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Abstract: We construct flux-stabilised Type IIB string compactifications whose extra

dimensions have very different sizes, and use these to describe several types of vacua with

a TeV string scale. Because we can access regimes where two dimensions are hierarchically

larger than the other four, we find examples where two dimensions are micron-sized while

the other four are at the weak scale in addition to more standard examples with all six extra

dimensions equally large. Besides providing ultraviolet completeness, the phenomenology

of these models is richer than vanilla large-dimensional models in several generic ways: (i)

they are supersymmetric, with supersymmetry broken at sub-eV scales in the bulk but

only nonlinearly realised in the Standard Model sector, leading to no MSSM superpartners

for ordinary particles and many more bulk missing-energy channels, as in supersymmetric

large extra dimensions (SLED); (ii) small cycles in the more complicated extra-dimensional

geometry allow some KK states to reside at TeV scales even if all six extra dimensions are

nominally much larger; (iii) a rich spectrum of string and KK states at TeV scales; and (iv)

an equally rich spectrum of very light moduli exist having unusually small (but technically

natural) masses, with potentially interesting implications for cosmology and astrophysics

that nonetheless evade new-force constraints. The hierarchy problem is solved in these

models because the extra-dimensional volume is naturally stabilised at exponentially large

values: the extra dimensions are Calabi-Yau geometries with a 4D K3 or T 4-fibration over a
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2D base, with moduli stabilised within the well-established LARGE-Volume scenario. The

new technical step is the use of poly-instanton corrections to the superpotential (which,

unlike for simpler models, are likely to be present on K3 or T 4-fibered Calabi-Yau com-

pactifications) to obtain a large hierarchy between the sizes of different dimensions. For

several scenarios we identify the low-energy spectrum and briefly discuss some of their

astrophysical, cosmological and phenomenological implications.

Keywords: Strings and branes phenomenology, Phenomenology of Large extra dimen-

sions
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1 Introduction

The observation that quantum gravity could become important at energies as low as the

TeV scale [1–4] considerably raises the stakes for what might be found at the LHC. Besides

its implications for the LHC, if gravity is really a TeV effect it could also imply a variety

of novel new non-accelerator phenomena, including modifications to gravity over micron

and macroscopic distances and novel cosmology and astrophysics. It raises the prospect of

forging a link between astrophysical observations, terrestrial tests of gravity, and collider

experiments at very high energies.

In these scenarios predictions for the LHC tend to be quite robust, in that they do not

depend strongly on nitty gritty details like the exact shape of the extra dimensions. By

contrast, gravitational predictions are much more model-dependent, since they typically

probe only the existence and properties of very low-energy states in the sub-eV regime.

For instance, in a ten-dimensional world with a TeV gravity scale, predictions for the LHC

depend relatively weakly on whether all six dimensions are large or whether two are much

larger than the other four. By contrast, observable deviations from gravity on micron
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scales depend on this very much, since only in the latter case can any dimensions be big

enough to be detected. Because of this any real connection between gravity at the LHC and

lower-energy observables requires a fairly detailed understanding of the extra dimensions

and how they are stabilised.

String theory provides a natural framework for such an understanding, yet detailed

mechanisms for stabilising moduli in string theory have been understood in a controlled

way only fairly recently, amongst Type IIB Calabi-Yau flux compactifications [5, 6]. Most

interestingly, solutions arise within this framework with the volume, V6, of the extra di-

mensions naturally stabilised at exponentially large values, V6 ∝ ec/gs , where gs ≪ 1 is the

string coupling and c is a positive constant of order unity. In particular, relatively small

changes to the input parameters can generate the extremely large values,1

V := V6M
6
s ∝

M2
p

M2
s

≃ 1030 , (1.1)

that are required if the string scale, M−1
s := ls := 2π

√
α′, is to be as low as: Ms ∼ 1TeV.

These models, called the LARGE volume scenario [7, 8] or LVS for short, tend to be very

predictive, in particular making specific predictions for a rich spectrum of light moduli

with masses below the (already small) Kaluza-Klein (KK) scale.

In the simple ‘Swiss cheese’ geometries first studied, TeV strings within the LVS tended

to predict similar sizes for all of the extra dimensions, making them all equally large —

i.e. L ≃ V
1/6
6 ∼ (10MeV)−1 ≃ 10 fm — but not so large as the sub-millimetre scales to

which tests of Newton’s laws are presently sensitive. What is missing so far are models

whose extra dimensions are extremely asymmetric in size, with a volume of the form

V6 = L2 l4, where L ∼ 10µm ∼ (0.01 eV)−1 is the size of the two large dimensions, and

l ≃ (V6/L
2)1/4 ∼ 10−4 fm ∼ (1TeV)−1 ≪ L is the size of the other four small dimensions.

It is the purpose of this paper to begin filling in this regime, seeking in particular Type

IIB models where two dimensions are much larger than the other four.

Having the string scale near a TeV (regardless of whether L differs much from l) has

crucial implications for how supersymmetry breaks. Although the fluxes in LARGE-volume

vacua already break supersymmetry, they do so with a very low scale, m3/2 ≃ M2
s /Mp ≃

Mp/V (∼ 10−3 eV when Ms ∼ 1 TeV). This means that other sources of breaking must

dominate in the sector containing standard-model (SM) particles. Since we know this

sector must in any case reside on a brane (to prevent having already detected the large

dimensions [1, 2]), this means that this SM brane must badly break supersymmetry. (Such

supersymmetry breaking is quite possible in string theory, such as the explicit local non-

supersymmetric brane models constructed in ref. [9, 10].)

This kind of supersymmetry-breaking pattern has two robust consequences. First, it

implies some supersymmetry survives down to extremely low energies; with supermultiplets

in the bulk split by scales of order m3/2 ∼ 10−3 eV. Indeed we find that the physics that

stabilises the extra dimensions robustly predicts yet more states at these same energies.

The generic picture has a diverse spectrum of unusually light particles, with potentially

rich implications for very-low-energy physics [11–21].

1We use the reduced Planck scale throughout: M2

p = (8πG)−1, and so Mp = 2.4 · 1018 GeV.
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Second, despite the low supersymmetry-breaking scale in the bulk, the particle spec-

trum relevant to LHC physics does not include the usual superpartners of minimal su-

persymmetric (MSSM) models. No superpartners arise because on a non-supersymmetric

brane supersymmetry relates single-particle to multi-particle states (and so takes an elec-

tron, say, to an electron plus a gravitino rather than to the MSSM selectron). Searches for

MSSM superpartners at the LHC should come up empty-handed, as indeed they have so

far been doing [22–24].

In order to find anisotropic stabilisations, in §2 we explore compactifications that are

topologically K3 or T 4 fibrations over a P
1 base. We find the moduli of such spaces

can stabilise at sufficiently anisotropic shapes to allow the size, L, of the base to be of

sub-millimetre size. Thus the low-energy limit is described by a 6-dimensional effective

field theory (EFT), comprising a stringy derivation of the supersymmetric large-volume

scenario [1, 2, 11–13]. The crucial ingredient for obtaining this is the use of poly-instanton

corrections to the superpotential [25]. These are instanton-like corrections to the gauge

kinetic functions, that contribute to stabilisation through the influence of these kinetic

terms on the superpotential. Although usually neglected for modulus stabilisation due to

their exponentially small dependence on moduli, they can dominate when the zero-mode

structure of a non-rigid K3 or T 4 surface forbids single-instanton contributions to the

superpotential.

We begin a preliminary exploration of some phenomenological consequences in §3 and

§4, assuming that the Standard Model itself is localised onD7-branes wrapping small cycles

within the large overall extra-dimensional volume. We find in §3 a generic prediction of a

rich spectrum of states whose masses are light enough to be relevant to terrestrial tests of

gravity, yet which are not already explicitly ruled out. We argue that for very anisotropic

compactifications the low-energy world transverse to the branes is effectively 2-dimensional,

implying that brane back-reaction is an important complication to the LARGE-volume

dynamics at very low energies [26, 27]. On one hand, this puts detailed calculations of

the low-energy properties beyond the present state of the art, motivating more detailed a

better understanding of back-reaction in hopes of making more precise comparisons with

observations. On the other hand, the presence of back-reacting codimension-2 branes might

yet be a good thing, since they may provide a new mechanism for understanding the small

size of the present vacuum energy [11–13, 28–31].

§4 provides a preliminary discussion of some of the phenomenological implications.

This includes the several ways these string compactifications differ from more naive extra-

dimensional phenomenology, as well as distinctive implications for macroscopic tests of

gravity. We focus on distinguishing those features that are generic to large-volume and

sub-millimetre extra-dimensional models from those more specific to the stabilisation mech-

anism considered here. Our summary of the results appears in §5.

2 Fibred constructions

This section lays out the guts of our construction. It starts by describing fibred Calabi-Yau

geometries, and what an anisotropic compactification looks like when expressed in terms

– 3 –
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of their moduli. After a brief summary of modulus stabilisation for these geometries, two

types of anisotropic stabilisations are described; one relying on string-loop generated inter-

actions, and one relying on poly-instanton interactions. These models differ in the degree

of anisotropy obtainable using ordinary input parameters, with the poly-instanton proposal

allowing the extreme hierarchies of scale required for micron-sized extra dimensions.

2.1 Type IIB compactified on fibered Calabi-Yau three-folds

We focus throughout on Calabi-Yau three-folds whose volume can be written in the form

V = λ1t1t
2
2 + λ2t

3
3, (2.1)

where the ti are volumes of internal 2-cycles in the geometry, and λ1,2 are the intersection

numbers for these cycles (that depend on the details of the Calabi-Yau of interest). For

explicit Calabi-Yau constructions via toric geometry which exhibit this form of the overall

volume see [32].

The volumes, τi, of the 4-cycles dual to these 2-cycles are defined by τi = ∂V/∂ti,
and so

τ1 = λ1t
2
2, τ2 = 2λ1t1t2, τ3 = 3λ2t

2
3 . (2.2)

These define the real part of the geometry’s complex Kähler moduli

Ti = τi + i

∫

Di

C4 , i = 1, . . . , h1,1 = 3 , (2.3)

where Di is the 4-cycle (divisor) whose volume is given by τi, C4 is the Ramond-Ramond

4-form, and hm,n (with m,n = 1, 2, 3) are the manifold’s Hodge numbers. In terms of the

T -moduli, the volume (2.1) reads:

V = α
(√

τ1τ2 − γτ
3/2
3

)

= t1τ1 − αγτ
3/2
3 , (2.4)

where α and γ are given in terms of the λi by: α = 1/(2
√
λ1) and γ = 2

3

√

λ1/(3λ2).

Topologically, this Calabi-Yau three-fold has a P
1 base of size t1 := (LMs)

2, a K3

or T 4 fibre2 of size τ1 := (lMs)
4 and a point-like singularity resolved by a blow-up mode

whose volume is given by τ3 := (dMs)
4. For LARGE-volume models we restrict attention

to orientifold projections that project out none of these Kähler moduli and focus on the

large-volume regime, for which

t1τ1 ≫ αγτ
3/2
3 in which case V ≃ t1τ1 = L2l4M6

s . (2.5)

We seek anisotropic compactifications for which the two dimensions of the base —

spanned by the cycle t1 — are hierarchically larger than the four dimensions of the fibre

— spanned by τ1, making the base 2-cycle much bigger than its dual 4-cycle. The fol-

lowing sections describe two particular constructions, for which the potential energies are

2The topology of the fibre can be determined by computing its Euler characteristic χ: if χ = 24 the fibre

is a K3 surface whereas if χ = 0 the fibre is a T 4 surface [33, 34].
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minimised by

Small Hierarchy: 〈t1〉 >
√

〈τ1〉 ≫
√

〈τ3〉 and so L >∼ l ≫ d ;

Large Hierarchy: 〈t1〉 ≫
√

〈τ1〉 ≃
√

〈τ3〉 and so L≫ l >∼ d .

In our later applications the first of these gives six dimensions that are all at MeV — GeV

scales; the second gives two micron-sized extra dimensions.

2.2 Boilerplate Kähler-modulus stabilisation

We work within the now-familiar framework of Type IIB string theory compactified with

background fluxes sourced by D7- and D3-branes [5]. The 10D theory is IIB supergravity

(with orientifold projections such that h−1,1 = 0), and so the closed-string moduli that

require stabilisation include the axio-dilaton, S = e−φ + iC0 (where φ is the 10D dilaton

and C0 the Ramond-Ramond 0-form); a variety of complex-structure moduli, Uα (with

α = 1, . . . , h−1,2); and the Kähler moduli, Ti (with i = 1, . . . , h+
1,1 defined in eq. (2.3)). Of

these, the S and the U -moduli can be stabilised at leading order in gs and α′ if nonzero

3-form fluxes are present in the background geometry [5, 35]. By contrast, the Kähler

moduli Ti remain unstabilised at leading semiclassical order.

The stabilisation of these remaining Kähler moduli is more complicated, since it in-

volves dynamics beyond leading order in gs and α′. If this dynamics involves energies

smaller than the Kaluza-Klein scale, it can be described in the low-energy effective 4D

theory within which the extra-dimensional moduli appear as scalar fields. This effective

theory is an effective N = 1 4D supergravity (possibly with soft-breaking terms) if the

bulk fluxes do not break supersymmetry too badly.

This 4D effective supergravity is described by a Kähler potential and superpotential

that — at string tree-level and to lowest order in α′ — take the form [36]

Ktree = K0 − 2 lnV and Wtree = W0 , (2.6)

where W0 =
∫

G3 ∧ Ω and K0 = − ln
(

S + S̄
)

− ln
(

−i
∫

Ω ∧ Ω̄
)

describe the S- and U -

dependent terms, with U appearing through its appearance in the holomorphic (3,0)-form,

Ω(U). Here G3 is the usual IIB complex 3-form flux. These determine (among other things)

the N = 1 F-term scalar potential,

VF = eK
[

Kij̄ (Wi +WKi)
(

W̄j̄ + W̄Kj̄

)

− 3|W |2
]

, (2.7)

which vanishes identically (as a function of Ti) when evaluated using Ktree and Wtree after

S and U are evaluated at their minima.

