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1 Introduction

The ambitwistor string was introduced by Mason and Skinner in [1] as a string theory

whose tree amplitudes reproduce the Cachazo-He-Yuan description [2] of massless ampli-

tudes in ten dimensions. Like the d = 4 twistor string of [3], the d = 10 ambitwistor

string only contains left-moving variables on the worldsheet and has no massive states.

Although [1] describes bosonic, heterotic and Type II versions of the ambitwistor string,

only the GSO(+) sector of the Type II version correctly describes the massless GSO(+)

sector of the usual Type II superstring, i.e. d = 10 N = 2 supergravity.

Nevertheless, it is interesting to identify the spectrum of massless states described by

the other ambitwistor strings, i.e. the bosonic, heterotic and GSO(−) sector of the Type II

ambitwistor string. In this paper, these spectra will be identified using the standard BRST

method where equations of motion and gauge invariances are derived from the cohomology

at ghost-number 2 of the BRST operator. The quadratic kinetic term for the string field

theory action will be explicitly constructed for these ambitwistor strings and expressed in

a gauge-invariant manner.

Except for the GSO(+) sector of the Type II ambitwistor string whose kinetic term is

the usual d = 10 N = 2 supergravity action, the kinetic terms for the other ambitwistor

strings contain higher-derivative terms which imply a non-unitary spectrum. This is similar

to the d = 4 twistor string whose spectrum includes conformal supergravity. In hindsight,

this should have been expected since the three-point amplitudes in ambitwistor strings
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(except for the Type II string) were computed to have higher powers of momenta than

the usual massless theories. And since there are no dimensionful constants like α′ in

ambitwistor strings, the higher momentum dependence in the cubic term of the string field

theory action implies higher momentum dependence in the quadratic kinetic term.

Nevertheless, this non-unitary massless spectrum does not seem to have been previ-

ously analyzed for a few reasons. Firstly, vertex operators in the ambitwistor string were

assumed in [1] to contain only Pm dependence and to be independent of ∂Xm, where Xm

and Pm are the spacetime variable and its conjugate momentum. Secondly, the definition

of BPZ conjugate used in a previous construction of the ambitwistor string field theory

action [4] was chosen in an unconventional manner in order to give a kinetic term with

the standard unitary massless spectrum. And thirdly, a singular gauge-fixing procedure

for the ambitwistor string was adopted in [5, 6] which introduces non-trivial α′ depen-

dence into the field theory action so that the higher-derivative cubic term does not imply

a higher-derivative kinetic term.

One possible application of our result is to test the consistency of one-loop amplitude

prescriptions for ambitwistor string computations. Although the GSO(+) sector of the

Type II ambitwistor superstring is the only ambitwistor string with a conventional spec-

trum, one can in principle try to compute one-loop amplitudes in any of the ambitwistor

strings. It would be interesting to verify if the partition functions computed using the

one-loop prescriptions in [7, 8] reproduce the non-unitary states in the massless spectrum.

Note that even for the Type II ambitwistor string, the one-loop prescription using the RNS

method involves first computing the partition function for different spin structures and

then summing these partition functions. Before performing the sum over spin structures,

one should be able to observe in the partition function the contribution of the states in

the GSO(−) sector. It would be very interesting to verify if the non-unitary spectrum

of the GSO(−) sector described in this paper is correctly reproduced by the one-loop

computations.

A second possible application of our result is to try to generalize the quadratic ki-

netic term computed here to the full string field theory action including interactions. As

noted in [9], the d = 10 heterotic ambitwistor string has some similarities with the d = 4

twistor string which describes N = 4 d = 4 conformal supergravity coupled to super-Yang-

Mills [10]. It would be interesting to study if the d = 10 heterotic ambitwistor string field

theory action describes a d = 10 generalization of N = 4 d = 4 conformal supergravity.

In section 2 of this paper, we use the standard BRST method to compute the kinetic

term in the bosonic ambitwistor string field theory action. And in sections 3 and 4, we

repeat this procedure for the Neveu-Schwarz states in the Type II and heterotic ambitwistor

string field theory actions.

2 Bosonic ambitwistor string

We first describe the bosonic ambitwistor string. Subsection 2.1 defines the model and our

notation, subsection 2.2 computes the spectrum via BRST cohomology, and subsection 2.3

constructs the kinetic string field theory action. The same steps will be later described in

sections 3 and 4 for the Type II and heterotic ambitwistor strings.
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2.1 Review and notation

The gauge-fixed worldsheet action [1] is

SB =
1

2π

∫

d 2z (Pm∂̄X
m + b∂̄c+ b̃∂̄c̃), (2.1)

where all matter and ghost fields are left-moving bosons and fermions on the worldsheet.

