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Abstract: We calculate the radiation spectrum off a qq̄ pair of a fixed opening angle

θqq̄ traversing a medium of length L. Multiple interactions with the medium are handled

in the harmonic oscillator approximation, valid for soft gluon emissions. We discuss the

time-scales relevant to the decoherence of correlated partons traversing the medium and

demonstrate how this relates to the hard scale that govern medium-induced radiation. For

large angle radiation, the hard scale is given by Qhard = max
(
r−1
⊥ , Qs

)
, where r⊥ = θqq̄L

is the probed transverse size and Qs is the maximal transverse momentum accumulated

by the emitted gluon in the medium. These situations define in turn two distinct regimes,

which we call “dipole” and “decoherence” regimes, respectively, which are discussed in

detail. A feature common to both cases is that coherence of the radiation is restored at

large transverse momenta, k⊥ > Qhard.
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1 Introduction

One has observed striking effects of energy loss of leading partons in heavy-ion collisions

at RHIC and LHC, see e.g. [1, 2] and references therein. These observations established

the phenomenon known as ‘jet quenching,’ namely the interaction of a hard parton with

the dense medium created in the aftermath of the collision, as one of the key discoveries

of the high-energy heavy-ion program [3–6]. Complementary, more differential observables

such as multi-particle correlations and full jet reconstruction in heavy-ion events probe

the structure of the energy and particle distributions of jets traversing the quark-gluon

plasma [7–13] and provide strong constraints on the theoretical modeling of multi-gluon

emissions in the medium.

Usually, these effects are interpreted within the framework of induced radiative pro-

cesses in the presence of a deconfined medium [14].1 Until recently one has studied these

theoretically on the level of the single-gluon emission spectrum which accounts for multiple

scattering of both the projectile and emitted gluon with the medium. This approach was

pioneered by the works of Baier-Dokshitzer-Mueller-Peigne-Schiff and Zakharov (BDMPS-

Z) [15–19]. Further developments were presented in [20–27], see also [28]. For other ap-

proaches, see [2] and references therein. These studies are QCD extensions of the analogous

QED problem of induced radiation, considered long ago by Landau, Pomeranchuk and

Migdal [29, 30]. The medium-induced single-inclusive spectrum off a single charge, known

henceforth as the BDMPS-Z spectrum, serves also as a building block for treating multi-

gluon emissions, see, e.g., [31, 32]. These ad hoc extensions can therefore only account for

uncorrelated emissions (except for trivial correlations such as energy-momentum conser-

vation) and serve as working models for phenomenological applications and Monte-Carlo

implementations, e.g., [33–36].

A pressing question is whether this picture is valid and adequate for comparisons with

data. On one hand, interferences are crucial in order to establish the relevant order variables

for jet showering in vacuum at leading logarithmic accuracy. On the other hand, the

BDMPS-Z spectrum is infrared and collinear safe and one does not expect any logarithmic

enhancement of the spectrum. It is instead dominated by the characteristic transverse

momentum accumulated via interactions with the medium, see section 5 for details,

In our recent papers [37–39], see also [40], we have tried to address these questions

from first principles and have pointed out interesting aspects arising when considering

interference processes in the medium. In particular, one recovers an infrared divergent

vacuum-like component which is responsible for the onset of decoherence of the vacuum

radiation in the soft sector [37]. We also showed how the onset of decoherence in a dense

medium result in independent radiation off all particles [38]. This can be interpreted as

a screening effect which also implies the ‘loss of memory’ of color connections between

parents and offspring in the radiative process.

The extension of this phenomenon to arbitrary gluon energies follows a general picture

established in [39], see also [41] for a treatment of the case of massive quarks. One can

1Elastic energy loss becomes important for the less energetic constituents of a jet, but is beyond the

scope of the present work.
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identify two distinct regimes characterizing the induced radiation which involve different

physical processes but, strikingly, share several common features. This unifying idea follows

from considering the relevant scales of the problem in the presence of a medium. In terms

of characteristic transverse distances, one one hand there is the antenna size, denoted by

r⊥, and, on the other hand, the transverse color correlation length of the medium, given

by the inverse of the characteristic medium scale Q−1
s .2 Let us first consider the situation,

when r⊥ < Q−1
s , i.e., the limit of small antenna sizes. In this case the antenna interacts as

a coherent ensemble with the medium, since the medium cannot resolve its inner structure.

In fact, in this case one can instead say that the medium is probed by the antenna. It

follows that the medium interactions only can stimulate coherent radiation. This induces a

vacuum-like radiation component at angles larger than the opening angle of the pair which

modifies the angular ordering condition. This characterizes the so-called “dipole” regime.

In the opposite case, r⊥ > Q−1
s , the medium probes the inner structure of the antenna.

We have dubbed this the “decoherence” regime. Interferences are strongly suppressed and

independent radiation is induces off each of the constituents. In both cases, the spectrum

is governed by the hardest of these two momentum scales, Qhard = max
(
r−1
⊥ , Qs

)
, which

specifies the maximal transverse momentum of produced gluons. Most importantly, vacuum

coherence is restored for k⊥ > Qhard.

The analysis in [39] was limited to consider only one scattering center inside the

medium and is therefore strictly valid for a relatively dilute medium. The size of the

medium, L, becomes in this case rather an indication of the longitudinal position of the

scattering center. Besides, for this calculation the “decoherence” regime does not involve

the complete disappearance of interferences in the vacuum. In this framework, on the

other hand, it is feasible to account analytically for effects of finite mean free path in the

medium. In the present work we extend our previous efforts by considering an arbitrary

number of re-scatterings with the medium. This allows us to analyze the corresponding

interference effects in opaque media. But in order to gain some analytical insight we will

employ an approximation which is only valid in the limit of vanishing mean free path —

the ‘harmonic oscillator’ approximation — strictly valid only for soft gluon production.

Our present analysis will also help clarify the meaning of the relevant time-scales, such as

the formation and emission times, in a continuous medium of a certain extension.

The outline of the paper is the following. In section 2, we give a brief outlook of

the antenna radiation spectrum in vacuum and medium, discussing the main features of

the independent components, see eq. (2.5), and the interferences, see eq. (2.4). A gen-

eral discussion about the physics of decoherence of QCD radiation is given in section 3,

leading up to a more detailed discussion of the features of the spectrum in the follow-

ing sections. In particular, the physics governing the two distinct regimes, namely the

“dipole” and “decoherence” regimes, relevant for our setup, is explained and the main

scales of the problem identified in sections 3.1 and 3.2, respectively. We introduce the

harmonic oscillator approximation in section 4, which allow us to simplify our expressions

2Qs is related to the maximum transverse momentum that a induced particle can accumulate traversing

the total medium length. See section 5 for details.
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Figure 1. The kinematics of the gluon emission off the qq̄ antenna.

considerably. Then, as a first advance toward understanding interference effects in the

medium we analyze the independent component of the spectrum which is less complicated

in section 5. In particular, we derive a novel formulation of the independent component,

given by eq. (5.16). The insights gained in finding this leading behavior allow us to devise

a simplified procedure, discussed in detail in section 5.4, which aid considerably in simpli-

fying the complicated structure of the interference spectrum. We analyze this in detail in

section 6 — the “dipole” regime is discussed in section 6.1 and the “decoherence” regime

in section 6.2 — and, throughout, substantiate the general picture outlined in section 3.

The numerical results, serving to illustrate the aforementioned features, are presented in

section 7. We supplement our discussion by including the possible non-zero total color

charge of the antenna in section 8 and consider briefly the implications of our findings for

a parton shower in the medium. Finally, we conclude and give a brief outlook in section 9.

2 The antenna radiation spectrum

Following closely the setup already studied in our previous works [37–39], we will analyze

the radiation spectrum of a qq̄-pair, with a given opening angle θqq̄, traversing an extended

medium of free, uncorrelated color charges. The antenna originates either from the decay

of a virtual photon or gluon. In the former case, the qq̄-pair is created in a color singlet

state while in the latter as a color octet. Assuming, for the purpose of our discussion,

that the quark and antiquark are very energetic implies a large virtuality of the initial

projectile such that we can neglect emissions prior to the qq̄-splitting, in line with the

leading logarithmic approximation (LLA), see, e.g., [42]. The spectrum of emitted gluons

with energy ω,3 and transverse momentum k reads in the general, octet case,

ω
dN

d3k
=

αs
(2π)2 ω2

(
CFRsing + CAJ

)
, (2.1)

3The light-cone variables, x± ≡ (x0 ± x3)/
√

2, related to the longitudinal propagation and energy are

simply denoted as t ≡ x+ and ω ≡ k+, respectively, to ease the notation. Bold-face characters, e.g. k, will

denote two-dimensional transverse vectors.
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where Rsing = Rq + Rq̄ − 2J is the color singlet component. The spectrum consists of

independent radiation off the constituents, given by Rq and Rq̄, and the interferences,

encoded in J . The singlet contribution in vacuum, which reads

Rvac
sing = 2ω2 p · p̄

(p · k) (p̄ · k)
, (2.2)

where p (p̄) is the four-momentum of the quark (antiquark), is the well-known antenna

emission pattern [42]. It exhibits the characteristic feature of angular ordering. To set the

notations for future use, let us also rewrite this spectrum as

Rvac
sing = 4ω2 δk2

κ2κ̄2
= 4ω2

(
1

κ2
+

1

κ̄2
− 2

κ · κ̄
κ2κ̄2

)
, (2.3)

where κ = k − xp (with x = ω/p+) is the gluon transverse momentum with respect to

the quark (similarly, κ̄ = k − x̄p̄ is with respect to the antiquark), and δk = κ− κ̄ is the

relative transverse momentum of the qq̄-system. Note that the vector δn ≡ δk/ω is closely

related to the opening angle of the pair, i.e., |δn| ' sin θqq̄. The second relation in eq. (2.3)

reflects directly the aforementioned decomposition of the spectrum into the independent

components, given by the two former terms, and the interferences, described by the last

term in eq. (2.3). For more details on the vacuum spectrum we refer the reader to the

standard texts [42] and to our previous papers [38, 39]. Since the color octet spectrum is

just a simple generalization related to conservation of color, see eq. (2.1), we will from now

on only consider the singlet spectrum, postponing the discussion of an overall non-zero

color charge to section 8.

In the presence of a medium, both of the antenna constituents as well as the emitted

gluon can interact with color charges in the quark-gluon plasma. The general setup is

depicted in figure 1. We will mainly be interested in the most typical situation for studies

of parton branchings in QCD, i.e., when the momenta of the projectiles is dominated by

their positive light cone components. Interactions with the medium and the emission of

the gluon are treated in the eikonal approximation which is valid at high energies up to

the leading logarithm [15, 16]. Within this setup the interference spectrum was derived

in [40, 43] and reads

J = Re

∫ ∞
0

dt′
∫ t′

0
dt
[
1−∆med(t)

]
×
∫
d2z exp

[
−iκ · z − 1

2

∫ ∞
t′

dξ n(ξ)σ(z) + i
ω

2
δn2t

]
× (∂y − iω δn) · ∂z K(t′, z ; t,y |ω)

∣∣
y=δnt

+ sym. (2.4)

where the symmetrical term is found by replacing κ → κ̄, which also implies δn → −δn.

The density of scattering centers as a function of time is given by n(ξ). The independent

components Rq and Rq̄ are found from eq. (2.4) by taking δn→ 0. For instance, the quark

– 5 –
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0 t L t′ 0L 0 t L 0Lt′ 0 tL 0Lt′

Figure 2. The three parts of the gluon spectrum in the presence of a medium: “in-in” component

(left), “in-out” component (center) and the “out-out” vacuum component (right). The dashed line

corresponds to the cut; on the left we depict the amplitude and on the right the complex conjugate

amplitude.

component is given by

Rq = 2Re

∫ ∞
0

dt′
∫ t′

0
dt

∫
d2z exp

[
−ik · z − 1

2

∫ ∞
t′

dξ n(ξ)σ(z)

]
× ∂y · ∂z K(t′, z ; t,y |ω)

∣∣
y=0

, (2.5)

and an analogous expression holds for the antiquark component.4 The factor 2 in eq. (2.5)

arises due to the possibility of rearranging the emission times in the amplitude and complex

conjugate amplitude. In the simplest case of a medium with constant density the integra-

tion region of emission times in the amplitude and the complex conjugate amplitude is

usually separated into three regions, namely∫ ∞
0

dt′
∫ t′

0
dt =

∫ L

0
dt′
∫ t′

0
dt+

∫ ∞
L

dt′
∫ L

0
dt+

∫ ∞
L

dt′
∫ t′

L
dt , (2.6)

where L denotes the length of the medium. The solutions for more involved medium profiles

generalize this setup [32, 44, 45]. For obvious reasons, the three integration regions are

called “in-in”, “in-out” and “out-out”, respectively, see figure 2.5 Let us currently describe

the different components of the interference spectrum and, in parallel, the independent one

in brief, postponing a more thorough analysis to sections 5 and 6.

