4.16)

where

Mαβ ≡ ∂〈αuβ〉

θ
, (4.17)

and then construct its transverse traceless projection 〈Dσαβ〉. The first term in (4.16) is

already transverse and traceless. By an explicit calculation one can verify that the second

term projects to a null matrix. The second order contribution to the dissipative part of

the stress tensor thus becomes

Παβ
(2) = 2ητΠ

(
Dθ +

1

2
θ2

)
Mαβ , (4.18)

and in total then

Παβ ≡ Παβ
(1) + Παβ

(2) = 2η

(
−θ + τΠ

(
Dθ +

1

2
θ2

))
Mαβ . (4.19)
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Figure 8. The spatial profile of the pressures anisotropies px − py (rescaled by 16πGN ) of figure 4

(solid lines) compared with those resulting from second order hydrodynamics (dotted) and free

streaming (dashed). The addition of the second order correction drives the pressure anisotropy in

second order hydrodynamics to a good quantitative matching with the gradient expansion near the

upper time t = 0.1/µ.

Explicitly in our case the pressure anisotropies in the local rest frame read:

px,hydro − py,hydro = 2η

(
−θ + τΠ

(
Dθ +

1

2
θ2

))
. (4.20)

The first and second order viscous contributions to the pressure anisotropies have opposite

signs and the latter dominate over the first at early times. The dominant term at early

times is in fact 2ητΠu
t∂tθ.

As we saw in figure 7 in the previous section, in first order hydrodynamics the pressure

anisotropies px−py were qualitatively similar to those found from the AdS/CFT framework,

but their magnitude grew faster and thus there was never good quantitative agreement.

Including the second order correction induces a term that tends to drive the anisotropy

to the opposite direction. The net effect is that at very early times there is not even

qualitative agreement, but shortly before t ∼ 0.1/µ (which is the estimated upper time

limit on the validity of the gradient expansion) the evolution of inhomogeneities reaches a

stage where in addition to the qualitative agreement (spatial profiles again having similar

shapes) there is even good quantitative agreement, as can be seen in figure 8. If we were to

extend the evolution to later times (say up to t ∼ 0.15/µ), then the match with second order

viscous hydrodynamics appears to become somewhat less good in the region x . 100, while

continuing to improve in the region x & 100. On the other hand, free streaming appears

to remain a very good approximation. Given the very short time window our methods

allow us to describe, more work is required to confirm whether the early-time agreement

with second order hydrodynamics that we find is accidental or really signals the onset of a

hydrodynamic regime.

Our analysis is performed in the infinite coupling limit, so one may ask how finite

coupling corrections are expected to affect the results. In particular, for some observables

such as the spectral density in photon production in a holographic model of non-equilibrium

plasma, it has been reported that finite coupling corrections become significant already at
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large values of ’t Hooft coupling λ [55, 57]. Other recent work on finite coupling corrections

in the context of thermalization is reported in [96, 107–109]. However, in the present case

the relevant parameters to consider are the shear viscosity η and the relaxation time τΠ.

Finite coupling corrections to the shear viscosity (more precisely, to its ratio with the

entropy density) have been computed in [110–113] and corrections to the relaxation time

have been computed in [114]. In both cases, the finite copling corrections become sizable

only at small values of ’t Hooft coupling, λ ∼ O(1 − 10). Based on that, one may expect

our results to be applicable at strong but finite coupling.

4.3 Further examples

We have also performed tests with a modified source. Consider first a spatial profile u(x)

given by the superposition of two Gaussians with separation d between the center of the

two profiles

ϕ(t, x) = ε
(

1 + e−µ
2(x− d2 )

2

+ e−µ
2(x+ d

2 )
2)
e−

(t−ν)2

σ2 . (4.21)

In figure 9 we have plotted the evolution of the spatial profile of the energy density ε

obtained from the AdS/CFT computation for d = 2/µ (left) and d = 6/µ (right). The

bottom of figure 9 gives a comparison between the evolution of the spatial profile of the

pressure anisotropies obtained from AdS/CFT (solid lines), second order hydrodynamics

(dotted lines) and free streaming (dashed lines), as in figure 8. It confirms the picture

emerging from the single spatial Gaussian analysis.

This conclusion naturally extends to more general superpositions of spatial Gaussians.

Let us for instance consider a scalar source with four Gaussian peaks of different size at

different locations, on top of a homogeneous background:

ϕ(t, x) = ε
(

0.5 + 0.7e−(µ(x+250))2 + 0.5e−(µ(x+50))2 (4.22)

+0.8e−(µ(x+80))2 + 0.6e−(µ(x−200))2
)
e−

(t−ν)2

σ2 .

The corresponding energy density profile obtained within the AdS/CFT approach is plotted

in the left panel of figure 10. In the right panel the pressure anisotropies obtained in the

AdS/CFT computation are compared with those of free streaming and of second order

viscous hydrodynamics.