(Pm, X
m) are the matter fields of conformal weight (1, 0), (b, c) are the Faddeev-Popov

ghosts for reparametrization symmetry of conformal weight (2,−1), and (b̃, c̃) are the

Faddeev-Popov ghosts for the null geodesic constraint, P 2 = 0, and carry conformal weight

(2,−1). The action (2.1) is invariant under the BRST transformation generated by

Q =

∮

dz

2πi

(

cTM + cTb̃c̃ + bc∂c+
1

2
c̃P 2

)

(2.2)

where

TM = −Pm∂X
m, Tb̃c̃ = c̃∂b̃− 2b̃∂c̃, (2.3)

and one uses the free field OPE’s,

Pm(z)Xn(w) ∼ −
δnm

(z − w)
, b(z)c(w) ∼

1

(z − w)
, b̃(z)c̃(w) ∼

1

(z − w)
. (2.4)

Notice that the XX OPE is regular, so eik·X does not acquire an anomalous dimension.

Furthermore, there are no dimensionful parameters such as α′ in the theory. So the physical

spectrum defined by the BRST cohomology is not expected to contain massive states. This

will be confirmed below, however, we will show that the spectrum contains both unitary

and non-unitary massless states.

Physical closed string states should have ghost number 2 where the ghost number is

defined as

Ngh = −

∮

dz

2πi
(bc+ b̃c̃), (2.5)

such that b, b̃ have ghost number −1 and c, c̃ have ghost number 1. In order to compute

the ghost number 2 cohomology, Mason and Skinner [1] considered only homogeneous

polynomials in P so that their expression for the spin-2 unintegrated vertex operator is

V (z) = c(z)c̃(z)Pm(z)Pn(z)g
mneikX(z). (2.6)

BRST closedness implies

kmgmn = 0 and k2 = 0, (2.7)

while BRST exactness gives

δgmn = k(mλn) and kmλm = 0. (2.8)

Equations (2.7) and (2.8) are the usual conditions satisfied by the graviton field in

linearized gravity where gmn and λ are the target space metric and infinitesimal diffeo-

morphism generator. So it is tempting to say that the vertex (2.6) describes the graviton.
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However, this would present a paradox since the three-point scattering amplitude computed

using (2.6) is [1]

〈V (z1)V (z2)V (z3)〉 = δ26
(

∑

k
)

(grs2 k
1
rk

1
s)(g

mn
3 k2mk

2
n)(g

pq
1 k

3
pk

3
q ). (2.9)

Since (2.9) behaves like k6 instead of the k2 behavior of general relativity and since there

are no dimensionful parameters in the theory, one would expect the kinetic term for gmn

should also behave like k6. This suggests that the equation of motion for gmn should be

something like �
3gmn = 0 instead of the �gmn = 0 equation implied by (2.7).

In this paper, we aim to clarify this issue. Mason and Skinner constructed the vertex

operator using only polynomials in P . However, from the string theory perspective, nothing

prevents us from considering vertex operators involving ∂X. By considering the most

general vertex operator with ghost number two, we will find that the equation of motion

for gmn behaves like k6.

2.2 Bosonic spectrum

The most general vertex operator with ghost number two that is annihilated by b0 and

L0 is1

V (z) = cc̃Φ2 + c∂c̃Ψ1 + ∂2cc̃S(4) + c∂2c̃S(5) + ∂2ccS(2) + ∂c̃c̃Γ1

+ ∂2c̃c̃S(3) + b̃c̃c∂c̃S(6) + bc∂c̃c̃S(1) ,
(2.11)

where

Φ2 = PmPnG(1)
mn + ∂Xm∂XnG(2)

mn + ∂XmPnHmn + ∂2XmA(1)
m + ∂PmA(2)

m ,

Ψ1 = PmA(5)
m + ∂XmA(6)

m , Γ1 = PmA(3)
m + ∂XmA(4)

m ,

Hmn = G(3)
mn +Bmn.

(2.12)

The symmetric fields with two indices are represented by G
(1)
mn, G

(2)
mn, G

(3)
mn; the antisymmet-

ric 2-form by Bmn = B[mn]; the 1-forms by A
(1)
m , . . . , A

(6)
m ; and the scalars by S(1), . . . , S(6).

These fields have arbitrary dependence on X, e.g., G
(1)
mn = G

(1)
mn(X).

The target space fields have gauge symmetry δV = QΛ, where Λ has ghost number

one and also satisfies b0Λ = L0Λ = 0. The most general gauge parameter Λ takes the form

Λ =cPmΛ(1)
m + c∂XmΛ(2)

m + c̃PmΛ(4)
m + c̃∂XmΛ(5)

m + ∂c̃Λ(6) + bcc̃Λ(7) + cb̃c̃Λ(3). (2.13)

The vertex (2.11) can be simplified by removing fields that are pure gauge. Whenever

the gauge transformation of a field does not involve spacetime derivatives of the gauge

parameter, we can eliminate this field without producing gauge-fixing ghosts. By a suitable

choice of gauge parameters, it is easy to show that the fields S(2), S(4), S(6), A
(1)
m , A

(2)
m can

be eliminated from the vertex operator (2.11).