The Kähler metric produced by this Kähler potential simplifies considerably in the

large-volume limit, which neglects any terms that are subdominant in inverse powers of

the two large moduli, τ1 and τ2. The leading contribution to the Kähler metric and its

inverse in this limit is

K0
i̄ =

1

4τ2
2













τ2

2

τ2

1

γ
(

τ3
τ1

)3/2
−3γ

2

√
τ3

τ
3/2

1

τ2

γ
(

τ3
τ1

)3/2
2 −3γ

√
τ3√
τ1

−3γ
2

√
τ3

τ
3/2

1

τ2 −3γ
√
τ3√
τ1

3αγ
2

τ2

2

V√
τ3













, (2.8)
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and

K ı̄j
0 = 4







τ2
1 γ

√
τ1τ

3/2
3 τ1τ3

γ
√
τ1τ

3/2
3

1
2 τ

2
2 τ2τ3

τ1τ3 τ2τ3
2

3αγV
√
τ3






. (2.9)

Perturbative corrections. But the juice of Kähler modulus stabilisation lies not in

the above quantities, but rather in the corrections that cause deviations from them. Po-

tentially the most important of these are perturbative corrections in α′ and gs, which

non-renormalisation theorems [37–41] imply can appear only in K.

The leading α′ corrections modify K to [42]

K = Ktree + δK(α′) = −2 ln

(

V +
ξ

2g
3/2
s

)

, (2.10)

where ξ is given by ξ = (h1,2 − h1,1)ζ(3)/[2(2π)3], with ζ(3) ≃ 1.2.

String loops also correct K and the changes that depend on the Kähler moduli typi-

cally arise from open-string loops; they depend on the moduli of the cycles on which the

corresponding D7-branes are wrapped. As a result the precise form of the correction,

δK(gs), depends on the details of which branes wrap which cycles. A few examples suffice

to indicate the kinds of one-loop contributions that can arise.

1. D7s wrapping τ1 and τ2; ED3 wrapping τ3: For instance, suppose we wrap a stack

of spacetime-filling D7-branes — denoted D71 — around the 4-cycle τ1 in the fibred

Calabi-Yau considered above; and wrap another stack — D72 — around the cycle

τ2. Finally suppose a Euclidean D3-brane instanton (ED3), wraps the rigid blow-up

cycle τ3. We assume that the tadpole-cancelation conditions can be satisfied with

this choice by an appropriate set of background fluxes.

In this case open-string loops arising from the branes D71 and D72 generate 1-loop

corrections to the Kähler potential of the form [43]:

δK(gs) =
gs (CKK

1 t1 + CKK
2 t2)

V +
CW

12

Vt2
, (2.11)

where CKK
i , i = 1, 2, and CW

12 are constants which depend on the complex structure

moduli. We restrict ourselves to natural values for these constants, α ∼ CKK
i ∼ CW

12 ∼
O(1) and gs . 0.1. In what follows we find that this scenario leads to the ‘small

hierarchy’ (SH) case described above.

2. D7s wrapping τ3 and ED3 wrapping τ1: In this case, because there are no D7-branes

wrapping either τ1 or τ2, the open string loop correction δK(gs) is independent of

τ1. However loops of closed Kaluza-Klein strings might still introduce a dependence

on the K3 or T 4 divisor τ1, but, as we shall argue later on, they are expected to be

suppressed, and so we shall neglect them.

– 6 –
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Non-perturbative corrections. Smaller than all loop corrections are non-perturbative

effects, that are typically exponentially small in the small dimensionless expansion param-

eters. These get swamped by perturbative corrections in K, but dominate the corrections

to W since loop corrections to this are forbidden by non-renormalisation theorems [37–41].

The typical corrections to W that arise in this way have the form

δW ≃ Ae−2πaf , (2.12)

where f is the appropriate holomorphic gauge coupling function for the relevant strongly

interacting sector and a is a constant.

A similar story applies to the gauge coupling functions themselves, although these

can receive perturbative corrections, if only at one loop. At the non-perturbative level

the gauge coupling function, f1, for a particular gauge group can receive non-perturbative

contributions from those of another gauge groups

δf1 ≃ Af +Bf e
−2πbf2 , (2.13)

where Af and Bf are calculable constants. In specific situations the leading dependence of

W on f2 may be through the ‘poly-instanton’ contribution of eq. (2.13) to eq. (2.12), rather

than from the direct instanton correction obtained by using f2 directly in eq. (2.12) [25].

Consider, for instance, the two scenarios discussed above for the loop corrections:

1. D7s wrapping τ1 and τ2; ED3 wrapping τ3: In this case the ED3 generates a non-

perturbative contribution to the superpotential of the form:

W = W0 +A3 e
−2πT3 , (2.14)

where the tree-level superpotentialW0 and the threshold effect A3 are T3-independent

constants once the S and U -moduli are fixed and integrated out.

2. D7s wrapping τ3 and ED3 wrapping τ1: Assuming the gauge sector of the D7s to

involve two gauge group factors that independently condense, one expects to generate

a racetrack superpotential:

W = W0 +Ae−a3T3 −B e−b3T3. (2.15)

On the other hand, as discussed in more detail below, the ED3 on τ1 can generate

poly-instanton corrections [25] to the superpotential (2.15) of the form:

W = W0 +Ae−a3(T3+C1e−2πT1) −B e−b3(T3+C2e−2πT1)

≃ W0 +Ae−a3T3

(

1 − a3C1e
−2πT1

)

−B e−b3T3

(

1 − b3C2e
−2πT1

)

. (2.16)

It is this setup that leads to the huge hierarchy between L and l appropriate to the ‘large

hierarchy’ (LH) case described above.

We now discuss these two different cases in somewhat more detail.

– 7 –
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Figure 1. Pictorial view of the small hierarchy case (left panel) and large hierarchy case (right

panel).

2.3 Small hierarchy

Using the leading order — tree level, eq. (2.10) — Kähler potential and the leading order

nontrivial superpotential — non-perturbative, eq. (2.14) — in the ‘small hierarchy’ scenario

gives rise to the following F-term scalar potential (after minimising with respect to the

axion, ψ3 = ImT3)

VF =
32π2A2

3

3αγ

√
τ3
V e−4πτ3 − 8πW0A3

τ3
V2
e−2πτ3 +

3ξW 2
0

4g
3/2
s V3

. (2.17)

Notice that VF depends only on τ3 and the particular combination of τ1 and τ2 that corre-

sponds to the overall volume, V. Consequently one combination of τ1 and τ2 parameterises

a flat direction (within this approximation), while the potential (2.17) fixes the other two

fields, τ3 and V,

〈τ3〉 =
1

gs

(

ξ

2αγ

)2/3

, 〈V〉 =

(

3αγ

8πA3

)

W0

√

〈τ3〉e2π〈τ3〉, (2.18)

where we assume ξ ∝ (h2,1 − h1,1) > 0 in order to have a sensible solution for 〈τ3〉.
This reveals the LARGE-volume magic: the minimum is generically at exponentially

large volume, since 〈τ3〉 ∼ O(1/gs) and 〈V〉 ∝ e2π/gs , without fine-tuning the background

fluxes, i.e. W0 ∼ O(1). For example, the following illustrative numerical choices for the

various underlying parameters,

λ1 = λ2 = 1 (and so α = 0.5, γ = 0.385) ;

gs = 0.1, ξ = 0.47 (and so 〈τ3〉 = 11.42) ,

and W0 = A3 = 1 so 〈V〉 = 1.15 · 1030.

lead to values of V large enough to allow Ms ∼ 1 TeV.

The flat direction in the (τ1, τ2)-plane is lifted once corrections to the above choices

for K and W are included, and first arise once loop corrections are included in the Kähler

potential.

– 8 –



J
H
E
P
1
0
(
2
0
1
1
)
1
1
9

String loop corrections. The open-string loop corrections to K in this model are esti-

mated in eq. (2.11), with the first term coming from the tree-level exchange of closed strings

carrying Kaluza-Klein momentum between the D71 or D72 branes and spacetime filling

D3-branes (whose presence is required in general due to tadpole cancelation conditions).

The second term similarly arises due to the tree-level exchange of winding strings between

the intersecting D7 stacks, D71 and D72.

Inserting the corrections of eq. (2.11) into the scalar potential gives the sub-leading

contribution to VF in inverse powers of V. Because they are perturbatively small they

do not ruin the minimum, (2.18), but they can lift the flat direction of the lowest-order

solution. The potential turns out to take the form [44],

δV(gs) =

[

(gsCKK
1 )2K0

11̄ + (gsCKK
2 )2K0

22̄ − 2
CW

12

Vt2

]

W 2
0

V2

=

(A
τ2
1

− B
V√τ1

+
Cτ1
V2

)

W 2
0

V2
, (2.19)

where

A =
(

gs CKK1

)2
> 0,

B = 2 CW12 λ
−1/2
1 = 4αCW12 , (2.20)

C = 2
(

αgs CKK2

)2
> 0 .

Notice that A and C are both positive (and suppressed by g2
s) but B can take either sign.

Fibre stabilisation. The structure of δV(gs) makes it very convenient to use τ1 to pa-

rameterise the flat direction. Minimising δV(gs) with respect to τ1 at fixed V and τ3 gives

1

〈τ1〉3/2
=

( B
8AV

)

[

1 + (signB)

√

1 +
32AC
B2

]

, (2.21)

which, when 32AC ≪ B2 — or equivalently g2
s ≪ CW12 /(2CKK1 CKK2 ) — reduces to:

〈τ1〉 ≃
(

−BV
2C

)2/3

if B < 0 or 〈τ1〉 ≃
(

4AV
B

)2/3

if B > 0 . (2.22)

In order to have sensible solutions we must require either C > 0 (if B < 0) or A > 0 (if

B > 0), a condition that is always satisfied (see (2.20)).

The proportionality τ1 ∝ V2/3 shows that this modulus also naturally stabilises at hi-

erarchically large values, τ2 > τ1 ≫ τ3, without making unusual choices for the parameters

in the potential. A useful illustrative benchmark choice of parameters is

CKK
1 = CKK

2 = 0.1, CW
12 = 5 ,

(

which imply A = 10−4, B = 10, C = 5 · 10−5
)

,

in which case 〈τ1〉 = 1.3 · 1017 and 〈τ2〉 = 3.2 · 1021.

This construction is essentially identical to the one used in [45–47] to derive an inflationary

model, whose inflaton is τ1, although inflationary applications require smaller values for
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the volume, V ∼ 103, in order to provide observable density fluctuations. Because of this

smaller volume the modulus τ1 is minimized at smaller values, and Ms is of order the

GUT-scale.

Unfortunately this framework does not allow a sufficiently large hierarchy between

τ1 and τ2 without also building in a large hierarchy into the parameters of the potential.

In particular, to get smaller values for 〈τ1〉 — and so also a larger hierarchy between

L ≃ √
t1M

−1
s ≃

(

τ
1/2
2 /τ

1/4
1

)

M−1
s (∼ 3×106 M−1

s in the above example) and l ≃ τ
1/4
1 M−1

s

(∼ 2 × 104 M−1
s in the example) — at fixed 〈V〉 ∼ 1030, requires pre-tuning a very small

hierarchy into the values of gs and the coefficients of the loop-corrected potential.

2.4 Large hierarchy

The brane set-up chosen above in the ‘large hierarchy’ example is meant to ensure the

dominance of poly-instanton corrections to the superpotential, of the form (2.16). Before

explaining their crucial rôle in fixing the fibre divisor at small values, let us present a brief

description of this new kind of non-perturbative effect.

Poly-instanton corrections. The authors of [25] noticed that the action of a string

instanton can receive non-perturbative corrections from another instanton wrapping a dif-

ferent internal cycle. They considered a Type I T 6/ (Z2 × Z2) compactification with an

Euclidean D1 instanton (ED1) wrapping the P
1 base which gives rise to a single instanton

contribution to the superpotential, and another ED1 wrapping a T 2 which induces an

instanton correction to the instanton action on P
1. The ED1 on T 2 does not contribute as

a single instanton in W due to the presence of two extra fermionic zero modes which are

Wilson line modulini with the corresponding bosonic partners that are projected out.

The corresponding Type IIB version involves two internal 4-cycles, Σi and Σj, wrapped

respectively by the Euclidean D3-brane instantons ED3i and ED3j . The function fi can

get instanton corrections from ED3j of the form:

fi = Vol(Σi) + h(Fi)S + f1−loop
i (U) +Aj(U) e−2πVol(Σj), (2.23)

where h(Fi) is a function of the world-volume flux Fi on Σi, and the 1-loop correction f1−loop
i

can only depend on the complex structure moduli U . Now the fact that the instantonic

action of ED3i, which we shall call Si, is related to the gauge kinetic function fi on

fictitious D7-branes wrapping Σi implies that the instanton action Si gets non-perturbative

corrections which look like:

Si → Si + e−Sj . (2.24)

In turn, the N = 1 superpotential takes the form:

W = W0 +Ai e
−2π(Ti+Cje

−2πTj ). (2.25)

The topological conditions on Σj such that ED3j does not contribute to W as a single

instanton but just as a poly-instanton correction to ED3i have not been worked out in

detail yet for the T-dual Type IIB version of the Type I computation of [25]. Given that

determining the details of the Type IIB origin of these poly-instanton corrections is beyond
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the scope of our paper, we shall take a very phenomenological approach and assume that

these effects get generated if we identify Σi with the τ3-cycle and Σj with the τ1-cycle. We

shall then also assume that the gauge group on τ3 can be broken into two separate gauge

groups which separately undergo gaugino condensation, so that the superpotential (2.25)

takes the form (2.16). Then the ED3 on τ1 gives rise to non-perturbative corrections to

the gauge kinetic functions of both condensing gauge theories.

We finally point out that it is not so unlikely that an ED3 on the fibre divisor gives

rise to the kind of poly-instantons corrections we need. In fact, in the case of Type IIB

orientifolds with O7/O3-planes, the two Wilson line modulini of the Type I picture get

mapped to elements of H1,0
+ (ED3) or H2,0

+ (ED3) which correspond, respectively, to Wilson

line and deformation modulini. Given that the fibre of our compactification manifold can

be either a K3 (for which h2,0 = 1 and h1,0 = 0) or a T 4 divisor (for which h2,0 = 1 and

h1,0 = 2), we have both Wilson line and deformation modulini.