5 Summary and conclusions

We have generalized the “naive” (non-resummed) weak-field perturbation theory part

of [37] to include inhomogeneities in a long-wavelength expansion. This has allowed us

to study the evolution of the stress tensor of the dual field theory for times short com-

pared to the local inverse “temperature”, which in turn should be small compared to the

local scale of spatial variation. For specific temporal and spatial profiles of the source that

injects energy, we have compared the evolution to that of a simple free-streaming model,

and have found very good agreement.

In general, hydrodynamics is not meant to describe evolution on (time)scales short

compared to the local inverse temperature. However, in various homogeneous models it
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Figure 9. Top: the energy density in the rest frame ε = px + py (and rescaled with 16πGN ).

Bottom: the spatial profile of the pressures anisotropies px − py (rescaled by 16πGN ) obtained in

the AdS/CFT computation (solid lines) compared with those resulting from second order hydrody-

namics (dotted) and free streaming (dashed). The source profile has the form (4.21), with ν = 0.5,

σ2 = 0.1, µ = 0.01 and ε = 0.005. The left column corresponds to d = 2/µ, the right one to

d = 6/µ.
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Figure 10. Left: the energy density in the rest frame ε = px + py (and rescaled with 16πGN ).

Right: the spatial profile of the pressures anisotropies px − py (rescaled by 16πGN ) obtained in

the AdS/CFT computation (solid lines) compared with those resulting from second order hydro-

dynamics (dotted) and free streaming (dashed). The plots are for the source (4.22), with the same

parameter values ν = 0.5, σ2 = 0.1, µ = 0.01 and ε = 0.005 considered before.

was found that the stress tensor agreed with that of viscous hydrodynamics much earlier

than one had a right to expect [34–36]. In our inhomogeneous model, for the short time

window we are able to explore analytically, we find poor quantitative agreement with

first order viscous hydrodynamics. Remarkably, though, second order hydrodynamics does

provide very good agreement near the end of the time window in which we trust our

– 27 –



J
H
E
P
1
0
(
2
0
1
3
)
0
8
2

computations. This could be a sign of a rapid cross-over from a free-streaming regime to

second order hydrodynamics. However, more work is needed to verify whether this is really

the beginning of a hydrodynamic regime, rather than an accidental agreement that fails to

hold at later times than those we can probe using our methods. To settle this, one would

need either an inhomogeneous extension of the resummed perturbation theory of [37], or a

numerical analysis.

In our analysis, we have made several assumptions for technical simplicity: the injected

energy only depends on one spatial coordinate, and the field theory lives in a 3d spacetime.

In particular, our analysis does not capture the longitudinal expansion of the quark-gluon

plasma. Our results are therefore complementary to those of [34–36], where the approach to

hydrodynamics is studied for a spatially homogeneous, but longitudinally expanding fluid.

Taken together, and with the important caveat mentioned in the previous paragraph, these

two results suggest that free streaming followed by second order viscous hydrodynamics

may provide a valid description of the space-time evolution of the stress energy tensor in

strongly coupled conformal gauge theories over the entire history.

The reader may wonder why free streaming can reproduce the behavior of a strongly

coupled gauge theory for any length of time. We do not have a complete answer to this

question, but it is tempting to speculate that the short-time behavior of the stress-energy

tensor is dominated by the singular behavior of the two-point correlation function of com-

ponents of the stress-energy tensor. In a conformal theory, the correlation functions have a

power-law dependence on the invariant space-time distance and diverge on the light cone.

This suggests that free streaming of massless “particles” may reproduce the short-time

behavior of these correlation functions [115].

We end this paper with a discussion of how our results may help provide a justification

for a standard approach to early time evolution of partonic matter in high-energy heavy

ion collisions as they are investigated at the CERN Large Hadron Collider (LHC) and the

Relativistic Heavy Ion Collider (RHIC).

Due to the large Lorentz γ factors of these collisions in the center-of-mass frame, the

quark and gluon structure of the colliding nuclei remains essentially frozen during the col-

lision, while the coherence of the nuclear quantum states is broken by soft color exchanges.

A large effort was invested into the theoretical investigation of this initial state within a

framework called the Color Glass Condensate (CGC) Model. Its central assumption is

that nonlinear processes limit the growth of the gluon density at high energy, resulting

in its eventual saturation. The model posits that the gluon distribution in the transverse

direction attains a universal form — the color glass condensate — that is characterized by

a single parameter, the saturation scale Qs, which only depends on the size of the nucleus

and the beam energy. The very large transverse area density of color charges suppresses

all transverse color correlation beyond a distance 1/Qs � 1 fm/c small enough to justify

perturbative expansions in the strong coupling constant αs(Q
2
s). (Note that the running of

αs is actually more involved [116], but the basic idea remains the same.) Independently of

the specific nature of the CGC model, there exist general arguments that gluon saturation

has to occur for sufficiently large collision energies, as described in [117], but the evidence

that this regime is already reached in present day experiments is not yet conclusive. One

of its consequences, the geometric scaling of cross sections in lepton-hadron interactions, is
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well established, but geometric scaling seems to be a very general property of high energy

interactions and thus does not constitute an unambiguous proof of saturation [118]. Keep-

ing these caveats in mind, it is a well-justified assumption that the initial gluon distribution

in high-energy heavy-ion collisions shows saturation. While this saturated state does not

necessarily have to be of the universal form of the CGC, it is a reasonable expectation that

its properties should be qualitatively similar to those of the CGC. It thus makes sense to

use the CGC as a model of the initial state for the study of thermalization in high-energy

heavy ion collisions.

