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theory is described in terms of analytic N = (1, 0) gauge superfield V ++ and analytic
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is defined in the framework of the background superfield method ensuring the manifest

gauge invariance along with manifest N = (1, 0) supersymmetry. We calculate leading

contribution to the one-loop effective action using the on-shell background superfields cor-

responding to the option when gauge group SU(N) is broken to SU(N−1)×Υ(1) ⊂ SU(N).

In the bosonic sector the effective action involves the structure ∼ F 4

X2 , where F
4 is a mono-

mial of the fourth degree in an abelian field strength FMN and X stands for the scalar

fields from the ω-hypermultiplet. It is manifestly demonstrated that the expectation values
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1 Introduction

The low-energy effective action plays an important role in supersymmetric gauge theories,

providing a link between superstring/brane theory and quantum field theory. On the one

hand, such an effective action can be calculated in the quantum field theory setting and,

on the other, it can be derived within the brane stuff. As a result, the low-energy effective

action allows one, in principle, to describe the low-energy string effects by methods of

quantum field theory and vice versa (see reviews [1–3]).

It is known that D3-branes are related to 4D, N = 4 SYM theory (see, e.g., [4, 5]).

Interaction of D3-branes is described in abelian bosonic sector by the Born-Infeld action,

with the leading low-energy correction of the form ∼ F 4

X4 , where F
4 is a structure of fourth

degree in an abelian field strength Fmn and X stands for the scalar fields of 4D, N =

4 gauge (vector) multiplet. The one-loop calculation of such an effective action in the

Coulomb branch of N = 4 SYM theory, both in the component approach and in terms of

N = 1, 2 superfields, has been performed in refs. [6–15]. The complete N = 4 structure

of the one-loop low-energy effective action has been established in [16, 17]. The two-loop

contributions to the low-energy effective actions of N = 4 SYM theory have been studied

in [18, 19]. The structure of the low-energy effective action in the mixed Coulomb - Higgs

branch was a subject of ref. [20]. A review of the results related to the calculations of

low-energy effective actions in four-dimensional extended supersymmetric gauge theories

can be found, e.g., in [1, 2].

Another interesting class of the extended objects in superstring/brane theory is pre-

sented by D5-branes (see e.g., [4, 5]). These objects are related to 6D,N = (1, 1) SYM

theory likewise D3-branes are related to 4D, N = 4 SYM theory. Similarly to the D3-

brane case, the interaction of D5-branes is described by the 6D Born-Infeld action [21]

(see [22–27] for aspects of the Born-Infeld action in diverse dimensions). Since D5-brane

is related to 6D,N = (1, 1) SYM theory, it is natural to expect that the D5-brane interac-

tion in the low-energy domain can be calculated on the basis of the low-energy quantum

effective action of this theory.

It is also worth mentioning that maximally supersymmetric 6D, N = (1, 1) Yang-Mills

theory is closely related to the so called “little string theories” (see [48] for a review). In
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refs. [49, 50], there were computed the massless gluon amplitudes in 6D, N = (1, 1) Yang-

Mills theory with the gauge group SU(N) broken to Υ(1)N−1. Up to four loops, there

was found the precise relation between these amplitudes and tree-level amplitudes of the

corresponding massless string modes in the double-scaled little string theory.

In the present paper we study the quantum aspects of 6D, N = (1, 1) SYM theory. It

is the maximally extended supersymmetric gauge model in six dimensions, and it involves

eight left-handed and eight right-handed supercharges. An equal number of spinors with

mutually-opposite chiralities guarantees the absence of chiral anomaly in the theory. From

the point of view of 6D, N = (1, 0) supersymmetry, the model is built on a gauge (vector)

multiplet and a hypermultiplet. Respectively, the bosonic sector of the model includes a

real vector gauge field and two complex (or four real) scalar fields.

Although 6D, N = (1, 1) non-abelian SYM theory is non-renormalizable by power

counting, it was proved that it is on-shell finite at one and two loops [28–35]. Moreover,

it was recently shown that this theory is one-loop finite even off-shell [36–38] and that the

two-loop diagrams with hypermultiplet legs are also off-shell finite [39].