Let us analyse the two different situations a bit more in detail:

1. ED3 wrapping a K3 fibre: In this case we need h2,0
+ (K3) = 1 and h2,0

− (K3) = 0,

implying that the ED3 is on top of the O7−-plane giving an Sp(2) instead of an O(1)

instanton which does not contribute to the superpotential. However the ED3 might

contribute to W if we magnetise the instanton since the fluxes (both background and

word-volume fluxes) may play a crucial rôle to lift the universal zero-modes of an

Sp(2) instanton giving rise to a contribution to the superpotential [48, 49]. A more

exotic option would be to consider an O7+ instead of an O7−-plane in which case

an ED3 sitting on top of the O7+-plane would correctly yield an O(1) instanton.

However in this case it is likely that the bosonic partners get projected out only

if h2,0
+ (K3) = 0 and h2,0

− (K3) = 1 implying that we have instead a U(1) instanton

(which could also still contribute to W in the case of a fluxed instanton). Finally, it

would also be interesting to consider the case with an O3-plane.

2. ED3 wrapping a T 4 fibre: This case seems more promising due to the presence of

Wilson line modulini since h1,0(T 4) = 2. Here the deformations can be fixed by the

background fluxes that we have turned on to fix the dilaton and the complex structure

moduli. Then, taking the appropriate orientifold projection, we would be left over

just with Wilson line modulini that should give rise to poly-instanton corrections.

Hence we conclude that it is not unreasonable to assume that the poly-instantons get

generated either for a fluxed instanton on a K3 fibre or for an instanton on a T 4 fibre

with deformations fixed by the background fluxes. It would be interesting, but beyond

the scope of this article, to have a concrete realisation of poly-instantons in these IIB

compactifications.

Modulus stabilisation. To compute the stabilised values of the moduli we set α = γ = 1

(for simplicity) and trade τ2 for the volume V using τ2 =
(

V + τ
3/2
3

)

/
√
τ1. The N = 1

F-term scalar potential at leading order in a large volume expansion then reads (writing

Ti = τi + i ψi, ∀i),
VF = VO(V−3) + VO(V−3−p), with p > 0, (2.26)
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where O(V−n) counts both explicit powers of 1/V and powers of e−a3τ3 ∝ 1/V. Explicitly,

VO(V−3) =
8
√
τ3
[

A2a2
3e

−2a3τ3 − 2ABa3b3e
−a3τ3−b3τ3 cos(a3ψ3 − b3ψ3) +B2b23e

−2b3τ3
]

3V

+
4W0τ3

[

Aa3e
−a3τ3 cos(a3ψ3) −Bb3e

−b3τ3 cos(b3ψ3)
]

V2
+
W 2

0 ξ̂

V3
,

and at leading order (where, to be as general as possible, we write the exponential term

e−2πT1 as e−cT1)

VO(V−3−p) = −16
√
τ3e

−cτ1

3V
(

A2a3
3C1e

−2a3τ3 +B2b33C2e
−2b3τ3

)

cos(cψ1)

+
4W0e

−cτ1

V2

[

Bb3C2 (b3τ3 + cτ1) e
−b3τ3 cos(b3ψ3 + cψ1)

−Aa3C1 (a3τ3 + cτ1) e
−a3τ3 cos(a3ψ3 + cψ1)

]

+
16ABa3b3

√
τ3e

−a3τ3−b3τ3−cτ1

3V
[

b3C2 cos(a3ψ3 − b3ψ3 − cψ1)

+a3C1 cos(a3ψ3 − b3ψ3 + cψ1)
]

+ P,

where P is a τ1-independent piece (which we neglect from now on since our interest is in

the minimisation of τ1).

We start by minimising VF with respect to the axion ψ3 = ImT3, whose leading ap-

pearance in the potential is dominated in the term of order V−3. The relevant derivatives

are:

∂VF

∂ψ3
=

4W0τ3
[

Bb23e
−b3τ3 sin(b3ψ3) −Aa2

3e
−a3τ3 sin(a3ψ3)

]

V2

+
16ABa3b3

√
τ3(a3 − b3)e

−a3τ3−b3τ3 sin(a3ψ3 − b3ψ3)

3V ,

∂2VF

∂ψ2
3

=
4W0τ3

[

Bb33e
−b3τ3 cos(b3ψ3) −Aa3

3e
−a3τ3 cos(a3ψ3)

]

V2

+
16ABa3b3

√
τ3(a3 − b3)

2e−a3τ3−b3τ3 cos(a3ψ3 − b3ψ3)

3V .

Notice that ∂VF/∂ψ3 automatically vanishes at ψ3 = 0, and this is a minimum if

∂2VF

∂ψ2
3

∣

∣

∣

∣

ψ3=0

=
4W0τ3

(

Bb33e
−b3τ3 −Aa3

3e
−a3τ3

)

V2
+

16ABa3b3
√
τ3(a3 − b3)

2e−a3τ3−b3τ3

3V ,

(2.27)

is positive.

Assuming this to be true we can (classically) integrate out ψ3 by setting it to zero,

leaving the residual potentials

VO(V−3) =
8
√
τ3
(

A2a2
3e

−2a3τ3 − 2ABa3b3e
−a3τ3−b3τ3 +B2b23e

−2b3τ3
)

3V

+
4W0τ3

(

Aa3e
−a3τ3 −Bb3e

−b3τ3)

V2
+
W 2

0 ξ̂

V3
, (2.28)
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and

VO(V−3−p) =

{

− 16
√
τ3e

−cτ1

3V
[

A2a3
3C1e

−2a3τ3 +B2b33C2e
−2b3τ3

−ABa3b3e
−a3τ3−b3τ3 (a3C1 + b3C2)

]

+
4W0e

−cτ1

V2

[

Bb3C2 (b3τ3 + cτ1) e
−b3τ3

−Aa3C1 (a3τ3 + cτ1) e
−a3τ3

]

}

cos(cψ1) . (2.29)

The case of a single gaugino condensate on τ3 with polyinstanton corrections can be easily

recovered setting A or B to zero.

Let us now evaluate τ3 at its minimum. Notice that this is determined by the dominant

O(V−3) term, but because this is independent of τ1 the resulting potential for this field

is found by evaluating VO(V−3−p) at the resulting minimum. We first do so dropping all

sub-dominant powers of 1/(a3τ3) and 1/(b3τ3), and find a potential for τ1 whose minimum

lies at small moduli, and so lies outside the domain of validity of our approximations. We

then show (for racetrack superpotentials) how a legitimate minimum can be found once we

include subdominant contributions.

A false start: dropping sub-dominant powers of 1/(a3τ3) and 1/(b3τ3), the vanishing of

(∂/∂τ3)VO(V−3) implies

A2a3
3e

−2a3τ3 +B2b33e
−2b3τ3−ABa3b3(a3 +b3)e

−a3τ3−b3τ3 =
3W0

√
τ3
(

Bb23e
−b3τ3−Aa2

3e
−a3τ3

)

4V
(2.30)

Writing a3 = b3 +m, eq. (2.30) reduces to

e−b3τ3 =
3W0

√
τ3

4ZV , (2.31)

with

Z := Bb3 −A(b3 +m)e−mτ3 . (2.32)

In addition the condition (2.27) takes the form

Bb3 −A(b3 +m)e−mτ3 > 0, (2.33)

which implies Z > 0. In the special case m = 0 (i.e. when a3 = b3) Z > 0 reduces to

B > A (since b3 > 0). In the case of a single exponential (A = 0) we have Z = Bb3.

Writing C2 = C1 + n, the scalar potential for τ1 then becomes

VO(V−3−p) =

{

C1

[

− 16
√
τ3e

−2b3τ3

3V
[

B2b33−ABb3(b3+m) (2b3+m) e−mτ3 (2.34)

+A2(b3+m)3e−2mτ3
]

+
4W0e

−b3τ3

V2

[

Bb3 (b3τ3 + cτ1) −A(b3 +m) ((b3 +m)τ3 + cτ1) e
−mτ3]

]

+n

[

− 16Bb23
√
τ3e

−2b3τ3 (Bb3 −A(b3 +m)e−mτ3)

3V

+
4W0Bb3e

−b3τ3

V2
(b3τ3 + cτ1)

]}

e−cτ1 cos(cψ1)

– 13 –



J
H
E
P
1
0
(
2
0
1
1
)
1
1
9

which takes the form

VO(V−3−p) =
3W 2

0
√
τ3

ZV3
(r1cτ1 + r2b3τ3) e

−cτ1 cos(cψ1)

once eq. (2.31) is used. The quantities r1 and r2 evaluate to

r1 = C1Z + nBb3 and r2 = 0 . (2.35)

The final leading-order potential for τ1 is therefore

VO(V−3−p) =
β

V3
cτ1e

−cτ1 cos (cψ1) , (2.36)

with β an O(1) constant which does not depend on τ1. Unfortunately, the global minimum

of this potential is at c〈ψ1〉 = π and c〈τ1〉 = 1, which lies outside the large-modulus regime

where we trust our effective field theory treatment. In particular, in the case of interest

c = 2π since the fibre divisor is wrapped by an Euclidean D3-brane instanton, leading to

too small a value for 〈τ1〉 = 1/(2π) < 1.

A better approach: we next show that the potential can have solutions within a

trustable regime provided we include the sub-leading corrections to the expression (2.31)

in powers of 1/(a3τ3) and 1/(b3τ3), that had earlier been dropped. It turns out that even

these would not save the day if we had assumed a single-exponential superpotential, and

it is for this reason that we instead started with a racetrack superpotential, as appropriate

to the condensation of two gauge group factors. The racetrack form helps by allowing the

sub-leading corrections to compete with the potential, eq. (2.36). Let us see why.

The sub-leading corrections to the expression (2.31) in a 1/(a3τ3) and 1/(b3τ3) expan-

sion are given by:

e−b3τ3 =
3W0

√
τ3

4ZV fcorr (2.37)

where

fcorr ≡ 1 − 3ǫ

1 +m
(

1
b3

− B3

Z

) , (2.38)

with

ǫ ≡ 1

4b3τ3
≪ 1 for b3τ3 ≫ 1. (2.39)

We notice that in the single exponential case (m = 0), (2.38) reduces to:

fcorr = 1 − 3ǫ, (2.40)

implying that for b3τ3 ≫ 1, the corrections are always subleading.

Substituting now the new corrected result (2.38) in (2.34), we find the corrected po-

tential

VO(V−3−p) =
3W 2

0
√
τ3

ZV3
fcorr (r1cτ1 + r3b3τ3) e

−cτ1 cos(cψ1), (2.41)

where this time

r3 ≡
[

r1
b3

(b3 +m) −mB(C1 + n)

]

(1 − fcorr) , (2.42)
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does not vanish (though it would if ǫ = 0, since this implies fcorr = 1).

The potential (2.41) is of the form:

VO(V−3−p) =
β

V3
(cτ1 − p b3τ3) e

−cτ1 cos (cψ1) , (2.43)

where β is an unimportant O(1) constant while p is given by:

p ≡ −r3
r1

=

[

mB(C1 + n)

r1
− (b3 +m)

b3

]

(1 − fcorr) . (2.44)

The potential (2.43) admits a global minimum at c〈ψ1〉 = π and c〈τ1〉 = p b3〈τ3〉 + 1 ≃
p b3〈τ3〉, regardless of the value of β (which determines only the depth of the vacuum).

In the case of only a single exponential (m = 0), p becomes negative with an absolute

value smaller than unity:

|p| = 3ǫ =
3

4b3τ3
≪ 1 ⇒ c〈τ1〉 = −3

4
< 0, (2.45)

and so we end up in a regime where the minimum for τ1 is out of the Kähler cone. However

in the racetrack case it is possible to render p positive and large enough to trust the effective

field theory. Consider the following illustrative, benchmark, values (with a3 = 2π/Na and

b3 = 2π/Nb):

W0 = B = Nb = 10, A = 0.02, Na = 11, C1 = 1, n = −0.4506, c = 2π, ξ = 0.7, gs = 0.01.

These numbers yield

〈τ3〉 ≃
(√

2 ξ
)2/3

gs
≃ 1

gs
= 100, p = 0.97 ≃ 1 ⇒ 〈τ1〉 ≃

〈τ3〉
10

= 10, (2.46)

with Z = 2.83 > 0 and fcorr = 0.99. Notice that the value l = 〈τ1〉 ls ≃ 10 ls gives a good

large-modulus approximation since corrections are controlled by3 α′/l2 = 1/
(

4π2〈τ1〉1/2
)

≃
1/12π2. Moreover, we stress the need for moderate fine tuning in the choice of the param-

eter n in order to obtain p large enough to trust the effective field theory description.

The overall volume in this case evaluates to the extreme case of TeV-scale strings

V ≃ 5.2 × 1028 ⇒ Ms =
Mp√
4πV

≃ 3TeV. (2.47)

Some comment is required as to why we choose gs as small as 1/100. This is driven

by the interplay of the two conditions:

1. a3 should be close enough to b3 to allow p to be sufficiently large;

2. V should be large enough, V ∼ 1030, to obtain TeV-scale strings.

3If a D7 brane had been wrapped on this cycle there is also a 4D understanding of why the 4π’s break

our way like this. Since any gauge coupling for such a D7 satisfies τ1 = 4π/g2, gauge loops are controlled

by (g/4π)2 = 1/(4πτ1) and are small even if g2 = 4π/τ1 is order unity.
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Given that the volume goes like V ∼ eb3/gs , if gs = 0.1 then b3 has to be b3 = 2π. However

with such a large b3, a3 can not be very close to b3 (at most we can choose a3 = π). On

the contrary for gs = 0.01 then b3 can be b3 = 2π/10, and so a3 = 2π/11 can now be very

close to b3. In order to allow larger values of gs, one should drop the phenomenological

requirement of getting TeV-scale strings, or keep it but then allowing more fine-tuning in

the choice of the other parameters.

To summarise: the above construction shows how poly-instanton corrections open up

the possibility of achieving both a very large volume (to allow Ms ∼ 1 TeV), and a very

anisotropic shape of the compactification manifold (to allow a huge hierarchy among the

sizes of the different dimensions)

d ≃ 〈τ3〉1/4ls & l ≃ 〈τ1〉1/4ls ∼ 10−17 mm ≪ L ≃ 〈t1〉1/2ls =
√

〈V〉/〈τ1〉 ls ∼ 0.01 mm .