The spectrum in eq. (2.4) describes three distinct stages associated with the in-medium

emission process. Initially one propagates the dipole consisting of the quark and antiquark,

created in a color singlet state, from the the point where the γ∗ → qq̄ splitting occurred,

chosen to be located at the origin of our coordinate system, to time t when the emission

of the gluon is initiated. At this stage, the interaction of the qq̄-pair with the medium is

described by the survival probability [38]

1−∆med(t) = exp

[
−1

2

∫ t

0
dξ n(ξ) σ(δn ξ)

]
, (2.7)

4These expressions are precise modulo a formal cut-off prescription that is necessary in order to obtain

the correct vacuum contribution [20].
5This separation is somewhat artificial inasmuch as one only has two genuine types of radiation: a

bremsstrahlung component due to the initial acceleration and a medium-induced component. We return to

this point when discussing the “in-out” component in section 5.2.
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where σ(δnξ) is the dipole-medium forward scattering amplitude, see eq. (4.1). Equa-

tion (2.7) characterizes the rate of color decoherence of the pair prior to the emission due

to color interactions with the medium. The function ∆med(t) on the left hand side of

eq. (2.7) is called the medium decoherence parameter [37]. This factor determines a char-

acteristic time-scale for decoherence of the qq̄-pair, denoted td and given by the solution of

1

2

∫ td

0
dξ n(ξ) σ(δn ξ) = 1 . (2.8)

Thus, for times t� td the color correlation of the pair is lost and the interference contribu-

tion is suppressed. Naturally, a corresponding process does not occur for a single particle in

the medium since its own dipole moment is vanishing. Such a suppression factor is there-

fore not present in eq. (2.5). Correspondingly, for propagation across the entire medium

length one can define a characteristic opening angle θc by allowing the integration limit in

eq. (2.8) extend up to L and solving for |δn|.
The emission of the gluon, taking place at time t in the amplitude and time t′ in the

complex conjugate, is a common feature to both eq. (2.4) and (2.5). In this time interval,

usually called the formation time, the dynamics of the current dipole, consisting of the

gluon (in the amplitude) and quark (in the complex conjugate amplitude), is described by

the path integral

K
(
t′, z; t,y|ω

)
=

∫
D[r] exp

{∫ t′

t
dξ

[
i
ω

2
ṙ2(ξ)− 1

2
n(ξ)σ(r)

]}
. (2.9)

It incorporates the Brownian motion of the gluon in the transverse plane from t to t′, which

comes from the accumulation of momentum from the medium, and results in a change of

the dipole size from r(t) = y to r(t′) = z. The derivatives are simply conjugate to the

transverse momenta at emission. However, the main distinction between the independent

and interference spectra lies in the fact that in the former case the emissions and re-

absorption (in the complex conjugate amplitude, that is) of the gluon takes place off the

same antenna leg — in the latter from two distinct ones. This gives rise to a different

derivative structure for the two cases, cf. eqs. (2.4) and (2.5). Finally, one also has to

include the separation of the transverse position of the emission points, which follows the

quark and antiquark propagation in time as y = δn t, for the interference contribution.

After the formation of the gluon, the further propagation, from time t′ onward, is once

more described by a survival probability, given by the second term in the second line of

eq. (2.4) and, correspondingly, by the last term in the first line of eq. (2.5). This final

process takes into account the accumulation of additional momentum from the medium by

the emitted gluon, see section 5 for further details.

The interference spectrum contains one further additional factor that is not present in

for the independent radiation component, appearing in the last factor in the second line

of eq. (2.4). This phase factor can be written as δk2t/(2ω) is independent of the medium

characteristics, see section 6 for further details.

– 7 –
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3 A general picture: decoherence of QCD radiation

Before undertaking a technical discussion of the gluon spectrum in the presence of a medium

contained in eq. (2.1), with the independent components and interferences given, respec-

tively, by eqs. (2.5) and (2.4), it is worthwhile to consider the general characteristics of the

chosen physical setup. At the outset we recall that the spectrum off a charge propagating

through the medium, be it a single parton or an antenna, consists of two types of stimulated

radiation: a) the bremsstrahlung accompanying the creation (acceleration) of the charge,

which we shall refer to as vacuum radiation, and b) the one that is stimulated directly by

the medium interactions. Whereas radiation of type a) has the typical broad, vacuum-like

distribution, k−2, the induced radiation, of type b), is sustained only by some characteristic

momentum transferred from the medium. We return to the physics of decoherence for a

single charge in section 5.

In the absence of a medium only the former, vacuum radiation component is at work.

For the antenna, gluons are only radiated at relatively small emission angles θ < θqq̄, where

they are produced independently by each of the antenna constituents. This comes about

due to the fact that the gluon transverse wave length must in this case be smaller than the

dipole size when the gluon is formed in order to resolve the internal structure of the pair.

In the opposite case, θ > θqq̄, the spectrum is suppressed since large angle gluon emission

is sensitive to the total color charge of the pair (which in the singlet case is zero). This

suppression is achieved through destructive interferences so that the color flow is restricted

to a cone with aperture given by the opening angle of the pair.

We can further deepen our understanding of this phenomenon by considering the rel-

evant scales involved in the problem. In vacuum, the characteristic hard scale, which

necessarily is related to the opening angle of the pair, is simply Qhard = δk. It determines

the maximal transverse momentum of the gluons that can be produced by the system.

In fact, for gluon transverse momenta k � δk the spectrum is power-suppressed, ∼ k−4,

see eq. (2.3). Conversely, considering the emission off one lone charge in the vacuum does

not involve any hard scale — therefore no cut-off modifies the transverse spectrum, which

remains vacuum-like ∼ k−2 in the whole phase space.

In the general case we have to consider the additional transverse dynamics induced by

the interactions with the medium. We follow closely the discussion in [39], where it was

realized that the gross features of the antenna spectrum in a medium can be understood

in terms of two characteristic scales.6 These are easily obtained from an analysis of the

medium decoherence parameter defined in eq. (2.7), which we presently conjecture to be

in the following form

1−∆med ∼ e−Q
2
s r

2
⊥ , (3.1)

postponing the derivation and detailed discussion to section 4, also see [38]. First and

foremost one has the transverse color screening length of the medium. It is given by the

inverse of the saturation scale of the medium, denoted by Qs. In a dense medium it is given

6We would like to thank A. H. Mueller for inspiring this interpretation.
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“Dipole” regime “Decoherence” regime

Hard scale (Qhard) r−1
⊥ Qs

Critical opening angle (θc) θqq̄ � θc θqq̄ � θc

Decoherence time (td) td � L td � L

Max. emission angle (θmax) (ωr⊥)−1 Qs/ω

Table 1. Overview of the characteristics governing emission off the antenna in medium in the two

possible situations when r−1
⊥ , Qs > |δk|.

by Q2
s = q̂L, where q̂ is the medium transport coefficient and L is the size of the medium.

The other relevant length scale of the problem is simply related to the maximal antenna

size in the medium, namely r⊥ = θqq̄L. We discuss these features in more technical detail

in section 6.

The resulting spectrum is characterized by the competition between the two medium-

induced scales and the intrinsic antenna scale. The largest transverse scale determines the

hard scale of the problem, or

Qhard = max(r−1
⊥ , Qs, |δk|) , (3.2)

which assigns a maximal transverse momentum that can be generated by the system under

consideration. Below, for the sake of argument, we will always assume that the vacuum scale

|δk| is much smaller than the medium scales and we will only consider radiation at angles

larger than the pair opening angle, unless stated otherwise. This is the relevant regime for

studying interferences, as radiation taking place inside the pair always is independent.

The former regime, defined by Qhard = r−1
⊥ , will be denoted the “dipole” regime since

the intrinsic dipole scale governs the dynamics of the radiative processes. The second

regime will, on the other hand, be denoted the “decoherence” regime. In this case the

dynamics are dominated by scales induced by the medium since Qhard = Qs.

In terms of angles, the characteristic momentum scale translates accordingly into a

maximal angle of gluon emission given by θmax = Qhard/ω. Note that this angle becomes

arbitrary large in the infrared limit [38]. For θmax > θqq̄ this implies that the color flow has

been reshuffled to higher angles and color conservation is only achieved at θ > θmax. In

this regime, the overall physical picture is then analogous to the vacuum case in the sense

that the pair opening angle is replaced by max(θmax, θqq̄) as the angle that governs the

transition between independent emissions at ‘small’ angles and emissions off the total color

charge at ‘large’ angles (which in the color singlet case is strongly suppressed, as expected).

The considerations above define two distinct regimes for in-medium gluon emissions,

which we proceed to discuss in some detail. A summary of relevant scales have been

collected in table 1.

3.1 The “dipole” regime (“partial decoherence”): r⊥ < Q−1
s

The “dipole” regime applies to situations when the size of the antenna during the passage

through the plasma always is smaller than the transverse screening length, so that the

– 9 –
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condition r⊥ < Q−1
s is fulfilled. This happens because the characteristic decoherence time,

defined in eq. (4.4), is much larger than the interaction length, td � L. Analogously, one

can also visualize that the opening angle of the pair is smaller than some critical angle,

which we denote θc in table 1. This angle can be deduced from the general definition

of the decoherence parameter, see comment below eq. (4.4), and in the approximation

used throughout, cf. section 4, this angle becomes simply θc = 1/
√
q̂L3. The qq̄-pair thus

preserves its color correlation throughout the passage and, in this sense, probes the medium

structure on short transverse distances.

Accordingly, the hardest scale of the problem is r−1
⊥ , determining the characteristic

cut-off of the transverse momentum spectrum. Note that in this case the medium-induced

gluon spectrum is directly proportional to the decoherence parameter which reads

∆med =
1

12
Q2
sr

2
⊥ , (3.3)

after expanding the right hand side of eq. (3.1). The cross-section reveals the charac-

teristic color-transparency behavior and results in a partial decoherence of the antenna

spectrum [37, 39]. The emitted gluons have relatively long formation times and therefore

are not strongly affected by the broadening in the medium. We postpone the discussion of

further technical details relevant for this regime to section 6.1.

3.2 The “decoherence” regime: r⊥ > Q−1
s

In this regime, the hardest scale of the problem is given by Qs and the quark and the an-

tiquark are correlated only for a very short time after entering the medium, i.e., for times

td < L. After complete decoherence is achieved the constituents are free to radiate inde-

pendently along the remaining path-length through the medium. In this sense, the medium

probes the internal structure of the antenna. Therefore, as the decoherence parameter is

saturated at the maximal value, i.e.,

∆med = 1 , (3.4)

the interferences are suppressed and all gluons with k⊥ < Qs are emitted incoherently. As

in the previous case, transverse momenta k⊥ > Qs are not allowed by the medium-induced

radiation hence restoring color coherence at angles θ > θmax = Qs/ω. So long as θmax > θqq̄
the spectrum has lost all information about the opening angle of the pair — this defines

total decoherence. Indeed, the angle θmax acts as a new ‘opening angle’ of the pair.

We discuss the detailed characteristics of the independent component and the inter-

ferences for the “decoherence” regime in sections 5 and 6.2, respectively.

4 The antenna spectrum in the harmonic oscillator approximation

The details of the spectrum in eqs. (2.4) and (2.5) are determined by the dipole-medium

cross section σ which contains the dynamics of the interaction. As described above, pre-

cisely what dipole is probed by the medium at a given time changes in course of the process.
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The general expression for σ(r) reads

σ(r) =

∫
d2q

(2π)2
V2(q)

[
1− cos(r · q)

]
, (4.1)

where V(q) is the medium potential and closely related to the elastic scattering rate. The

details of the nature of the medium are in our context not of great importance, noticing

that at leading-logarithmic approximation the cross section simply is proportional to r2.