1Since L̄0 is identically zero, the usual constraints that L0− L̄0 and b0− b̄0 annihilate the off-shell closed

string vertex operator are replaced by the constraints that L0 and b0 annihilate the off-shell vertex operator.

By L0 and b0 we mean the zero-modes of the b-ghost and stress-energy tensor:

b0 =

∮
dz

2πi
z b(z) and L0 =

∮
dz

2πi
z T (z). (2.10)
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Cohomology. Now that we have the most general vertex operator we can calculate

the cohomology. The BRST-closedness condition QV = 0 gives the following auxiliary

equations

A(5)
n = −∂mG(1)

mn, A(6)
m = −

1

2
∂nHmn, A(3)

m = A(6)
m , A(4)

m = −∂mS
(1),

G(3)
mn =

1

2
�G(1)

mn −
1

2
∂(n∂

rG
(1)
m)r, 2G(2)

mn = +
1

2
�G(3)

mn + ηmnS
(1),

S(5) = +
1

2
∂n∂mG(1)

mn, S(3) = −
1

2
∂mA(3)

m +
3

2
S(1),

(2.14)

together with the equations of motion

�Gm(1)
m + 4∂n∂mG(1)

mn = 0,

�Bnm + ∂n∂
pBmp − ∂m∂

pBnp = 0,

�
3G(1)

mn −�
2∂(n∂

pG
(1)
m)p + 4ηmnS

(1) + 16∂m∂nS
(1) = 0.

(2.15)

The gauge transformations given by δV = QΛ for the propagating fields are

δG
(1)
(mn) =

1

2
∂(nΛ

(1)
m) −

1

6
ηmn(∂ · Λ(1)),

δB[mn] = ∂[mΛ
(4)
n] ,

δS(1) =
1

24
�

2(∂ · Λ(1)).

(2.16)

Although the gauge transformation for the field G
(1)
mn does not correspond to the linear

diffeomorphism of the graviton, we will perform in the next subsection a field redefinition

to obtain the usual transformation. However, it is unclear how to interpret this vertex

operator as a deformation around the background.

2.3 Ambitwistor kinetic term

The standard kinetic term S[Ψ] = 1
2〈Ψ|(c0 − c̄0)QΨ〉 for the closed bosonic string was

introduced in [11] using the string field defined by the state-operator mapping: |Ψ〉 =

V (0)|0〉 where |0〉 is the SL(2, C) vacuum and |Ψ〉 is constrained to satisfy (L0 − L̄0)|Ψ〉 =

(b0 − b̄0)|Ψ〉 = 0. For the ambitwistor string, we will have a similar kinetic term; however,

since all the fields are holomorphic, we discard the antiholomorphic zero-modes L̄0 and b̄0.

Therefore, we propose for the ambitwistor string kinetic term

S[Ψ] =
1

2
〈Ψ|c0QΨ〉 =

1

2
〈I ◦ V (0)|∂cQV (0)〉 (2.17)

where |Ψ〉 is constrained to satisfy

L0|Ψ〉 = b0|Ψ〉 = 0. (2.18)

The bra state of the string field 〈Ψ| is defined by the usual BPZ conjugate, 〈Ψ| = 〈0|I◦V (0)

where I(z) = 1/z. For a primary field of conformal weight h the conformal transformation

I acts as

I ◦ φ(y) = (∂yI)
hφ(1/y). (2.19)

– 5 –
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The variation of S[Ψ] implies c0Q|Ψ〉 = 0. The condition b0|Ψ〉 = 0 turns this into the

linearized equations of motion Q|Ψ〉 = 0. The action S[Ψ] is invariant under |δΨ〉 = Q|Λ〉,

where Λ has ghost number one and is annihilated by L0 and b0. The proof of gauge

invariance and the derivation of the field equations follows exactly as in [11], so it will not

be reproduced here. A similar string field theory action was previously proposed in [4], but

their construction did not allow insertions of ∂X in the vertex operator and they modified

the usual definition of the BPZ inner product to get a massless unitary spectrum.

Let us focus on computing the action for the ambitwistor string vertex operator (2.11).

The action can be calculated in two different — but equivalent — ways: using creation and

annihilation operator algebra or vertex correlation functions. We will work with the latter.