Closed string loops: we conclude this section by pointing out that we do not expect any

τ1-dependent open-string loop correction to K due to the absence of D7-branes wrapping

the K3 or T 4 divisor, so that no open strings are localised on τ1. However there is no

way to avoid by construction loops of closed Kaluza-Klein strings which might introduce

a dependence on the fibre divisor and be dangerous for our scenario if they dominate over

the tiny poly-instanton effects.

We shall now argue that this might not be the case since the contribution of the

closed-string loops to the vacuum energy can be estimated to scale as

δV(gs) ∼ Λ2 STr(M2) ∼ (M6D
KK)2m2

3/2 ∼ τ1
V4
, (2.48)

where we used the 1-loop Coleman-Weinberg potential [50] with a cut-off given by the

6D Kaluza-Klein scale M6D
KK = Ms/t

1/2
1 ≃ MP

√
τ1/V and m3/2 ∼ MP /V. Given that the

poly-instanton effects also scale as 1/V4, the contribution (2.48) does not destabilise our

scenario.

3 Mass scales and low-energy spectrum

This section identifies the mass scales of relevance to phenomenological applications, for

both the large- and small-hierarchy examples. Because we explicitly stabilise the moduli

we can be explicit about the spectrum of light states that are potentially relevant to low-

energy physics, and how their properties are correlated with those of the higher-energy

particles relevant to physics at the LHC.

The spectrum of bulk fields in these models shares the generic features of the LARGE

volume scenario, with a rich variety of states predicted with masses and couplings that scale

as different powers of the large volume, V. To these must be added more model-dependent

predictions, including in particular a specification of precisely where observable Standard

Model particles are situated.

We first very briefly remind the reader about the generic features, before turning to

the more model-dependent assumptions about how the Standard Model fits in.
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3.1 Bulk mass scales

Since factors of 2π can make a difference, we first summarise the basic scales occurring in

our small- and large-hierarchy scenarios. Recall the Einstein term in the 10D Type IIB

supergravity action in string frame is

S
(s)
10D ⊃ 1

(2π)7α′4

∫

d10x

√

−g(s)
10 e

−2φR(s)
10 , (3.1)

and so the action in Einstein frame is obtained via the Weyl rescaling g
(s)
MN = eφ/2g

(E)
MN . In

terms of ls = 2π
√
α′ = 1/Ms the 10D Planck scale therefore satisfies M8

10D = 4π/l8s , and

so

M10D = (4π)1/8 Ms ≃ 1.4Ms. (3.2)

Dimensionally reducing from 10D to 6D then yields4 the 6D Planck scaleM4
6D = (4π/l8s) Vfib,

where the volume of the fibre is Vfib =
∫

d4y

√

g
(E)
4 := l4 = τ1l

4
s , and so

M6D = (4πτ1)
1/4Ms = M2

10D l. (3.3)

Notice that because M10D l ≃Ms l = τ
1/4
1 > 1, we have M6D > M10D. The further dimen-

sional reduction from 6D to 4D then yields M2
p = (4π/l8s)V6, where V6 =

∫

d6x

√

g
(E)
6 :=

V l6s , and so we find

Mp =
√

4πVMs. (3.4)

KK scales. The extra-dimensional geometries of interest come with a variety of KK

scales. The basic transition from 4D to a higher-dimensional description occurs at the

smallest KK scale, which we’ve seen is set by the volume of the largest cycle,

M6D
KK =

Ms

t
1/2
1

=
1

L
. (3.5)

Above this scale the effective description is 6-dimensional for a range of energies up to

M10D
KK =

Ms

τ
1/4
1

=
1

l
, (3.6)

above which the full 10 dimensions become visible. When L ≃ l the transition is directly

from 4D to 10D and the pattern of KK masses is broadly similar to what is expected if all

six internal dimensions were roughly of the same size.

However there is an important difference between these examples and the simplest

ADD-style models of large extra dimensions. This is due to the existence of small stabilised

4-cycles in the geometry, with sizes like τ3 = d4/l4s ≃ 1/gs ∼ 10, and so for which

M c
KK :=

1

d
≃ Ms

τ
1/4
3

. (3.7)

4For simplicity we assume here that the geometry is not strongly warped.
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Ms M6D M10D M c
KK M10D

KK M6D
KK

small hierarchy 1TeV 2000 TeV 2TeV 0.5 TeV 50 MeV 0.3 MeV

large hierarchy 3TeV 10 TeV 4TeV 1 TeV 1TeV 0.01 eV

Table 1. Relevant mass scales for small- and large-hierarchy examples using the numerical values

for modulus sizes given in §2.

Although counter-intuitive for those brought up using tori and spheres, the existence of

such a variety of geometrical scales is generic for the more complicated geometries that

naturally arise in flux compactifications.5

Using the illustrative values given above for V, τ1 and τ3 in the large- and small-

hierarchy cases, we find the numerical values listed in table 1

Generic moduli. Some of the would-be moduli of the lowest-order theory are fixed by

D-terms which generate O(Ms) masses, but others are systematically light compared with

generic KK masses (and so can be described within the effective 4D theory). Many of

these — such as complex structure moduli, U , and the dilaton S — obtain masses from

background fluxes, which from the 4D perspective generate a tree level F -term potential.

These states generically couple with 4D Planck strength, and their potential scales like

VF ≃M4
s , so the resulting masses are generically of order M2

s /Mp ≃Mp/V.

This is numerically of order ≃ 10−3 eV for Ms ∼ 1TeV, for both the large- and small-

hierarchy examples. For large hierarchies the mass of these moduli is similar to the lightest

KK states, M6D
KK , but they are parametrically light relative to all KK scales for the more

conventional small-hierarchy case. Remarkably, a combination of low gravity scale and

volume-suppressed interactions ensures these small masses are stable against radiative cor-

rections [54–56]. The flux-induced contributions to the gravitino mass are similarly small,

m3/2 ≃Mp/V ≃ 10−3 eV (more about this below).

Masses for the Kähler moduli are generically just as small, and can be even lighter

in some instances, because of the no-scale structure which keeps them massless to leading

order in α′ and gs. A detailed determination of their size requires diagonalising their kinetic

and mass terms, and depends somewhat on the precise scenario considered (as is described

below in detail). Before doing so we must first become more specific about precisely where

the Standard Model degrees of freedom are located.

3.2 Locating the Standard Model

Particle phenomenology requires the identification of where Standard Model states arise

within the model. For the remainder of this paper we suppose them to be localised on a

brane, which we supposed to be an appropriate stack of magnetised D7s and D3s since

these are known to be promising starting points for model building [9, 10, 53]. If so, the

5The observation that higher-dimensional compactifications can be very rigid, and so have KK scales

much larger than their volumes would indicate, has been occasionally used by model-builders [51, 52].
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coupling of these fields to other light states depends crucially on where they are located in

the extra dimensions and on which cycles the D7s wrap.

There are several considerations that can be used to guide the choice of the cycle

wrapped by the SM D7 branes:

• it cannot be too large, or else the resulting gauge couplings, g2/4π = 1/τ , become

too small;

• it cannot be too large or else the KK excitations of SM states would have been

observed;

• its intersections with other cycles in the geometry must not destroy the dynamics

that stabilises the moduli describing these other cycles.

We now argue that none of the cycles discussed so far for the fibred Calabi-Yau man-

ifolds considered above are suitable to be wrapped by the SM branes in this way. Because

the gauge coupling for fields on the brane is given by 4π/g2 = τSM , the SM branes must

wrap one of the relatively small cycles of the geometry to prevent having exponentially

small gauge couplings. Hence τSM cannot be τ2 in either of the fibred examples examined

above. In the small-hierarchy case, it also cannot be τ1 for the same reason.

The fibre modulus τ1 can also be eliminated for the large-hierarchy scenario, but for

a different reason. If the SM wraps τ1 then string loop corrections to K depending on τ1
would be generated, and these would dominate over the tiny poly-instanton corrections,

making this case degenerate with the former one.

The only candidate 4-cycle left is the blow-up mode τ3. However even this cycle cannot

be τSM . For the small-hierarchy case this is because τ3 is already wrapped by an ED3.

Also wrapping the SM brane around this cycle would then produce chiral intersections

between the ED3 and the SM brane, which would induce a pre-factor for the instanton

correction to W that is proportional to powers of the SM chiral fields. But unbroken gauge

symmetries require these fields to have vanishing VEVs, thereby removing any possible

non-perturbative contribution to the superpotential [57]. That is,

Wnp ∼ (ΠiΦi) e
−2πT3 = 0 with 〈Φi〉 = 0. (3.8)

In the large-hierarchy case, on the other hand, non-perturbative corrections depend

on τ3, since this cycle supports the branes containing the two condensing gauge sectors.

The above incompatibility between chiral intersections and non-perturbative effects implies

that τ3 also cannot support the SM brane in this case.

All roads lead to Rome: another 4-cycle is needed — call it τ4 — on which to wrap

the SM branes, D7SM . We now describe the two natural choices for the size of this cycle:

making it large or small compared to the string scale. We find below that these differ in

their implications for low-energy phenomenology.

The geometric regime. The conceptually simplest choice places the SM on intersect-

ing D7-branes wrapping an internal 4-cycle whose volume, τ4 = τSM , is stabilised at a
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value that is ‘geometric’, in the sense of being larger (but not too much larger) than the

string scale [58, 59].

If τ4 is a blow-up mode that intersects τ3, it can be stabilised in the geometric regime

using either D-terms [57, 60], or via string loop corrections to the Kähler potential [8].

World-volume fluxes on D7SM and on another stack of D7-branes, D7int, wrapped around

a combination of τ3 and τ4, can then be appropriately chosen to ensure there are no chiral

intersections between D7SM and the ED3 (or the stack of D7-branes) that yields the non-

perturbative superpotential. Instead they arise only between D7SM and D7int [57]. In

this way non-perturbative corrections to W depending on τ3 do not get destroyed. In the

absence of SM singlets that can get a non-vanishing VEV, D-terms can fix τ4; and in their

presence τ4 could instead be fixed by gs corrections.

The upshot is that the volume, eq. (2.4), changes to:

V = α
(√

τ1τ2 − γτ
3/2
3

)

→ V = α
[√

τ1τ2 − γ (c3τ3 + c4τ4)
3/2
]

. (3.9)

The geometric scenario is strongly constrained by the existence of KK excitations of

SM states in the 4 extra dimensions along the cycle wrapped by the SM brane. The

absence of any evidence for such states [61, 62] implies these KK modes cannot be lighter

than 1TeV. The good news here is that such large KK masses are possible, despite the

large overall size of the various dimensions, since small stabilised cycles can exist with

M c
KK ∼ Ms/τ

1/4
4 ≫ M10D

KK , M6D
KK . In the present instance, because τ4 also sets the size of

the gauge couplings, τ4 = 4πg−2
SM = α−1

SM , we have

MSM
KK =

Ms

τ
1/4
4

= α
1/4
SMMs . (3.10)

Because αSM is known this puts a direct lower bound on Ms in this scenario.

Fractional branes at singularities. The alternative to the geometric regime is to imag-

ine the SM is built from fractional D-branes located at the singularity obtained by shrinking

the blow-up mode supporting the SM brane: τSM → 0 [63, 64]. In this scenario τSM cannot

be any of the Kähler moduli discussed in previous sections, since these are all larger than

ls by assumption. Again we need a fourth cycle, τ4, to support the SM branes. If this cycle

is rigid and does not intersect any of the other cycles, then τ4 can be forced to shrink at

the singularity, τ4 → 0, using D-terms [63, 64].

This picture has two attractive features. First, because the SM branes do not wrap

any cycles there are no KK modes for SM states and the natural scale for all excitations

is the string scale. Second, the SM gauge coupling is unrelated to a cycle volume and is

instead directly controlled by the string coupling, gs.

In this case the volume, eq. (2.4), changes to:

V = α
(√

τ1τ2 − γτ
3/2
3

)

→ V = α
(√

τ1τ2 − γ3τ
3/2
3 − γ4τ

3/2
4

)

. (3.11)

The dependence of the Kähler potential on the Kähler moduli is understood in terms of

an expansion in small τ4 (see below).
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3.3 Supersymmetry breaking

Any realistic description of the Standard Model on a brane with a TeV string scale must

include adequately large supersymmetry breaking. Since phenomenology requires no su-

perpartners to ordinary particles almost up to the (TeV) string scale [22–24], the SM sector

must not even approximately be supersymmetric.

As mentioned in the introduction, since the SM must in any case be localised on a brane

when Ms ≃ 1 TeV, the most natural supersymmetry-breaking mechanism is to have the

SM brane itself not be supersymmetric. For a non-supersymmetric brane, supersymmetry

is only realised nonlinearly: a supersymmetry transformation acting on a particle state

returns the same particle plus a brane-localised goldstino. This goldstino is then eaten by

the gravitino once the brane is coupled to gravity in the bulk. The upshot is that there are

no single-particle super-partners (like the selectron, say) for any of the known particles,

and the low-energy limit is not described by the MSSM, even though supersymmetry

is broken at the weak scale [14–19]. See [9, 10] for explicit local constructions of non-

supersymmetric branes.

Notice that in these scenarios supersymmetry only plays an indirect rôle in the hierar-

chy problem. Instead, the hierarchy problem is solved by having a TeV gravity scale, but

with the modulus stabilisation mechanism providing the usually missing (but crucial) step

of explaining why the extra dimensions are so large.

Although supersymmetry is badly broken in the SM sector, the scale of supersymmetry

breaking this induces in the bulk turns out to be very small and similar in size to SUSY-

breaking flux effects: m3/2 ≃ M2
s /Mp ≃ Mp/4πV ∼ 10−3 eV. This small a breaking arises

naturally because the bulk generically couples to the supersymmetry breaking sector with

gravitational strength.

3.4 Modulus spectrum and couplings: leading order

We next estimate the mixing and masses of Kähler moduli, including the fourth Kähler

modulus, τ4, whose existence is required by the presence of the SM brane. In this section

we canonically normalise the leading order kinetic terms and diagonalise the resulting mass

matrix. (The next section discusses corrections to these leading results.) This amounts to

finding the eigenvectors and the eigenvalues of the mass-squared matrix
(

M2
)i

k
:= Kij̄Vj̄k.