At this level, we can capture the universal features of the multiple scatterings and examine

the spectrum analytically. Summing over multiple scattering with the medium lead to

the exponentiation of the product of σ(r) and the medium density, n(t). The harmonic

oscillator approximation consists of assuming that this product simply reads

n(t)σ(r) ≈ 1

2
q̂(t)r2 . (4.2)

This approximation is strictly valid for multiple soft scattering in a ’dense’ medium char-

acterized by the condition that the gluon formation time is much larger than the mean free

path, i.e., tf � λmfp, and breaks down when the projectile becomes sensitive to isolated

scattering centers, i.e., for small dipoles such that r−1 �
∫
dt q̂(t). This suggests in turn

that the approximation is valid for soft gluon production and breaks down in the hard

sector where one is more sensitive to hard, atypical medium interactions, see, e.g., [46, 47].

In the latter case, an analysis incorporating the microscopical structure of the medium,

such as done, e.g., in [39], is more relevant. In the harmonic oscillator approximation there

is also a direct relation between the medium transport parameter q̂ and the transverse

momentum accumulated by a particle traversing the medium [16], which suggests that it

can be interpreted as the momentum broadening per unit length. In line with previous

considerations, we assume for the time being a constant medium density from the initial

production point to some length L, such that q̂(t) = q̂Θ(L− t).
In the harmonic approximation the survival factors become Gaussian functions. In

particular, the decoherence parameter simply reads

∆med(t) = 1− exp

[
− 1

12
q̂ δn2 t3

]
, (4.3)

where the dipole considered is the one related to the qq̄ opening angle, i.e., r2(t) = (δn t)2.

Here we point to the fact that the size grows linearly with time. We identify the decoherence

time scale, defined in eq. (2.8), as

td =
(
q̂θ2
qq̄

)−1/3
. (4.4)

The same logic governs the process of gluon formation, described by eq. (2.9). For this

situation, however, the size of the dipole fluctuates around a characteristic size. As a

first heuristic estimate, let us invoke a typical Brownian diffusion process: during the

typical formation time, which involves a certain number Ncoh of coherent scatterings, tf =

λmfpNcoh, the gluon accumulates a transverse momentum k2
f = m2

DNcoh, where mD is the

so-called Debye mass which constitutes the typical momentum transfer from the medium
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in a single scattering. This gives immediately an estimate of the typical formation time of

an induced gluon, which reads

tf =

√
ω

q̂
, (4.5)

where the medium transport parameter becomes q̂ = m2
D/λmfp for the purpose of this

heuristic estimate. This differs from the formation time in vacuum, which goes like tf =

1/(ωθ2) and is typically long for soft gluons at a fixed angle θ. In contrast, soft gluons are

induced quite rapidly in the medium. It follows that the accumulated momentum becomes

k2
f =

√
ωq̂ , (4.6)

and the typical dipole size governing eq. (2.9) is therefore r2 = k−2
f . Since this is the size

of the quark-gluon dipole at formation time, r2(tf) = (θftf)
2, we deduce the characteristic

angle for these emissions to be θf = (q̂/ω3)1/4. Thus, in the same sense as decoherence of

the qq̄-pair emerges at t > td the gluon becomes decorrelated from the quark at times t > tf.

For a more precise treatment we note that in this scheme the Green’s function in

eq. (2.9) is that of a harmonic oscillator and allows an exact, analytical solution. This is

given by

K(t′, z ; t,y |ω) =
A

πi
exp

[
iAB(z2 + y2)− 2iA z · y

]
, (4.7)

where, in a constant medium presently under consideration,

A =
ωΩ

2 sin(Ω∆t)
, B = cos(Ω∆t) , (4.8)

with ∆t = t′− t and the parameter Ω−1 = (1 + i) tf is roughly the inverse of the formation

time, as estimated in eq. (4.5). The functions A,B in the case of a smooth medium profile

or for an expanding medium are, e.g., given in [32, 44, 45]. Within the harmonic oscillator

approximation the spectrum in eq. (2.4) can be solved in coordinate-space representation.

This simplifies the numerical analysis which we will return to in section 7 and we therefore

detail the corresponding expressions in appendix A. Presently, we will pursue another

strategy which makes a more analytical treatment of the spectrum possible.

This can be achieved in a mixed representation involving the longitudinal position of

gluon emission and its corresponding transverse momentum. Taking the Fourier transform

of the transverse endpoint of the path integral,

K(t′, z; t,y|ω) =

∫
d2k′

(2π)2
eik
′·zK̃(t′,k′; t,y|ω) , (4.9)

where

K̃(t′,k′; t,y|ω) =
1

B
exp

[
−i k

′2

4AB
+ i

A
(
B2 − 1

)
B

y2 − ik
′ · y
B

]
, (4.10)
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is the propagator in a mixed representation. Then we find that the “in-in” component of

eq. (2.4) becomes

J in-in = Re

∫ L

0
dt′
∫ t′

0
dt

∫
d2k′

(2π)2

[
1−∆med(t)

]
P(κ− k′, L− t′)

× 1

B2
k′ ·

{
k′ −B

[
1 +

2A(B2 − 1)t

ωB

]
ωδn

}
× exp

[
i
ω δn2 t

2
− i k

′2

4AB
− ik

′ · δn t
B

+ i
A(B2 − 1) δn2t2

B

]
+ sym. , (4.11)

where the coefficients A and B are given in eq. (4.8). In eq. (4.11), we have defined

the function

P(k, ξ) ≡ 4π

q̂ξ
exp

[
−k

2

q̂ξ

]
, (4.12)

which describes the probability of having accumulated a certain transverse momentum

squared k2 after traversing the longitudinal distance ξ. This factor emerges due to the

classical transverse momentum broadening of the gluon in the wake of the quantum emission

process. The presence of this factor corresponds to the reshuffling of gluon momenta, and

does not contribute to the absolute yield of produced gluons, since
∫

d2k
(2π)2P(k, ξ) = 1. We

demonstrate the role of this particular effect numerically in some more detail in appendix B.

Naturally, this final-state broadening is absent for the remaining “in-out” and “out-

out” components of eq. (2.4). Within the harmonic oscillator approximation, the vacuum-

medium interference term reads

J in-out = −Re

∫ L

0
dt
[
1−∆med(t)

] 2i ω

B̃2 κ2
κ ·
{
κ− B̃

[
1 +

2Ã(B̃2 − 1)t

ωB̃

]
ωδn

}

× exp

[
i
ω δn2 t

2
− i κ

2

4ÃB̃
− iκ · δn t

B̃
+ i

Ã(B̃2 − 1) δn2t2

B̃

]
+ sym. , (4.13)

where, in this case,

Ã =
ωΩ

2 sin[Ω(L− t)] , B̃ = cos[Ω(L− t)] . (4.14)

Finally, emissions taking place outside of the medium are given by the “out-out” compo-

nent, which reads

J out-out =
[
1−∆med(L)

]4ω2 κ · κ̄
κ2κ̄2

cos

[
(κ+ κ̄) · r

2

]
, (4.15)

where r = δnL. In particular, the term in eq. (4.15) is responsible for the decoherence

of the vacuum radiation. Note that it is proportional to the vacuum interference emission

pattern, cf. the last term in eq. (2.3), which only contributes outside of the opening angle.

This term involves only the interaction of the quark and antiquark with the medium and is

the leading term of the spectrum in the infrared limit [38]. Emissions beyond the infrared
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limit must in addition take into account gluon rescattering and involve also the “in-in”

and “in-out” contributions — note that this also holds in the vacuum, see the section

below. Before examining the complicated features of the interferences in medium we will

first examine the independent spectrum off a single charge.

4.1 Interferences in vacuum

As a brief interlude, we would like to point out some peculiar features of the interference

spectrum that arise in vacuum. Above it was noted that in this case the interferences are

not simply given by the term describing emissions outside of the medium but involve all

three components J in-in, J in-out and J out-out. This can be seen, for instance, taking the

q̂ → 0 limit. In this case,

J in-in = 4ω2 κ · κ̄
κ2κ̄2

{
1− cos

(
κ2

2ω
L

)
− cos

(
κ̄2

2ω
L

)
+ cos

[
(κ+ κ̄) · r

2

]}
, (4.16)

J in-out = 4ω2 κ · κ̄
κ2κ̄2

{
cos

(
κ2

2ω
L

)
+ cos

(
κ̄2

2ω
L

)
− 2 cos

[
(κ+ κ̄) · r

2

]}
, (4.17)

J out-out = 4ω2 κ · κ̄
κ2κ̄2

cos

[
(κ+ κ̄) · r

2

]
, (4.18)

such that

J ≡ J in-in + J in-out + J out-out = 4ω2 κ · κ̄
κ2κ̄2

, (4.19)

in accordance with the last term in eq. (2.3). In other words, the presence of a boundary,

in our case delimited by L, induces a ‘delay effect’ causing the distortion of the interference

effects. The genuine vacuum contribution, i.e., the one that does not depend on L, can

be found in J in-in, see the first term in eq. (4.16). Taking additionally the L → 0 limit

in eqs. (4.16)–(4.18), we are only left with J out-out contribution, as expected. As already

pointed out above, this ‘delay effect’ is irrelevant for soft gluon production.

5 The single-inclusive independent spectrum revisited

From the heuristic analysis of the behavior of the survival probabilities we have found

that the medium induces gluons with a preferred transverse momentum, k2(tf) ∼ k2
f ,

see eq. (4.6). Considering long formation times, tf ∼ L, we find the maximal transverse

momentum that can be accumulated to be given by

Qs =
√
q̂L , (5.1)

which is the scale that naturally governs the momentum broadening, see eq. (4.12). How-

ever, we will shortly demonstrate that the spectrum is mainly dominated by the emissions

of gluons with short formation times. Reverting for a moment to heuristic arguments, this

fact becomes clear when realizing that the spectrum of gluons will be proportional to the

number of available production lengths, given in the simplest case by tf ∼ λmfpNcoh, for

gluon production, i.e.

ω
dN

dω
∼ αs

L

tf
∼ αs

√
ωc
ω
, (5.2)
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where ωc = q̂L2 is a characteristic gluon energy. Thus, gluons with short formation times,

tf � L, can be produced anywhere along the medium length. In the opposite case, tf � L

(implying in turn ω � ωc), the estimate of eq. (5.2) breaks down and the spectrum is

strongly suppressed. This is the so-called Landau-Pomeranchuk-Migdal (LPM) suppression

in QCD.

Additionally, we have to keep track of the bremsstrahlung. Usually, one simply sub-

tracts a pure vacuum component,

J |δn→0 =
4ω2

k2 , (5.3)

see eq. (4.19), from the total spectrum to obtain a purely medium-induced quantity. But,

as already illustrated for a fixed, non-zero angle |δn| in section 5, this contribution is in

reality built up from both early and late time emissions. We will therefore keep track of this

component since it is imperative in order to better understand the role of the contribution

of bremsstrahlung in the medium.

In the following subsections we will go into the analytical details of how both of these

types of emissions are generated. Finally, in subsection 5.4, we show how the main features

of the independent spectrum can be obtained performing some simple approximations that

capture the dynamics of the process. The insights gained along the way will help us to

identify the main aspects governing the interference contribution.

5.1 The “in-in” component

The independent “in-in” component can be found by taking the δn→ 0 limit in eq. (4.11),

and reads

Rin-in
q = 2Re

∫ L

0
dt′
∫ t′

0
dt

∫
d2k′

(2π)2
P(k − k′, L− t′) k′2

cos2 (Ω∆t)
exp

[
−i k

′2

2ωΩ
tan (Ω∆t)

]
.

(5.4)

Noting that the integrand of eq. (5.4) is a total derivative, can perform the integral over t

to obtain

Rin-in
q = 2Re

∫ L

0
dt′
∫

d2k′

(2π)2
P(k − k′, L− t′) 2iω exp

[
(1− i) k

′2

2k2
f

tan(Ωt′)

]
, (5.5)

where we have dropped a purely imaginary term in the last step.