The gauge parameter (2.13) can set S(2), S(4), S(6), A(1), A(2) to zero without producing

ghosts, so the vertex operator (2.11) simplifies to

V (z) = cc̃Φ2 + c∂c̃Ψ1 + c∂2c̃S(5) + ∂c̃c̃Γ1 + ∂2c̃c̃S(3) + bc∂c̃c̃S(1) , (2.20)

where
Φ2 = PmPnG(1)

mn + ∂Xm∂XnG(2)
mn + ∂XmPnHmn,

Ψ1 = PmA(5)
m + ∂XmA(6)

m , Γ1 = PmA(3)
m + ∂XmA(4)

m .
(2.21)

One can verify that the auxiliary field equations of (2.14) imply that

T (z)V (0) ∼+ z−4[−cc̃(Hm
m + 6S(5))] + z−3[c∂c̃(−∂mA5

m − 2S(5))] +

+ z−3[cc̃(−2Pm(∂nG1
mn +A(5)

m )− ∂Xm(∂nHmn + 2A(6)
m ))] +

+ z−3[c̃∂c̃(+∂mA(3)
m + 2S(3) − 3S(1))] + z−1∂V (0)

∼ z−4[−cc̃(Hm
m + 6S(5))] + z−1∂V (0).

(2.22)

So after applying the auxiliary field equations of (2.14), T has no double or cubic poles

with V , which implies that I ◦ V (z) = V (I(z)) and the string action (2.17) becomes the

two point function 〈V (I(0))∂cQV (0)〉. We stress that applying the auxiliary field equations

before computing the kinetic term is a trick to simplify the computation. One could have

done the calculation in full detail and obtained the same answer.

Using the vacuum normalization 〈∂2c∂cc∂2c̃∂c̃c̃〉 = 4, the string action becomes

S =−

∫

d26X

[

+
1

8
Gmn(1)

�
3G(1)

mn +
1

4
∂rG

mr(1)
�

2∂pG(1)
mp + 4Gmn(1)∂n∂mS

(1)+

+Gp(1)
p �S(1) −

1

2
Bmn(�Bmn + ∂[m∂

pBn]p)

]

.

(2.23)

The equations of motion agree with (2.15) and the gauge transformations are those given

by (2.16). Note that the kinetic action for G
(1)
mn involves 6 derivatives, so the inconsistency

between the momentum dependence of the 3-point amplitude (2.9) and the momentum

dependence of the kinetic term is resolved.

To write the kinetic action in terms of gauge invariant objects, it is convenient to

perform a field redefinition since the gauge transformation for G
(1)
mn is not quite the trans-

formation of the graviton. A convenient field redefinition is

hmn −
1

6
ηmnh

p
p = G(1)

mn, t = 4S(1) −
1

6
�

2hpp, (2.24)
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to obtain the gauge transformations of linearized gravity

δhmn =
1

2
∂(nλm) , δt = 0. (2.25)

The action (2.23) written in terms of gauge invariant objects becomes

S = −

∫

d26X

[

1

2
Rmn�R

mn −
1

4
R�R+ tR−

1

3!
HmnpHmnp

]

, (2.26)

where we have defined the linearized Ricci tensor and 3-form field strength

2Rmn = ∂m∂
phnp + ∂n∂

phmp −�hmn − ∂m∂nh
p
p,

Hmnp = ∂mBnp + ∂nBpm + ∂pBmn.
(2.27)

One can simplify further by shifting t to t+�R/4 so the term R�R drops out of the action.

3 Type II ambitwistor

In this section we will describe the Type II ambitwistor string for both GSO Neveu-Schwarz

sectors. The spectrum for the GSO(+) Neveu-Schwarz sector will be the usual bosonic

massless Type II supergravity states, however, the spectrum for the GSO(−) Neveu-

Schwarz sector will have some unusual non-unitary states. Although only the GSO(+)

sector is supersymmetric, the GSO(−) sector is expected to appear as intermediate states

before summing over spin structures using the RNS formalism. So by analyzing the con-

tribution of individual spin structures to the one-loop partition function of the Type

II ambitwistor superstring, one should be able to verify this unusual spectrum for the

GSO(−) sector.

3.1 Review and notation

For the Type II action we add two fermionic holomorphic worldsheet variables ψ1, ψ2, both

with conformal weight 1/2. We also introduce two pairs of bosonic Faddev-Popov ghosts:

(β1, γ1) and (β2, γ2). The β’s have conformal weight 3/2 while the γ’s have conformal

weight −1/2. The action for this system is

StII =
1

2π

∫

d 2z (Pm∂̄X
m + b∂̄c+ b̃∂̄c̃+ ψ1∂̄ψ1 + ψ2∂̄ψ2 + β1∂̄γ1 + β2∂̄γ2). (3.1)

The new field variables have the OPE’s

ψm
i (z)ψn

j (w) ∼ δij
ηmn

(z − w)
, βi(z)γj(w) ∼ −

δij
(z − w)

for i, j = 1, 2, (3.2)

in addition to the ones obtained in (2.4). The action (3.1) also presents BRST symmetry

generated by

Q =

∮

dz

2πi

(

cTM+ cTb̃c̃+ cTβ1γ1+ cTβ2γ2+ bc∂c+
1

2
c̃P 2 + γ1P · ψ1+γ2P · ψ2− γ21 b̃− γ22 b̃

)

,

(3.3)

– 7 –
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where

TM = −Pm∂X
m −

1

2
ψ1 · ∂ψ1 −

1

2
ψ2 · ∂ψ2, Tb̃c̃ = c̃∂b̃− 2b̃∂c̃,

Tβiγi = −
1

2
∂βiγi −

3

2
βi∂γi .