Two of the present authors [119] argued that the fluctuations of the resulting energy

density are surprisingly large, suggesting that the time evolution of such fluctuations could

be crucial for early thermalization. This calculation was not done strictly within the CGC

model, which assumes Gaussian fluctuations in the transverse color charge distribution.

In contrast, the authors of [119] assumed Gaussian fluctuations in the resulting gauge

fields for the purpose of analytical tractability. The CGC makes precise predictions for

the transverse correlation function of gauge fields and it is this input which determines

the results. Schenke et al. [120] generated fluctuating initial energy densities of colliding

nuclei numerically, using the Gaussian color charge fluctuations of the CGC, but did not

calculate the resulting energy density correlation function to compare with the analytical

model based on Gaussian field fluctuations [119].

Some of the many models proposed to describe the surprisingly fast “hydroization”

are of the type “Free-streaming plus sudden equilibration”, see [121] and references given

therein. The basic idea of this approach is that after the initial collision/overlap period of

the two nucleons, which for the RHIC energies discussed in [121] is of order 0.1-0.2 fm/c,

has defined the initial state for the fireball formation the system is still very far from

hydrodynamic behaviour. Basically the kinetic energy completely dominates the dynamics

of the partons. As long as this is the case free streaming should provide a good description.

At some time local hydrodynamics takes over. In these models this transition is assumed

to be an abrupt one, mainly for the benefit of computational ease.

Detailed simulations [25–27] use phenomenological models (such as the Color Glass

Condensate model) to compute the initial energy deposition and to evolve it for a short

amount of time (of order 0.4 fm/c) using the classical Yang-Mills equations. These studies

give excellent fits to all flow coefficients by assuming that large-amplitude, small-range

fluctuations subsequently evolve hydrodynamically. Note that for times short compared

to the scale set by the background Yang-Mills field, typically of order 0.2 fm/c, classical

Yang-Mills theory is kinetic energy dominated and should therefore be well-approximated

by a free-streaming model. Alternate approaches start from fluctuations in nucleon posi-

tions and the energy deposition in individual nucleon-nucleon collisions [122, 123] and use

either free-streaming of particles [124] or hydrodynamics of anisotropic fluids [125, 126] to

bridge the gap to the onset of viscous hydrodynamics. An important open question, which

motivated the present work, is to what extent this “gluing” of a phenomenological model

describing the initial evolution to viscous hydrodynamics can be justified. If the agree-

ment between free-streaming and second order hydrodynamics that we find near the end

of our early-time interval really signals a cross-over (rather than an accidental temporary

agreement with hydrodynamics), it provides support for this standard gluing prescription.
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A The bulk solution

Here we further comment on and summarize the results obtained in section 2.2 to leading

order in the weak field expansion and up to fourth order in the derivative expansion.

The massless scalar field equation in Poincaré AdS4 in infalling Eddington-Finkelstein

coordinates reads

∂r(r
2∂vφ) + ∂v(r

2∂rφ) + ∂r(r
4∂rφ) + ∂2

xφ+ ∂2
yφ = 0. (A.1)

In Fourier space (for v, x, y) this has two solutions, namely

φ± = ei(ω∓
√
ω2−k2)/r

(
1± i

√
ω2 − k2)

r

)
. (A.2)

Focusing on the case ω2 < k2, the infalling solution is φ+.

We can take ky = 0, and expand the result in a series around kx = 0 to obtain the

derivative expansion in x. We find

φ+ = 1 +
iω

r
− k2

2r2
− i

8

k4

ωr3
− ik6

48ω3r3
+

k6

48ω2r4
+O(k8). (A.3)

We should substitute iω → ∂v and ik → ∂x to get the answer in coordinate space.

The result at order k4 therefore becomes

1

8
∂4
x∂
−1
v φ(v, x). (A.4)

From the structure of (A.2), we see that when we expand φ+ in powers of k, for each power

of k2l we get a finite series of terms in 1/r that range from 1/r3 to 1/rl+1.
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The other solution is φ− which is the advanced instead of the retarded solution. It is

not difficult to see that

φ−(k, ω, r) = e2iω/rφ+(k,−ω, r) . (A.5)

Thus, the expansion of φ− in powers of k is similar to that of φ+, except that there is an

overall prefactor of e2iω/r which gives rise to an infinite series in 1/r. When converting to

coordinate space, iω → ∂v, so that e2iω/r has the effect of shifting v to v + 2/r.