Our goal is to track how these quantities scale with the small parameter V−1. We quote

the result for τ4 in both the geometric and singular regimes.

Geometric regime. The diagonalisation of moduli states and a determination of their

mass spectrum is worked out in some detail for the small-hierarchy geometries in [65, 71, 72].

The derivation for the large-hierarchy case is very similar, so we simply outline here the

main results for the case when τ4 is stabilised in the geometric regime.

The transformation that canonically normalises the kinetic terms for fluctuations about
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the potential minimum reads [71, 72]

δτ1 ≃
2
∑

i=1

ω1i δφi +
4
∑

j=3

ω1j

V1/2
δφj ≈

2
∑

i=1

ω1i δφi, (3.12)

δτ2 ≃
2
∑

i=1

ω2iV δφi +
4
∑

j=3

ω2jV1/2 δφj ≈
2
∑

i=1

ω2iV δφi, (3.13)

δτk ≃ ωk1
Vn δφ1 + ωk2 δφ2 +

4
∑

j=3

ωkjV1/2 δφj ≈
4
∑

j=3

ωkjV1/2 δφj for k = 3, 4, (3.14)

where n = 1
3 for small hierarchies; and n = p (with p ≃ 1 for our choice of parameters)

in the large-hierarchy case. The constants ωki are order-unity constants. The resulting

spectrum of modulus masses is

m1 ≃
√

gs
4π

Mp

V(3+n)/2
, m2 ≃

√

gs
4π

Mp

V3/2
, m3 ≃

√

gs
4π

Mp

V and m4 ≃
√

gs
4π

Mp

Vm/2 ,
(3.15)

where m = 1 if τ4 is fixed by D-terms, or m = 2 if the SM cycle is fixed using gs correc-

tions to K.

This is an interestingly complicated hierarchy of masses, that is exquisitely sensitive

to the size of the extra-dimensional volume. Many of its features have simple physical

interpretations. As shown in [71, 72], which inverts the exact form of (3.12), δφ2 turns out

to be the particular combination of δτ1 and δτ2 that corresponds to the overall volume,

whereas δφ1 is a direction orthogonal to this that is fixed only at sub-leading order —

either by string loops in the small-hierarchy case or by poly-instanton corrections for the

large hierarchy. It is because δφ1 first receives its mass at higher order that makes it

systematically lighter than δφ2, as can be seen from (3.15).

The volume-scaling of the canonical normalisation of the small blow-up modes (3.14)

can also be understood from a geometric point of view. Each canonically normalised field,

δφk, k = 3, 4, mostly overlaps a combination of the two intersecting blow-up modes with a

power of V1/2. The next mixing in a large volume expansion is with δφ2, which corresponds

to the volume mode. The O(1) mixing between the two blow-up modes is due to their non-

vanishing intersection, while the suppression with respect to the mixing with δφ2, reflects

the locality of the two blow-up modes within the Calabi-Yau volume. Finally the mixing

with the other modulus δφ1 is further suppressed by a power of V−n due to the fact that

the shape of the lagrangian in the direction of the (τ1 − τ2)-plane orthogonal to V is only

fixed at sub-leading order.

For later purposes what is important is that these are extremely small masses when Ms

is in the TeV range. In particular, m3 ≃ 10−3 eV, m2 ≃ 10−18 eV and m1 ≃ 10−32 eV when

the benchmark numbers (for n = p = 1) of previous sections are used. These correspond

to the macroscopic wavelengths: m−1
3 ≃ 100 µm; m−1

2 ≃ 1011 m — of order the Earth-Sun

distance; and m−1
1 ≃ 1025 m ∼ 300 Mpc — of order the current Hubble scale.
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δφ1 δφ2 δφ3 δφ4

ζ1, ζ2 1 1 V−1/2 V−1/2

ζ4 V−1/3 1 V1/2 V1/2

Table 2. Modulus couplings to brane gauge bosons in the small-hierarchy geometric regime.

δφ1 δφ2 δφ3 δφ4

ζ3, ζ4 V−p 1 V1/2 V1/2

Table 3. Modulus couplings to brane gauge bosons in the large-hierarchy geometric regime (using

p = 1 as for the benchmark parameters described in the text).

Because these leading contributions to masses are so light, the danger is that they are

dominated by nominally subdominant effects. We examine this in the next section, and

find that some get significant contributions from loops but (remarkably) others do not.

Couplings: before turning to loops we first examine the size of the couplings between

these moduli and states (like the SM) localised on the branes. As an estimate of these

couplings we work out the V-dependence of the interaction

LΣi =
ζi
Mp

δφF (i)
µν F

µν
(i) , (3.16)

between fluctuations in these moduli and gauge bosons living on the various cycles, τi,

i = 1, 2, 3, 4 [71, 72]. To this end recall that gauge bosons only live on τ1, τ2 and τ4 in the

small-hierarchy case, but only on τ3 and τ4 in the large-hierarchy example.

The V-dependence of the resulting couplings, ζi, are summarised in tables 2 and 3.

These reveal that δφ2 always couples gravitationally (i.e. ∼ 1/Mp) to all gauge sectors,

while the moduli δφ3 and δφ4 always couple to fields on the SM brane with weak-interaction

(i.e. higher-dimensional, as opposed to 4D, gravitational) strength. Most remarkably, the

other couplings between moduli and gauge sectors can be orders of magnitude weaker

than gravitational.

Branes at singularities. We next focus on the case where the SM cycle has zero size,

τ4 → 0, with the SM built using fractional D-branes located at the singularity. Canonical

normalisation and the mass spectrum are also computed in detail elsewhere in this case for

the small hierarchy so we simply state the main results, extending them also to the case of

large hierarchies.

The effective field theory at the singularity admits a Kähler potential that can be

expanded as [63, 64]:

K = −2 ln

(

V ′ +
s3/2ξ

2

)

+ λ
τ2
4

V ′ − ln (2s) , (3.17)

with V ′ = α
(√

τ1τ2 − γ3τ
3/2
3

)

. In (3.17) we leave the dependence on the real part of

the axio-dilaton s =Re(S) explicit, even though this modulus is flux-stabilised (in the
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δφ1 δφ2 δφ3 δφ4 δφs

ζ1, ζ2 1 1 V−1/2 0 1

ζ4 V−5/6 V−1/2 V−1 V1/2 1

Table 4. Modulus couplings to brane gauge bosons in the small-hierarchy singular regime.

perturbative regime, 〈s〉 = g−1
s > 1) at tree level. We do so because in this case the SM

gauge coupling is given by s plus a flux-dependent correction in τ4: 4πg−2 = s + h(F )τ4,

and so to work out the coupling of the moduli to the SM gauge bosons, we must derive

their mixing with both s and τ4.

The particular form of the Kähler potential (3.17) and 〈τ4〉 = 0 imply that at leading

order there is no mixing between τ4 and the other moduli, leading to the following canonical

normalisation around the minimum [71, 72]:

δτ1 ≃
2
∑

i=1

ω1i δφi +
ω13

V1/2
δφ3 +

ω1s

V1/2
δφs ≈

2
∑

i=1

ω1i δφi, (3.18)

δτ2 ≃
2
∑

i=1

ω2iV δφi + ω23V1/2 δφ3 + ω2sV1/2 δφs ≈
2
∑

i=1

ω2iV δφi, (3.19)

δτ3 ≃ ω31

Vn δφ1 + ω32 δφ2 + ω33V1/2 δφ3 +
ω3s

V1/2
δφs ≈ ω33V1/2 δφ3, (3.20)

δτ4 ≃ ω44V1/2 δφ4, (3.21)

δs ≃ ωs1

V1/2+n
δφ1 +

ωs2

V1/2
δφ2 +

ωs3
V δφ3 + ωss δφs ≈ ωssδφs, (3.22)

where n = 1
3 in the case of a small hierarchy, while n = p in the large-hierarchy case (with

p ≃ 1 using our numerical benchmark values). The spectrum of modulus masses in this

case is

m1 ∼
√

gs
4π

Mp

V(3+n)/2
, m2 ∼

√

gs
4π

Mp

V3/2
, m3 ∼ ms ∼

√

gs
4π

Mp

V and m4 ∼
√

gs
4π

Mp

V1/2
,

(3.23)

since both s and τ4 are fixed at order V−2 but K−1
ss̄ ∼ O(1) while K−1

44̄
∼ O(V).

Couplings: the volume scaling of the (ζi/Mp) δφF
(i)
µν F

µν
(i) couplings to brane gauge bosons,

with i = 1, 2, 3, 4 is summarised in tables 4 and 5 [71, 72], which again reveal a rich pattern

of couplings varying from weak-interaction strength (∼ V1/2/Mp), gravitational strength

(∼ 1/Mp) and much weaker than gravitational strength (∼ V−k/Mp with k > 0).

Even in this case the volume scaling of the modulus normalisation and couplings can

be understood from a geometrical point of view. Focusing for example on δφ3, we notice

that its coupling to F
(3)
µν F

µν
(3) is stronger than the coupling to F

(1,2)
µν Fµν(1,2) which, in turn,

is stronger than the coupling to the SM gauge bosons F
(4)
µν F

µν
(4) . This different behaviour

reflects the fact that τ3 resolves a point-like singularity which has a definite location within

the Calabi-Yau, together with the sequestering of the SM at the τ4-singularity.
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δφ1 δφ2 δφ3 δφ4 δφs

ζ3 V−p 1 V1/2 0 1

ζ4 V−1/2−p V−1/2 V−1 V1/2 1

Table 5. Modulus couplings to brane gauge bosons in the large-hierarchy singular regime (with

p = 1 for our choice of benchmark parameters).

3.5 Modulus spectrum and couplings: corrections

We now estimate the size of various correction to the above modulus masses, to study their

robustness against higher loops. As is true for generic large-volume models, the majority

of loop corrections that one might naively expect to dominate do not do so because they

are suppressed by the accumulated powers of 1/V appearing in the masses and couplings.

As argued in ref. [54–56], such suppressions are a general consequence of having the gravity

scale very small compared with the Planck scale.

However, there are two kinds of loop contributions that are particularly dangerous for

the models of interest here, and we now estimate their size. The two kinds of corrections

are: mixings amongst the moduli that are induced by loop contributions to gauge kinetic

terms, as described in ref. [73, 74]; and corrections due to loops of heavy particles on the

supersymmetry-breaking SM brane, as described in ref. [54–56].

Corrections to gauge kinetic terms. At the one-loop level it can happen that the

physical modulus is not as simply related to the holomorphic modulus as it is classically. In

particular, threshold corrections to the gauge kinetic terms can introduce large logarithms

into the definitions of the gauge couplings, of the form ln(M ′/M) where M ′ and M are

the masses of two kinds of massive states that have been integrated out. But because we

have seen that different states can have masses that depend on different powers of V, for

large-volume compactifications such logarithms need not be either small or holomorphic.

In particular, it can happen that the physical modulus, τ4, controlling the blow-up cycle

for a singularity becomes related to the holomorphic modulus, τ ′4, through the relation

τ4 = τ ′4 − κ lnV , (3.24)

where κ is an O(1) constant. This redefinition is also required in order to have an effective

supergravity description that is consistent with the general Kaplunovsky-Louis formula [75,

76] for the running of the gauge coupling [77, 78].

Notice in particular that the holomorphic modulus need not then vanish in the singular

limit where the volume of the blow-up cycle shrinks to zero; i.e. when 〈τ4〉 = 0. Hence

in this case the holomorphic SM modulus takes a nonzero VEV at the singularity, and

when V is large this VEV can be comparable to that of a generic blow-up mode within

the geometric regime. Although this is not a significant change for branes that are already

in the geometric regime, having 〈τ ′4〉 nonzero can (but need not) significantly change the

predictions for branes localised at singularities. Detailed studies [73, 74] show that this kind

of correction really does arise for combinations of D3s/D7s located at orbifold singularities
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δφ1 δφ2 δφ3 δφ4 δφs

ζ1,2 1 1 V−1/2 V−1/2 1

ζ4 V−1/3 1 V−1/2 V1/2 1

Table 6. Modulus couplings to brane gauge bosons for the small-hierarchy singular regime, includ-

ing the 1-loop modulus redefinition.

as well as the phenomenologically less interesting case of D3s at orientifold singularities,

but does not arise if there are only D3s situated at orbifold points.

To see why the redefinition can change predictions for masses and couplings, recall

that it is the holomorphic field that transforms in the standard way under 4D supersym-

metry and so appears in the standard 4D supergravity action. Since a non-holomorphic

redefinition like eq. (3.24) can change the form of the kinetic terms, it also changes the

transformations required to achieve canonical normalisation. In particular, the Kähler

potential (3.17) and the gauge coupling in this case get modified to

K = −2 ln

(

V ′ +
s3/2ξ

2

)

+
λ (τ ′4 − κ lnV ′)2

V ′ − ln (2s) , (3.25)

4πg−2 = s+ h(F )
(

τ ′4 − κ lnV ′) , with V ′ = α
(√

τ1τ2 − γ3τ
3/2
3

)

. (3.26)

The new Kähler potential (3.25) yields additional contributions to the kinetic terms

of the 4D fields, of the form

Lnew
kin = − κλ

〈V〉

[

∂µ(δτ1)

2〈τ1〉
+
∂µ(δτ2)

〈τ2〉

]

∂µ(δτ ′4) +
3ακλγ3

√

〈τ3〉
2〈V〉2 ∂µ(δτ3) ∂

µ(δτ ′4)

=
κλ

〈V〉2
[

−∂µ(δV) +
3

2
αγ3

√

〈τ3〉 ∂µ(δτ3)
]

∂µ(δτ ′4) (3.27)

which give rise to a non-vanishing mixing between τ ′4 and all the other moduli but the

dilaton. Notice that this mixing is absent if there is no 1-loop redefinition, i.e. κ = 0.

Therefore the canonical normalisation (3.21) changes from δτ4 ≃ ω44V1/2 δφ4 to

δτ ′4 ≃ ω41

Vn δφ1 + ω42 δφ2 +
ω43

V1/2
δφ3 + ω44V1/2 δφ4 , (3.28)

which adds a mixing with δφ1, δφ2 and δφ3 not present in eq. (3.21). Inspection of eq. (3.14)

shows these new mixings scale with V in the same way as for the geometric regime, but

with the difference that the mixing between δφ4 and δφ3 is suppressed (because the two

blow-up cycles do not intersect and so do not experience the O(1) mixing).