(3.4)

The nilpotency of the BRST charge imposes the critical spacetime dimension d = 10. In

order to write the vertex operator in the picture (−1,−1) we bosonize the ghosts (βi, γi)

by introducing a set of fermions (ηi, ξi) with conformal weight (1, 0) together with a chiral

boson φi. This new system is described by the free field OPE’s

φi(z)φj(w) ∼ −δij ln(z − w), ηi(z)ξj(w) ∼
δij

z − w
, (3.5)

and the change of variables is

βi = e−φi∂ξi , γi = ηie
+φi . (3.6)

The BRST charge (3.3) in terms of bosonized variables (η, ξ, φ) is written by replacing

Tβiγi = −
1

2
∂φi∂φi − ∂2φi − ηi∂ξi and γ2i = ηi∂ηie

−2φi , (3.7)

for each pair (βi, γi). The ghost number charge (4.10) is modified to accommodate the

(β, γ) system as

Ngh = −

∮

dz

2πi
(bc+ b̃c̃+ ξ1η1 + ξ2η2) (3.8)

In addition to the ghost number charge we define the picture number:

NPi
=

∮

dz

2πi
(ξiηi − ∂φi), (3.9)

such that β and γ have picture zero and ghost number −1 and 1 respectively.

3.2 Type II spectrum

There are two sectors for Neveu-Schwarz states in superstring theory which contain either

GSO parity + or GSO parity −. The vertex operator considered by Mason and Skinner [1]

is in the GSO(+) sector. The field content found in [1] is a spin-2 Gmn, a scalar Gm
m and a

2-form Bmn which agrees with the bosonic fields of d = 10 N=2 supergravity. However, the

ambitwistor superstring also has a GSO(−) sector that has not yet been fully investigated.

In order to distinguish the two sectors, we introduce the operator (−)parity where the

parity of ψ1 and eφ1 is defined to be odd, the parity of ψ2 and eφ2 is defined to be even,

and the parity of all other variables (Pm, X
m, b, c, b̃, c̃, ξi, ηi) is defined to be even. One can

easily verify that (−)parity commutes with the BRST charge of (3.3).

Although the superstring is only spacetime supersymmetric after truncating out the

GSO(−) sector, it will be interesting to compute the spectrum for both sectors. The most

– 8 –
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general Neveu-Schwarz vertex operator in the picture (−1,−1) with ghost number two and

which is annihilated by b0 and L0 is

V (z) = e−φ1e−φ2(cc̃Φ1 + c∂c̃S(1) + c̃∂c̃S(6)) + ∂φ1e
−φ1e−φ2cc̃S(2)+

+ e−φ1∂φ2e
−φ2cc̃S(3) + ∂ξ1e

−2φ1e−φ2(cc̃∂c̃ψ1 ·A
(3) + cc̃∂c̃ψ2 ·A

(4))+

+ e−φ1∂ξ2e
−2φ2(cc̃∂c̃ψ1 ·A

(5) + cc̃∂c̃ψ2 ·A
(6)) + η1∂ξ2e

−2φ2cc̃S(4)+

+ ∂ξ1e
−2φ1η2cc̃S

(5),

(3.10)

with

Φ1 = P ·A(1) + ∂X ·A(2) +B(1)
mnψ

m
1 ψ

n
1 +B(2)

mnψ
m
2 ψ

n
2 +Hmnψ

m
1 ψ

n
2 ,

Hmn = Gmn +Bmn.
(3.11)

where the fields are represented by six scalars S, six 1-forms Am, one symmetric two-form

Gmn, and three antisymmetric 2-forms Bmn. Note that the vertex operator (3.10) is defined

in the small Hilbert space, i.e does not contain the zero mode of ξi. Using the definition of

the operator (−)parity the fields can be separated into

GSO(+) : Hmn = Gmn +Bmn, A
(4)
m , A(5)

m , S(4), S(5)

GSO(−) : A(1)
m , A(2)

m , A(3)
m , A(6)

m , B(1)
mn, B

(2)
mn, S

(1), S(2), S(3), S(6).
(3.12)

Cohomology. As in the bosonic case, the fields in (3.10) have gauge transformations

δV = QΛ, where the gauge field Λ is in the small Hilbert space and satisfies L0Λ = b0Λ = 0.

