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1 Introduction

Gauge/gravity duality allows one to use classical general relativity in asymptotically locally

AdS or dS spaces to study CFTs on a range of curved backgrounds or, alternatively, to

study aspects of quantum gravity by using dual CFTs defined on curved spaces. In this

paper we consider CFTs and their holographic duals on a two-parameter family of squashed

three spheres in the presence of scalar excitations. In the context of AdS/CFT the scalar

turns on a condensate. In the context of dS/CFT it drives inflation.

The metric on squashed spheres can be written as,

ds2 =
r2

0

4

(
(σ1)2 +

1

1 +A
(σ2)2 +

1

1 +B
(σ3)2

)
, (1.1)

where r0 is an overall radius for which we choose the normalization r0 = 1, and σi, with

i = 1, 2, 3, are the left-invariant one-forms of SU(2) given by

σ1 = − sinψdθ+ cosψ sin θdφ , σ2 = cosψdθ+ sinψ sin θdφ , σ3 = dψ+ cos θdφ , (1.2)
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with 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π and 0 ≤ ψ ≤ 4π. We are interested in CFT partition functions

as a function of the two squashing parameters A and B in (1.1) and of the coupling α̃ of

the deformation dual to the scalar excitation in the bulk.

An interesting CFT that is feasible to study is the three-dimensional O(N) vector

model, which is dual to Vasiliev higher-spin gravity in AdS4 [1–3]. However we will not

consider higher-spin gravitational theories directly. Instead we aim for a qualitative com-

parison between the physics of the deformed O(N) model on the squashed sphere in (1.1)

and Einstein gravity with AdS (or dS) boundary conditions. To do so we first numerically

construct new solutions in a consistent truncation of M-theory compactified on AdS4× S7

with a single m2 = −2l2AdS scalar moving in a negative exponential potential V and with

a double squashed sphere of the form (1.1) as their boundary. Our solutions are general-

izations of the AdS Taub-NUT and Taub-Bolt solutions [4, 5] to two squashings and with

an additional scalar condensate turned on. Comparing the thermodynamic properties of

these with the partition function of the free O(N) model we find that both systems exhibit

a qualitatively similar behavior over much of the boundary configuration space. This is

remarkable given the O(N) models are dual to higher-spin theories of gravity and perhaps

signals a kind of universality of both theories at the thermodynamic level. On the other

hand they do differ in specific features such as the NUT to Bolt transition at large positive

values of the squashing parameters, which is evidently absent in the free dual theory.

In the context of dS/CFT [6] the squashed spheres (1.1) enter as the future boundary

of homogeneous but anisotropic deformations of de Sitter space. In the second part of this

paper we first find complex generalizations of the solutions above that are regular every-

where and in the large volume limit describe anisotropic deformations of real Lorentzian

de Sitter space with a scalar field driving (eternal) inflation and an effective potential −V .

These solutions are saddle points of the no-boundary wave function. At the semiclassi-

cal level, dS/CFT conjectures that the no-boundary wave function with future de Sitter

boundary conditions is dual to the partition function of complex deformations of Euclidean

AdS/CFT duals defined on the future boundary [7–9],1 yielding the following holographic

form of the no-boundary wave function

ΨNB[hij , φ] = Z−1
QFT[h̃ij , α̃] exp(iSct[hij , φ]/~) , (1.3)

Here the sources (h̃ij , α̃) are conformally related to the argument (hij , φ), and Sct are the

usual surface terms. The partition functions ZQFT in (1.3) are complex deformations of Eu-

clidean AdS/CFT duals. This form of dS/CFT reduces in minisuperspace to formulations

based on analytic continuation [7, 11, 14] and agrees to leading order with the higher-spin

1The applicability of Euclidean AdS/CFT stems from the observation [9] that all complex no-boundary

saddle points in models with a positive scalar potential V admit a geometric representation in which their

amplitude is fully specified by an interior, locally AdS, domain wall region governed by an effective negative

potential −V . This resonates with an alternative formulation of dS/CFT developed and explored in [10–12]

and based on the analytic continuation of real AdS domain wall solutions to real inflationary histories. This

formulation evidently does not yield a measure over backgrounds but its predictions for the fluctuation

spectra agree to leading order in the slow roll parameters with those in the no-boundary state considered

here [13].
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realization [15] where the Sp(N) and O(N) partition functions are inversely related. It is

tempting indeed to view Euclidean AdS/CFT and dS/CFT as two real domains of a single

complexified theory [10, 16–19].

The dependence of the partition function in (1.3) on the values of the sources yields

a holographic measure on the space of asymptotically locally de Sitter universes. General

field theory results imply that the holographic amplitude of the undeformed CFT on the

round S3 is a local maximum with respect to scalar deformations [20, 21] and deformations

of the geometry [22, 23].

We also study dS/CFT for large deformations by comparing the saddle point no-

boundary wave function evaluated using the complex bulk solutions above, with the par-

tition function of the interacting O(N) vector toy model on a two-parameter family of

squashed three spheres in the presence of a mass deformation modeling the bulk scalar

driving inflation. We consider the interacting model because according to (1.3) the bulk

scalar now sources a scalar deformation by an operator O of dimension one, with coupling

α̃. This is a relevant operator which in the O(N) model induces a flow from the free to the

critical O(N) model. Moreover, the coupling is imaginary in the dS domain of the theory

as discussed above. Hence we evaluate the partition function of the critical O(N) model

as a function of the squashing parameters A and B and an imaginary mass deformation.

We find the holographic measure is normalizable and globally peaked at the round three

sphere. The implications of this for eternal inflation are explored in an accompanying

paper [24].

The region of the configuration space of boundary geometries with negative Ricci

scalar is particularly intriguing. The Ricci scalar of a double squashed three sphere of the

form (1.1) is given by

R =
6 + 8A+ 8B + 2AB(6−AB)

(1 +A)(1 +B)
, (1.4)

which is symmetric in A and B. For B = 0 there is a single region A < −3/4 where R is

negative. Adding a second squashing leads to an additional R < 0 region associated with

large positive values of both A and B as illustrated in figure 1. In the context of dS/CFT

solutions with R < 0 boundaries can be viewed as toy models for bubble like geometries

in eternal inflation. The holographic measure we compute tells us something about the

likelihood to develop such surfaces of constant density in eternal inflation.

2 Scalar excitations of squashed AdS Taub-NUT/Bolt

We are interested in four-dimensional solutions governed by the following action

IE = − 1

16πG

∫
M
d4x
√
g(R− (∇Φ)2 − 2V (Φ))− 1

8πG

∫
∂M

d3x
√
hK , (2.1)

where h and K are respectively the induced metric on the boundary (1.1) and its extrinsic

curvature. For reasons that will become clear below we consider the consistent truncation

of M-theory on AdS4× S7 consisting of gravity coupled to a single scalar Φ with potential

V (Φ) = −2− cosh(
√

2Φ) , (2.2)
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Figure 1. The shaded blue region corresponds to values of the squashing parameters (A,B) of S3

for which the scalar curvature R is negative. This includes the region of parameter space where its

absolute value is large.

in units where Λ = −3 and hence l2AdS = 1. For Φ = 0 and a single squashing, i.e. B = 0

in (1.1), the solutions that asymptotically tend to (1.1) are well-known and can be thought

of as generalizations of the asymptotically flat Taub-NUT and Taub-Bolt solutions [4, 5, 25].

These are two sets of topological distinct solutions that are asymptotically AdS. The NUT

solutions have a zero-dimensional fixed point set, the NUT, around which the solutions are

topologically R4. The second set, the Bolt solutions, have a two-dimensional fixed point

set, the Bolt. These solutions are locally R2 × S2 in the neighbourhood of the Bolt.

The metric of solutions that have the same NUT/Bolt topology in the interior and

that asymptote to the squashed sphere (1.1) with two non-vanishing squashing parameters

A and B can be written in the following form,

ds2 = l0(r)2dr2 + l1(r)2σ2
1 + l2(r)2σ2

2 + l3(r)2σ2
3 , (2.3)

together with a radial scalar profile Φ(r).

Plugging this Ansatz into the equations of motion derived from the action (2.1) one

finds a system of non-linear second order differential equations for the metric functions la(r)

and the scalar Φ(r) which are given in appendix A. Numerical solutions to this system with

the scalar set to zero were found in [26]. Here we generalize these by including a scalar

excitation and its backreaction on the geometry.