Chasing the effects of this change in canonical normalisation (3.28) and the gauge

kinetic function (3.26) through to the modulus/gauge-field couplings yields the couplings

to gauge bosons shown in tables 6 and 7.

As expected, the 1-loop redefinition makes the modulus couplings scale the same way

with V as do those of the geometric regime, as summarised in tables 2 and 3 (with the

difference that now τ3 does not intersect τ4). Here V is given by expressions (3.9) and (3.11)
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δφ1 δφ2 δφ3 δφ4 δφs

ζ3 V−p 1 V1/2 V−1/2 1

ζ4 V−p 1 V−1/2 V1/2 1

Table 7. Modulus couplings to brane gauge bosons for the large-hierarchy singular regime including

1-loop modulus redefinition (with p = 1 for the benchmark parameters used in the text).

in the geometric and singular cases, respectively. Thus the coupling of δφ3 to the SM gauge

bosons living on τ4 is more V-suppressed than the coupling of δφ4 to the same visible degrees

of freedom due to the geometric separation of the two point-like singularities resolved by

these two different blow-up modes.

Corrections to the scalar potential. Loop corrections to low-energy scalar potentials

are notoriously sensitive to the details of the theory’s UV sector, and so must be examined

carefully for any calculation that predicts small scalar masses. For instance, the one-loop

corrections to the low-energy scalar potential in four dimensions has the Coleman-Weinberg

form [50]

δV 1−loop
CW (ϕ) ∝ STr

{

M4(ϕ) ln

[

M2(ϕ)

µ2

]

+ c1M
2 + c0

}

, (3.29)

where STr denotes the usual spin- and statistics-weighted sum over heavy degrees of free-

dom circulating in the loop. Here M(ϕ) denotes the renormalised6 mass matrix of the

particles circulating in the loop — regarded as a function of the low-energy scalar fields,

ϕ; the constants c1 and c0 and the floating renormalisation point, µ, depend on the precise

renormalisation scheme used.

The bad news is that eq. (3.29) involves positive powers of M2 and so can depend

sensitively on the UV spectrum. The good news is that eq. (3.29) holds only in 4 dimensions,

and so in higher-dimensional theories the largest value of M that can appear is the KK scale

above which the UV theory becomes higher dimensional. Of course the low-energy potential

might still be sensitive to the contributions of higher-energy modes, but this sensitivity

must be computed in the full higher dimensional theory (where additional symmetries, like

higher-dimensional general covariance can play a rôle). In particular, contributions from

states at the string scale are described by the usual local, higher-derivative terms that

capture the well-known α′ corrections. Since for LARGE-volume models these are already

included in what we are calling the ‘leading-order’ corrections, they do not destabilise any

of the conclusions found above.

It is a remarkable feature of theories with low gravity scales — including the large-

V models of interest here — that loop corrections to the low-energy scalar potential are

smaller than would have been indicated by a 4D expression like eq. (3.29). As is argued in

ref. [54–56], this happens both because the KK scale that must be used in eq. (3.29) is so

6For reasons discussed elsewhere ([54–56]; for a discussion of the pitfalls of using cutoffs within a non-

gravitational context, see [79, 80]) we formulate UV sensitivity in terms of large physical masses rather

than cutoffs.
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low, and because higher-dimensional symmetries constrain the kinds of contributions that

can arise from states much more massive than the KK scale. Of course, loop estimates

are much harder for the very anisotropic geometries considered here, having many scales

between Ms and M6D
KK . We have sought higher-loop, extra-dimensional contributions that

can use this complication, and we now describe the largest we have found.

The sector we find to be the most dangerous in loops consists of those open-string

states localised on the SM brane itself. These are dangerous because of precisely the same

features that were required earlier in this section for successful phenomenology: (i) they

must badly break supersymmetry; and (ii) they must reside on a very small cycle. In

particular we know there is a non-supersymmetric 4D sector localised on the SM brane

up to masses of order α
1/4
SMMs ≃ 0.3Ms. Since these are effectively 4D up to these scales,

eq. (3.29) applies and predicts contributions of generic size

δV 1−loop
CW (ϕ) ≃M4

s +m2
3/2M

2
s + · · · ≃ M4

p

V2
+
M4
p

V3
+ · · · . (3.30)

It is useful to compare this estimate with the size of the leading stabilisation contri-

butions to the low-energy potential described in §2. There we found the leading terms are

Vlead ∼ M4
p /V3 but depend only on the moduli V and τ3. The masses of the rest of the

Kähler moduli that do not appear in Vlead then come from subdominant terms, of order

δV ∼ M4
p /Vk, with k > 3. Because these are subleading in 1/V with respect to the terms

in eq. (3.30), loop effects on non-supersymmetric localised branes cannot be negligible, and

besides yielding potentially large corrections to the modulus masses might also destabilise

the vacuum itself. This may yet prove to be a feature rather than a bug, since it may be

the source of the unknown physics responsible for lifting the present-day vacuum energy

to near zero. Concrete attempts to use brane back-reaction to address the cosmological

constant problem can be found in [11–13, 28–31, 81, 82].

The lesson to be drawn from this observation is that brane loops and brane back-

reaction can become important for understanding the full dynamics of the vacuum when

non-supersymmetric branes appear in large-volume models. Although it remains an un-

solved problem as to how this dynamics works in string theory, the effects of on-brane

loops [83–86] and back-reaction [26, 27, 87–90] have been studied for non-supersymmetric,

codimension-2 branes in simpler 6D extra-dimensional models. These simpler systems re-

semble their 10D cousins in that the back-reaction is also competitive with bulk physics

in stabilising the extra dimensions, yet doesn’t destroy the presence of large-volume solu-

tions. Intriguingly they can also allow on-brane curvatures to be parametrically smaller

than naive estimates based on the brane tensions would suggest [26, 27].

For the present purposes we assume the SM back-reaction not to destroy the broad

properties of the flux compactification described to this point, and ask how these radiative

corrections change the masses and couplings of the moduli. These are generically of order

δm ≃ ζ M2
s

Mp
≃ ζ Mp

V , (3.31)

where the modulus-brane coupling ζ is as given in the earlier tables, and as before we

take Ms to be the UV mass scale on a non-supersymmetric brane. Notice that when ζ is
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m1/Mp m2/Mp m3/Mp m4/Mp

leading V−(3+n)/2 V−3/2 V−1 V−m/2

loop V−sn V−1 V−1/2 V−1/2

Table 8. Leading and loop-corrected masses for Kähler moduli in the geometric regime. n = 1

3

for the small-hierarchy case, and n = 1 for the benchmark large-hierarchy example. sn = 1

2
(3 + n)

when n ≥ 1 and sn = 1 + n if n ≤ 1. The parameter m = 1 when D-terms stabilise the SM brane

and m = 2 if this is done using gs corrections.

m1/Mp m2/Mp m3/Mp m4/Mp

leading V−(3+n)/2 V−3/2 V−1 V−1/2

loop (pot only) V−(3+n)/2 V−3/2 V−1 V−1/2

loop (pot and mix) V−sn V−1 V−1 V−1/2

Table 9. Leading and loop-corrected masses for Kähler moduli in the singular regime. The first

loop estimate excludes changes due to loop-generated mixing among moduli (as is appropriate for

some models), while the second includes this mixing (as appropriate for other models - see text for

a description of which is which). n = 1

3
for the small-hierarchy case, and n = 1 for the benchmark

large-hierarchy example. sn = 1

2
(3 + n) when n ≥ 1 and sn = 1 + n if n ≤ 1.

suppressed by inverse powers of V this correction can be smaller than the generic modulus

mass, δm ≪Mp/V.

Tables 8 and 9 then show how this loop estimate changes the predictions for modulus

masses for both the geometric and singular regimes, with n = 1
3 appropriate for small

hierarchies and n = 1 is the value used in the large-hierarchy benchmark given in §2.
(Only the n = 1

3 geometrical case is considered in ref. [54–56], and agrees with the values

shown here.) These tables, when combined with the earlier tables of coupling strengths,

paint an interestingly complex picture. In it the state δφ4 is revealed to be pulled up in mass

to join the highest-mass KK states, as appropriate for the modulus of a localised cycle. Its

couplings to fields on this cycle are of order ∼ 1/M10D appropriate to higher-dimensional

gravity, making them weak-interaction strength when Ms is at TeV scales.

A similar thing happens in the geometric regime to δφ3, which is associated with the

other localised cycle. In the singular regime this state instead remains in the same mass

range, Mp/V, that is generic for moduli. Remarkably, this modulus couples to SM brane

fields with much weaker than gravitational strength.

The state δφ2 — which dominantly corresponds to the volume modulus — is also

generically lifted by loops from its initially smaller value, but in this case only as high as

Mp/V. When all of the dimensions have the same size, their common KK scale is Mp/V2/3

and so these moduli remain well within the low-energy 4D description. But in the large-

hierarchy scenario the generic moduli are close in mass to the lightest of the 6D KK states

and can become lost into mixings with more generic KK modes, potentially losing their

4D interpretation.
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The fibre modulus, δφ1, is more unusual for several reasons. First, it is the simplest

state that is orthogonal to the volume modulus, for which the potential arises at sub-

dominant order in 1/V. This is why the leading term in its mass is so small.7 In LARGE-

volume vacua such a modulus does not arise unless there are at least three Kähler moduli,

and so they are not present in the very simple compactifications most often explored.

But it is also unusual because although loops lift it from its leading, extremely small,

mass, its small coupling to the SM brane ensures they do not lift it very far [54–56].

Although its couplings to other states — like bulk KK modes for instance — need not

be equally suppressed, loops of these appear to remain suppressed by the same general

covariance and supersymmetry arguments that generally apply for states deep in the extra-

dimensional regime.

3.6 Bulk Kaluza-Klein modes

For later convenience we close this section by noting a few properties of generic, non-

modulus, bulk KK modes, such as for the metric hMN , Kalb-Ramond fields, BMN , the

axio-dilaton and so on. For TeV-scale strings there is always a great abundance of these

modes, with 10D kinematics extending down to energies of order M10D
KK , and 6D kinematics

continuing down to M6D
KK . A small number of states — including the 4D graviton and

moduli — survive below this scale into the 4D theory.

Although we’ve seen that the moduli can couple with weaker than gravitational strength,

this is typically to do with having a small overlap with a localised cycle and should not be

true for generic higher KK modes that are free to move throughout the bulk (and are not

localised in warped throats, say [91–93]). KK modes with short wavelengths that are free

to move about the geometry should couple with gravitational strength, 1/Mp, just as they

do in simpler geometries like spheres or tori.

An important difference compared with tori and spheres is the absence of continuous

isometries on compact Calabi-Yau spaces. Unless broken by other fields isometries show

up as unbroken symmetries in the low-energy 4D theory, under which some KK states are

charged. This makes the lightest charged KK mode stable, with important phenomenolog-

ical consequences. Since Calabi-Yau spaces have none, their KK modes are not protected

in this way. It is nevertheless possible to have isometries for submanifolds of compact

Calabi-Yau spaces, and if so states localised near these submanifolds can be charged un-

der approximate symmetries that make them very long-lived. This makes it important to

identify such submanifolds for candidate Calabi-Yau vacua, and see whether KK modes

actually do localise near them.

4 Phenomenological issues

With mass scales and spectra in hand, it is possible to address — at least in a preliminary

way — some of the phenomenological features to be expected of these models. Of particular

interest is the way knowledge of the UV completion provides more information about the

7It is this small leading mass that motivates using this state as the inflaton in ‘Fibre Inflation’ models [45–

47] and as the curvaton in models with non-standard primordial fluctuations and large non-gaussianities [94].
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hierarchy small large

regime geo sing (w mix) sing geo sing (w mix) sing

Ms 1TeV 1TeV 1TeV 3 TeV 3 TeV 3TeV

M6D 2000 TeV 2000 TeV 2000 TeV 10 TeV 10 TeV 10 TeV

M10D 2TeV 2TeV 2TeV 4 TeV 4 TeV 4TeV

M c
KK 0.5 TeV 0.5 TeV 0.5 TeV 1 TeV 1 TeV 1TeV

M10D
KK 50 MeV 50 MeV 50 MeV 1 TeV 1 TeV 1TeV

M6D
KK 0.3 MeV 0.3 MeV 0.3 MeV 0.01 eV 0.01 eV 0.01 eV

m3/2 10−3 eV 10−3 eV 10−3 eV 10−3 eV 10−3 eV 10−3 eV

mmoduli 0.01 eV 0.01 eV 0.01 eV 0.01 eV 0.01 eV 0.01 eV

m2 0.01 eV 0.01 eV 10−17 eV 0.01 eV 0.01 eV 10−17 eV

m1 10−12 eV 10−12 eV 10−22 eV 10−32 eV 10−32 eV 10−32 eV

Table 10. Numerical (loop-corrected) spectrum for the geometric and singular regimes. This uses

n = 1

3
for small-hierarchies and n = 1 for the benchmark large-hierarchy. For the masses of the

two light moduli, m1 and m2, the powers of n numerically become Mp/V ∼ 0.01 eV, Mp/V4/3 ∼
10−12 eV, Mp/V3/2 ∼ 10−17 eV, Mp/V5/3 ∼ 10−22 eV and Mp/V2 ∼ 10−32 eV.

low-energy limit than is generic to a garden-variety phenomenological model with a low

gravity scale. What we find must contain the generic predictions of supersymmetric large

extra dimensions [14], but extends these by providing the more detailed predictions for

the low-energy spectrum and couplings that the UV completion makes possible. Both the

low-energy bulk supersymmetry and the new states make the predictions differ significantly

from those of minimal ‘ADD’ models [3, 4, 97–100], for which gravity is the only field that

propagates in the bulk.

Scales. We first summarise the predicted mass scales for the main alternatives. For

convenience these are tabulated in table 10 for both the geometric and singular regimes,

including loop corrections to the various masses (with and without modulus mixing in the

singular case). The numerical values use the benchmarks defined in §2.
The main difference revealed by the table is that between large and small hierarchies,

since this dramatically changes the scale at which the lightest KK state arises. This dif-

ference is similar to the usual difference between phenomenological models having two or

more large extra dimensions.