The argument of the tangent in eq. (5.5), which goes roughly like t′/tf, defines two

regimes, namely i) late emissions, t′ � tf, and ii) early emissions, t′ � tf, giving rise to two

distinct physical processes. To separate these we introduce a spurious parameter, a real

number c � 1 such that ctf � L, which eventually drops out from any physical quantity.

We proceed to analyze the spectrum in the two cases.

5.1.1 Late emissions: t′ � tf

For emissions that happen a long time after the creation point, t′ > ctf, we can approximate

tan(Ω t′) ≈ −i. Hence, eq. (5.5) yields

Rin-in
q

∣∣
t′>ctf

= 4ω

∫ L

ctf

dt′
∫

d2k′

(2π)2
P(k − k′, L− t′) sin

(
k′2

2k2
f

)
e
− k
′2

2k2
f . (5.6)
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As indicated above, the single-gluon spectrum can be interpreted as a two-step process.

The latter two factors in eq. (5.6) describe the quantum emission of a gluon with mo-

mentum k′, which occurs approximately at time t′, while the function P(k − k′, L − t′)
describes the subsequent classical, Brownian motion of the gluon along the remaining path

through the medium. The emission spectrum peaks around the characteristic momentum

k2
f , and is exponentially suppressed for k′2 > k2

f . However, the final-state momentum

broadening smears the distribution according to the saturation scale of the medium, given

roughly by Qs.

5.1.2 Early emissions: t′ < tf

If the emission happens early during the passage through the medium, t′ < ctf, the t′

dependence in the broadening probability P can be neglected. Then the remaining terms

in eq. (5.5) simplify to

Rin-in
q

∣∣
t′<ctf

= Re

∫
d2k′

(2π)2
P(k − k′, L)

4iω

Ω

∫ β

0
dx exp

[
(1− i) k

′2

2k2
f

tan(Ωt′)

]
, (5.7)

where β ≡ (1− i)c/2. The integral over the time can now be performed exactly, since∫
dx ea tanx =

i

2

{
eiaE1 [a(i− tanx)]− e−iaE1 [−a(i+ tanx)]

}
+ const. (5.8)

where E1(x) = −Ei(−x) is the exponential integral. Keeping only the leading term in c,

such that tan(β) ≈ −i+ 2ie−2iβ, we find that∫ β

0
dx exp

[
(1− i) k

′2

2k2
f

tan(Ωt′)

]
'− i

2

{
eia
[
E1(ia)− E1(2ia)

]
− e−ia

[
E1(−ia) + γ + ln(−2ia)− 2iβ

]}
, (5.9)

where now a ≡ (1 − i)k′2/(2k2
f ) and we have expanded the last term using E1(x) '

−γ− ln(x) for x� 1 (here, γ = 0.577 . . . is the Euler-Mascheroni constant). The last term

in eq. (5.9) gives rise to a term of the form of the eq. (5.6), however with t′ running from

0 to ctf. Adding this to eq. (5.6) removes the spurious dependence on c, as anticipated.

The remaining pieces of eq. (5.9) are also not proportional to L and can be dropped.

We note that taking k′2 > k2
f in eq. (5.9) we can gather the leading terms of the exponential

integral at large arguments, i.e., E1(x) ≈ e−x/x, to obtain

4iω

Ω

∫ β

0
dx exp

[
(1− i) k

′2

2k2
f

tan(Ωt′)

]∣∣∣∣
k′2>k2

f

' 8ω2

k′2
, (5.10)

in addition to sub-leading terms that are suppressed by exp[−k′2/(2k2
f )] and will be ne-

glected in the following. Thus, the actual contribution from early emission seem to generate

a hard vacuum-like component at k′2 > k2
f , which arises from emission at a very early stage

in the medium, followed by the rescattering of the emitted gluon in the medium. Note,

however, that the collinear divergence expected for such a contribution is naturally cut
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off by construction in eq. (5.9). The momentum broadening aside, this contribution is

twice larger than expected for a genuine bremsstrahlung emission. Now recall that in

the presence of broadening the hardest scale of the problem automatically becomes Qs.

Thus, in the regime of hard, final-state transverse momenta k2 > Q2
s, where the effects of

broadening can be neglected, P(k − k′, L)|k2>Q2
s
' (2π)2δ(k − k′), the resulting “in-in”

contribution (∼ 8ω2/k2) is balanced out by the “in-out” and “out-out” contributions to

restore a genuine vacuum contribution ∼ 4ω2/k2, also see the following subsection. The

mismatch between the in-medium and out-of-medium bremsstrahlung contributions for

momenta kf < k⊥ < Qs is an interesting feature which deserves further study.

In section 6.2 we will show how interferences are crucial in this particular regime

establishing color coherence.

5.2 The “in-out” and “out-out” components

According to our decomposition in eq. (2.6) the “in-out” and “out-out” components de-

scribe mainly radiation taking place either close to the boundary of the medium or outside

of it. For the general case of smooth medium profiles we cannot formally distinguish

between them, see, e.g., [45].

Taking the limit of vanishing opening angle, δn → 0, in eq. (4.13) we find the inde-

pendent “in-out” component,

Rin-out
q = −2Re

∫ L

0
dt

2i ω

cos2 [Ω(L− t)] exp

{
−i k

2

2ωΩ
tan [Ω(L− t)]

}
, (5.11)

which accounts for interference effects between emissions inside and outside the medium.

From the discussion in the previous section, it becomes clear that this contribution is only

supported in the final formation-time slice away from the medium border, see below. After

integrating over the emission time t we find

Rin-out
q = −8ω2

k2 Re

{
1− exp

[
(1− i) k

2

2k2
f

tan ΩL

]}
. (5.12)

Recalling that |Ω|L� 1 as long as we consider tf � L, we obtain

Rin-out
q

∣∣
tf�L

= −8ω2

k2

[
1− cos

(
k2

2k2
f

)
e
− k2

2k2
f

]
. (5.13)

Finally, the “out-out” component is given by

Rout-out
q =

4ω2

k2 , (5.14)

where we have utilized a regularization of the time integral at infinity as described in [20].

Summarizing the leading behavior of the out-of-medium contributions,

Rin-out
q +Rout-out

q =


4ω2

k2 for k2 < k2
f ,

−4ω2

k2 for k2 > k2
f ,

(5.15)

– 17 –



J
H
E
P
1
0
(
2
0
1
2
)
1
9
7

we notice the change of sign that takes place at kf. As mentioned previously, for momenta

k2
f < k2 < Q2

s the momentum broadening of the “in-in” contribution sets it apart from

the out-of-medium contribution, lower row of eq. (5.15), preventing the appearance of a

pure vacuum component.7 For k2 > Q2
s these contributions cancel exactly with part of the

“in-in” contribution, as anticipated in the discussion below eq. (5.10).

5.3 Leading behavior of medium-induced radiation

In summary, the single-gluon spectrum off an accelerated charge in the presence of a

medium consists of three parts. First and foremost, the induced component of the in-

dependent spectrum is given by

Rmed
q ≈ 4ω

∫ L

0
dt′
∫

d2k′

(2π)2
P(k − k′, L− t′) sin

(
k′2

2k2
f

)
e
− k
′2

2k2
f . (5.16)

This is a novel, transparent way of writing the BDMPS-Z spectrum. Let us recap the

main features of this spectrum. It describes the emission of a gluon with momentum

k′, distributed mainly around the preferred value kf which corresponds to the amount

of momentum accumulated during its formation time tf. After the gluon is formed it is

no longer correlated with the emitting quark and its subsequent Brownian motion along

its trajectory leads to a characteristic momentum broadening. This spectrum scales with

the length of the medium L, since the medium-induced emissions can take place at any

point along the trajectory of the quark through the medium. The remaining terms are

not enhanced neither by the medium length L nor are they enhanced by a logarithmic

divergence, such as for the bremsstrahlung, and they can therefore be neglected at the

level of our approximations.

In addition, one has the soft and hard bremsstrahlung contributions which are de-

scribed in detail in section 5.2.

5.4 Analytical continuation prescription for short formation times

While the independent spectrum by itself permits a fully analytical discussion, see the

previous section, this is not the case for the interferences. To highlight the interesting

features of these contributions in a well-controlled manner we will therefore introduce a

procedure which captures the leading behavior of the independent spectrum around the

typical medium scale at emission, k′2 ∼ k2
f , and which still permits an analytical treatment.

In the subsequent sections we will show that this procedure also can be applied to the

interference spectra.

The main lesson learned from the considerations in section 5 is that the time difference

of emission in the amplitude and complex conjugate amplitude, denoted by ∆t, is limited

by the formation time, tf, due to the LPM suppression. This is, e.g., clearly seen in the

7There is, of course a non-zero probability that the gluon does not experience further broadening while

traversing the medium and reaches the final-state cut with momentum k = k′. This contribution is indeed

the genuine vacuum contribution.
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factor cos−2(Ω∆t) in eq. (5.4) which causes an exponential suppression of the spectrum at

large ∆t, since

cos (Ω∆t) ∼ e∆t/tf , for ∆t� tf . (5.17)

These considerations indicate that the leading behavior of the spectrum is generated in the

phase space where ∆t < tf. Exploiting this fact, let us rewrite the limits of integration of

eq. (5.1) as follows ∫ L

0
dt′
∫ t′

0
dt =

∫ L

0
d∆t

∫ L

∆t
dt′ . (5.18)

Following the logic of section 5.1, we divide the latter integration over t′ into two pieces at

the formation time.8 Hence, for the upper part of the t′ integral, i.e. when tf < t′ < L, the

two integrals decouple and eq. (5.4) reads, in this case

Rin-in
q

∣∣
t′>tf

= 2Re

∫ L

tf

dt′
∫

d2k′

(2π)2
P(k − k′, L− t′)

∫ L

0
d∆t

k′2

cos2 (Ω∆t)

× exp

[
−i k

′2

2ωΩ
tan (Ω∆t)

]
. (5.19)

Instead of proceeding to calculate the integral exactly, as done in the previous section, we

follow an alternative route which captures the main features of the spectrum. Performing

an analytic continuation to the complex plane of ∆t, see figure 3, we note that the sum of

the integrals along the three contours C1, C2 and −C3 should give zero since there are no

poles inside the integration contour. Then, the contour along the real axis, C3 in figure 3,

is equal to the sum of integrals along the trajectories, which are defined as

1. C1: ∆t = (1− i)x for x ∈ [0, L],

2. C2: ∆t = L(1 + ix) for x ∈ [−1, 0].

Note that for the second integration contour, the dependence on ∆t always will scale

like L/tf � 1. In other words, the integrand along this contour is always exponentially

suppressed and we can neglect this contribution altogether. Therefore, the total integral

becomes equal to the integral along contour C1 and reads

Rin-in
q

∣∣
t′>tf
' 2Re

∫ L

tf

dt′
∫

d2k′

(2π)2
P(k − k′, L− t′)

∫ L

0
dx

(1− i)k′2
cosh2 (x/tf)

× exp

[
− k

′2

2ωΩ
tanh (x/tf)

]
. (5.20)

The leading contribution to this integral comes from the region of small-x, x < tf, where we

can expand the hyperbolic tangent in the integrand. Introducing tf as the effective cut-off

8At the level of this approximation we do not control the numerical factors related to this arbitrary

separation, cf. the parameter c from section 5.1.2.
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Re∆t

Im∆t

−L

L

C1

C2

C3

Figure 3. The analytic continuation for the ∆t integration.

of this integral, we get

Rin-in
q

∣∣
t′>tf
' 2Re

∫ L

tf

dt′
∫

d2k′

(2π)2
P(k−k′, L−t′)

∫ tf

0
dx(1−i)k′2 exp

[
−(1 + i)

k′2

2ω
x

]
.

(5.21)

Finally, after performing the remaining integration over x, we get

Rin-in
q

∣∣
t′>tf
' 2Re

∫ L

tf

dt′
∫

d2k′

(2π)2
P(k − k′, L− t′) sin

(
k′2

2k2
f

)
exp

(
− k

′2

2k2
f

)
, (5.22)

which forms part of the genuine, medium-induced spectrum. We will recover the missing

piece, i.e., for t′ < tf, from the second integration region.