Overall, at fixed order in spatial derivatives, φ+ truncates in the 1/r expansion and φ−
does not. However, we can write φ− as a truncated series acting on φ(v + 2/r, x) instead.

Therefore at fourth order in the derivative expansion in x the scalar field solution

consistent with causality (obtained by demanding that the series in 1/r should truncate)

is then given by

φ(v, r, x) = ϕ(v, x) +
ϕ̇(v, x)

r
+
ϕ′′(v, x)

2r2
+

∫ v
−∞ dτ ϕ

′′′′(τ, x)

8r3
. (A.6)

The solution for the bulk metric is obtained similarly and in Eddington-Finkelstein coor-

dinates has the form

ds2 = −h(v, r, x)dv2 + 2dv (dr + k(v, r, x)dx) +

+ f(v, r, x)2eB(v,r,x)dx2 + f(v, r, x)2e−B(v,r,x)dy2 ,
(A.7)

with metric components at fourth order in the derivative expansion

f(v, r, x) = r − (ϕ̇(v, x))2

8r
− ϕ̇(v, x)ϕ′′(v, x)

12r2

−(ϕ′′(v, x))2

48r3
−
ϕ̇(v, x)

∫ v
−∞ dτ ϕ

′′′′(τ, x)

64r3
,

h(v, r, x) = r2 − 3 (ϕ̇(v, x))2

4
− (ϕ′(v, x))2

4
+
C2,0(v, x)

r

+
C2,2(v, x)

r
+
C2,4(v, x)

r
− ϕ̇(v, x)ϕ̇′′(v, x)− 2ϕ̈(v, x)ϕ′′(v, x)

12r2

−
K ′2,1(v, x)

12r2
−
K ′2,3(v, x)

2r2
− (ϕ′′(v, x))2

6r2

+
ϕ̇(v, x)

∫ v
−∞ dτ ϕ

′′′′(τ, x)

16r2
−
β′′2,2(v, x)

4r3
+

(ϕ̇′(v, x)ϕ′′(v, x))′

24r3

−ϕ
′′′′(v, x)ϕ̇(v, x)+

96r3
+
ϕ̈(v, x)

∫ v
−∞ dτ ϕ

′′′′(t, x)

32r3
,

k(v, r, x) =
1

2
ϕ̇(v, x)ϕ′(v, x) +

K2,1(v, x)

6r
+
K2,3(v, x)

6r
(A.8)

− ϕ̇
′(v, x)ϕ′′(v, x)

8r2
+

3β2,2(v, x)

4r2
,

B(v, r, x) =
(ϕ′(v, x))2

4r2
+
β2,2(v, x)

r3
+
β2,4,3(v, x)

r3
+
β2,4,4(v, x)

r4
,
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where

C2,0(v, x) =
1

2

∫ v

−∞
dτ ϕ̇(τ, x)

...
ϕ(τ, x) ,

C2,2(v, x) =
1

4

∫ v

−∞
dτ
[
−
(
ϕ̇′
)2 − 4ϕ̇ϕ̇′′ + 2ϕ̈ϕ′′ + 2ϕ̈′ϕ′ −K ′2,1

]
,

K2,1(v, x) = 2

∫ v

−∞
dτ

[(∫ τ

−∞
dtϕ̈′(t, x)ϕ̈(t, x)

)
− ϕ̇(τ, x)ϕ̈′(τ, x)

]
= −2

∫ v

−∞
dτ

∫ τ

−∞
dt

...
ϕ ′(t, x)ϕ̇(t, x) ,

β2,2(v, x) =
1

8

∫ v

−∞
dτ

[(
ϕ̇′(τ, x)

)2
+

1

3
K ′2,1(τ, x)

]
,

K2,3(v, x) =

∫ v

−∞
dτ
[
− 2C ′2,2(τ, x) + 6β′2,2(v, x)

+ ϕ̇(τ, x)ϕ′′′(τ, x)− 2ϕ̇′(τ, x)ϕ′′(τ, x)
]
,

C2,4(v, x) =
1

4

∫ v

−∞
dτ

[
−
(
ϕ′′(τ, x)

)2 − ϕ′(τ, x)ϕ′′′(τ, x)−K ′2,3(τ, x)

+
3

4
ϕ̇(τ, x)

∫ τ

−∞
dw [ϕ′′′′(w, x)]

]
,

β2,4,3(v, x) =
1

8

∫ v

−∞
dτ
[(
ϕ′(τ, x)ϕ′′′(τ, x)

)
+ 2K ′2,3(τ, x) + 8β2,4,4(τ, x)

]
,

β2,4,4(v, x) =
1

24

∫ v

−∞
dτ
[(
ϕ̇′(τ, x)ϕ′′′(τ, x)− ϕ̇′′(τ, x)ϕ′′(τ, x)

)
+ 6β′′2,2(τ, x)

]
.