The table also shows that for both large- and small-hierarchy geometries the spectrum

is similar when the SM is wrapped on a geometric and singular cycle, provided that there

is loop mixing among the moduli (as is the case for most systems of practical interest, such

as those involving D7s at orbifold points). It is only when this mixing is absent that the

spectrum differs for a singular cycle, and the most important difference is a suppression of

the mass of the volume modulus, m2.
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m 10−2 eV 10−12 eV 10−17 eV 10−22 eV 10−32 eV

m−1 10 µm 100 km 0.1 AU 0.1 ly 300 Mpc

Table 11. Ranges relevant to force tests for various choices of modulus masses.

Finally, the table shows that both the volume- and the fibre-modulus masses, m2 and

m1, can be remarkably light even once loops are included. (Table 11 gives the ranges

in more conventional units over which particles this light can interact coherently, and so

over which can mediate new forces.) Such small masses are stable against loops because

of the very weak couplings between these particles and the supersymmetry-breaking SM

sector, and we argue below that these weak couplings also suppress their contributions to

macroscopic tests of gravity (to which they can contribute because of their small masses).

We discuss the implications of, and uncertainty in, these masses and couplings in more

detail below.

4.1 SLED-related constraints

As might be expected for a theory with so many exotic light states, models of this type are

subject to a variety of stringent constraints. These come in two broad classes: those that

are generic to having supersymmetric large dimensions, and those that arise because of the

presence of specific types of new light fields. We briefly discuss each in turn, starting here

with the most robust and generic consequences: those following just from the existence of

supersymmetric large dimensions.

Missing energy and KK exchange. The most robust signature to occur in systems

with large dimensions is energy loss into the extra dimensions, since this assumes nothing

about the branching rate for KK modes to produce visible SM particles. Signals coming

from the virtual exchange of extra-dimensional particles are also possible, but are more

model-dependent to interpret since they assume the absence of exotic decay processes [14]

and since exchange also competes with unknown direct brane-localised contact interactions

that need not involve the extra dimensions at all [95, 96]. Because large dimensions were

initially proposed [1, 2] as alternatives to supersymmetry, the study of this loss rate is

usually aimed specifically at the radiation of extra-dimensional gravitons [97–100], since

this has the advantage that the graviton couplings are relatively model-independent.

Emission cross sections can be sizable because of the enormous phase space of states

that can be emitted; even though each KK graviton mode couples with 4D gravitational

strength, σn ∝ 1/M2
p , the sum over all modes converts this small coupling to higher-

dimensional gravitational strength. For d extra dimensions σ ∼ ∑

n σn ∝ (VdE
d)/M2

p ∝
Ed/M2+d

D , where M2+d
D = (8πGD)−1 is the reduced Planck scale in D = 4 + d dimensions.

For MD ∼ 1TeV this leads to weak-interaction production rates.

Two consequences follow from the strong growth with energy of these cross sections,

σ ∝ 1

M2
D

(

E

MD

)d

. (4.1)
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First, such strong growth would eventually violate the unitarity bound once E ∼ MD,

indicating that a fuller string calculation is required at higher energies, where the emission

and exchange of string states is no longer negligible [101–108]. Second, it shows that it is

the highest energy KK states that dominate in the cross section, and since these also have

the shortest wavelength their properties (and the cross section) is largely insensitive to

the details of the higher-dimensional geometry [109]. Consequently cross sections at high

energies — such as for processes at colliders — that are computed using simple toroidal

models for the extra dimensions are also likely to capture those for more complicated

Calabi-Yau extra-dimensional geometries.

The absence of this observed energy-loss signal in an experiment at a given energy E

can be quoted as an upper bound on the extra-dimensional gravity scale, MD. Because d

controls the power of the small ratio E/MD in the cross section, the bound on MD obtained

from a fixed E and upper limit on σ(E) weakens with growing d. Searches for graviton

emission at the Tevatron [110] place limits of order MD
>∼ 1 TeV for d = 2 (so D = 6) and

MD
>∼ 0.8 TeV for d = 6 (and so D = 10).

Since supersymmetry introduces many more states into the bulk than just the graviton,

there are potentially many more channels for energy loss when the large extra dimensions

are supersymmetric [14–19, 111, 112]. This means that the relation assumed between

σ(E) and MD differs in the supersymmetric case from vanilla ADD models where only the

graviton appears. To the extent that all of these new states also couple to the SM brane

with a strength similar to the bulk graviton, on dimensional grounds their production cross

section scales the same way with E, leading to an estimate σSLED ∼ NσLED where N is an

estimate of the number of additional states present in the bulk. But because σ ∝M−4
6D when

d = 2, this means that it is really M6D/N
1/4 that is constrained rather than MD when

upper limits on σ(E) are compared with calculations assuming only graviton emission.

Luckily, this represents a factor of ∼ 3 even if N ∼ 100 [14].

An important assumption in this estimate is that the new field content also couples

to branes with gravitational strength. But this need not be true, particularly given that

the SM brane must badly break supersymmetry. Better yet, in 6D there are some kinds of

bulk fields for which dimensionless couplings are possible, such as a coupling
∫

d4xH†H φ

where H is the usual Higgs boson and φ is an extra-dimensional scalar. In this case the

emission cross section need not grow as a power of E/M6D , and so can extend the reach

of extra-dimensional searches [111, 112].

More recent limits are also available from the LHC, however to date these rely on

exchange processes for which the produced extra-dimensional states are assumed to decay

into visible particles (and so are slightly more model-dependent). These give slightly larger

bounds, MD
>∼ 4 TeV [113–115].

Supersymmetric phenomenology. The models examined here share another robust

consequence of supersymmetric extra dimensions: the absence of MSSM superpartners for

each of the known SM particles, despite m3/2 being so low. This occurs because having

Ms as low as TeV scales implies the SM must reside on a non-supersymmetric brane. As a

result supersymmetry is nonlinearly realised: applying a supersymmetry transformation to
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a particle like the electron gives the electron plus a goldstino and not a selectron [14]. This

means that the spectrum on the SM brane does not include the MSSM, implying the — so

far very successful [22–24] — prediction that LHC searches for MSSM states should find

none. SLED models are the remarkable counter-example to the assertion that weak-scale

supersymmetry requires the MSSM.

Astrophysical bounds. Astrophysical systems provide strong constraints on large ex-

tra dimensions due to the new energy-loss channels such dimensions would provide for

stellar systems and supernovae [3, 4, 116–120]. Perhaps surprisingly, these bounds are

even stronger than collider limits despite the much lower energies to which they have ac-

cess: ambient temperatures set the typical energies as E ∼ T ∼ 10 MeV. Again the limits

obtained come in two forms: model-independent constraints on energy loss; and more

model-dependent bounds that assume specific branching ratios of KK states into ordinary

particles.

In particular, standard calculations of supernova energy loss agree well with SN1987A

observations, and if this is interpreted as an upper limit on energy-loss into gravitons it

implies M6D >∼ 9 TeV for 2 extra dimensions [119, 120]. Because of the comparatively low

energies involved, this bound collapses to M10D > 10 GeV if all six extra dimensions are

similar in size. Although this latter bound is easily evaded for the small-hierarchy models

considered here, they provide a stronger test for the large-hierarchy case since they robustly

require M6D >∼ 10 TeV.

Much more stringent bounds are also possible if the extra-dimensional KK modes have

significant branching fractions into observable particles, like photons or gluons [116–120].

In this case the absence of a γ-ray signal in the EGRET satellite implies M6D >∼ 40 TeV for

the large-hierarchy case (dropping to M10D >∼ 40 GeV when all six dimensions are similar

in size). Considerations of neutron-star cooling give even stronger limits: M6D >∼ 700 TeV

(or M10D >∼ 200 GeV). Because they are more model-dependent, these much stronger limits

only apply under certain assumptions. In particular they are evaded if the KK modes have

much more efficient branching fractions into invisible degrees of freedom [3, 4] (such as

decays onto another ‘trash’ brane) are faster than those into SM particles.

This makes it important to know precisely how KK modes decay in any particular

candidate string vacuum. In the models of interest here the rate for generic KK modes

decay onto states localised on both of the small cycles, τ3 and τSM = τ4, are likely to be very

similar, provided similar numbers of states are present on each into which the decay can

take place. However, cascade decays into lower-energy states, either in the bulk or on branes

wrapped on the large cycles (if present), are also possible and would be equally invisible.

(Although energy-momentum conservation forbids straight bulk decays for simple toroidal

dimensions, they can occur for the more complicated extra-dimensional geometries arising

here because of their absence of isometries.) The rate for KK decays to a 4D configuration

like the SM brane is of order ΓSM ∼ M3
KK/M

2
p , while decays to higher-dimensional states

effectively couple with higher-dimensional Planck strength, according to the number of

dimensions into which the daughter states can move [3, 4]. Decays into effective 6D states

therefore have a rate Γ6D ∼ M5
KK/M

4
6D while those that can decay into 10D states do so
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with rate Γ10D ∼M9
KK/M

8
10D. If all three are possible, they occur with the relative rates

ΓSM : Γ6D : Γ10D ∼ M3
KK

L2l4
:
M5

KK

l4
: M9

KK , (4.2)

showing that (all other things being equal) decays into 6D and 10D states dominate those

to the SM brane by a factor of L2/l2 if MKK ∼ 1/l. For states with MKK ∼ 10 MeV using

1/L ∼ 0.01 eV and 1/l ∼ 1 TeV gives ΓSM/Γ6D ∼ 10−18, while decays to 10D states are

not energetically allowed. This shows that decays to 6D states can indeed dominate for

the states most relevant to astrophysics.

Ensuring that astrophysical energy-loss bounds are not transgressed is an important

constraint on more precise models of the physics on the various branes. The complicated

Calabi-Yau geometries arising here are more promising than the tori considered in simple

models [3, 4] because the absence of isometries allows KK modes to decay freely, without

their scattering from branes.

Tests of Newton’s inverse square law. Precise tests of general relativity [121–123]

provide another class of robust constraints on the models described here. These tests are

sensitive only to states having masses in the sub-eV range or lower, but in some circum-

stances can be sensitive to interactions that are weaker than gravitational in strength.

Tests of Newton’s inverse square law [124, 125] over micron distances provide among

the most robust tests. These are sensitive to two kinds of states: the large number of KK

modes with sub-eV masses in large-hierarchy vacua [3, 4]; and the various moduli that

generically lie in this mass range for both large- and small-hierarchy models. Each of these

can mediate a long-range force between test bodies over a range of order microns or larger.

The force mediated by exchange of moduli would deviate from an inverse square law

and instead would follow the standard exponential Yukawa form for which experimenters

search. Those moduli coupling with 4D gravitational strength, ∝ 1/Mp, become con-

strained once the range of this force, ∼ 1/m, becomes larger than ∼ 45 µm [124, 125].

The signature expected from an exchange of a tower of KK modes in the large-hierarchy

case has a slightly different signature, however, since the coherent sum over the KK tower

never produces an exponential form; instead producing a crossover between the 1/r2 law

at long distances to a 1/r4 law at short distances [126]. The details of this crossover can

depend on the precise shape of the two large dimensions, since they depend dominantly on

the properties of the lightest KK modes.

Cosmology. Cosmology of the very early Universe also furnishes strong constraints on

any model with very large dimensions [3, 4, 14–19]. This is because bulk KK modes of the

large dimensions can ruin the success of Hot Big Bang cosmology if they (or their decay

products) are too abundant at the epoch of Big Bang Nucleosynthesis (BBN) or thereafter.

In particular, there is a ‘normalcy’ temperature [3, 4], T⋆, above which the thermal history

of the Universe on the SM brane is not simply described by the extrapolation of the

standard Hot Big Bang to higher temperatures.

One way cosmology could become nonstandard is if the SM brane were to cool more

quickly through evaporation into the bulk rather than expansion of the on-brane geometry.
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In the large-hierarchy case with M6D ∼ 10 TeV this occurs once T >∼ 100 MeV (and for

the small-hierarchy case with M10D ∼ 1 TeV it instead happens once T >∼ 10 GeV) [3,

4]. Since both of these are larger than BBN temperatures, TBBN ∼ 1MeV, they need

not be a problem. Rather, they are a complication when extrapolating to the earlier

Universe (as is of interest, say, when finding a dark-matter candidate). In particular, not

having a radiation-dominated thermal bath makes a WIMP description of dark matter

less attractive.

Relics of bulk KK states are cosmologically dangerous, however. This is because the

stabilisation of the extra dimensions imposes a comparatively large energy cost on changing

the geometry’s shape, making the KK modes lose energy with universal expansion like

massive particles rather than radiation: ρ ∝ a−3. If too abundant, bulk states produced

by thermal evaporation from a SM brane would carry too much energy and can over-close

the Universe if T is just a few MeV in the large-hierarchy case (with M6D ∼ 10 TeV), or

T >∼ 300 MeV for small hierarchies (if M10D ∼ 1TeV). Furthermore, if KK modes have an

appreciable branching fraction into photons, even a decay rate as small as T 3/M2
p produces

enough decays to be noticeable above backgrounds for temperatures in MeV ranges [3, 4].

These constraints largely require a pre-BBN history that suppresses the abundance of

KK modes relative to those produced by thermal evaporation from the brane. It helps if

they can decay invisibly once produced, as is required in any case from the neutron star

bounds considered earlier.

A possible scenario might start with an inflationary epoch8 during which six dimensions

grow, though with two of these ultimately stabilising at large dimensions while the visible

four continue their growth into the present. Such an inflationary regime would iron out

any wrinkles in the two large extra dimensions as well as from the four dimensions we

see, effectively removing the dangerous KK modes from the initial conditions of the later

Universe. It would also dilute otherwise the influence of the problematic moduli generically

responsible for the Cosmological Modulus Problem [66–68]. A viable cosmology could

follow if this is followed by a reheat on the SM brane to temperatures not too far above

nucleosynthesis temperatures, with the explanation for dark matter (and possibly baryons)

potentially arising as relics from the reheating process. (See [70] for a more detailed model

in this spirit.)

Constructing such a scenario in detail would be worthwhile, but goes beyond the scope

of the present paper. It is nevertheless encouraging that the basic ingredients likely to be

required are present in these LARGE-volume constructions [71, 72].

4.2 Less generic tests

We next turn to potential signals that rely on the existence of particle states associated

with the stringy UV completion, that are not generic consequences of supersymmetric large

extra dimensions.