Now, assume that ∆t < t′ < tf. We are interested in the regime where tf � L, as

usual, so we can safely approximate P(k−k′, L− t′) ≈ P(k−k′, L). After performing the

now trivial integration over t′, we can rewrite the spectrum as

Rin-in
q

∣∣
t′<tf

= 2Re

∫
d2k′

(2π)2
P(k − k′, L)

∫ L

0
d∆t

k′2

cos2 (Ω∆t)

× ∂

∂α
exp

[
−i k

′2

2ωΩ
tan (Ω∆t) + (tf −∆t)α

]∣∣∣∣
α=0

. (5.23)

Introducing the same continuation prescription as for the previous integration region, we get

Rin-in
q

∣∣
t′<tf
' 2Re

∫
d2k′

(2π)2
P(k − k′, L)

∫ tf

0
dx(1− i)k′2

× ∂

∂α
exp

{
−
[
(1 + i)

k′2

2ω
x+ (1− i)α

]
x+ tfα

}∣∣∣∣
α=0

, (5.24)

and after some algebra, we find

Rin-in
q

∣∣
t′<tf
' 2Re

∫
d2k′

(2π)2
P(k − k′, L)

[
4ω2

k′2

(
1− e

−(1+i) k
′2

2k2
f

)

− 2iωtf

(
1− e

−(1+i) k
′2

2k2
f

)
− 2(1 + i)ωtf e

−(1+i) k
′2

2k2
f

]
. (5.25)
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The first line of eq. (5.25) contains the hard bremsstrahlung term, cf. eq. (5.10) which is

suppressed for k′2 < k2
f , as expected. The second line, on the other hand, contains the

missing piece of the independent spectrum in eq. (5.22), i.e., that scales like tf whereas

eq. (5.22) is proportional to L − tf. The remainder in eq. (5.25) scales also as tf and will

be neglected at the level of the present approximation.

In consequence we have recovered the correct leading behavior of the medium-

independent spectrum, cf. section 5.3. Introducing an analytic continuation of the integra-

tion was necessary to correctly treat the complex trigonometric functions in the integrand.

This trick also allow us to obtain the correct exponential cut-off of the emission spectrum

at k′2 > k2
f . Thus, keeping only the leading part of the spectrum for tf � L we were able

to find the main characteristics.

6 The interferences — Short formation times

Continuing now to the main discussion about the interferences in the presence of a medium,

we remind the reader that we will mainly focus on the region of large-angle radiation, i.e.

radiation at angles θ � θqq̄, which automatically implies that |δk| � r−1
⊥ , Qs. In any

case, at angles θ � θqq̄ the interferences are suppressed and the spectrum becomes the

superposition of the two independent components.

The interference contribution in eq. (4.11) has a much more complicated structure than

the independent one, cf. eq. (5.4). Yet the arguments presented in the previous sections,

most importantly about the dominance of short formation times, allow us to simplify the

expressions and extract analytically the leading behavior of the spectrum. Note first that

all combinations of A’s and B’s in eq. (4.11) can be written in terms of the cosine and

tangent trigonometric functions. Since we only will consider the region ∆t . tf we can

safely approximate all cos(Ω∆t) ≈ 1 — in the opposite case, we will treat the spectrum as

exponentially suppressed, cf. eq. (5.17). Then, the “in-in” component of the interference

spectrum reads

J in-in ' Re

∫ L

0
dt

∫ L−t

0
d∆t

∫
d2k′

(2π)2

[
1−∆med(t)

]
P(κ− k′, L− t−∆t)

× k′ ·
[
k̄
′ − Ωt tan (Ω∆t) δk

]
× exp

[
−i(k

′ + k̄
′
) · δn

2
t− i

(
k′2 − Ω2t2δk2

) tan(Ω∆t)

2ωΩ

]
+ sym. , (6.1)

where we also have reorganized the integration limits. Recall that δk, appearing explicitly

in eq. (6.1), is the scale that restores coherence in vacuum, see eq. (2.3). Within the same

scheme, the “in-out” contribution reads

J in-out ' Re

∫ L

0
dt
[
1−∆med(t)

] 2iω

cos2[Ω(L− t)]κ2
κ · {κ̄− Ωt tan [Ω(L− t)] δk}

× exp

[
−i(κ+ κ̄) · δn

2
t− i

(
κ2 − Ω2t2δk2

) tan[Ω(L− t)]
2ωΩ

]
+ sym. (6.2)
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and, finally, the “out-out” component is given by eq. (4.15). Note, that since we only

have one time-integration in eq. (6.2) we can solve this spectrum exactly within our ap-

proximation and have therefore kept the cosine in the denominator of eq. (6.2). Since we

are assuming that the scales induced by the medium are larger than the vacuum one, we

will show below, separately for the “dipole” and “decoherence” regimes, when terms in-

volving the recurring combination of Ωt δk can be neglected. Along the same lines, we will

presently only focus on radiation that takes place outside of the cone of the qq̄-pair, i.e., for

θ � θqq̄. Formally, we take the limit of small opening angles δn → 0 only after including

the symmetrical pieces in eqs. (6.1) and (6.2) in proper way. This condition implies the

following constraint on the relevant timescales

tf < td , (6.3)

which implies that θf > θqq̄, where θf is the characteristic angle of medium-induced emis-

sions at formation time. These approximations allow us to separate the relevant time- and

momentum-scales of the problem such that an analytical study becomes feasible. In the

general case, only a numerical analysis can further guide our insight, see section 7.

As already pointed out in section 3, the onset of decoherence appears chiefly through

the factor (1−∆med(t, 0)) which is responsible for damping out all interferences [38]. Fol-

lowing closely the discussion in the preceding section we discuss separately the interference

spectrum in the “dipole” and “decoherence” regimes, respectively.

6.1 The “dipole” regime

In the “dipole” regime the color correlation of the qq̄-pair prior to the emission partly

survives the passage through the medium. Recalling the discussion in section 3.1, we

define this regime by the condition

L� td , (6.4)

see table 1 for further details. To reduce the complexity of the calculation and since the

dominating scale in this regime is r−1
⊥ � Qs we neglect for the time being the effect of

broadening.9 In this regime we expand the decoherence parameter, obtaining

1−∆med(t, 0) ' 1− 1

12
q̂θ2
qq̄t

3 . (6.5)

The former contribution, the one proportional to the numerical factor 1, is responsible

for the cancellation of the vacuum singlet spectrum and the medium-induced independent

spectrum in their respective regions, as will be discussed in detail below. Since we will sep-

arate the analysis of all the contributions proportional to this term, we will therefore label

the corresponding expressions with the subscript ‘(0)’ (alluding to the order of expansion

of 1−∆med). The latter piece in eq. (6.5), which is proportional to the square of the dipole-

size, r⊥(t) = θqq̄t, comes with a positive contribution to the spectrum and establishes what

we call “partial decoherence,” and we label it with the corresponding subscript ‘(1).’

9The effect of the momentum broadening is mainly to smear out the k⊥-distribution, which does not

affect the physical picture discussed in this regime.
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At the outset, let us try to simplify eqs. (6.1) and (6.2) even further by analyzing the

conditions that have to be met to allow us to drop the terms proportional to δk. From

previous discussion, we know that ∆t should be smaller than or of the order of tf while

the emission time can reach up to L. The latter point allow us to expand the argument

of the tangents in eq. (6.1). Apart from the decoherence parameter, the pre-factor of this

equation can be written as

k ·
[
k̄ + i

t∆t

t2f
δk

]
. (6.6)

As a first estimate of the corrections related to the second term in the brackets, we substi-

tute ∆t and t with their respective maximal values. Thus, this factor can be dropped as

long as

L

tf

|δk|
|k| ∼

θqq̄
θ

(
θf

θc

)2/3

� 1 . (6.7)

Here we have introduced the characteristic angle θc = 1/
√
q̂L3, which appears for the

maximal value of the decoherence parameter, i.e., when t = L in eq. (4.3), for instance. In

the “dipole” regime we automatically have θqq̄ � θc, see table 1. Note, on the other hand,

that the condition of short formation times also implies that θc � θf. For the region we

are interested in we therefore have the following hierarchy of scales

θqq̄ � θc � θf , (6.8)

see also eq. (6.3). Therefore, as long as the gluon emission angle is large enough, θ & θf,

the condition in eq. (6.7) is fulfilled. This discussion also applies to the second term in the

exponential eq. (6.1), proportional to δk2, and for the J in-out component in eq. (6.2).

The behavior of the interferences in the “dipole” regime is quite intricate since it

involves all components which should be directly compared both to the vacuum spectrum

and the independent medium-induced one. The main features that we derive below are

therefore also conveniently summarized in section (6.1.3).

6.1.1 The “in-in” component

Since the hardest scale of the problem is r−1
⊥ � Qs we will neglect the effect of broadening

in this regime, replacing P(k − k′, L − t) = (2π)2δ(k − k′). Since this process does not

contribute to the final-state yield of produced gluons we do not expect this simplification

to change the physical picture of the emission process itself. See also appendix B. This

simplification makes feasible an analytic discussion of the various components of the inter-

ference spectrum. We present numerical results including all effects of the full spectrum

in section 7 and postpone a detailed assessment of the approximations employed below to

that section.
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Let us presently investigate the “in-in” component at large angles, and as a fist step

only the part which comes with the unity in eq. (6.5). This contribution reads

J in-in
(0) ' Re

∫ L

0
d∆t

∫ L

∆t
dt′κ · κ̄ exp

[
−i(κ+ κ̄) · δn

2
(t′ −∆t)− i κ

2

2ωΩ
tan Ω∆t

]
+ sym.

' 4ω2κ · κ̄
κ̄2 − κ2

Re

{F(κ)

κ2

[
1 + ei

(κ+κ̄)·r
2

]
− F(κ̄)

κ̄2

[
1 + e−i

(κ+κ̄)·r
2

]}
. (6.9)

When going to the second line in eq. (6.9), we have applied the procedure of analytical

continuation described in section 5.4, but note that we have not performed the δn → 0

limit yet. Furthermore, in eq. (6.9) we have defined the function

F(k) = 1− exp

[
−(1 + i)

k2

2k2
f

]
. (6.10)

Consider the situation when kf ∼ k⊥ � r−1
⊥ . Expanding the relevant phases to first order

and combining the symmetrical terms, we find

J in-in
(0) ' 4ωL sin

[
k2

2k2
f

]
exp

[
− k

2

2k2
f

]
+

8ω2

k2

{
1− cos

[
k2

2k2
f

]
exp

[
− k

2

2k2
f

]}
. (6.11)

We have thus recovered the medium-induced independent spectrum in the first term of

eq. (6.11), which will cancel with the medium-induced component Rin-in
q in this regime.

This spectrum also has the same behavior as Rin-in
q in the hard sector. In particular, for

kf � k⊥ we obtain, directly from eq. (6.9),

J in-in
(0)

∣∣∣
k⊥�kf

' 4ω2

k2

[
1 + cos (k · r)

]
, (6.12)

which is a vacuum-like contribution. In particular, in the interval kf � k⊥ � r−1
⊥ we recover

a vacuum contribution, cf. eq. (5.10), which should be cancelled by the corresponding

contribution in J in-out
(0) . It is also interesting to comment the oscillatory behavior of the

spectrum for k⊥ ∼ r−1
⊥ , which already turned up in J out-out, see eq. (4.15). Such behavior

is an artifact due to the sharp boundary condition at the medium border, i.e. at L. In fact,

as we demonstrate below, this oscillatory behavior cancels out exactly at k⊥ � r−1
⊥ . Then,

quite astonishingly, what remains is a genuine, physical vacuum contribution which comes

into play at large transverse momenta.