(A.9)

B From bulk solution to boundary stress-energy tensor

Given the bulk solution for the metric and for the bulk scalar, finite physical quantities for

the boundary theory can be systematically extracted through a consistent renormalization

of the bulk on-shell action. Here we follow the procedure of [127].7

The action (2.1), in general d+ 1 bulk dimensions, reads

S =
1

16πGN

[∫
dd+1x

√
g

(
R− 2Λ− 1

2
gµν∂µφ∂νφ

)
− 2

∫
ddx
√
γK

]
, (B.1)

including the boundary Gibbons-Hawking term necessary to have a well defined variational

problem with Dirichlet boundary conditions. γαβ is the induced metric at the boundary,

K is the trace of the extrinsic curvature of the boundary and Λ = −d(d−1)
2 .

In Fefferman-Graham coordinates the metric and the scalar solutions of the equations

of motion following from (2.1) have the general asymptotic z → 0 structure

ds2 = R2
AdS

(
dz2

z2
+

1

z2
gαβ(x, z)dxαdxβ

)
,

gαβ = g(0),αβ + z2g(2),αβ · · ·+ zdg(d),αβ + zd log(z)h(d),αβ +O(zd+1) ,

(B.2)

7Notice however the different conventions used for the Riemann tensor in [127], where it is defined with

an overall minus sign with respect to ours.
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and

φ(x, z) = φ(0)(x) + z2φ(2)(x) · · ·+ zdφ(d)(x) + zd log(z)ψ(d)(x) +O(zd+1) , (B.3)

with Dirichlet boundary conditions

lim
z→0

φ(x, z) = φ(0)(x) ,

lim
z→0

gαβ(x, z) = g(0),αβ(x) .
(B.4)

When evaluated on-shell, the action (B.1) diverges. Following [127], it can be regu-

larized restricting the bulk integral to z ≥ ε and evaluating the boundary term at z = ε.

Setting R2
AdS = 1, the regularized action reads

Sε =
1

16πGN

[∫
z≥ε

dd+1x
√
g

(
R− 2Λ− 1

2
(∂φ)2

)
− 2

∫
z=ε

ddx
√
γK

]
=

1

16πGN

∫
ddx

[∫
z≥ε

dz

(
− 2d

zd+1

√
det |gαβ(x, z)|

)
(B.5)

− 1

εd

(
−2d

√
det |gαβ(x, z)|+ 2z∂z

√
det |gαβ(x, z)|

)∣∣∣∣
z=ε

]
,

where we have used the relation R− 1
2 (∂φ)2 = 2d+1

d−1Λ valid on-shell, Λ = −d(d−1)
2 and the

Fefferman-Graham expansion (B.2). From this one can extract the IR bulk divergences

(terms that diverge when 1/ε is large) and construct the counterterm action.

We now specialize to the case d = 3 of interest for us here. Using the Fefferman-

Graham form of the metric

Sε '
1

16πGN

∫
ddx

[
4

ε3
√
g0 −

2

ε

√
g0Tr(g2) + . . .

]
, (B.6)

where dots indicate the finite part of the regularized on-shell action in the limit ε→ 0.

Following [127], a covariant counterterm action can be obtained in a minimal sub-

traction scheme writing the coefficients of the divergences in terms of the boundary in-

duced metric

γαβ =
1

ε2
[
g(0),αβ + ε2g(2),αβ +O(ε3)

]
. (B.7)

Solving order by order in z the equations of motion following from (B.1), with Dirichlet

boundary conditions (B.4), one finds

φ(2) =
2φ(0)

2
,

g(2)αβ = −Rαβ +
1

2
∂αφ(0)∂βφ(0) −

g(0)αβ

4

(
−R+

1

2
(∂φ(0))

2

)
,

Trg(3) = 0 ,

∇αg(3)αβ = φ(3)∂βφ(0) ,

(B.8)
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where all the contractions and curvature tensors are obtained using g(0),αβ. This allows to

perturbatively invert the relation (B.7) between γαβ and (g(0),αβ, g(2),αβ), and to rewrite the

coefficients of the divergences in (B.6) in a covariant form. At the order we are interested in

√
g0

ε3
=
√
γ

(
1− 1

2
ε2Tr(g−1

0 g(2))

)
,

Tr(g(2)) = − ε
4

(
R[γ]− 1

2
(∂φ)2

)
,

(B.9)

using which, the covariant counterterms action in the minimal subtraction scheme reads

Sct =
1

16πGN

∫
d3x
√
γ

[
−4−

(
R[γ]− 1

2
(∂φ)2

)]
. (B.10)

The renormalized action is then defined as

Sren = lim
ε→0

(Sε + Sct,ε) . (B.11)

The expectation values of the boundary energy momentum tensor and of the opera-

tor O associated to the massless bulk scalar are obtained from the on-shell renormalized

action as

〈Tαβ〉 =
2√

|det g(0)|

δSren

δgαβ(0)

=
3

16πGN
g(3),αβ , (B.12)

and

〈O〉 =
1√

|det g(0)|

δSren

δφ(0)
=

3

16πGN
φ(3) . (B.13)

C Asymptotic change of coordinates

Here we summarize some of the intermediate results in the change of coordinates from the

Eddington-Finkelstein to the Fefferman-Graham form of the metric.