We start by considering an expansion at large values of r which, employing holographic

terminology, we call UV expansion. The UV expansion is of the Fefferman-Graham type

and the same for both the NUT and Bolt solutions since in both cases the non-trivial

information is encoded in the interior of the solutions, i.e. in the IR. The leading order

terms in the metric for large r are given by

ds2 = dr2 + e2r
(
A0σ

2
1 +B0σ

2
2 + C0σ

2
3

)
. (2.4)
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Notice that we have implemented the gauge l0(r) = 1. The next terms in the UV expansion

of the solutions read

l1(r) = A0e
r +Ake

(1−k)r , l2(r) = B0e
r +Bke

(1−k)r , l3(r) = C0e
r + Cke

(1−k)r , (2.5)

Φ(r) =
α

(A0B0C0)1/3
e−r +

β

(A0B0C0)2/3
e−2r +Dke

−(2+k)r , (2.6)

where the sum over k goes over all positive integers.

We plug the series expansions (2.5)–(2.6) into the Einstein equations and solve them

order by order in powers of er. The results of this procedure are summarized in appendix A.

The important upshot is that the UV expansion is controlled by seven independent param-

eters {A0, B0, C0, A3, B3, α, β}. It turns out that the Einstein equations are invariant under

constant shifts of r which we use to eliminate one of the parameters, setting A0 = 1
4 . Com-

paring the asymptotic form of the metric with the metric (1.1) on the double squashed

sphere one can find the following relation between the squashing parameters A and B and

the leading order coefficients B0 and C0

A =
1

4C0
− 1 , B =

1

4B0
− 1 . (2.7)

The leading coefficients B0, C0 and α specify the asymptotic values of metric and field.

As we discuss in appendix A the values of the subleading coefficients (A3, B3 and β) are

fixed by imposing regularity conditions (either on a NUT or a Bolt) in the bulk of the full

solution of the nonlinear equations of motion.

In practice we use the IR expansions (cf. (A.4) and (A.7)) as initial conditions to inte-

grate the equations of motion numerically to the UV. This yields a three-parameter family

of solutions that are controlled by two coefficients specifying the IR behavior of the scale

factors la(r) and by the initial value Φ0 of the scalar field. There are two distinct classes of

solutions. The first class consists of regular solutions for which the metric functions la(r)

grow exponentially, the scalar field gradually decays and the boundary metric is a sphere

with two non-trivial squashing parameters as in (1.1). A representative example of a NUT

solution of this kind is shown in figure 2. We also find a class of singular solutions for

which one or more of the metric functions la(r) vanish at some finite value of r, leading

to a curvature singularity. We will ignore the second class of solutions since they do not

contribute to the wave function in the large three-volume regime.

The Bolt solutions only exist for sufficiently large, positive squashings. In this regime

there is often more than one combination of IR parameters that yields the same values of

the leading asymptotic parameters A, B and α.

The regularity condition on the scalar field in the interior yields a relation β(α) between

the coefficients of its UV profile which depends on the squashings and encodes information

about the scalar potential. In section 3 we will compare our results with the free O(N)-

model using the AdS/CFT duality. Under the holographic dictionary this relation can be

translated to a relation between the source and vev of the dual theory. To do so we match

the conformal dimensions of the deformations on both sides. Because on the CFT side the

conformal dimension of the source is two, we have to use the alternate quantization of AdS,

– 5 –
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Figure 2. A typical solution with a NUT in the IR and with a non-trivial scalar profile in the

radial direction. The geometry asymptotes to a double squashed sphere in the UV.

which means we fix β on the boundary instead of α by applying a Legendre transform [27],

i.e. we have Neumann boundary conditions. The exact procedure requires an analysis of

the action using holographic renormalization [28–31] of which the precise details can be

found in appendix A. This immediately gives the relation between α in the bulk and the

vev on the boundary for a source J = β,

〈O〉 = α . (2.8)

The potential (2.2) is special in the sense that, at least for sufficiently small squashings,

β tends to a constant when α (or equivalently Φ0) is taken larger. This property depends

delicately on the large field regime of the potential. From a dual viewpoint this means

there is a critical deformation β at which the expectation value α of the operator dual to

Φ diverges. This is also a feature of the vector model we consider in section 3 below [32],

which serves to justify the bulk boundary comparison we explore there.

Figure 3 shows the relation β(α), or in holographic notation J(〈O〉), for B = 0 and

for three different values of the squashing parameter A. The third panel indicates that the

behavior of β(α) is qualitatively different for sufficiently negative squashings. Specifically,

we find there is a phase transition at A = −3/4, precisely where the Ricci scalar on the

boundary changes sign, such that for A ≤ −3/4 the parameter β no longer converges. A

second solution with α 6= 0 comes into play in this regime even at β = 0. The new solution

is thermodynamically subdominant, as we will see below, but may nevertheless contribute

to certain observables [32, 33]. A similar behavior of β(α) is found in the entire region

of configuration space (A,B) where the Ricci scalar of the boundary geometry is negative

(cf. figure 1). We note also that the relation β(α) associated with the generalized Bolt

solutions, shown in the first panel in figure 3, is reminiscent of the constant temperature

relation found for black holes with scalar hair in this theory, as expected [34, 35].

The thermodynamic behavior of our set of solutions can be studied by evaluating their

regularized, Euclidean on-shell action. Since we do not have analytic solutions we evaluate

the regularized on-shell action numerically following the accurate procedure developed

in [26] and summarized in appendix A. Figure 4 shows the resulting free energy for a

number of representative slices of constant β through the three-dimensional phase space of

– 6 –
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Figure 3. The relation J(〈O〉) = β(α) that characterizes the asymptotic scalar profile is shown

for B = 0 and three different values of the squashing parameter A. The blue curves correspond to

NUT solutions, which exist for all three values of the squashing, while the red curves in panel (a)

represent the two branches of Bolt solutions.
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A

0.5
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(b) β = −0.21
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(f) β = −0.56

Figure 4. The free energy as a function of the squashing for different values of the UV deformation

parameter β. The blue (red) curves represent the NUT (Bolt) solutions. In the top row the

behavior around zero squashing is shown, while in the bottom row the transition from NUT to Bolt

is highlighted.

solutions. These indicate that the on-shell action exhibits a maximum at zero squashing

and scalar field when the scalar curvature is positive.

Without a scalar field it was found in [26] that the well known Hawking-Page type phase

transition from the NUT to the Bolt solutions that occurs as one increases the value of the

squashing, qualitatively generalizes to the case of two squashings. We find this remains true

in the presence of a scalar field, except for the fact that the range of squashings for which

the NUT solutions exist gradually shrinks and becomes centered around zero squashing for

large values of Φ0. At the same time the minimum squashing required for Bolt solutions to

exist increases for increasing Φ0, leading to a critical value above which there is a regime

of squashings in which no regular solutions exist.
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3 Mass deformed O(N) model on double squashed sphere

Our bulk model is a consistent truncation of M-theory compactified on AdS4×S7. Therefore

the dual field theory is the ABJM SCFT and we are faced with the problem of evaluating

the partition function of supersymmetry breaking deformations of this theory. We will not

attempt to do this here. Instead we will focus on a simplified model of this setup where

we consider an O(N) vector theory conjectured to be dual to higher-spin Vassiliev gravity

in four dimensions [1–3, 15]. Higher-spin theories are very different from pure Einstein

gravity. However, it is plausible that the behavior of the free energy of vector models

qualitatively captures that of duals to Einstein gravity when one restricts to spin 0 and

spin 2 deformations [26, 36–38]. We therefore view these vector theories as dual toy models

in this section and proceed to evaluate their partition functions and the one-point functions

associated with the scalar condensates in the bulk.

The mass deformed free model partition function is given by

Zfree[m
2] =

∫
Dφe−Ifree+

∫
d3x
√
gm2O(x) , (3.1)

where Ifree is the action of the conformal, free O(N) model,

Ifree =
1

2

∫
d3x
√
g

(
∂µφa∂

µφa +
1

8
Rφaφ

a

)
. (3.2)

Here φa is an N -component field transforming as a vector under O(N) rotations and R is

the Ricci scalar of the boundary geometry.