Here we develop a method to determine the one-loop effective action in general

6D, N = (1, 1) SYM theory and to calculate the leading low-energy contributions to it. To

preserve as many manifest supersymmetries as possible we use the harmonic superspace

approach [40, 41]. The theory under consideration is formulated in terms of N = (1, 0)

harmonic superfields describing the gauge multiplet and the hypermultiplet. Therefore it

possesses the manifest N = (1, 0) supersymmetry and, in addition, a non-manifest (hidden)

on-shell N = (0, 1) supersymmetry mixing N = (1, 0) gauge multiplet and hypermultiplet.

These supersymmetries close on the total on-shell N = (1, 1) supersymmetry. Such a for-

mulation of N = (1, 1) SYM theory was described in detail in the paper [42] (see also

refs. [43, 44]).1 An essential difference of our consideration here is the use of the so called

“ω-form” of the hypermultiplet (see below).

The theory under consideration is quantized in the framework of N =(1, 0) supersym-

metric background field method [37, 38]. In this method, the effective action depends on

the background superfields of 6D, N =(1, 0) gauge multiplet and hypermultiplet. By con-

struction, it exhibits manifest gauge invariance under the classical gauge transformations

and N = (1, 0) supersymmetry. To calculate the one-loop effective action we make use

of the superfield proper-time technique [47], which ensures the manifest gauge invariance

and N =(1, 0) supersymmetry at all steps of calculation. The low-energy effective action

is obtained, when we impose the restriction that both the background superfield strength

and the background hypermultiplet are space-time-independent. The leading low-energy

approximation amounts to keeping those terms in the effective action which are of the

lowest order in the superfield strength. We also assume that the background superfields

satisfy the classical equations of motion, that guarantees the gauge independence of the

effective action.

We consider the case when gauge symmetry SU(N) is broken to SU(N − 1)×Υ(1) ⊂
SU(N). Technically, this means that background superfields align through the fixed gen-

1There is also another superfield formulation for maximally supersymmetric Yang-Mills theories based

on the pure spinor superfield formalism [45, 46]. However, the scheme of quantum calculations within this

approach has not been worked out so far.
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erator of Cartan subalgebra of SU(N), which corresponds to an abelian subgroup Υ(1). In

this case the effective action of the theory depends only on the abelian vector multiplet

and hypermultiplet. In the bosonic sector we find out the effective action for the single

real Υ(1) gauge field and four real scalar fields.

The paper is organized as follows. In section 2 we formulate an arbitrary 6D, N = (1, 1)

SYM theory in terms of N = (1, 0) harmonic superfields representing the gauge multiplet

and the hypermultiplet. Unlike the majority of the previous papers on effective action

in 4D and 6D harmonic superspaces, we prefer to work with ω-form of the hypermul-

tiplet. Such a formulation has certain merits over the more accustomed formulation in

terms of q-hypermultiplet. Although the ω- and q- descriptions of the hypermultiplet are

classically equivalent [41], and this equivalency apparently extends to the exact quantum

theory, the approximate schemes for calculating the quantum effective action in terms of

these superfields can be different. Besides, the ω-hypermultiplet possesses an advantage

of being real, i.e. carrying no external Υ(1) charges. This property essentially simplifies

the construction of the super-invariants in the ω-representation. In section 3, besides giv-

ing details of the 6D,N = (1, 1) SYM action in terms of the harmonic superfields V ++

and ω, we derive the transformations of the hidden on-shell N = (0, 1) supersymmetry

which mixes the superfields V ++ and ω and leaves the action invariant. In section 3 we

develop a procedure of constructing the one-loop effective action which depends on both

the gauge and the hypermultiplet background superfields. Also we demonstrate advantages

of the ω-hypermultiplet formulation and construct some on-shell invariants depending on

V ++ and ω superfields. Analogous invariants have never been constructed in terms of q-

hypermultiplet. Section 4 describes the calculation of leading low-energy contributions to

the one-loop effective action. To this end, we fix the background superfields by requiring

them to be space-time independent and to satisfy the classical equations of motion. We

consider the case of background superfields breaking SU(N) gauge group of the original

Lagrangian to SU(N − 1) × Υ(1). In this case the effective action depends on an abelian

Υ(1) gauge superfield. It is explicitly demonstrated that the ω-hypermultiplet acts as an

infrared regulator securing the absence of the infrared singularities in the low-energy effec-

tive action. The last section contains a brief summary of the results obtained and a list of

some problems for the future study.