So the gauge field with ghost number one is

Λ = ∂ξ1e
−2φ1e−φ2cc̃(ψ1 · Λ

(1) + ψ2 · Λ
(2)) + ∂ξ2e

−2φ2e−φ1cc̃(ψ1 · Λ
(3) + ψ2 · Λ

(4))+

+ e−φ1e−φ2(cΛ(6) + c̃Λ(7)) + ∂ξ1e
−2φ1∂ξ2e

−2φ2cc̃∂c̃Λ(5)+

+ ∂2ξ1∂ξ1e
−3φ1e−φ2cc̃∂c̃Λ(8) + ∂2ξ2∂ξ2e

−3φ2e−φ1cc̃∂c̃Λ(9),

(3.13)

which can be used to gauge away (A
(1)
m , S(1), S(2), S(5)). After using QV = 0 to elimi-

nate the auxiliary fields in the vertex operator (3.10) whose equations of motion do not

involve derivatives, the remaining equations of motion and gauge transformations for both

sectors are

• GSO(+) :

Field equations Gauge transformations

�Gmn − ∂(m∂
pGn)p + ∂n∂mS

(4) = 0, δGmn = +
1

2
∂(mΛ

(2)
n) +

1

2
∂(mΛ

(3)
n) ,

∂p∂mGpm −�S(4) = 0, δBmn = +
1

2
∂[mΛ

(2)
n] −

1

2
∂[mΛ

(3)
n] ,

�Bmn + ∂[m∂
pBn]p = 0, δS(4) = ∂ · Λ(3) + ∂ · Λ(2).

– 9 –
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• GSO(−) :

Field equations Gauge transformations

∂pB+
pn = 0, δB+

mn = 0,

�B+
mn + ∂[nA

(2)
m] = 0, δB−

mn = ∂[nΛ
(4)
m] ,

�B−

mn − ∂[n∂
pB−

m]p = 0, δA(2)
m = −4∂mΛ(9) − ∂m∂ · Λ(4),

where in the GSO(−) sector we defined B±
mn ≡ B

(1)
mn ± B

(2)
mn. The field content in the

GSO(+) sector is the expected one from superstring theory and has a graviton Gmn coupled

to a scalar S(4), and an antisymmetric 2-form Bmn. On the other hand, the spectrum in

the GSO(−) sector is unusual and includes two antisymmetric 2-forms and a 1-form. One

of the antisymmetric 2-forms has the usual gauge transformation but the other one is gauge

invariant.

3.3 Ambitwistor kinetic term

The construction of the quadratic action for the superstring is similar to the bosonic con-

struction of section 2.3. In addition to the constraints L0|Ψ〉 = b0|Ψ〉 = 0, the string field

at ghost-number 2 is also constrained to be in the (−1,−1) picture in the small Hilbert

space. The string field |Ψ〉 is given by the vertex operator (3.10) introduced in the previous

section. We have

S[Ψ] =
1

2
〈Ψ|c0Q|Ψ〉 =

1

2
〈I ◦ V (0)|∂cQV (0)〉 (3.14)

where I ◦ V (z) is the conformal transformation (2.19). The vertex operator (3.10), af-

ter eliminating gauge fields and auxiliary fields, is a primary field with conformal weight

zero, i.e,

T (z)V (0) ∼ z−1∂V (0),

thus the conformal transformation I ◦ V (z) = V (z−1) acts as (2.19). So the calcula-

tion for the action becomes an ordinary two point function with vacuum normalization

〈c∂c∂2cc̃∂c̃∂2c̃e−2φ1e−2φ2〉 = 4. After some algebra, the actions for the GSO(±) Neveu-

Schwarz sectors are

S+ =−
1

2

∫

d10x

[

Gmn

(

1

2
�Gmn −

1

2
∂(m∂

pGn)p

)

+ S(4)

(

∂p∂mGpm −
1

2
�S(4)

)

+

+Bmn

(

1

2
�Bmn +

1

2
∂[m∂

pBn]p

)]

,

(3.15)

S− =−
1

2

∫

d10x
[

Bmn(1)(�B(1)
mn − ∂[n∂

pB
(1)
m]p + ∂[nA

(2)
m] )+

+Bmn(2)(�B(2)
mn − ∂[n∂

pB
(2)
m]p + ∂[nA

(2)
m] )

]

.