Next, we analyze the piece which is proportional to r2
⊥, i.e., the one multiplying the

second term of eq. (6.5). It reads

J in-in
(1) ' − Re

∫ L

0
d∆t

∫ L−∆t

0
dt∆med(t)κ · κ̄

× exp

[
−i(κ+ κ̄) · δn

2
t− i κ

2

2ωΩ
tan Ω∆t

]
+ sym. , (6.13)

where explicitly ∆med(t) = q̂θ2
qq̄t

3/12. In the general case, the integration over t results

in a quite tedious expression which simplifies considerably when taking the appropriate
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limits with respect to the dipole scale r−1
⊥ . Starting from small momenta, when k⊥ � r−1

⊥ ,

we find ∫ L−∆t

0
dt∆med(t) exp

[
−i(κ+ κ̄) · δn

2
t

]
' (L−∆t) ∆med(L−∆t)

4
, (6.14)

plus terms that are at least suppressed like O(k · r). Furthermore, knowing that ∆t will

be limited by tf, and thus much smaller than L, we keep only the linear term in ∆t, i.e.,

(L−∆t) ∆med(L−∆t) ' (L−4∆t) ∆med(L). Thus, in this domain the contribution becomes

J in-in
(1)

∣∣∣
k⊥�r−1

⊥

' −∆med(L)Re

{
−iωLF(k) +

8ω2

k2 F(k)− (1 + i)4ωtf
[
1−F(k)

]}
.(6.15)

The first component in eq. (6.15) is equivalent to the independent spectrum multiplied by

a factor −∆med/4 and in the second component we once again recover the vacuum-like

spectrum from very early emissions. The latter factor in eq. (6.15) is sub-leading, ∝ tf,

and will be neglected in the following.

Proceeding to the second situation, the integral over t in eq. (6.13) in the domain

where k⊥ & r−1
⊥ gives∫ L−∆t

0
dt∆med(t) exp

[
−i(κ+ κ̄) · δn

2
t

]
=
−2iω

κ̄2 − κ2
∆med(L−∆t)

× exp

[
−i(κ+ κ̄) · δn

2
(L−∆t)

]
, (6.16)

plus terms that are at least suppressed like O[(k · r)−1]. In this case, the decoherence

parameter is approximated simply by its leading contribution, i.e., ∆med(L − ∆t, 0) '
∆med(L, 0). Since in this case we are already above the medium scale, since kf � r−1

⊥ , we

can drop any exponentially suppressed term to get

J in-in
(1)

∣∣∣
k⊥&r

−1
⊥

' −∆med(L)
4ω2

k2 cos (k · r) . (6.17)

This concludes our investigation of the “in-in” component in the “dipole” regime.

6.1.2 The “in-out” component

From the analysis of the preceding sections, we see that only emissions roughly one forma-

tion time away from the medium border will contribute to the “in-out” spectrum. We will

also only consider large-angle emissions where, following the discussion in section (6.1), we

can drop the terms proportional to δk in eq. (6.2). After rearranging the integral limits,

the dominant contribution reads

J in-out ' − Re

∫ L

0
dt
(
1−∆med(L− t)

) 2iω κ · κ̄
κ2 cos2(Ωt)

× exp

[
−i(κ+ κ̄) · δn

2
(L− t)− i κ

2

2ωΩ
tan(Ωt)

]
+ sym. (6.18)
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Since the integral over t will be cut off above tf we can neglect the subleading finite-

size corrections to the argument of the decoherence parameter, 1 −∆med(L − t, 0) ≈ 1 −
∆med(L, 0). Then, the remaining integral domain yields

J in-out ' −
(
1−∆med(L)

)4ω2 κ · κ̄
κ2κ̄2

ReF(κ̄) exp

[
−i(κ+ κ̄) · r

2

]
+ sym. (6.19)

where the δn→ 0 limit is not yet taken. As for the independent “in-out” component, this

spectrum is suppressed for k⊥ < kf. Above the medium scale, kf � k⊥, ReF(k) ' 1 and

the spectrum simply reads

J in-out
∣∣
k⊥�kf

' −
(
1−∆med(L)

)8ω2

k2
cos (k · r) . (6.20)

As previously anticipated, this term will fully cancel the spurious vacuum-like contribution

appearing in J in-in for emissions taking very place very early on.

6.1.3 Summary of the “dipole” regime

To have all relevant expressions in one place, let us also remind the reader of the “out-out”

component, which at large angles is given by

J out-out =
[
1−∆med(L)

]4ω2

k2 cos (k · r) . (6.21)

Recall also that the medium-induced spectrum Rin-in
q +Rin-out

q only has support for k⊥ <

kf, see eq. (5.16), while the vacuum contribution Rout-out
q extends up to arbitrary k⊥.

Summarizing the results for the “dipole” regime obtained in this section, we will highlight

the main features in the different kinematical regimes that we assume, as always, to be

clearly separated.

The singlet spectrum is decomposed into a quark and an antiquark coherent part,

Rsing = Pq + Pq̄, where Pq = Rq − Jq, and, as usual, we only focus on the quark part

in the following. Below, both the independent and interference components are a sum of

their vacuum and medium contributions, respectively.

k⊥ < δk⊥: This is the regime where interferences are always suppressed. The only contri-

bution to the spectrum arises from the logarithmically divergent vacuum spectrum.

δk⊥ � k⊥ . kf: In this regime the independent spectra are fully cancelled by the interfer-

ences. What remains are terms proportional to the decoherence parameter; firstly, a

vacuum-like contribution coming from J out-out
q, (1) which reflects “partial decoherence.”

Also, somehow unexpectedly, there is an additional surviving component in J in-in
q, (1)

which behaves as the independent component but is reduced by a factor ∆med(L)

compared to the former. The coherent spectrum off the quark is then given by

Pq
∣∣
δk⊥�k⊥.kf

= ∆med(L)

[
4ω2

k2 + ωL sin

(
k2

2k2
f

)
exp

(
k2

2k2
f

)]
. (6.22)
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kf � k⊥ � r−1⊥ : As in the previous domain, a vacuum-like behavior is obtained. This

demonstrates how “partial decoherence” extends above the induced medium scale.

Note therefore that in the “dipole” regime we obtain a logarithmic enhancement or,

in other words, a hardening of the spectrum. This was already noted in [39]. The

coherent spectrum is simply given by

Pq
∣∣
kf�k⊥�r−1

⊥
= ∆med(L)

4ω2

k2 . (6.23)

With the inclusion of broadening, which we so far have neglected in the discussion,

we recover a pure vacuum contribution when the medium scale kf is substituted with

Qs, see also the discussion in sections 5.1.2 and 5.2.

r−1⊥ . k⊥: A ‘novel’ hard component is generated from early emissions in J in-in
(0) , i.e. pro-

portional to the factor 1 in eq. (6.12), which is the only piece that remains after

the cancellation between the remaining interference components. In particular, the

genuine “out-out” interference contribution is completely cancelled. Thus, the re-

maining vacuum-like piece, which does not contain information about the medium or

the dipole, cancels Rout-out
q in this domain. This establishes the onset of coherence

in the “dipole” regime, leaving us with a strongly suppressed coherent spectrum at

transverse momenta larger than the hardest scale of the problem,

Pq
∣∣
r−1
⊥ .k⊥

' 0 . (6.24)

We have described the features of “partial decoherence” and the restoration of coherence

above the the hard scale in the “dipole” regime in rough accordance with the general char-

acteristics outlined in section 3.1. Nevertheless, due to the highly complex dynamics of

this regime, note e.g. the unforeseen ‘independent’-like contribution to J in-in
(1) in eq. (6.15)

which modifies the behavior close to the peak of the independent distribution, and the fact

that the clear separation of scales we have assumed throughout the analytical discussion

is unrealistic, the features obtained above should be taken as a first order idealization of

the physics involved. The region k⊥ ∼ kf is in truth badly controlled due to the additional

δk-terms that we have neglected to make the analysis feasible. In fact, numerical data in

the “dipole” regime on the double-differential angular spectrum shows a highly oscillatory

and complex behavior at large angles in general and around the peak of the independent

distribution in particular. Nevertheless, the dominant features outlined above emerge evi-

dently in the energy spectrum, see section 7, where we recover an almost ideal scaling with

the hard scale of the problem, r−1
⊥ , in perfect agreement with the concept of the restoration

of coherence.

6.2 The “decoherence” regime

The “decoherence” regime is characterized by the rapid color decorrelation of the qq̄-pair as

it traverses the medium and the hard scale is given by the medium characteristicsQs � r−1
⊥ .

In terms of the survival probabilities discussed extensively above, this translates into a short

decoherence time compared to the size of the medium, i.e. td � L. Due to the presence of
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the decoherence parameter, see eq. (6.1), the interferences will therefore only contribute at

time-scales t < td. In this particular domain we can safely approximate[
1−∆med(t)

]∣∣
t<td
≈ 1 . (6.25)

However, we underline that this domain of times is relevant exclusively for the “in-in”

component. The “in-out” component has support mainly close to the medium border

— roughly one formation length in, see eq. (6.2). Since we are interested in large-angle

radiation, see eq. (6.3), we can safely neglect it completely. The “out-out” component, on

the other hand, is simply proportional to 1−∆med(L) ≈ 0 and drops out, too. The gluon

spectrum in this regime was also studied in [40].

The limiting condition on the emission time simplifies the situation considerably com-

pared, e.g., to the situation in the “dipole” regime. For the “in-in” component, it implies

that the integrals over t and ∆t decouple completely, see eq. (6.3). This allows us to freely

perform the prescription regarding the analytic continuation of ∆t and the related approx-

imations, see section 5.4. As a preparatory step, let us once more estimate the magnitude

of the terms multiplying δk in eq. (6.1). To obtain a first estimate, let us substitute t by

its maximal allowed value in the “decoherence” regime, which is just td. Then the second

term in the pre-factor becomes of the order of

td
tf

|δk|
|k| ∼

(
θ2
fθqq̄

)1/3
θ

. (6.26)

This becomes very small if we consider large angle radiation, such that θ �
(
θ2
fθqq̄

)1/3
or, roughly,

θ > max (θqq̄, θf) . (6.27)

The additional terms will therefore contribute close to the peak of the independent distribu-

tion, k⊥ . kf, but can safely neglected at the level of our approximations. Accordingly, the

last factor of the exponential scales as the square of the estimate above and can therefore

also be dropped.

After introducing the analytic continuation for ∆t and taking into account the simpli-

fications discussed above, the “in-in” spectrum reads

J in-in ' Re

∫ td

0
dt

∫ tf

0
dx (1− i)

∫
d2k′

(2π)2
P(κ− k′, L)

× k′ · k̄′ exp

{
−i(k

′ + k̄
′
) · δn

2
t− (1 + i)k′2

2ω
x

}
+ sym. , (6.28)

where we have neglected the dependence of ∆t and t in the broadening since tf, td � L.

After performing the integral over x, we have

J in-in = −Re

∫ td

0
dt

∫
d2k′

(2π)2
P(κ− k′, L)

2iω k′ · k̄′

k′2
F(k′)e−i

(k′+k̄′)·δn
2

t + sym. (6.29)
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where we still keep the distinction between k′ and k̄
′
. The last phase in eq. (6.29) defines a

novel characteristic time-scale of the dense regime, which we denote by δt and which reads

δt ∼ ω

κ2 − κ̄2
, (6.30)

in the absence of broadening. To get a feeling for the role of this timescale let us again com-

pare it to the maximal available value of t. The ratio of the two defines a new characteristic

momentum scale, td/δt = k⊥/kcoh, where we have defined

kcoh ≡ (q̂/θqq̄)
1/3 , (6.31)

and, correspondingly, a characteristic angle θcoh = kcoh/ω = (θ4
f /θqq̄)

1/3. In the present

region of interest, i.e. θf � θqq̄, it follows that θcoh � θf. This defines a hierarchy of scales

in the dense regime, namely

θqq̄ � θf � θcoh . (6.32)

Interestingly, this hierarchy is reversed when we consider radiation inside the cone. We

have chosen the subscript so that to indicate that coherence is achieved for gluons with

k⊥ > kcoh. Note that so far in this discussion of δt we have neglected the broadening. This

mechanism will naturally provide a new hardest scale, since Qs > kcoh in the “decoherence”

regime, which would wash out the details of the analysis above. In the latter case, however,

coherence would be restored at k⊥ > Qs, as expected from our naive picture.10 Let us

presently describe more carefully how this comes about.

Since we already concluded that the interferences only are operational at early times,

the broadening factorizes completely from the details of the emission process, i.e., does not

depend on t, and we can describe the latter independently of the former. Let us for that

purpose define

J in-in =

∫
d2k′

(2π)2
P(κ− k′, L)J in-in , (6.33)

where J in-in simply denotes the remaining terms in eq. (6.29). We also use that at large

angles we can simply assume k′ ∼ k̄′. Starting with the situation when the induced gluons

at emission have small transverse momenta k′2 < k2
coh or, in other words, when td < δt.