In a compact form, the metric components of the solution can be written as

h(v, r, x) = r2

(
1 +
H(2)

r2
+
H(3)

r3
+
H(4)

r4
)

)
f(v, r, x) = r +

F(1)

r
+
F(2)

r2
+
F(3)

r3

k(v, r, x) = K(0) +
K(1)

r

B(v, r, x) =
B(2)

r2
+
B(3)

r3
+
B(4)

r4
,

(C.1)

while for the scalar field

φ(v, r, x) = Ψ(0) +
Ψ(1)

r
+

Ψ(2)

r2
+

Ψ(3)

r3
. (C.2)

The explicit expressions of the various coefficients can be identified by comparison with

the solution worked out in section 2.2.
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Working perturbatively in the radial variable, one can conveniently write the general

form of the change of coordinates as

v(t, %, χ) = t+

∞∑
n=1

vn(t, χ)

%n

r(t, %, χ) = %+
∞∑
n=1

rn(t, χ)

%n−1

x(t, %, χ) = χ+

∞∑
n=1

xn(t, χ)

%n
.

(C.3)

The functions vn, rn and xn can be determined by substituting (C.3) in

ds2 = −h(v, r, x)dv2 + 2dv (dr + k(v, r, x)dx) +

+ f(v, r, x)2eB(v,r,x)dx2 + f(v, r, x)2e−B(v,r,x)dy2 ,
(C.4)

and imposing order by order in % that the transformed metric should take the Fefferman-

Graham form

ds2 =
d%2

%2
+ %2gαβdx

αdxβ

gαβ = g(0),αβ(t, χ) +
g(2),αβ(t, χ)

%2
+
g(3),αβ(t, χ)

%3
+ . . . .

(C.5)

In the new coordinates, the scalar field allows the asymptotic expansion

φ(t, %, χ) = φ(0)(t, χ) +
φ(2)(t, χ)

%2
+
φ(3)(t, χ)

%3
+ . . . . (C.6)

From the expression for the stress energy tensor (3.1) and the operator dual to the

bulk scalar field (3.2), it follows that we are interested in the coefficients of metric and of

the scalar field only up to g(3),αβ and φ(3).

These coefficients can be fixed by imposing that the transformed metric should take

the Fefferman-Graham form up to corrections of O(%−6), which is achieved by a coordinate

transformation of the form

v → t− 1

%
+
v3

%3
+O(%−4) ,

r → %

(
1−
H(2) − 3v3

3%2
+
r3

%3
+O(%−4)

)
, (C.7)

x → χ+
K(0)

3%3
+O(%−4) ,

where

v3(t, χ) =
1

12
H(2)(t, χ) (C.8)

and

r3(t, χ) = −1

6

(
H(3) + 4F(2) − 4Ḟ(1) −

1

3
Ḣ(2) +

2

3
K′(0)

)
. (C.9)
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The coefficient g(0),αβ is the flat three-dimensional metric g(0),αβ = ηαβ =

diag(−1, 1, 1), while

g(2),αβ =

−1
2H(2) K(0) 0

K(0) −1
2H(2) + 2F(1) + B(2) 0

0 0 −1
2H(2) + 2F(1) − B(2)

 , (C.10)

and

g(3),αβ =
1

3

 −2H(3) −H′(2) − 2K̇(0) + 3K(1) 0

−H′(2)−2K̇(0)+3K(1) −H(3)−3B(3)+3Ḃ(2)+K′(0) 0

0 0 −H(3)+3B(3)−3Ḃ(2)−K′(0)

 ,
(C.11)

where we have used the relation

Ḣ(2) + 6F(2) − 6Ḟ(1) +K′(0) = 0 (C.12)

following from the explicit form of the solution.

For the scalar field, from (C.7) one obtains

φ(t, %, χ) = Ψ(0)(t, χ) +
Ψ(1)(t, χ)− Ψ̇(0)(t, χ)

%

+
Ψ(2)(t, χ)− Ψ̇(1)(t, χ) + 1

2Ψ̈(0)(t, χ)

%2

+
Ψ(3)(t, χ)− Ψ̇(2)(t, χ) + 1

2Ψ̈(1)(t, χ)− 1
6

...
Ψ(0)(t, χ)

%3

+
v3(t, χ)

(
Ψ̇(0)(t, χ)−Ψ(1)(t, χ)

)
+ 1

3

(
H(2)Ψ(1) +K(0)Ψ

′
(0)

)
%3

+O
(
%−4
)
.