We calculate the partition function (3.1) on a double squashed sphere. Evaluating the

Gaussian integral in (3.1) amounts to computing the following determinant

− logZfree = F =
N

2
log

(
det

[
−∇2 +m2 + R

8

Λ2

])
, (3.3)

where Λ is a cutoff that we will use to regularize the UV divergences in this theory. For a

single squashing A the eigenvalues of the operator in (3.3) can be found in closed analytic

form [39],

λn,q = n2 +A(n− 1− 2q)2 − 1

4(1 +A)
+m2 , q = 0, 1, . . . , n− 1, n = 1, 2, . . . .

(3.4)

To find the eigenvalues on double squashed spheres we apply the numerical techniques

developed in [26, 39]. These enable us to determine the spectrum numerically to (in

principle) any desired accuracy.

To regularize the infinite sum in (3.3) one may be tempted to use an analytic approach

like ζ-function regularization. However, this method is not well-adapted to situations where

the spectrum of the Laplacian is only known numerically. Therefore we use a heat-kernel

type regularization which can be implemented numerically and was discussed in detail

in [26, 38].

– 8 –
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Figure 5. The free energy of the free O(N) model as a function of the squashing A for three

different, real mass deformations. In the top row B = 0 while for the bottom row B = 2.

Using a heat-kernel the sum over eigenvalues divides in a UV and an IR part. The

latter converges and can readily be done numerically whereas the former contains all the

divergences and should be treated with care. When the eigenvalues are known analytically,

it is possible to find the divergent behavior using the Euler-Maclaurin formula [38], however,

for two squashings a numerical procedure is necessary. For the details of the latter method

we refer to appendix B.

In figure 5 we show a few slices of the resulting free energy as a function of a squashing

A and a real mass deformation m2 for two values of B. This can be compared with the

action of the real, asymptotically locally AdS solutions discussed in section 2 and shown

in figure 4. An important feature of this model is that the free energy diverges when

R/8+m2 → 0. This is a generalization to mass deformed theories of the divergences found

in [26] and can be understood by inspecting (3.3) in more detail. The determinant, which is

a product over all eigenvalues of the operator −∇2 +m2 +R/8, vanishes when the operator

has a zero eigenvalue, leading to a divergent free energy. Since the lowest eigenvalue of

the Laplacian ∇2 is always zero, the first eigenvalue λ1 of the operator in (3.3) is zero

when R/8 + m2 = 0. In the region of configuration space where the operator has one or

more negative eigenvalues the Gaussian integral (3.1) does not converge, and (3.3) does

not apply. This is more obvious in the bottom row of figure 5 where we took a non-zero

value for B, because in this case R/8 +m2 becomes negative for large negative values and

large positive values of A.

From the free energy we can find the relation between the vev and its source, the mass

of the deformation. In figure 6 we show the resulting vev-source relation and we compare

this with the corresponding gravity result obtained from holographic renormalization. It

is remarkable that on both sides of the duality, the vev diverges at a finite value of the

– 9 –
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Figure 6. Both the bulk and the boundary relation between the vev on the x-axis and the source

on the y-axis. In blue the bulk result, calculated via holographic renormalization, is shown and in

red the boundary result for three different values of the squashing A.

source. This feature strongly depends on the particular form of the scalar potential (2.2)

in the bulk and motivates the particular potential we used. Another similarity between

the vev-source relations, is the fact that for squashings with A < −3/4 the sources attain

positive values for large vevs. A clear difference, however, is that for the O(N) model a

zero vev can correspond to a non-zero source, this feature is absent in Einstein gravity and

can only be explained by the peculiarities of Vasiliev gravity.

4 Anisotropic inflationary minisuperspace

In section 2 we considered real, asymptotically locally AdS solutions, with real radial scalar

field profiles. We now turn to the de Sitter domain of the theory. At the semiclassical

level this is specified by complex solutions of the same theory, given by the action (2.1),

that asymptotically tend to real, Lorentzian, locally de Sitter space. The asymptotically

Lorentzian behavior of this set of solutions provides a large imaginary contribution to

their Euclidean action resulting in a rapidly oscillating wave function exhibiting classical

WKB behavior.

Complex saddle points. We consider the same anisotropic minisuperspace model as

before, consisting of squashed sphere boundary surfaces (1.1) with spatially homogeneous

scalar field configurations. The metric of the interior saddle point solutions can thus again

be written in the form (2.3), but now with complex scale factors la and a complex scalar

field profile Φ.

To represent the solutions it is useful to introduce a complex time coordinate τ(r)

defined by

τ(r) ≡
∫ r

0
dr′l0(r′) . (4.1)

In terms of the variable τ the asymptotically dS domain of the wave function is to be found

along the asymptotically horizontal line τ = t+iπ/2 in the complex τ -plane. Along this line

the leading order Fefferman - Graham - Starobinsky expansion of the metric (2.4) becomes

ds2 = dt2 − e2t
(
A0σ

2
1 +B0σ

2
2 + C0σ

2
3

)
. (4.2)

Here A0, B0, C0 are real constants specifying the degree of asymptotic anisotropy. The

Lorentzian signature of the asymptotic metric means the original scale factors li defined
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Figure 7. Two representations in the complex τ -plane of the same no-boundary saddle point

associated with an inflationary universe. Along the horizontal part of the AdS contour C the

geometry is an asymptotically AdS, spherically symmetric domain wall with a complex scalar field

profile. Along the horizontal branch of the dS contour C′ the saddle point behaves as a Lorentzian,

inflationary universe.

in (2.3) are to leading order purely imaginary in the dS domain. Their subleading behavior

can be deduced from an asymptotic analysis of the equations of motion and is given in

appendix A. We illustrate the representation of the saddle point solutions in the complex

τ -plane in figure 7. The semiclassical AdS domain of the theory is specified by solutions

that are regular in the IR and real along the real τ = r axis. The semiclassical dS domain,

by contrast, involves everywhere regular complex geometries that tend to asymptotically

real, Lorentzian solutions along the τ = t + iπ/2 line. The AdS contour labeled as C
in figure 7 provides a geometric representation of these complex solutions in which their

interior geometry consists of a Euclidean AdS domain wall that makes a smooth (but

complex) transition to a Lorentzian asymptotically dS universe. The signature of the

asymptotic metric (4.2) means that the potential (2.2) in the original Euclidean action (2.1)

acts in the dS regime as a positive effective potential

V dS
eff (Φ) = −V = 2 + cosh(

√
2Φ) . (4.3)

The argument of the wave function is real. This means that in order for the above

complex solutions to be valid saddle points specifying the semiclassical wave function, the

scalar field must also become real along the same line in the τ -plane. The UV expan-

sion (2.6) shows this requires its leading coefficient α to be imaginary, which in this model

means that the scalar profile is imaginary all along the AdS part of the contour C shown

in figure 7. In general potentials the interior region of the saddle points specifying the

Lorentzian dS domain of the wave function involves genuinely complex generalizations of

Euclidean AdS domain walls [9].

In the model we consider here the effective potential in the AdS domain wall regime

of the saddle points is therefore

V AdS
eff (Φ̃) = −2− cos(

√
2Φ̃) , (4.4)

– 11 –
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Figure 8. Left panel : the effective potential in the asymptotic Lorentzian dS region. Right panel :

the effective potential in the interior AdS domain wall region of the complex saddle points specifying

the dS domain of the wave function.

where Φ̃ ≡ iΦ, and is illustrated in the right panel of figure 8. This shows that the

asymptotic dS domain of the wave function corresponds to a finite domain of IR values Φ0

of the scalar field bounded by |Φ0| <
√

2π/2 ≡ Φc. From an AdS perspective this is simply

a consequence of the shape of the effective potential governing the inner AdS region of

the saddle point solutions. From a dS perspective this bound signals the boundary of the

inflationary regime of the effective potential (4.3) in the dS domain. The potential (4.3)

clearly admits inflationary solutions near its minimum. For large values of the scalar field

however it is too steep. The IR regularity condition of the Hartle-Hawking saddle points

selects those patches of scalar potentials where the conditions for inflation hold [40]. The

semiclassical wave function has no support outside these inflationary patches.