(3.16)

The GSO(+) sector has the standard Type II spectrum — graviton, Kalb-Ramond,

and dilaton. In order to make the field content more clear, rewrite the action (3.15) in

– 10 –
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terms of gauge invariant objects by redefining the fields

Gmn = hmn, R = −�hpp + ∂m∂nhmn, φ = S(4) + hmm,

Hmnp = ∂mBnp + ∂nBpm + ∂pBmn,
(3.17)

such that the gauge transformations are

δhmn = +
1

2
∂(mλn) , δBmn = +

1

2
∂[mωn] , δφ = 0, (3.18)

with λm = Λ
(2)
m +Λ

(3)
m and ωm = Λ

(2)
m −Λ

(3)
m . The action for the GSO(+) sector written in

term of these gauge covariant objects is

S+ =−
1

2

∫

d10x

[

hmn 1

2
�hmn + (∂phnp)

2 −
1

2
hrr�h

p
p + hrr∂

p∂mhpm + φR

−
1

2
φ�φ+

1

6
HmnpHmnp

] (3.19)

which agrees with the action found by [4].

On the other hand, the action (3.16) for the GSO(−) sector is unusual. In terms of

B±
mn = B

(1)
mn ±B

(2)
mn, the action (3.16) is

S− = −
1

2

∫

d10x

[

1

3!
H−mnpH−

mnp +
1

3!
H+mnpH+

mnp +B+mnFmn

]

(3.20)

where Fmn = ∂[mA
(2)
n] and H±

mnp = ∂[mB
±

np]. So B−
mn has the standard kinetic term for

an antisymmetric two-form, but B+
mn couples to Fmn and does not have the usual gauge

invariance of an antisymmetric two-form.

4 Heterotic ambitwistor string

4.1 Review and notation

The worldsheet action for the heterotic model is similar to the Type II, but the two world-

sheet fermions (ψ1, ψ2) are replaced by one worldsheet fermion ψ together with a new

current action SJ

Shet =
1

2π

∫

d 2z (Pm∂̄X
m + b∂̄c+ b̃∂̄c̃+ ψ∂̄ψ + β∂̄γ) + SJ . (4.1)

The particular form of the current action SJ is irrelevant, except that it should allow the

vertex operator to be written using a current algebra Ja which has conformal weight one

and satisfies the OPE

Ja(z)Jb(w) ∼
δab

(z − w)2
+

fabc
z − w

Jc(w), (4.2)

where fabc are the structure constants of the algebra. The action (4.1) has BRST symmetry

generated by

Q =

∮

dz

(

cTM + bc∂c+ cTb̃c̃ + cTβγ + cTJ +
1

2
c̃P 2 + γP · ψ − γ2b̃

)

, (4.3)

– 11 –
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with

TM = −P · ∂X −
1

2
ψ · ∂ψ, Tb̃c̃ = c̃∂b̃− 2b̃∂c̃, Tβγ = −

1

2
∂βγ −

3

2
β∂γ,

being the stress energy tensor for the matter and ghost fields. The new feature compared

to the Type II ambitwistor, after removing the variables (ψ2, γ2, β2), is the stress energy

tensor TJ associated with the current action SJ with

TJ(z)TJ(w) ∼
cJ

2(z − w)4
+

2TJ(w)

(z − w)2
+
∂TJ(w)

(z − w)
,

where cJ is the central charge. Nilpotency of the BRST charge implies 41− cJ − 5
2D = 0,

so the critical spacetime dimension is D = 10 for cJ = 16.

4.2 Heterotic spectrum

Although the Yang-Mills vertex operator of [1] for the heterotic ambitwistor string has

the expected behavior for Yang-Mills scattering amplitudes, the graviton vertex operator

proposed by Mason and Skinner (2.1) for the heterotic model has similar issues as in the

bosonic model. The three-point graviton scattering amplitude behaves like k4 as opposed

to the expected k2 behavior of general relativity. After allowing ∂X in the construction

of the vertex operator, we will find that the equation of motion for the symmetric 2-form

hmn is

�
2hmn + · · · = 0,

which is consistent with the momentum behavior of the three-point amplitude. Another

unexpected feature of the heterotic ambitwistor string is that the spectrum contains a

three-form which is not present in the massless sector of the usual heterotic superstring.

The most general vertex operator in picture (−1) in the small Hilbert space that is

annihilated by b0 and L0 with ghost number 2 is:

V (z) = e−φ(cc̃Φ3/2 + c∂c̃A(2) · ψ + ∂c̃c̃A(1) · ψ) + ∂φe−φ(cc̃A(3) · ψ)+

+ ∂ξe−2φ(∂c̃c̃cΨ1 + ∂2c̃c̃cS(4)) + η(cS(1) + c̃S(3)) + ∂ξe−2φ(∂2ccc̃S(2))+

+ ∂ξ∂φe−2φ∂c̃c̃cS(5) + ∂2ξe−2φ(∂c̃c̃cS(6)),

(4.4)

where

Φ3/2 = H(1)
mnP

mψn +H(2)
mn∂X

mψn + Cmnpψ
mψnψp + Jaψ ·Aa + ∂ψ ·A(4),

Ψ1 = P ·A(5) + ∂X ·A(6) + JaCa +B(3)
mnψ

mψn, H(i)
mn = G(i)

mn +B(i)
mn.