(C.13)

Looking at the explicit form of the different Ψ(n) one can check that φ(t, %, χ) has exactly

the expected form: φ(1) vanishes and φ(2) =
2g(0)φ(0)

2 , as derived in (B.8). In fact it is

possible to check that all relations in (B.8) are satisfied.

Substituting the explicit expressions (2.12)–(2.14), we obtain

φ(t, %, χ) = ϕ(t, χ)− ϕ(t, χ)− ϕ′′(t, χ)

2%2

+
8
...
ϕ(t, χ)− 12ϕ̇′′(t, χ) + 3

∫ t
−∞ dτ ϕ

′′′′(τ, χ)

24%3
+O

(
ε3, η5, %−4

)
.

(C.14)

D The boundary stress-energy tensor

For completeness, we here give explicitly the stress-energy tensor components (3.17) up to

fourth order in the gradient expansion.
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The energy density reads:

Ttt = − 1

16πGN

{
1

2

∫ t

−∞
dτ

[
2ϕ̇(τ, x)

...
ϕ(τ, x)−

(
ϕ̇′(τ, x)

)2
−4ϕ̇(τ, x)ϕ̇′′(τ, x) + 2ϕ̈(τ, x)ϕ′′(τ, x) + 2ϕ̈′(τ, x)ϕ′(τ, x)

+2
∂

∂x

∫ τ

−∞
ds

[
ϕ̇(s, x)ϕ̈′(s, x)−

∫ s

−∞
dw ϕ̈′(w, x)ϕ̈(w, x)

] ]
−1

2

∫ t

−∞
dτ
[
(ϕ′′(τ, x))2 + ϕ′(τ, x)ϕ′′′(τ, x)

]
+

3

8

∫ t

−∞
dτϕ̇(τ, x)

∫ τ

−∞
ds ϕ′′′′(s, x)

−1

2

∂

∂x

∫ t

−∞
dτ

∫ τ

−∞
ds
[
ϕ̇(s, x)ϕ′′′(s, x)− 2ϕ̇′(s, x)ϕ′′(s, x)

]
+

1

4

∂2

∂x2

∫ t

−∞
dτ

∫ τ

−∞
ds

∫ s

−∞
dω

[
− 5

2
(ϕ̇′(ω, x))2 − 4ϕ̇(ω, x)ϕ̇′′(ω, x)

+2ϕ̈(ω, x)ϕ′′(ω, x) + 2ϕ̈′(ω, x)ϕ′(ω, x)

]
+

3

4

∂3

∂x3

∫ t

−∞
dτ

∫ τ

−∞
ds

∫ s

−∞
dω

∫ ω

−∞
dp

∫ p

−∞
dq ϕ̇(q, x)

...
ϕ ′(q, x)

}
. (D.1)

Notice that the term 3
16

∫ t
−∞ dτϕ̇(τ, x)

∫ τ
−∞ dsϕ

′′′′(s, x) does not give any time dependent

contribution after the injection of energy has been completed.

From eq. (3.17), we see that Txx and Tyy, besides by H(3) = −8πGNTtt, are determined

by the combination −3B(3) + 3Ḃ(2) − K′(0). For t ≥ δt, the latter reduces to −3B(3), since

both B(2) and K(0) vanish (see eq. (3.6)). Explicitly we have:

B(3) =
1

8

∫ t

−∞
dτ (ϕ̇′(τ, x))2 − 1

12

∂

∂x

∫ t

−∞
dτ

∫ τ

−∞
ds

∫ s

−∞
dω

...
ϕ ′(ω, x)ϕ̇(ω, x)

+
1

8

∫ t

−∞
dτ ϕ′(τ, x)ϕ′′′(τ, x)

+
1

24

∫ t

−∞
dτ

∫ τ

−∞
ds
[
− 5ϕ̇′(s, x)ϕ′′′(s, x)− 13ϕ̇′′(s, x)ϕ′′(s, x) + 6ϕ̇(s, x)ϕ′′′′(s, x)

]
+

1

32

∂2

∂x2

∫ t

−∞
dτ

∫ τ

−∞
ds

∫ s

−∞
dω
[
11(ϕ̇′(ω, x))2 + 16ϕ̇(s, x)ϕ̇′′(s, x)

−8ϕ̈(s, x)ϕ′′(s, x)− 8ϕ̈′(s, x)ϕ′(s, x)
]

−19

48

∂3

∂x3

∫ t

−∞
dτ

∫ τ

−∞
ds

∫ s

−∞
dω

∫ ω

−∞
dp

∫ p

−∞
dq

...
ϕ ′(q, x)ϕ̇(q, x) , (D.2)

while the energy flux Ttx for t ≥ δt reduces to

Ttx =
3

16πGN
K(1) =

3

16πGN

1

6
(K2,1 +K2,3)

=
3

16πGN

{
−1

3

∫ t

−∞
dτ

∫ τ

−∞
ds

...
ϕ ′(s, x)ϕ̇(s, x)
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+
1

6

∫ t

−∞
dτ
[
ϕ̇(τ, x)ϕ′′′(τ, x)− 2ϕ̇′(s, x)ϕ′′(s, x)