To determine for which real boundary conditions in the asymptotic dS domain regular

complex solutions exist we must numerically solve the complex equations of motion derived

from the action (2.1). The regularity conditions on geometry and field in the IR, either

at a NUT or a Bolt, leave three free parameters; two associated with the IR behavior of

the scale factors and one for the complex value Φ0 of the scalar field. Varying these and

numerically integrating the Einstein equation in the complex τ -plane to the asymptotic

dS regime in the UV yields a three-parameter family of complex solutions whose action

specifies the semiclassical no-boundary wave function in the dS domain. Details of this

procedure are given in appendix A.2 Figure 9 shows a representative example of a solution

with two squashings and the scalar field turned on, along a contour C along which the

solution exhibits an inner Euclidean AdS domain wall region. Note that the AdS part of the

solution can also be regarded as a real domain wall in terms of the field Φ̃. This appears to

resonate with the alternative approach, not based on quantum cosmology, developed in [10–

12] in which a real AdS domain wall is mapped to a real Lorentzian inflationary cosmology.

However, the fact that Φ̃ is real in the AdS part of the solutions here is a feature that is

specific to this potential. As mentioned above in general models the scalar Φ is genuinely

complex along the AdS domain wall. This is because the AdS/dS connection is established

2The same method was already employed in [41] to find anisotropic saddle points of the no-boundary

wave function for a different potential.
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Figure 9. A representative example of a complex solution with a NUT in the interior and a

scalar field profile, that is asymptotically locally dS with a double squashed sphere future spatial

boundary. The solution is shown here along a contour C like the one depicted in figure 7, consisting

of three segments parameterized by λ. The third segment is along τ = iπ/2 + t and clearly shows

the solution tends to asymptotic Lorentzian dS. The top panels show the evolution of the real and

imaginary components of the scalar field along this contour. The bottom panels show the real and

imaginary components of the three scale factors. The values of the IR parameters are φ0 = 1/2,

β4 = −1/6 and γ4 = −11/60.
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Figure 10. Left panel: the behavior of β as a function of α for different degrees of anisotropy.

Right panel: the behavior of α as a function of Φ0. All curves have B = 0. The blue curve has

A = 5, the red one A = 40 and the green one A = −0.85. When Φ0 →
√

2π/2, α diverges.

in our framework at the level of the semiclassical wave function and not at the level of the

Lorentzian histories: the AdS domain walls are related to complex saddle points of the no-

boundary wave function and not to the real inflationary backgrounds it predicts. This is a

fundamental difference between both approaches which, as mentioned in the introduction,

may lead to subtle differences in predictions e.g. for higher-point fluctuations correlation

functions [13].
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The regularity condition on the scalar field in the interior yields a relation β(α) between

the coefficients of its asymptotic profile. We show this for three different combinations of

squashings in the left panel of figure 10. A characteristic feature of this model is that β is

imaginary over the entire range of parameter space. The dual interpretation of this suggests

that the corresponding cosmological histories behave only approximately classically in the

large volume regime [42]. This may seem surprising but is perhaps related to the fact that

the potential V dS
eff (Φ) describes a regime of eternal inflation and not slow roll inflation. One

might have thought that the boundedness of the range of values Φ0 in the IR would mean

the semiclassical wave function has support over a limited range of values α in the UV.

This is not the case. The right panel of figure 10 plots α as a function of Φ0 for three

different combinations of squashings. One sees α diverges as Φ0 → Φc.

Anisotropic inflationary histories. The Euclidean action (2.1) of the above solutions

specifies the semiclassical no-boundary wave function in the asymptotic dS domain. The

complex nature of the solutions means that in the large three-volume region of superspace

the wave function takes the form

Ψ[a,A,B,Φf ] ≈ exp{(−IR[a,A,B,Φf ] + iS[a,A,B,Φf ])/~}. (4.5)

where a ≡ et is the overall volume scale factor. Here IR[a,A,B,Φf ] and −S[a,A,B,Φf ]

are the real and imaginary parts of the Euclidean action IE of the regular complex saddle

point solution that matches the real boundary data (a,A,B,Φf ), with (A,B) the squashing

parameters and Φf ≈ −iα/a(A0B0C0)1/3. In the large volume regime the phase factor S

varies rapidly compared to IR,

|~∇IR| � |~∇S| . (4.6)

Hence the wave function predicts that the boundary configuration evolves classically [40].

This is analogous to the prediction of the classical behavior of a particle in a WKB state

in non-relativistic quantum mechanics. Thus the NBWF in the dS domain predicts an

ensemble of classical, asymptotically locally de Sitter histories that are the integral curves

of S in superspace, with relative probabilities that are proportional to exp[−2IR(A,B,Φf )].

The latter are conserved under scale factor evolution as a consequence of the Wheeler-

DeWitt equation [40].

The classical ensemble consists of a three-parameter family of eternally inflating histo-

ries that are asymptotically dS and have a certain degree of anisotropy, parameterized by

(A,B) on the future boundary. The histories in this model do not exhibit a phase of re-

heating and slowing expansion. Instead they transition from a phase of scalar field driven

inflation to a phase of accelerated expansion driven by the cosmological constant. The

potential is such that the scalar field inflation is of the type of slow roll eternal inflation.

Hence if one were to include inhomogeneous fluctuations, one would find that the wave

function became broadly distributed, predicting an ensemble of histories with exceedingly

large or even infinite constant scalar density surfaces [43, 44].

Within the minisuperspace model the classical extrapolation of the histories backwards

in time is justified as long as the classicality conditions (4.6) hold. We find two distinct
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Figure 11. Left panel: an asymptotically classical history of φ that is initially classically singular,

for Φ0 = 0.5, A = 2.3 and B = 0. Right panel: an asymptotically classical history of φ with a

bounce in the semiclassical domain, for Φ0 = 0.5, A = 0.16 and B = 0.
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Figure 12. Left panel: the three contours bound the region in the (A,B) plane for which an

approximately classical bounce occurs for (from small to large) resp. α = 3/8i, α = i/4 and α = 0.

Right panel: the total probability for a semiclassical bounce as a function of α.

classes of past evolutions. For reasonably small values (A,B,Φf ) the classical extrapola-

tion backwards exhibits a de Sitter like bounce to approximately the same (time reversed)

history on the other side. By contrast, for large values (A,B,Φf ) the histories are classi-

cally past singular. Figure 11 shows a representative example in each class. The classical

extrapolations of all Bolt saddle points, which only exist for large squashings, are past

singular. The range of squashings (A,B) for which the classical histories bounce in the

past decreases for increasing Φf . This is in line with our expectations for this particular

scalar potential, which becomes too steep at large Φ to sustain inflation. We illustrate this

in the left panel of figure 12 where we show the region in the (A,B) phase space for three

different values of Φf within which the classically extrapolated histories bounce.

Semiclassical wave function. The relative probabilities of the individual histories in

the classical ensemble are fully specified by the regularized action of the interior AdS

domain wall regime of the saddle points. Specifically in the large three-volume region we

have [9]

IR[a,A,B,Φf ] = −Ireg
AdS[A,B, αf ] , (4.7)
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Figure 13. The probability distribution over anisotropic minisuperspace as a function of the

squashing A and the amount of scalar field inflation parameterized by iα.

where αf ≡ α(Φf ) is defined in the AdS regime of the saddle points (cf. (2.6)) and purely

imaginary for real boundary values Φf in the dS domain [9]. To compute the regularized

action one can perform the regularization procedure numerically as detailed in the ap-

pendix for the real AdS solutions. However it is more convenient to consider the complex

saddle points along a different contour, indicated with C′ in figure 7. This yields a geo-

metric representation of the solutions in which a Euclidean deformed four sphere gradually

transitions to a Lorentzian asymptotically locally de Sitter space. The Lorentzian behav-

ior of the solution along the second leg of C′ means the real part of the Euclidean action

stabilizes automatically along C′ [40].

We show a two-dimensional slice P (A,α) of the probability distribution for B = 0 in

figure 13. As expected the distribution is normalizable and peaks at the pure de Sitter

history with a round sphere boundary and zero scalar field. In figure 14 we show slices of

constant α of this distribution P (A) for three different values of the coefficient α specifying

the asymptotic scalar profile. The Bolt solutions provide the dominant contribution to the

probabilities at large squashings A. This is the dS counterpart of the Hawking-Page like

phase transition in the AdS domain of the wave function. The total probability of histories

associated with Bolt saddle points is small however and decreases for increasing scalar field.

The probability distribution over the classical ensemble can also be used to compute

the total probability in this model that an asymptotically classical universe emerges from

a regular bounce in the past and therefore lies in the quasiclassical realm throughout its

entire history. This is obtained by integrating the probability distribution over the domain

in the (A,B)-plane shown in the left of figure 12. This corresponds, for a given scalar value

Φf on a constant a surface, to bouncing histories when classically extrapolated backwards.