In this case, we can neglect the last phase factor in eq. (6.29) and the time integration

becomes trivial, yielding

J in-in
∣∣∣
k′2<k2

coh

' 4ωtd sin

(
k′2

2k2
f

)
exp

(
− k

′2

2k2
f

)
, (6.34)

which has exactly the same structure as the independent gluon spectrum except that

it scales with td rather than with L, cf. eq. (5.16), and is therefore suppressed in the

“decoherence” regime. This contribution was also identified in [40].

10We have confirmed numerically the relevance of kcoh in the absence of broadening.
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An important and non-negligible contribution arises in the opposite limit, however.

When td > δt we have to limit the time integral by the latter, smallest time-scale. This

situation applies to gluons emitted with k′2 > k2
coh. In this case, the “in-in” contribu-

tion reads

J in-in
∣∣∣
k′2>k2

coh

' 4ω2

k′2
, (6.35)

and we recover a vacuum-like contribution which resembles the early emissions in the in-

dependent spectrum, cf. eq. (5.10). There is, however, a subtle difference. In contrast to

the independent contribution where the vacuum-like contribution from the “in-in” compo-

nent is ‘regularized’ by the sum of “in-out” and “out-out” terms (the same cancellation

takes also place purely between the interference components in the “dipole” regime), the

contribution in eq. (6.35) is not further reduced since J in-out ' J out-out ' 0 in the “de-

coherence” regime. This is because the numerical factor 4, in contrast to the factor 8 in

the independent spectrum as well as in the “dipole” regime, corresponds exactly to the

magnitude of a genuine vacuum contribution. This demonstrates that vacuum coherence

is restored at large scales, i.e. above the hard scale of the medium, even in dense media.

Keeping in mind that, due to the broadening, the dominant scale induced by the

medium is in effect shifted from kcoh to Qs, cf. the discussion above, we can presently

summarize our analytical results in the “decoherence” regime.

k⊥ < δk⊥: Interferences are suppressed and the only contribution to the spectrum arises

from the independent components of the spectrum, see section 5.

δk⊥ � k⊥ < Qs: The coherent spectrum off the quark in this regime is given by

Pq
∣∣
δk⊥�k⊥<Qs

' 4ω2

k2 + 4ω(L− td)

∫
d2k′

(2π)2
P(κ− k′, L) sin

(
k′2

2k2
f

)
exp

(
− k

′2

2k2
f

)
,

(6.36)

where the first term is the vacuum bremsstrahlung. In other words, we have recovered

the decoherence of the pure vacuum radiation (since the näıve expectation based

on angular ordering would prevent vacuum radiation in this phase space) and, in

addition, obtained an induced BDMPS-Z spectrum which scales as the entire medium

length reduced by a small factor (1− td/L) due to the interferences — recall that the

“decoherence” regime is defined by the condition td � L.

Qs < k⊥: Above the hardest scale of the problem, which in this regime is Qs, we have

found that the coherent spectrum is strongly suppressed,

Pq
∣∣
Qs<k⊥

' 0 , (6.37)

restoring coherence in this sector. This behavior is confirmed numerically in section 7

and we will come back to the deeper physical meaning of this vacuum-like contribution

in section 8.
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In summary, in the “decoherence” regime all interferences, both the purely medium-

induced, i.e. “in-in” and “in-out”, components, and the vacuum-like one, encoded in the

“out-out” contribution, can be neglected up to the hard scale of the medium. In the absence

of final-state momentum broadening this scale is given by kcoh in eq. (6.31), but in general

this scale is extended up to Qs which appears naturally in the momentum broadening

factor P(κ− k′, L). In this domain, the medium probes the two antenna constituents and

induces radiation independently off each of them. Conversely, at k⊥ > Qs (or k⊥ > kcoh

if we neglect broadening, see also appendix B) coherence is restored and the spectrum

cancels out. This situation applies only for gluon emissions taking place at early times

before the pair is completely decorrelated by the medium, i.e. at times t < td. As long

as the coherence of the pair is intact, the radiation must necessarily be coherent. Thus,

for such large-angle radiation coherence (or, in other words, angular ordering) is restored

due to destructive interference effects. This concludes the analytical investigations of the

interferences in dense media.

7 Numerical analysis

The most stable numerical evaluation of the gluon spectrum in the harmonic oscillator

approximation is achieved in the pure coordinate-space representation. We detail the cor-

responding expressions in appendix A. These expressions include the full effect of momen-

tum broadening and the interplay of all the scales that we have identified in the preceding

sections, and allow to study gluon production for any given kinematics. Our main strat-

egy in this section, however, will mainly focus on putting the picture of “decoherence” of

medium-induced radiation, as argued for in sections 3 and 4 and corroborated through a

systematical, analytical investigation in sections 5 through 6, on a firm basis. We therefore

will primarily study situations when a clear separation of dipole- and medium-scales can

be acheived and search for evidence confirming the existence and role of these.

In line with our previous investigations [39], we choose to plot the double-differential

angular spectrum of the produced gluons, ωdN/dωdθ, where their azimuthal angle has

been integrated out. In vacuum, this spectrum would display exact angular ordering, i.e.

a function ∝ Θ(θqq̄ − θ)/θ. Since this contribution is well known, we subtract it from the

total spectrum to obtain the component explicitly depending on the presence of a medium.

In figure 4, we plot this spectrum for a set of parameters such that the upper two panels

reflect a typical situation in the “dipole” regime (with Qs = 1.4 GeV < r−1
⊥ = 2 GeV), while

the two lower ones depict a typical case in the “decoherence” regime (with Qs = 7 GeV

> r−1
⊥ = 0.4 GeV). The distributions are plotted for two gluon energies: ω = 2 GeV (left

column) and ω = 10 GeV (right column). The various curves in figure 4 are as follows: The

solid (black) curve depicts the coherent spectrum off the quark, defined (neglecting for the

moment the additional phase space factors) as

Pmed
q = Rmed

q − Jmed
q , (7.1)

where by the superscript “med” we mean the sum of “in-in”, “in-out” and “out-out”

contributions keeping in mind that we have subtracted off the vacuum (angular-ordered)
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Figure 4. The medium-induced gluon angular spectrum. The solid (black) line corresponds to the

total coherent spectrum off the quark, cf. eq. 7.1, and the dashed (black) line is the independent

spectrum, cf. eq. (7.2). To guide the eye we have also depicted the vacuum-like spectrum at large

angles with a thick, grey line (∝ Θ(θ − θqq̄)/θ). See text for further details.

coherent spectrum. For example, the total, medium-induced spectrum is given by

Rmed
q = Rin-in

q +Rin-out
q . (7.2)

We plot this, latter contribution with a dashed (black) line in figure 4. To guide the eye

we have also plotted the vacuum-like spectrum at large angles (antiangular ordering [37])

with a thick, grey line (∝ Θ(θ − θqq̄)/θ).
The numerical results for the “dipole” regime follows indeed the expectations of “partial

decoherence.” For instance, in both upper panels we observe an almost perfect cancellation

of the independent component. In the soft gluon sector, upper, left panel of figure 4,

the coherent spectrum follows a vacuum-like distribution up to very high angles. For

higher energies, upper, right panel of figure 4, the independent distribution is peaked

around smaller angles and the coherent spectrum is more complicated in this case. We

observe that the coherent spectrum (black curve) is oscillating around the vacuum-like

distribution (grey curve). Most importantly, it is also peaking around the same angles

as the independent spectrum which supports the findings in section 6.1 of a numerically
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Figure 5. The gluon coherent energy spectrum, ωdN/dω, scaled by its value in the infrared limit,

in the “dipole” regime. The parameters of the calculation are denoted in the figure, additionally

with q̂ = 0.5, 1, 2, 3 GeV2/fm (curves for different q̂ at fixed θqq̄ and L overlap).

suppressed ‘independent’-like component. In these panels it is difficult to identify the onset

of coherence, since the characteristic cut-off in angle, given by ∼ (r⊥ω)−1, is located at

large angles where the spectrum is anyhow small (this is related to the condition tf � L

which translates to ω � ωc). The role of this cut-off will anyhow be clarified when studying

the spectrum integrated over angle, see figure 5 below.

In the other case, we observe the increasing role of the independent component in the

“decoherence” regime, lower panels in figure 4. The angular cut-off in the vicinity of the

maximum of the independent spectrum is more clearly discernible, see lower, right panel,

although the momentum broadening smears this effect out. We study this particular aspect

in further detail in appendix B.

Turning now to the energy distribution, ωdN/dω, integrated over a ‘physical’ region of

the polar angle, θ ∈ [0, π/2], we aim to uncover the role of the governing hard scale of the

problem Qhard = max(r−1
⊥ , Qs) via scaling of the spectrum. In figure 5 (left panel) we have

plotted the coherent spectrum as a function of energy, see eq. (7.1), for several values of θqq̄
and L such that the hard scale of the problem is r−1

⊥ , see the figure for details (curves for

different q̂ at fixed θqq̄ and L overlap). We have scaled all the curves by their value in the

soft limit [39]. Here we again come across complex oscillatory behavior which originates

from the incomplete cancellation of the independent component in the “dipole” regime.

Disregarding this detail for the moment, the general features indeed suggest a logarithmic

spectrum up to a cut-off energy. After scaling the energy-variable with the hard scale in

the “dipole” regime, right panel in figure 5, we obtain an almost perfect scaling. Note also

that the two sets of curves for different opening angles break apart above r−1
⊥ . This is

due to the presence of a maximal energy, ωmax = (r⊥θqq̄)
−1, that arises due to the phase

space restriction on the angular spectrum [39] — at this energy the hard scale in medium
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Figure 6. The medium-induced interference component of the gluon energy spectrum, scaled by

its value in the infrared limit, in the “decoherence” regime. The curves are calculated with L =

0.5, 1, 2 and 5 fm (curves with different L are not indicated).

becomes smaller than the vacuum scale |δk| and the spectrum is fully contained within the

cone delimited by the qq̄-pair. The study of this region is limited by numerical precision.

Clearly, from the discussion in section 6.2, the gluon spectrum in the “decoherence”

regime is significantly less intricate since most of the components cancel and the leading

behavior is quite straightforward. It is also well-known that the maximum of the energy

distribution of the independent component is peaked around Qs, see, e.g., the left panel

of figure 8 in appendix B. What remains to show is how the interferences behave with

energy. We plot the medium-induced interference contribution, scaled by its value in the

soft limit [39], in figure 6. It displays a logarithmic behavior with energy, which originates

from the J out-out
(1) component (recall that we have subtracted the vacuum contribution),

which reads

J out-out
(1)

∣∣∣
k⊥<Qs

= −∆med(L)4ω2 κ · κ̄
κ2κ̄2

, (7.3)

for small transverse momenta. The scaling of the curves with the hard scale of the medium

is apparent from the right panel of figure 6. This demonstrates that the interference

contribution dominates the spectrum in the soft limit [37, 38].

In conclusion, we affirm that the numerical evaluation of the full spectrum supports

the main analytical findings derived in the preceding sections. Most importantly, the role

of the hardest scale of the problem has been firmly established.

8 The octet spectrum — Reshuffling of vacuum radiation

So far, we have limited our analysis to the singlet spectrum. Before concluding our investi-

gations, let us comment briefly on the impact of our results on the general, octet spectrum.
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We recall that an additional component, proportional to the total color charge of the pair,

is present, see eq. (2.1). Generally, this contribution indicates a reshuffling of radiation

“one step backwards” in the shower and manifests the conservation of color flow. In other

words, the cancellations caused by the interferences which take place for radiation off the

antenna legs is reinstated as radiation coming with the color factor of the total charge —

in the octet case, of the virtual gluon prior to the g∗ → qq̄ splitting [42]. In pure vacuum,

this component gives rise to radiation at angles larger than the opening angle of the pair

and is, in turn, re-interpreted as radiation that has taken place off the initial gluon (in spite

of the fact that this contribution has not explicitly been included in the calculation). This

reshuffling lends support to the notion of the angular ordering of subsequent radiation.

Pursuing this analogy further, we might be tempted to ask what the emerging picture for

the medium-induced radiation signifies for such an idea of ordering. As a first step, this

mechanism was already described in the soft limit [38] for radiation in the presence of a

medium; presently we can extend the transverse momentum range of that analysis.