(4.5)

The target space fields are described by six abelian scalars S, one non-abelian scalar Ca,

six abelian 1-forms Am, one non-abelian 1-form Aa
m, two symmetric 2-forms Gmn, three

antisymmetric 2-forms Bmn and a 3-form Cmnp.

– 12 –
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Cohomology. The gauge invariance δV = QΛ can be used to gauge away S(2), S(1), A
(4)
m ,

A
(3)
m , B

(1)
mn where the gauge parameter in picture (−1) with ghost number 1 is

Λ = e−φ(cΛ(6)
m ψm + c̃Λ(7)

m ψm) + ∂ξe−2φ(cc̃Φ1 + c∂c̃Λ(2)) + ∂2ξe−2φcc̃Λ(8)+

+ ∂2ξ∂ξe−3φ∂c̃c̃cΛ(10)
m ψm + ∂ξ∂φe−2φcc̃Λ(9),

(4.6)

with Φ1 = P · Λ(3) + ∂X · Λ(4) + ψmψnΛ
(5)
mn + JaΛa(1).

After using QV = 0 to fix all auxiliary fields whose equations do not contain deriva-

tives, the remaining dynamical fields are G
(1)
mn, G

r(2)
r , B

(2)
mn, Aa

m and Cmnp. The equations of

motions together with its gauge transformations for these remaining fields are

−
1

4
�

2G(1)
mn +�

1

4
∂(m∂

pG
(1)
n)p −

1

10
ηmn�∂

r∂sG(1)
rs −

1

5
∂n∂m∂

r∂sG(1)
rs +

−
1

20
ηmn�G

r(2)
r −

1

10
∂n∂mG

r(2)
r = 0,

(4.7)

�Aa
m − ∂m(∂pAa

p) = 0,

−�Cmnp +
1

6
∂[pB

(2)
mn] = 0,

∂pCmnp = 0,

(4.8)

with gauge transformations

δG
(1)
(mn) = −

1

2
∂(nΛm) +

1

4
ηmn∂ · Λ, Λm = Λ(6)

m + Λ(3)
m ,

δGm(2)
m = +

1

4
�∂ · Λ,

δB(2)
mn = ∂[mΛ

(4)
n] ,

δCmnp = 0,

δAa
m = −∂mΛa(1).

(4.9)

4.3 Ambitwistor kinetic term

The kinetic term follows exactly the Type II construction of section 3.3, so we shall not

review it here. The vertex operator (4.4) transforms as a primary field with conformal

weight zero after using the equation of motion for the auxiliary fields. Finally, the quadratic

term takes the form

S =
1

4

∫

d10x

[

−
1

4
G(1)mn

�
2G(1)

mn −
1

2
�(∂rG

(1)nr)(∂sG(1)
sn )−

1

5
�Gm(1)

m ∂m∂nG(1)
mn+

−
2

5
(∂m∂nG(1)

mn)
2 +

1

10
Gr(2)

r (−�Gm(1)
m − 2∂m∂nG(1)

mn)− 6B(2)mn∂pCmnp+

+6Cmnp

(

−
1

2
�Cmnp +

1

4
∂[p∂

rCmn]r

)

+ 2Aam(�Aa
m − ∂m(∂ ·Aa))

]

,

(4.10)

where ∂[pCmn]r = 2∂pCmnr + 2∂mCnpr + 2∂nCpmr.
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To write the action (4.10) in terms of gauge invariant objects, we redefine the fields

G(1)
mn = hmn −

1

4
ηmnh

p
p, Gr(2)

r = t−
1

4
�hpp ⇒ δhmn = −

1

2
∂(mΛn), δt = 0. (4.11)

Using the field strengths for the gauge and 2-form fields together with the linearized

Riemann tensor
Rabcd = ∂b∂chad + ∂a∂dhbc − ∂a∂chbd − ∂b∂dhac,

F a
mn = ∂mA

a
n − ∂nA

a
m,

Hmnp = ∂pB
(2)
mn + ∂mB

(2)
np + ∂nB

(2)
pm,

(4.12)

the action (4.10) takes the form

S =−
1

4

∫

d10x

[

6

10
RmnR

mn +
1

10
RmnpqR

mnpq +
1

5
tR− 2CmnpHmnp+

−3Cmnp

(

�Cmnp −
1

2
∂[p∂

rCmn]r

)

+ F amnF a
mn

]

.

(4.13)

Although the heterotic ambitwistor action correctly describes Yang-Mills, it also has a

symmetric two-form field hmn whose kinetic action is neither Einstein nor conformal gravity.

In addition, it contains an antisymmetric 2-form B
(2)
mn and antisymmetric 3-form Cmnp with

unusual couplings. It is interesting to note, however, that the heterotic ambitwistor string

was used in [9] to reproduce MHV amplitudes for conformal gravity in D = 4.
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