We plot the probability Pbounce as a function of α in the right panel of figure 12, where we

restriced to a single squashing. This shows that the total probability of a non-singular origin

is significant in this model when the scalar field is everywhere relatively small. However,
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Figure 14. Slices of the probability distributions for B = 0 for three different values of α. The

blue curves show the NUT contributions whereas the dominant Bolt contribution is given in red.

it sharply decreases outside this regime and vanishes for histories in the large field regime

near the edge of the inflationary regime of the potential.

5 Holographic wave function

In [24] the holographic form (1.3) of the wave function was studied in a vector toy model

dual to the anisotropic minisuperspace of eternally inflating cosmologies we considered in

the previous section. Here we compare this with our bulk results of section 4.

In its holographic form (1.3) the arguments of the wave function enter as sources in

the dual. For the geometry this means one must evaluate the dual partition function on

the double-squashed sphere (1.1) as before. For the bulk scalar this means it now sources

a scalar deformation by an operator O of dimension one, with coupling α. This is a

relevant operator which in our dual O(N) vector toy model induces a flow from the free

to the critical O(N) model. Moreover the coefficient α is imaginary in the dS domain of

the theory as discussed above. Hence one is led to evaluate the partition function of the

critical O(N) model as a function of the squashing parameters A and B and an imaginary

mass deformation α ≡ m̃2.

The deformed, critical O(N) model is obtained from a double trace deformation f(φ ·
φ)2/(2N) of the free model (3.1) with in addition a source ρfm̃2 turned on for the single

trace operator O ≡ (φ · φ). In the limit f → ∞ the theory flows from its unstable UV

fixed point where the source has dimension one to its critical fixed point with a source

of dimension two [2]. To see this, we introduce an auxiliary variable m̃2 = m2

ρf + O
ρ and

write (3.1) as

Zfree[A,B,m
2] =

∫
Dm̃2e

− N
2f

∫
d3x
√
g(m2−ρfm̃2)2

Zcrit[A,B, m̃
2] , (5.1)

with

Zcrit[A,B, m̃
2] =

∫
Dφe−Ifree+N

∫
d3x
√
g[ρfm̃2O− f

2
O2] . (5.2)

Inverting (5.1) yields Zcrit as a function of Zfree:

Zcrit[A,B, m̃
2] = e

Nfρ2

2

∫
d3x
√
gm̃4

∫
Dm2e

N
∫
d3x
√
g
(
m4

2f
−ρm̃2m2

)
Zfree[A,B,m

2] . (5.3)
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Figure 15. Three one-dimensional slices of the holographic probability distribution in a vector

toy model dual of eternal inflation, for three different values of m̃2. Remarkably, the distribution

qualitatively agrees with that obtained using bulk methods and shown in figure 13.

The value of ρ can be fixed by comparing two-point functions in the bulk with those in the

boundary theory [38]. For the O(N) model this implies ρ = 1 [45].

To compute Zcrit[A,B, m̃
2] one can first calculate the partition function of the free

mass deformed O(N) vector model on a double squashed sphere and then evaluate (5.3) in

a large N saddle point approximation. The factor outside the path integral in (5.3) diverges

in the large f limit. This can be canceled by adding the appropriate counterterms. The

saddle point equation then becomes, for homogeneous deformations,

2π2√
(1 +A)(1 +B)

(
m2

f
− m̃2

)
= −∂ logZfree[A,B,m

2]

∂m2
. (5.4)

Solving this for m2 in the large f limit and inserting the result in (5.3) yields Zcrit[A,B, m̃
2].

In [24] this procedure was implemented to compute Zcrit[A, m̃
2] for a single squashing

A using the numerical techniques described in section 3 above and in appendix B, and

by numerically inverting (5.4) to find the behavior of the complex deformation m2 as a

function of imaginary m̃2. Inserting this in (5.3) yields the partition function Zcrit[A,B, α].

The resulting holographic probability distribution over im̃2 and A turns out to be well

behaved and normalizable, with a global maximum at zero squashing and zero deformation,

corresponding to the pure de Sitter history. We illustrate the behavior of this distribution

in figure 15 where we plot three one-dimensional slices of the distribution for three different

values of m̃2. A comparison with the analogous distribution obtained through bulk methods

shown in figure 14 and in figure 13 shows they qualitatively agree. One sees that when the

scalar is turned on, the local maximum in figure 15 shifts slightly towards positive values

of A — a feature which is absent in the bulk result.

A key feature of the distribution is that it exponentially suppresses regions of the con-

figuration space where the combination R/8 + m2 is negative. This includes in particular

boundary geometries with negative scalar curvature R(A) < 0. The holographic measure

predicts the amplitude is low for such conformal boundary surfaces far from the round

conformal structure. This can be traced to the fact that the partition function of the free

O(N) model diverges for sources for which R/8 + m2 ≤ 0, as we discussed in section 3

above. Through (5.3) this implies the holographic measure (1.3) strongly suppresses these
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configurations.3 This also means it is very much plausible this result generalizes to two

squashings and more general metric deformations indeed [24]. Based on this it was conjec-

tured in [24] that global constant density surfaces in eternal inflation are globally smoother

than what the usual semiclassical gravity analysis indicates.

6 Discussion

We have studied gauge-gravity duality with squashed boundary geometries and in the

presence of scalar excitations in the bulk. In AdS these describes scalar condensates,

whereas in dS the scalar drives inflation.

The AdS bulk solutions we construct are generalizations of the AdS Taub-NUT/Bolt

solutions to two anisotropy parameters and with a scalar field turned on. We have compared

the thermodynamic properties of these solutions to the behavior of the partition of the

deformed free O(N) vector model defined on the double squashed three sphere. Even

though the latter is dual to higher-spin gravity, we find that both theories exhibit a number

of remarkable similarities. This includes the behavior of the one-point function of the scalar

operator illustrated in figure 6, which shows that the expectation value diverges for a finite

value of the source. In the bulk this property depends on the detailed shape of the scalar

potential for large field values. Another correspondence concerns the behavior of the free

energy as a function of the squashings for zero scalar field [26]. A notable difference between

both theories arises when the scalar is turned on: whereas the gravitational action attains

a local maximum at zero squashings for all values of the scalar condensate, the maximum

on the CFT side shifts slightly towards positive squashings.

The dS bulk solutions we construct describe anisotropic deformations of de Sitter space

with a scalar field driving (eternal) inflation. They close off in a regular manner in the

past and therefore yield valid saddle points of the no-boundary wave function. We have

compared the resulting semiclassical measure with the holographic measure specified by

the partition function of the interacting O(N) vector model defined on a two-parameter

family of squashed three spheres and deformed by a mass term. Again we find a remark-

able agreement between both theories. In both cases the amplitude is low for conformal

boundary surfaces far from the round conformal structure. This is in line with general

field theory expectations and lends support to the conjecture of [24] that the exit from

eternal inflation is reasonably smooth, producing universes that are relatively regular on

the largest scales with globally finite surfaces of constant density.
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A Complex anisotropic scalar domain wall solutions

In these appendices we provide the technical details to find the anisotropic bulk solutions

and their action in the gravitational theories discussed in the main text.