]
+

1

24

∂

∂x

∫ t

−∞
dτ

∫ τ

−∞
ds
[
5(ϕ̇′(s, x))2 + 8ϕ̇(s, x)ϕ̇′′(s, x)

−4ϕ̈(s, x)ϕ′′(s, x)− 4ϕ̈′(s, x)ϕ′(s, x)
]

−1

4

∂2

∂x2

∫ t

−∞
dτ

∫ τ

−∞
ds

∫ s

−∞
dω

∫ ω

−∞
dp

...
ϕ ′(p, x)ϕ̇(p, x)

}
. (D.3)

Using the factorized ansatz (3.21)

ϕ(t, x) = u(x)ϕ0(t) , (D.4)

with

ϕ0(t) = 0 , t ≤ 0

ϕ0(t) = εϕ̃0(t) , 0 < t < δt

ϕ0(t) = 0 , t ≥ δt ,
(D.5)

the above expressions become

Ttt = − 1

16πGN

{
u(x)2

∫ t

−∞
dτ ϕ̇0(τ)

...
ϕ0(τ)

−1

2

[
u′(x)2 + 4u(x)u′′(x)

] ∫ t

−∞
dτ (ϕ̇0(τ))2 +

1

2

∂2

∂x2
u(x)2

∫ t

−∞
dτ ϕ̈0(τ)ϕ0(τ)

+
1

2

∂2

∂x2
u(x)2

∫ t

−∞
dτ

∫ τ

−∞
ds

∫ s

−∞
dw ϕ̇0(w)

...
ϕ0(w)

+
3

8
u(x)u′′′′(x)

∫ t

−∞
dτ ϕ̇0(τ)

∫ τ

−∞
ds ϕ0(s)

−1

8

∂

∂x

[
9u′(x)u′′(x) + 6u(x)u′′′(x)

] ∫ t

−∞
dτ ϕ0(τ)2

+
3

8

∂2

∂x2

[
3(u′(x))2 + 4u(x)u′′(x)

] ∫ t

−∞
dτ

∫ τ

−∞
ds

∫ s

−∞
dω ϕ0(ω)ϕ̈0(ω)

+
3

8

∂4

∂x4
u(x)2

∫ t

−∞
dτ

∫ τ

−∞
ds

∫ s

−∞
dω

∫ ω

−∞
dp

∫ p

−∞
dq ϕ̇0(ω)

...
ϕ0(ω)

}
, (D.6)

B(3) =
1

8
(u′(x))2

∫ t

−∞
dτ (ϕ̇0(τ))2

+
1

48

[
u′(x)u′′′(x)− 13(u′′(x))2 + 6u(x)u′′′′(x)

] ∫ t

−∞
dτ ϕ0(τ)2

− 1

24

∂2

∂x2
u(x)2

∫ t

−∞
dτ

∫ τ

−∞
ds

∫ s

−∞
dω

...
ϕ0(ω)ϕ̇0(ω)

+
1

32

∂2

∂x2
(u′(x))2

∫ t

−∞
dτ

∫ τ

−∞
ds

∫ s

−∞
dω
[
11(ϕ̇0(ω))2 − 8ϕ̈0(ω)ϕ0(ω)

]
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+
1

4

∂2

∂x2
(u(x)u′′(x))

∫ t

−∞
dτ

∫ τ

−∞
ds

∫ s

−∞
dω
[
2(ϕ̇0(ω))2 − ϕ̈0(ω)ϕ0(ω)

]
−19

96

∂4

∂x4
u(x)2

∫ t

−∞
dτ

∫ τ

−∞
ds

∫ s

−∞
dω

∫ ω

−∞
dp

∫ p

−∞
dq

...
ϕ0(q)ϕ̇0(q) , (D.7)

Ttx =
3

16πGN

{
−1

6

∂

∂x
u(x)2

∫ t

−∞
dτ

∫ τ

−∞
ds

...
ϕ0(s)ϕ̇0(s)

+
1

6

[
u(x)u′′′(x)− 2u′(x)u′′(x)

] ∫ t

−∞
dτ ϕ̇0(τ)ϕ0(τ)

+
1

24

∂

∂x
(u′(x))2

∫ t

−∞
dτ

∫ τ

−∞
ds
[
5(ϕ̇0(s))2 − 4ϕ̈0(s)ϕ0(s)

]
+

1

6

∂

∂x
(u(x)u′′(x))

∫ t

−∞
dτ

∫ τ

−∞
ds
[
2(ϕ̇0(s))2 − ϕ̈0(s)ϕ0(s)

]
−1

8

∂3

∂x3
u(x)2

∫ t

−∞
dτ

∫ τ

−∞
ds

∫ s

−∞
dω

∫ ω

−∞
dp

...
ϕ0(p)ϕ̇0(p)

}
. (D.8)
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