8If the overall volume were to evolve during inflation, see [69] for example, it could also happen that

Ms/Mp also evolves, allowing the string scale relevant to inflation to be much larger than the TeV scales

appearing in the present Universe.
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Moduli and precision tests of gravity. The spectrum of moduli in these constructions

generically involve several kinds of unusually light scalars. More remarkably, the masses

of these scalars appear to be stable against radiative corrections. As described earlier, the

mass of generic moduli lie in the 10−2 eV range that can be of interest to tests of Newton’s

inverse-square law over micron distances. But the mass of the volume and fibre moduli, δφ2

and δφ1, are much smaller, making them potentially relevant to tests of general relativity

in the solar system and with binary pulsars.

Despite these small masses we believe these scalars are unlikely to be observed in

present-day experiments. This is because the low masses for these states come hand-in-

hand with the weakness of their coupling to the SM brane. (Recall for these purposes that

it is the SM brane that breaks supersymmetry the most, and corrections to the scalar mass

from SM particles go like ζMp/V, where couplings to SM fields are of strength ζ/Mp.) Since

the discussion of §3 shows that ζ <∼ 1/V1/2 ∼ 10−15 this means that the masses are only

small enough to be of interest for terrestrial or solar system tests when the couplings are

small enough to make the effects of scalar exchange too small to be measured. Conversely,

should we have missed a graph that increases the couplings to ζ ∼ O(1), the same kind of

graph is likely also to lift the mass up to that of a generic modulus, m ∼ O(Mp/V).

Cosmology. As we have seen, pre-BBN cosmology must be very different than a simple

extrapolation of Hot Big Bang cosmology to higher temperatures. A proper identification

of a dark-matter candidate requires a formulation of what this new cosmology is. The good

news is that there are a number of candidate new particles that are not too heavy and do

not couple appreciably to SM fields, and so could plausibly be a dark-matter candidate.

What is more surprising is that the lightest moduli can be light enough to be cosmolog-

ically active into the later Universe, and right into the present day for the large-hierarchy

models with m1 ∼ Mp/V2 ∼ 10−32 eV. This suggests that even the much-later Universe

could be described by a scalar-tensor model, with its weaker-than-gravitational couplings

explaining both the stability of its small mass against quantum corrections and the absence

of evidence for new forces. The presence of such a light modulus resembles experience with

six-dimensional models, for which the small scalar mass is related to the small size of the

vacuum energy, leading to a late-time quintessence cosmology [127].9 It would be instruc-

tive to explore whether similar cosmologies are possible for the full string constructions,

though a proper calculation requires a quantitative understanding of brane back-reaction.

Accelerator physics. The detailed non-minimal spectrum predicted by the stringy UV

completion also has implications for the signature of these kinds of models in collider

experiments. In particular, there is more to be discovered than the minimal set that comes

for any theory of supersymmetric large extra dimensions.

Among these other states are string states and those states associated with the KK

scale of the small cycles and of the small base of the fibration, all of which lie at TeV scales.

It is noteworthy that the 6D Planck mass, M6D, is always much larger than either Ms or

M10D
KK in these models. This is crucial for tests at colliders because it means that there

9For other interesting cosmological implications of ultra-light scalars see [128, 129].
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can be observable signals, despite having the 6D Planck scale above 10 TeV. By contrast,

for the pure graviton emission of simple ADD models, there are no observable signals if

M6D > 10 TeV.

A proper exploration of the precise signals to be seen requires a more detailed con-

struction of the physics on the SM brane; a topic to be explored in further work.

5 Conclusions

Recent progress on modulus stabilisation has allowed explicit string theory realisations of

the three main proposals to address the hierarchy problem: low-energy supersymmetry [6,

7], warped extra dimensions [5] and large extra dimensions [7].

For large dimensions there is real added value to finding such a string embedding,

complete with a modulus stabilising mechanism. This is because large extra dimensions in

themselves do not solve the hierarchy problem [1, 2]; rather they move the problem to the

problem of stabilising the extra dimensions at exponentially large values. By dynamically

stabilising the extra dimensions, the string theory realisation completes the unfinished goal

of solving the hierarchy problem.

The present work extends these constructions to include the most extreme and inter-

esting case where two dimensions are on sub-micron scales [1, 2]. In this paper we find

examples of Type IIB string vacua that stabilise the closed string moduli in a strongly

anisotropic way, such that two dimensions are hierarchically larger than the others four.

We identify two scenarios that achieve this, both using K3 or T 4-fibered Calabi-Yau com-

pactifications.

In the first of these stabilisation is based on loop corrections to the Kähler potential,

and the two large dimensions are only a few orders of magnitude larger than the rest. In the

second, it is the presence of poly-instanton contributions to the superpotential that allow

an exponential hierarchy to develop between the dimensions, that can be large enough to

produce TeV string theory with micron-sized extra dimensions.

The need to choose fibred Calabi-Yau three-folds in order to realise our scenario relies

on two properties of these compactification manifolds:

1. K3 or T 4 fibrations are needed in order to have a hierarchically large two-cycle mod-

ulus t1 keeping its dual four-cycle modulus τ1 small. For this to happen the volume

V, which is a cubic function of the two-cycle moduli ti, has to depend on t1 as

V = t1f(tj) + g(tj) for tj 6= t1, since only in this case τ1 = ∂V/∂t1 will be indepen-

dent of t1 and can be kept small while having large t1. This volume dependence on

the 2-cycle moduli ti defines a K3 or T 4-fibred Calabi-Yau [33, 34].

2. In our realisation of the large hierarchy scenario we needed a four-cycle which is not

rigid in order not to have single-instanton contributions to the superpotential W but

only poly-instantons. This condition singles out K3 or T 4 surfaces since they admit

Wilson lines and deformation moduli. An explicit realisation of poly-instantons in

this set-up is left for future work.
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We provide a first look at the phenomenology of these models. Our preliminary ex-

ploration of their properties reveal that both types of scenarios predict a rich variety of

observable phenomena on the edge of what can now be probed. Both types lead broadly

to the phenomenology [14] of supersymmetric large extra dimensions [11–13], whose broad

outlines consist of a very supersymmetric bulk (m3/2 ∼ 10−3 eV), weakly coupled to SM

particles localised on a supersymmetry-breaking brane. Intriguingly, a robust prediction

is the absence of MSSM superpartners, despite the presence of low-energy supersymmetry

in the bulk. Many of these features are generic to other TeV strings (which have been

recently studied in detail in [130, 131]). But the modulus stabilising physics makes the

phenomenology of our scenario much richer, because it provides a variety of other states

that are not generic to SLED models, but which have interesting low-energy consequences.

Among the differences from standard vanilla ADD scenario are:

• The bulk is supersymmetric with supersymmetry broken at sub-eV scales. Supersym-

metry is broken at the TeV scale at the standard model brane, in particular there are

no supersymmetric partners of the standard model particles. This is also a property of

the SLED scenario [11–13] but not in the original large extra dimension scenario [1, 2].

The next three properties are not present in the SLED scenario though.

• There are a variety of Kaluza-Klein and string states, all close to the TeV scale,

whose masses are below the 6D Planck mass (whose value is normally taken as the

benchmark for detection of extra-dimensional models at colliders).

• There is a rich spectrum of very light moduli with unusually small masses and cou-

plings weaker than gravitational strength, such that they are consistent with present

observations but with potential cosmological and astrophysical implications.

Because all of the different approaches to the hierarchy problem are realised in Type

IIB string theory, it is tempting to seek cases where the different mechanisms address

different hierarchies.

An important complication in the strongly anisotropic case is the presence of brane

back-reaction, which for codimension-2 branes compete with standard mechanisms at a

level that seriously complicates understanding the low-energy vacuum dynamics. If the

new dynamics should provide a mechanism for understanding the small present-day vacuum

energy, the presence of this new dynamics may be a blessing in disguise. Perhaps it is not a

coincidence that back-reaction is strongest in the very anisotropic regime, which is also the

case for which M6D
KK is of order the observed dark energy scale. These special features of two

large dimensions underlies the supersymmetric large extra dimensions scenario (SLED) [11–

13], which generally requires not only exponentially large extra dimensions but precisely

two exponentially large dimensions, as we find here.

We finally point out that we estimated the closed-string loop corrections to the scalar

potential to scale as V−4 ∼ 10−120M4
p ∼ Λ4

cc, reproducing the contribution of loops of

bulk states that in the standard 6D SLED scenarios give rise to the observed value of the

cosmological constant. However our stringy embedding differs from the standard 6D SLED

scenarios since the vacuum energy is dominated by α′ and non-perturbative effects which
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give rise to an AdS minimum at order V−3. If the lifting mechanism cancels this order V−3

contribution to the scalar potential, the other corrections are smaller than V−4. This is

clearly not enough to address the dark energy problem but together with the cancelation

mechanisms of [11–13] it may give rise to a stringy scenario for dark energy.
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[37] M.T. Grisaru, W. Siegel and M. Roček, Improved methods for supergraphs,

Nucl. Phys. B 159 (1979) 429 [INSPIRE].

[38] E. Witten, New issues in manifolds of SU(3) holonomy, Nucl. Phys. B 268 (1986) 79

[INSPIRE].

[39] M. Dine and N. Seiberg, Nonrenormalization theorems in superstring theory,

Phys. Rev. Lett. 57 (1986) 2625 [INSPIRE].

[40] N. Seiberg, Naturalness versus supersymmetric nonrenormalization theorems,

Phys. Lett. B 318 (1993) 469 [hep-ph/9309335] [INSPIRE].

[41] C. Burgess, C. Escoda and F. Quevedo, Nonrenormalization of flux superpotentials in string

theory, JHEP 06 (2006) 044 [hep-th/0510213] [INSPIRE].

[42] K. Becker, M. Becker, M. Haack and J. Louis, Supersymmetry breaking and α′ corrections

to flux induced potentials, JHEP 06 (2002) 060 [hep-th/0204254] [INSPIRE].

[43] M. Berg, M. Haack and E. Pajer, Jumping through loops: on soft terms from large volume

compactifications, JHEP 09 (2007) 031 [arXiv:0704.0737] [INSPIRE].

[44] M. Cicoli, J.P. Conlon and F. Quevedo, Systematics of string loop corrections in type IIB

Calabi-Yau flux compactifications, JHEP 01 (2008) 052 [arXiv:0708.1873] [INSPIRE].

[45] M. Cicoli, C. Burgess and F. Quevedo, Fibre inflation: observable gravity waves from IIB

string compactifications, JCAP 03 (2009) 013 [arXiv:0808.0691] [INSPIRE].

[46] M. Cicoli, String loop moduli stabilisation and cosmology in IIB flux compactifications,

Fortsch. Phys. 58 (2010) 115 [arXiv:0907.0665] [INSPIRE].

– 42 –

http://dx.doi.org/10.1007/JHEP04(2011)078
http://arxiv.org/abs/1101.0152
http://inspirehep.net/search?p=find+EPRINT+arXiv:1101.0152
http://dx.doi.org/10.1007/JHEP02(2011)094
http://arxiv.org/abs/1012.2638
http://inspirehep.net/search?p=find+EPRINT+arXiv:1012.2638
http://dx.doi.org/10.1016/j.aop.2004.04.012
http://arxiv.org/abs/hep-th/0402200
http://inspirehep.net/search?p=find+EPRINT+hep-th/0402200
http://arxiv.org/abs/hep-ph/0406214
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0406214
http://dx.doi.org/10.1063/1.1848343
http://arxiv.org/abs/hep-th/0411140
http://inspirehep.net/search?p=find+EPRINT+hep-th/0411140
http://arxiv.org/abs/hep-th/0510123
http://inspirehep.net/search?p=find+EPRINT+hep-th/0510123
http://arxiv.org/abs/1107.0383
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.0383
http://dx.doi.org/10.1142/S0129167X93000248
http://dx.doi.org/10.1088/1126-6708/2006/05/023
http://arxiv.org/abs/hep-th/0412270
http://inspirehep.net/search?p=find+EPRINT+hep-th/0412270
http://dx.doi.org/10.1007/JHEP06(2011)087
http://arxiv.org/abs/1103.5469
http://inspirehep.net/search?p=find+EPRINT+arXiv:1103.5469
http://dx.doi.org/10.1016/j.nuclphysb.2004.08.005
http://arxiv.org/abs/hep-th/0403067
http://inspirehep.net/search?p=find+EPRINT+hep-th/0403067
http://dx.doi.org/10.1016/0550-3213(79)90344-4
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B159,429
http://dx.doi.org/10.1016/0550-3213(86)90202-6
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B268,79
http://dx.doi.org/10.1103/PhysRevLett.57.2625
http://inspirehep.net/search?p=find+J+Phys.Rev.Lett.,57,2625
http://dx.doi.org/10.1016/0370-2693(93)91541-T
http://arxiv.org/abs/hep-ph/9309335
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9309335
http://dx.doi.org/10.1088/1126-6708/2006/06/044
http://arxiv.org/abs/hep-th/0510213
http://inspirehep.net/search?p=find+EPRINT+hep-th/0510213
http://dx.doi.org/10.1088/1126-6708/2002/06/060
http://arxiv.org/abs/hep-th/0204254
http://inspirehep.net/search?p=find+EPRINT+hep-th/0204254
http://dx.doi.org/10.1088/1126-6708/2007/09/031
http://arxiv.org/abs/0704.0737
http://inspirehep.net/search?p=find+EPRINT+arXiv:0704.0737
http://dx.doi.org/10.1088/1126-6708/2008/01/052
http://arxiv.org/abs/0708.1873
http://inspirehep.net/search?p=find+EPRINT+arXiv:0708.1873
http://dx.doi.org/10.1088/1475-7516/2009/03/013
http://arxiv.org/abs/0808.0691
http://inspirehep.net/search?p=find+EPRINT+arXiv:0808.0691
http://dx.doi.org/10.1002/prop.200900096
http://arxiv.org/abs/0907.0665
http://inspirehep.net/search?p=find+EPRINT+arXiv:0907.0665


J
H
E
P
1
0
(
2
0
1
1
)
1
1
9

[47] M. Cicoli and F. Quevedo, String moduli inflation: an overview,

Class. Quant. Grav. 28 (2011) 204001 [arXiv:1108.2659] [INSPIRE].
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