A.1 Equations of motion

The equations of motion can be obtained by substituting the metric (2.3) into the ac-

tion (2.1) and by varying this respectively with respect to l0, l1, l2, l3 and Φ,4

l0
2l3

2

l1
2l2

2 +
l0

2l2
2

l1
2l3

2 +
l0

2l1
2

l2
2l3

2 −
2l0

2

l1
2 −

2l0
2

l2
2 −

2l0
2

l3
2

+ 4l0
2V (Φ) +

4l1
′l2
′

l1l2
+

4l1
′l3
′

l1l3
+

4l2
′l3
′

l2l3
− 2Φ′

2
= 0 ,

− 4l0
′l1
′

l0l1
− 4l0

′l3
′

l0l3
− l0

2l3
2

l1
2l2

2 +
3l0

2l2
2

l1
2l3

2 −
l0

2l1
2

l2
2l3

2 −
2l0

2

l1
2 +

2l0
2

l2
2 −

2l0
2

l3
2 + 4l0

2V (Φ)

+
4l1
′′

l1
+

4l1
′l3
′

l1l3
+

4l3
′′

l3
+ 2Φ′

2
= 0 ,

− 4l0
′l2
′

l2
− 4l0

′l3
′

l3
− l0

2l3
2

l1
2l2

2 −
l0

2l2
2

l1
2l3

2 +
3l0

2l1
2

l2
2l3

2 +
2l0

2

l1
2 −

2l0
2

l2
2 −

2l0
2

l3
2 + 4l0

2V (Φ)

+
4l2
′′

l2
+

4l2
′l3
′

l2l3
+

4l3
′′

l3
+ 2Φ′

2
= 0 ,

− 4l0
′l1
′

l1
− 4l0

′l2
′

l2
+

3l0
2l3

2

l1
2l2

2 −
l0

2l2
2

l1
2l3

2 −
l0

2l1
2

l2
2l3

2 −
2l0

2

l1
2 −

2l0
2

l2
2 +

2l0
2

l3
2 + 4l0

2V (Φ)

+
4l1
′′

l1
+

4l1
′l2
′

l1l2
+

4l2
′′

l2
+ 2Φ′

2
= 0 ,

l0
2∂V (Φ)

∂Φ
+
l0
′Φ′

l0
− l1

′Φ′

l1
− l2

′Φ′

l2
− l3

′Φ′

l3
− Φ′′ = 0 . (A.1)

These equations of motion are valid for both the AdS and dS domain of the wave function,

for this reason the variables are understood to be a function of τ , defined in (4.1) and ′

means a derivative with respect to τ . The AdS equations of motion get retrieved by setting

τ = r, and the Lorentzian dS solutions lie along the line τ = t + iπ/2. In the rest of this

appendix we will use the same gauge as in the main text, namely l0 = 1.

A.2 Solutions

A.2.1 IR NUT

For the NUT solutions we know that around the NUT, denoted here by τ∗, the metric

should look like R4

ds2 = dτ2 +
(τ − τ∗)2

4
(σ2

1 + σ2
2 + σ2

3) . (A.2)

4One can explicitly check that these equations satisfy the Einstein equations. More precisely, the first

equation here is equal to the (r, r)-component of the Einstein equation, the second equation is a linear

combination of the (θ, θ)-component and (θ, φ)-component of the Einstein equation and the fourth equation

is related to the (ψ,ψ)-component which is proportional to the (ψ, φ)-component. All the other components

of the Einstein equations are linearly dependent to the equations of motion presented here, or they are 0.
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Therefore we can expand the fields around τ = τ∗ with the following Ansatz

Φ(τ) = Φ0 + Φk(τ − τ∗)k, l1(τ) =
1

2
(τ − τ∗) + βk+1(τ − τ∗)k+1 ,

l2(τ) =
1

2
(τ − τ∗) + γk+1(τ − τ∗)k+1 , l3(τ) =

1

2
(τ − τ∗) + δk+1(τ − τ∗)k+1 , (A.3)

where k runs from 1 to ∞. By plugging in this Ansatz into the equations of motion (A.1)

we get the following leading order terms

l1(τ) =
1

2
(τ − τ∗) + β3(τ − τ∗)3 +

1

1920

(
− 4V (Φ0)2 − 576V (Φ0)γ3 − 6912γ3

2

+ 144V (Φ0)β3 − 6912γ3β3 + 4608β3
2 − 3

(
∂V (Φ0)

∂Φ0

)2)
(τ − τ∗)5

+O
(
(τ − τ∗)7

)
,

l2(τ) =
1

2
(τ − τ∗) + γ3(τ − τ∗)3 +

1

1920

(
− 4V (Φ0)2 + 144V (Φ0)γ3 + 4608γ3

2

− 576V (Φ0)β3 − 6912γ3β3 + 6912β3
2 − 3

(
∂V (Φ0)

∂Φ0

)2)
(τ − τ∗)5

+O
(
(τ − τ∗)7

)
,

l3(τ) =
1

2
(τ − τ∗)−

(
1

12
V (Φ0) + β3 + γ3

)
(τ − τ∗)3 +

1

1920

(
16V (Φ0)2 + 624V (Φ0)γ3

+ 4608γ3
2 + 624V (Φ0)β3 + 16128γ3β3 + 4608β3

2 − 3

(
∂V (Φ0)

∂Φ0

)2)
(τ − τ∗)5

+O
(
(τ − τ∗)7

)
,

Φ(τ) = Φ0 +
1

8

∂V (Φ0)

∂Φ0
(τ − τ∗)2 +

(
1

288
V (Φ0)

∂V (Φ0)

∂Φ0
+

1

192

∂V (Φ0)

∂Φ0

∂2V (Φ0)

∂Φ2
0

)
(τ − τ∗)4

+O
(
(τ − τ∗)6

)
. (A.4)

This expansion is controlled by the three real parameters β3, γ3 and Φ0 which are ultimately

related to the two squashing parameters A and B together with the coefficients A3 and

B3 of the subleading terms and the two free parameters in the UV expansion of the scalar

field α and β, at the asymptotic boundary.

A.2.2 IR bolt

We can do the same thing for the Bolt solutions. In this case we know that the metric

should look like R2 × S2 around the Bolt position τ∗, that is

ds2 = dτ2 +
(τ − τ∗)2

4
σ2

1 + β2
0σ

2
2 + γ2

0σ
2
3 . (A.5)

Therefore we take the following Ansatz for the expansion of the fields around τ = τ∗,

Φ(τ) = Φ0 + Φk(τ − τ∗)k, l1(τ) = β0 + βk(τ − τ∗)k ,

l2(τ) = γ0 + γk(τ − τ∗)k , l3(τ) =
1

2
(τ − τ∗) + δk+1(τ − τ∗)k+1 , (A.6)
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with k going from 1 to ∞. If we solve the equations of motion (A.1) with this Ansatz,

we get

l1(τ) = γ0 +

(
1

4γ0
− V (Φ0)γ0

4

)
(τ − τ∗)2

−
(

11

192γ0
3
− V (Φ0)

24γ0
+ γ4 +

γ0

32

(
∂V (Φ0)

∂Φ0

)2)
(τ − τ∗)4

+O
(
(τ − τ∗)6

)
,

l2(τ) = γ0 +

(
1

4γ0
− V (Φ0)γ0

4

)
(τ − τ∗)2 + γ4(τ − τ∗)4 +O

(
(τ − τ∗)6

)
,

l3(τ) =
1

2
(τ − τ∗)− (τ − τ∗)3

12γ0
2

+

(
V (Φ0)2

160
+

53

1920γ0
4
− V (Φ0)

40γ0
2
− 1

320

(
∂V (Φ0)

∂Φ0

)2)
(τ − τ∗)5

+O
(
(τ − τ∗)7

)
,

Φ(τ) = Φ0 +
1

4

∂V (Φ0)

∂Φ0
(τ − τ∗)2

+
1

192γ2
0

∂V (Φ0)

∂Φ0

(
−4 + 3γ0

2(2V (Φ0) +
∂2V (Φ0)

∂Φ2
0

)

)
(τ − τ∗)4

+O
(
(τ − τ∗)6

)
.

(A.7)

We chose to parametrize this expansion by the three independent real parameters γ0, γ4

and Φ0 which are again mapped to the squashing parameters A, B and α, β in the UV.

Notice that to get the NUT or Bolt double squashing results without scalar field we have

to put Φ0 = 0 and V (Φ) = Λ in the initial conditions above, effectively reducing the above

expansions and equations of motion to the ones discussed in [26].