Keeping in line with our previous consideration, we will also only care about radiation

at angles larger than the opening angle of the qq̄-pair, where interferences are relevant. The

contribution to the total antenna spectrum proportional to the total color charge, in our

case ∝ CA in eq. (2.1), is simply given by the interference contribution as Ptotal charge ≡ J .

The corresponding results for the interferences in the two different regimes are summarized

in sections 6.1.3 and 6.2, respectively.

In the region of relatively small momenta, k⊥ < Qhard, the behavior in the two regimes

is quite different. In the “decoherence” regime the interferences are completely suppressed,

a manifestation of the fact that radiation takes place independently off all color charges [38].

In the “dipole” regime, on the other hand, the spectrum off the total charge only consists of

components that are proportional to the decoherence parameter 1−∆med(L). Firstly, we

have found a bremsstrahlung contribution, see second term in eqs. (6.15), which is related

to the decoherence of the vacuum radiation off the total color charge. This also constitutes

the universal behavior in the soft limit [38]. In addition, the ‘independent’-like components

of J in-in in the second term of eq. (6.11) and first term in eq. (6.15), found specifically in

the “dipole” regime, are reinstated. Note that in the limit of small opening angle, θqq̄ → 0,

we get back to the total, i.e., vacuum plus medium-induced, independent spectrum off the

initial gluon.

A universal behavior, mirroring the onset of coherence at scales k⊥ > Qhard for the

antenna radiation, emerges in the hard sector in the sense that the vacuum-like spectrum

that is responsible for cancellations inside the antenna is reinstated, with the correct color

factor, as radiation off the total charge of the pair. The ∆med behavior of the soft sector

vanishes above the hard scale set by the system, and the spectrum behaves as

Ptotal charge

∣∣
Qhard<k⊥

∼ 4ω2

k2 , (8.1)

which is a universal behavior valid for vacuum and both regimes in the medium. Thus,

vacuum radiation which is not touched by the medium is thus only allowed at angles larger

than that limiting angle determined by the same hard scale. Angular ordering or, in other

– 35 –



J
H
E
P
1
0
(
2
0
1
2
)
1
9
7

words, color conservation in medium is therefore manifested not simply at the opening

angle of the pair but rather at max(Q/E,Qhard/ω), where we have written the opening

angle of the pair in terms of the virtuality of the earliest gluon, Q, and energy of the

emerging quarks, θqq̄ = Q/E.11

9 Conclusions

We have presented a unified picture of radiation off correlated color charges traversing a

colored medium. The object of our analysis was, specifically, the single-gluon radiation off

a qq̄-pair created in the splitting of a highly virtual gluon or photon — limiting ourselves

to soft enough radiation that can not resolve the details of the splitting process, which we

therefore can treat as instantaneous. In this work we have employed the harmonic oscillator

approximation to make an analytical treatment of the effects of multiple scattering with

the medium feasible. This approximation breaks down for situations when atypical, hard

interactions with the medium dominate, which is the case for relatively dilute media or

hard gluon production. While this regime was more carefully analyzed in [39], the main

focus of our present analysis has been on configurations when the dense, collective effects

of the medium dominate.

Including the possibility of radiation off different charges in the medium leads to a wide

variety of possible configurations whose phenomenological consequences should be further

investigated. Substantiating our previous findings [39], we have reduced this problem by

identifying the relevant transverse scales which fully characterize the radiation. The hardest

scale of the problem, found by

Qhard = max
(
r−1
⊥ , Qs, |δk|

)
, (9.1)

determines concurrently the corresponding regime governing the emission, see table 1.

In the analysis presented here, we have always assumed the two former, medium scales

to be larger than |δk|. In the opposite case, the radiation takes place independently

off the antenna legs and at small angles, i.e., fully contained within the cone delimited

by the qq̄-pair. Most interestingly, radiation above the hardest scale of the problem is

strongly suppressed,

Pq
∣∣
Qhard<k⊥

' 0 , (9.2)

manifesting the restoration of coherence. As discussed in section 8, keeping with the

expectations from color conservation this contribution is reinstated as being radiated off

the total color charge of the system. In this sense, the medium serves two purposes, namely

to open the phase space for bremsstrahlung radiation and by inducing radiation off the color

charges traversing it.

Although some of the presented results of our discussion are known in the literature

(e.g., the relevance of the hardest scale of the problem was already detailed in [39]), this

11Note that our analysis is strictly valid only for gluons that do not resolve the structure of the hard

qq̄-pair splitting vertex, i.e., ω < Eθqq̄.
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analysis have also shed light on the interplay of time- and momentum-scales relevant for jet

physics in medium and completes our previous studies. We have argued that the formation

time both for the qq̄ splitting or for gluon production in medium embodies, in fact, the

time it takes the pair to decohere. In a dense medium or, alternatively, for relatively soft

gluon production, these times are usually very short compared to the total medium length

and generally one can neglect all interferences. The emission spectra scale with the length

of the medium and all color charges can radiate independently. Furthermore, in the wake

of the quantum emission the particles acquire additional transverse momentum broadening

that acts over large distances. In the dilute limit or, equivalently, for hard gluon radiation,

the picture changes drastically. In particular, gluons with transverse momenta larger than

the hardest scale of the problem can only be induced off the total charge of the system and

is bremsstrahlung. The reason is that these emissions take place on very short timescales —

shorter than typical times-scales induced by the medium — and therefore they practically

are not resolved by it.

These insights will prove important for the description of the showering of highly

virtual partons created in the initial hard processes in heavy-ion collisions. Our analysis,

based purely on perturbative QCD, seem to indicate a hierarchy of scales which establishes

a region of possible influence of medium physics. We plan to investigate these aspects

further for fully dynamical settings, relevant for realistic cases in heavy-ion collisions at

the LHC, in future works.
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A The harmonic oscillator in coordinate space

In this section we explicit the expressions for the independent and interference components,

see section 4, in coordinate space. The former are already well-known in the literature [32].

Following the decomposition in section 2, there are three contributions. First we consider

the “in-in” component, describing the situation when the emission of the gluon in both

the amplitude and the complex conjugate takes place inside the medium, i.e., t, t′ < L.

We find

J in-in = Re

∫ L

0
dt′
∫ t′

0
dt exp

[
− 1

12
q̂ δn2 t3 + i

ω

2
δn2t+ iAB y2 −

κ̄2
y

4F

]

× −2iA2

F

{
−2i+ i

[
2A(B2 + 1)y + ωB δn

]
· κ̄y

2F

+
AB

F

(
2−

κ̄2
y

2F

)
+ 2AB y2 + ω y · δn

}
+ sym., (A.1)
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where y = δn t, κ̄y = κ̄+ 2Ay and A and B are defined in eq. (4.8). Finally,

D =
1

4
q̂(L− t′) , (A.2)

controls the final-state transverse momentum broadening and F = D − iAB. In the limit

δn = 0, eq. (A.1) reduces to

Rin-in
q = 2Re

∫ L

0
dt′
∫ t′

0
dt exp

[
−κ

2

4F

]
4iA2

F 2

(
iD +

AB

4F
κ2

)
, (A.3)

and similarly for Rq̄ with κ → κ̄. Let us turn now to the “in-out” contribution that

describes the situation when the gluon emission takes place inside the medium in the

amplitude but outside of it in the complex conjugate, or vice versa. This piece reads

J in-out = Re

∫ L

0
dt exp

[
− 1

12
q̂ δn2 t3 + i

ω

2
δn2t+ iÃB̃ y2 − i

κ̄2
y

4ÃB̃

]

× −2ω

B̃κ̄2
κ̄ ·
[
−i2ÃB̃ y + i

κ̄y

B̃
− iωδn

]
+ sym . , (A.4)

where Ã and B̃ are defined in eq. (4.14). Once more, in the limit δn = 0 we find the

independent component

Rin-out
q = 2Re

∫ L

0
dt
−i2ω
B̃2

exp

[
−i

κ̄2
y

4ÃB̃

]
. (A.5)

The “out-out” components are already given above, see eq. (4.15) for the interferences and

eq. (5.14) for the independent spectrum.

B Final-state broadening

Many of the finer features of the spectrum are washed out by the final-state broadening,

described by the probability distribution in eq. (4.12). This is because, in contrast to the

emission process which itself takes place over relatively short time-scales, the broadening

can accumulate transverse momentum along the whole length of the medium and naturally

involves the maximal transverse broadening, given by the so-called saturation scale of the

medium Qs. It is instructive to study some of these features in more detail. We will also see

that the more complex interplay of the relevant medium scales and the antenna geometry

precludes a simple interpretation of one energy-independent hard scale, as sketched in

section 3.

To study the medium-induced gluon spectrum in the absence of the final-state broad-

ening, we put by hand

P(k − k′, ξ) = (2π)2δ(k − k′) , (B.1)

i.e., the particle retains the momentum it was emitted with after its formation time. In

the coordinate-space representation, see appendix A, one sets the parameter D in eq. (A.2)

to zero.
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Figure 7. The medium-induced gluon angular spectrum without broadening, compare with figure 4.

The solid (black) line corresponds to the total coherent spectrum off the quark, cf. eq. 7.1, and the

dashed (black) line is the independent spectrum, cf. eq. (7.2). To guide the eye we have also depicted

the vacuum-like spectrum at large angles with a thick, grey line (∝ Θ(θ − θqq̄)/θ). See text for

further details.

We have plotted the angular gluon spectrum without broadening in figure 7. The

curves in this figure should be compared with the corresponding curves in figure 4, cf.

the adjoining text for details. We note that the independent spectrum, depicted with a

dashed line, is peaked more pronouncedly around its maximal value given by θf, in this

case, see eq. (4.6) and below. In the upper, right panel of figure 7, representing the “dipole”

regime, we observe strong oscillations of the total coherent spectrum around the peak of

independent one. These features are encoded in eq. (6.15), and discussed above. The onset

of coherence at large angles is more strikingly observed in the “decoherence” regime, see

lower, right panel of figure 7. Note that the spectrum is exactly cancelled at an angle right

above θf. We have checked numerically that this characteristic angle scales as expected of

the hard scale kcoh relevant for this regime, see eq. (6.31) and the discussion leading to

eq. (6.35).

The role of the transverse momentum broadening can also be traced in the energy

distribution of emitted gluons, see the left panel of figure 8. The peak of the energy
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Figure 8. Scaling in the independent component of the gluon energy spectrum. The values of q̂

are 5, 10 and 15 GeV2/fm (solid, dotted and dashed lines, respectively) and L are 2, 5 and 10 fm

(light-grey, dark-grey and black lines, respectively).

distribution scales with the hardest medium-induced scale, namely Qs, and has a broad

distribution around its central value. In the absence of broadening, the relevant scale

associated with the short-distance dynamics can easily be deduced to be simply ∝ q̂1/3.

We have indeed checked that the maximum of the independent spectrum in the absence

of broadening scales with this novel parameter, see the right panel of figure 8 (see figure

caption for further details). Due to the sliding hierarchy of scales in the “decoherence”

regime, see eq. (6.32), no such scaling can be found for the interference contribution.

Another, more formal, way to access the spectrum without broadening is by considering

the spectrum integrated over transverse momentum. In this case, we can combine the “in-

in” and “in-out” components of the independent gluon spectrum such that∫
d2k

(2π)2
Rmed
q = −Re

4iω

Ω

∫
d2k

(2π)2

∫ ΩL

0
dx tan2(x) exp

[
(1− i) k

2

2k2
f

tan(x)

]
, (B.2)

where Rmed
q = Rin-in

q +Rin-out
q . Note that to be able to shift the integration limits freely

in eq. (B.2) we had to assume the energy to be sufficiently large. Formally, the integration

limits over the transverse momentum in eq. (B.2) are infinite. We finally arrive at the

medium-induced energy spectrum,

ω
dNmed

dω
=

2αsCF
π

ln

∣∣∣∣cos

(√
−iωc

ω

)∣∣∣∣ , (B.3)

where the characteristic gluon frequency is defined as ωc = q̂L2/2. This is the famous

BDMS formula [17] for medium-induced soft gluon radiation. Here it is worth noting that

the factor 2CF arises from the soft limit of the Altarelli-Parisi splitting function for gluon

radiation off a quark, and in the general case can be replaced by xPq→g(x). For an elegant

generalization of eq. (B.3) to expanding media, see [45].
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