A.2.3 UV

The asymptotic solutions are the same for both the NUT and the bolt. To find them, we

look at the asymptotic form of the metric

ds2 = dτ2 + e2τ (A0σ
2
1 +B0σ

2
2 + C0σ

2
3) . (A.8)

If we use that the scalar field potential around Φ = 0 behaves as V (Φ) ∼ Λ − Φ2, we can

make the Ansatz of a Fefferman-Graham expansion

Φ(τ) = αe−τ + βe−2τ +Dke
−(2+k)τ , l1(τ) = A0e

τ +Ake
(1−k)τ ,

l2(τ) = B0e
τ +Bke

(1−k)τ , l3(τ) = C0e
τ + Cke

(1−k)τ , (A.9)

where the sum over k goes over all positive integers. The constants are determined by

solving the equations of motion (A.1), order by order, giving the following consistent series
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expansion

l1(τ) = A0e
τ +

1

16A0B0
2C0

2

(
− 5A0

4 + 2A0
2B0

2 + 3B0
4 + 2A0

2C0
2 − 6B0

2C0
2

+ 3C0
4 − 2(A0B0C0)4/3α2

)
e−τ +A3e

−2τ +O(e−3τ ) ,

l2(τ) = B0e
τ +

1

16A0B0
2C0

2

(
3A0

4 + 2A0
2B0

2 − 5B0
4 − 6A0

2C0
2 + 2B0

2C0
2

+ 3C0
4 − 2(A0B0C0)4/3α2

)
e−τ +B3e

−2τ +O(e−3τ ) ,

l3(τ) = C0e
τ +

1

16A0B0
2C0

2

(
3A0

4 − 6A0
2B0

2 + 3B0
4 + 2A0

2C0
2 + 2B0

2C0
2

− 5C0
4 − 2(A0B0C0)4/3α2

)
e−τ −

(
A3C0

A0
− B3C0

B0
− 2

3A0B0
αβ

)
e−2τ

+O(e−3τ ) ,

Φ(τ) =
α

(A0B0C0)1/3
e−τ +

β

(A0B0C0)2/3
e−2τ +O(e−3τ ) .

(A.10)

We have performed this expansion up to eight order and have verified that it is con-

trolled by the seven parameters {A0, B0, C0, A3, B3, α, β}. The coefficients α and β appear-

ing in the expansion of Φ are undetermined by the equations of motion, here we rescaled

them to the most convenient convention making sure it is conform with the literature.

Notice that when we are deep into the dS domain τ = t + iπ/2, which makes the scale

factors imaginary, giving the Lorentzian metric from (4.2).

Since the equations of motion (A.1) are invariant under constant shifts of the radial

coordinate, one can set A0 = 1
4 by an appropriate shift of τ . One can now identify B0 and

C0 with the squashing parameters in (1.1) as follows

A =
1

4C2
0

− 1 , B =
1

4B2
0

− 1 . (A.11)

The parameters A3, B3 and β are independent from the point of view of the UV expansion

but are ultimately fixed in terms of A, B and α by the regularity conditions that we

imposed for the numerical solutions of the full nonlinear equations of motion.

A.2.4 From IR to UV

It is worth discussing how we construct the numerical solutions of the full nonlinear equa-

tions of motion in (A.1). Let us start with the AdS-Taub-NUT solutions (taking τ = r in

the above expansions). For these we picked real values for the parameters β3, γ3 and Φ0 in

the IR expansion (A.4). For each such value we then numerically integrated the equations

of motion from r = 0 to some large value of r. If the resulting numerical solution does not

exhibit a singularity at an intermediate value of the radial coordinate r we declared the

solution to be asymptotically AdS and read off the asymptotic parameters B0, C0 and α

and β in (A.10) which we then related to the squashing parameters A and B using (A.11).

As expected we find that there are no restrictions on the parameters A and B, i.e. as we
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Figure 16. The range of parameters for the AdS-Taub-NUT solutions with two squashings. Left

panel : the values of γ3 and β3 that lead to regular solutions. Right panel : the resulting values of

the squashing parameters A and B.

(a) Φ0 = 1 (b) Φ0 = 2

Figure 17. Initial conditions for γ3 and β3 that give rise to non-singular solutions for two different

values of Φ0.

vary β3 and γ3 for a fixed Φ0 we can explore the whole (A,B) plane. This is illustrated

in figure 16 in the case that there is no scalar field. If we take a non-zero value for Φ0 we

will reach the same conclusion with the only difference that the region in the (β3, γ3) plane

that gives valid UV solutions shifts to higher values of β3 and γ3 when Φ0 increases as can

be seen in figure 17.

The method to find the dS-Taub-NUT solutions is very similar to the AdS case, except

that we now have to evaluate the equations of motion along a contour in the complex τ -

plane. Due to the special nature of the potential chosen here [40, 42], the classical solutions

all lie along a horizontal line at τ = iπ/2+ t. Evaluating the equations of motion along this

line for large τ will learn us if the initial conditions give valid solutions that do not evolve

into a singularity. The initial conditions (β3, γ3) that give valid solutions are just minus

the ones from the AdS solutions without a scalar field. However, when Φ0 gets increased,

the initial conditions do not change significantly in this case.

The procedure we use to construct the AdS-Taub-Bolt solutions is again very similar.

We start with the IR expansion in (A.7), vary the parameters γ0 and γ4 and integrate

numerically the equations of motion. Finally, we read off the asymptotic parameters B0
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and C0 from the behavior of the numerical solutions at large r and deduce the corresponding

values of A and B using the relation in (A.11). However, there is an important difference

between these solutions and the AdS-Taub-NUT solutions. For a fixed value of B there

are critical values of A below/above which there are no AdS-Taub-Bolt solutions. This

leads to curves in the (A,B) plane and the AdS-Taub-Bolt solutions exist only for values

of the squashing parameters that are below or above these critical curves. Furthermore for

every value of (A,B) for which Bolt solutions exist there are two possible solutions of the

equations of motion which we dub “positive” and “negative” branch. All of these features

are extensions of the familiar behavior of the analytically known AdS-Taub-Bolt solutions

with B = 0 discussed in [25, 46] and for which more details can be found in [26].

The dS counterpart of these Bolt solutions can be found by making the AdS initial

conditions imaginary. The other properties of the AdS-Bolt solutions carry over in a

straightforward way, e.g. there is only a limited region in parameter space were these

solutions exist, and there is always a positive and negative branch.

A.3 Holographic renormalization

To evaluate the action, it is easiest to use the on-shell version of (2.1):

IE =− 2π

∫
dτ l1(τ)l2(τ)l3(τ)V (Φ(τ))

− 2π
(
l2(τ)l3(τ)l′1(τ) + l1(τ)l3(τ)l′2(τ) + l1(τ)l2(τ)l′3(τ)

)
τ=τc

, (A.12)

where τc is the cut-off radius at which we take the boundary ∂M.

It is interesting to focus on the evaluation of the action for our AdS solutions (thus

assuming that τ = r, the radial AdS coordinate). Namely, these lead to the thermodynam-

ical properties that were discussed in section 2. As usual for asymptotically locally AdS

space, the value of the on-shell action diverges, and one needs to implement a regularization

procedure. We apply the usual tools of holographic renormalization [28, 30, 47] which were

used for the single squashed AdS-NUT/Bolt solutions without scalar deformations in [25].

In this one first introduces a radial cut-off at r = rc. Then one performs an asymptotic

analysis to identify the terms in the action that diverge as powers of the cut-off. From

this one extracts the counterterms which render the action (A.12) finite by writing the

diverging terms in the cut-off action in terms of fields on the boundary.

Imposing a cut-off the asymptotic form of the original on-shell gravitational action

in (A.12) reads5

Ireg
E = − π

(
4A0B0C0ε

3r − 4εr
(
A2B0C0 +A0B2C0 +A0B0C2 + (A0B0C0)1/3α2/2

))
r=rc

+O(1) , (A.13)

where the constant part is determined by the IR behavior of the specific bulk solutions,

which we do not specify for now. The coefficients A2, B2 and C2 are the coefficients of

the second order terms in the UV expansion of respectively l1, l2 and l3 (A.10). To cancel

5Note that we can approximate the potential by V (Φ) ≈ Λ − Φ2 + . . . for this analysis.
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these divergences we invert the relations between the parameters A0, B0, C0, A2, B2, C2 and

α and the fields on the boundary at r = rc, order by order. This gives

A0 = e−rc l1 − e−2rcA2 +O(e−3rc) , B0 = e−rc l2 − e−2rcB2 +O(e−3rc) , (A.14)

C0 = e−rc l3 − e−2rcC2 +O(e−3rc) , (A.15)

with A2, B2, and C2 given by

A2 = erc
−5l41 + 3(l22 − l23)2 + 2l21(l23 + l22(1− l23Φ2))

16l1l22l
2
3

, (A.16)

B2 = erc
3l41 − 5l42 + 2l22l

2
3 + 3l43 − 2l21(3l23 + l22(−1 + l23Φ2))

16l21l2l
2
3

, (A.17)

C2 = erc
3l41 + 3l42 + 2l22l

2
3 − 5l43 + 2l21(l23 − l22(3 + l23Φ2))

16l21l
2
2l3

(A.18)

where the boundary fields are understood to be evaluated at r = rc. Plugging these values

into the action (A.13) and ignoring higher order terms that decay at large r, we arrive at

the following counterterm action

Sct = π
2(l1

2l2
2 + l2

2l3
2 + l1

2l3
2) + 2l1

2l2
2l3

2(4 + Φ2)− l14 − l24 − l34

2l1l2l3
. (A.19)

These terms agree perfectly when we would have used the covariant counterterms found

by [25] for pure gravity and [29] for gravity and scalar matter

Sct =
1

8π

∫
∂M

d3x
√
h

(
2 +
R
2

+
Φ2

2

)
, (A.20)

where R is the scalar curvature of the boundary metric hij .

As expected the sum

Isub
E = Ireg

E + Sct , (A.21)

remains finite in the r = rc →∞ limit and thus this sum can serve as a good renormalized

on-shell action Sren.

Since our gravitational solutions are constructed numerically, evaluating the renormal-

ized on-shell action is tricky. The difficulty comes from the fact that one has to add a

large positive and a large negative number and this could lead to numerical instabilities.

To remedy this, we found it useful to employ the following strategy. From (A.13) we know

how the on-shell action diverges at large values of r. We can thus evaluate numerically this

on-shell action at large but finite values of r and fit the resulting values to the function

f = De3rc + Ee2rc + Ferc +G+He−rc + Ie−2rc . (A.22)

We can then read of the coefficients D, E, and F and use the first three terms in (A.22)

as our numerical counterterm action that should be added to IE to produce a finite result.

If there is no scalar field, the value of G is the final value for the renormalized action.

In the case of the AdS theories we considered we have to do some more work if there

is a non-zero scalar field. Because in the free O(N) model we want to analyse a current
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of dimension ∆ = 1, the scheme of alternate quantization comes into play and we have to

evaluate the action in terms of β. To achieve this, we have to perform a Legendre transform

by adding the following boundary term [27]

S− = − 1

8π

∫
∂M

d3x
√
hΦπΦ . (A.23)

To have a well-defined boundary term that is invariant under shifts in r, the momentum

πΦ has to be understood as the renormalized momentum defined by [31]

πΦ =
1√
h

δ(Ireg
E + Sct)

δΦ
= ∂rΦ + Φ . (A.24)

After plugging in the asymptotic expansions in this term, we get

S− =
π

4
αβ +O(e2r) . (A.25)

Thus to get the complete action, we have to add to G the constant parts from (A.20)

and (A.25). As a consistency check of our numerical results we should find that the

coefficient E in (A.22) is approximately 0. We found that this value usual was of the order

of O(10−10), but became bigger, up to order O(10−4), for squashings close to -1.

By adding the extra boundary terms (A.25), we obtain Neumann boundary conditions,

which correspond to a multi-trace deformation of the dual QFT [31]. The exact one-point

function of the holographic dual with source J = β can now be calculated by [29–31, 47]

〈O〉 = lim
rc→∞

δ(Ireg
E + Sct + S−)

δβ
= α . (A.26)

Notice that holographic renormalization corresponds to a minimal renormalization

scheme, it is possible to add other finite counterterms that may give a contribution like

Φ3, RΦ. However, we require our renormalization scheme to be the same for the dS and

AdS solutions. To evaluate the dS actions it is sufficient to evaluate the action along the

path C′ in the complex τ plane, see figure 7. Due to the properties of the dS solutions the

real part of the action will tend to a constant along the Lorentzian part of the contour,

while all the divergent terms are encapsulated by the imaginary part of the action, which

agree perfectly with the counterterms in (A.20) [9] eliminating the need for other finite

counterterms.

B Numerical regularization of the CFT

In this appendix, we give more details on the numerical techniques used to calculate the

free energy of the O(N) vector model. As already mentioned, our regularization scheme is

based on the same technique as the one used in [38] and was succesfully applied to massless

scalar fields on a double squashed sphere in [26] and to scalars and fermions in a number

of odd dimensions in [22].
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The goal will be to calculate the free energy in (3.3)

F =
N

2
log

(
det

[
−∇2 +m2 + R

8

Λ2

])
, (B.1)

where Λ is an energy cutoff. In general the free energy is a diverging quantity which we

need to regularize. To do this, we use a heat-kernel type regulator [38, 48]

log det

[
−∇2 +m2 + R

8

Λ2

]
=
∑
i

∫ ∞
Λ−2

dt

t
e−tλi , (B.2)

where we have denoted the eigenvalues of the Laplacian operator by λi. This expression

yields the determinant for modes whose energies are less than a “soft” cut-off Λ, while

cutting off the sum exponentially above this value. In particular, for λ� Λ2, one finds

−
∫ ∞

Λ−2

dt

t
e−tλi = log(λi/Λ

2) +O(λi/Λ
2) , (B.3)

while for λ� Λ2,

−
∫ ∞

Λ−2

dt

t
e−tλi = −e−λi/Λ2

(
Λ2

λi
+O

(
Λ4

λ2
i

))
. (B.4)

The integral can now be split into two pieces, one with low energy modes (IR) and another

with high energy modes (UV)

log det

[
−∇2 +m2 + R

8

Λ2

]
= detUV + detIR , (B.5)

where

detUV ≡
∑
i

∫ δ

Λ−2

dt

t
mie

−tλi ,

detIR ≡
∑
i

∫ ∞
δ

dt

t
mie

−tλi =
∑
i

miΓ(0, λiδ) .

(B.6)

Here, Γ(a, z) is the incomplete Euler Gamma function, δ is an arbitrary positive real

number that we can change to get a better convergence, and mi is the multiplicity of the

eigenvalue λi.

The sum over the IR modes converges for large λi, and can therefore be done numer-

ically if the maximum number of eigenvalues is chosen large enough. The divergences are

all contained in detUV. These have to be controlled and subtracted. If the eigenvalues λi
are known analytically, it is possible to apply the Euler-Maclaurin formula to estimate the

behavior of the sum in detUV [38].

If the eigenvalues are only known numerically, e.g. for the double squashed sphere,

the divergences can be controlled by evaluating the sums in (B.6) for different values of t,

which is possible because these sums converge for large enough eigenvalues. The maximum
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α β A1 A2 A3 A4

−0.5 2.0 1.0006 · 10−11 0.361801 2.1679 · 10−7 0.184913

−0.8 0.0 3.2026 · 10−11 0.990832 6.9398 · 10−7 0.31374

1.2 0.0 1.21575 · 10−14 0.298747 2.61598 · 10−10 0.207765

2.8 −0.4 6.69228 · 10−12 0.293459 1.44942 · 10−7 0.166992

21.2 10.1 −1.32555 · 10−7 0.0282593 −2.52508 · 10−2 −0.342511

−0.2 12.1 4.57221 · 10−11 0.136878 9.95477 · 10−7 0.0876136

Table 1. The coefficients of the fit function in (B.8) for different values of α and β with fixed

m2 = −0.4. Whenever the Ricci curvature becomes very negative the coefficient A1 and A3 differ

more significantly from the expected zero value and thus our numerical results are less accurate.

number of eigenvalues will be called nmax. We let t go from a starting value tinit to δ with

stepsize ∆t. This we can fit and integrate, giving us detUV as a function of the cutoff.

In order to know which function we need to use for the fit, it is necessary to know

the behavior of the integrand as a function of t. The divergences arise from covariant

counterterms such as the metric and curvature scalar of the squashed sphere6

divergences = AΛ3

∫
d3x
√
g + Λ

∫
d3x
√
g(BR+ Cm2) . (B.7)

Because t ∼ Λ−2 this means that the necessary fit function is of the form

fit =
A1

t2
+

A2

t3/2
+
A3

t
+

A4

t1/2
+ · · · . (B.8)

From (B.7) it is clear that A1 and A3 should vanish. This can be used as a check of our

numerical procedure. If the fitted values of A1 and A3 are small enough, we can trust our

fit. To give a flavor of our results for the coefficients in (B.8) , we present explicitly the

values for Ai for different values of α and β in table 1. To obtain the values in table 1,

we took for detUV, nmax = 1500, and we start our fit from tinit = 10−4 with step size

∆t = 10−4. For the parameter δ we chose δ = 10−2.

After the fit function in (B.8) is obtained in this way, we have good control over the

divergences in detUV which we then subtract and, after that, evaluate the integral in (B.6).

The result is then used to obtain the finite regularized value of the free energy.
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