2 The model and conventions

We consider the formulation of 6D, N = (1, 1) SYM theory in terms of 6D, N = (1, 0)

harmonic analytic superfields V ++ and ω, which represent the gauge multiplet and the

hypermultiplet.2 The action of N = (1, 1) SYM theory is written as

S0[V
++, q+] =

1

f2

{
∞∑

n=2

(−i)n

n
tr

∫
d14z du1 . . . dun

V ++(z, u1) . . . V
++(z, un)

(u+1 u
+
2 ) . . . (u

+
n u

+
1 )

− 1

2
tr

∫
dζ(−4)∇++ω∇++ω

}
, (2.1)

2These superfields satisfy the Grassmann harmonic analyticity conditions D+
a V

++ = 0 and D+
a ω = 0,

where D+
a = ∂

∂θ−a
.
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where f is a dimensionful coupling constant ([f] = −1) and the measure of integra-

tion over the analytic subspace dζ(−4) includes the integration over harmonics, dζ(−4) =

d6x(an) du (D
−)4. Both V ++ and ω superfields take values in the adjoint representation of

the gauge group. The covariant harmonic derivative ∇++ acts on the hypermultiplet ω as

∇++ω = D++ω + i[V ++, ω] . (2.2)

The action (2.1) is invariant under the infinitesimal gauge transformations

δV ++ = −∇++Λ , δω = i[Λ, ω] , (2.3)

where Λ(ζ, u) = Λ̃(ζ, u) is a real analytic gauge parameter.

Besides the analytic gauge connection V ++ we introduce a non-analytic one V −− as a

solution of the zero curvature condition [41]

D++V −− −D−−V ++ + i[V ++, V −−] = 0 . (2.4)

Using V −− we can define one more covariant harmonic derivative ∇−− = D−− + iV −−

and the N = (1, 0) gauge superfield strength

W+a = − i

6
εabcdD+

b D
+
c D

+
d V

−− , (2.5)

possessing the useful off-shell properties

∇++W+a = ∇−−W−a = 0 , W−a = ∇−−W+a . (2.6)

Introducing an analytic superfield F++ ,

F++ =
1

4
D+

a W
+a = i(D+)4V −− , D+

a F
++ = ∇++F++ = 0 , (2.7)

we can write the classical equations of motion corresponding to the action (2.1) as

F++ + [ω,∇++ω] = 0 , (∇++)2 ω = 0 . (2.8)

The N = (1, 0) superfield action (2.1) enjoys the additional N = (0, 1) supersymmetry

δV ++ = (ǫ+Au+A)ω − (ǫ+Au−A)∇++ω = 2(ǫ+Au+A)ω −∇++
(
(ǫ+Au−A)ω

)
, (2.9)

δω = −(D+)4
(
(ǫ−Au−A)V

−−
)
= i(ǫ−Au−A)F

++ − i(ǫAa u
−

A)W
+a, (2.10)

where A = 1, 2 is the Pauli-Gürsey SU(2) index. To check this, one first derives, using (2.9)

and (2.10), the N = (0, 1) transformation law of ∇++ω

δ(∇++ω) = i
(
(ǫ−Au+A) + (ǫ+Au−A)

)
F++ − i(ǫAa u

+
A)W

+a + i(ǫ+Au−A)[ω,∇++ω]. (2.11)

Then one varies the classical action (2.1) with respect to (2.9) and (2.11)

δS =
1

f2

{
tr

∫
d14zduV −−δV ++ − tr

∫
dζ(−4)∇++ω δ(∇++ω)

}
. (2.12)
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In the first integral, we pass to the integration over the analytic subspace and use the

explicit form of the variations (2.9) and (2.11)

δS = − i

f2
tr

∫
dζ(−4)

{
2F++(ǫ+Au+A)ω +∇++ω

(
(ǫ−Au+A) + (ǫ+Au−A)

)
F++

− F++∇++
(
(ǫ+Au−A)ω

)
− ǫAa u

+
A ∇++ωW+a

}
= 0 . (2.13)

The last two terms in (2.13) are the total harmonic derivative ∇++ due to the properties of

F++ and W+a and so they vanish under dζ(−4). The first two terms cancel each other after

integration by parts with respect to the harmonic derivative ∇++ and using the properties

∇++ǫ−A = ǫ−A and ∇++u−A = u+A. Finally, the term tr
(
∇++ω[ω,∇++ω]

)
vanishes due to

the cyclic property of trace.

The zero curvature condition (2.4) allows one to express the transformation of the

non-analytic gauge connection δV −− through δV ++

∇++δV −− −∇−−δV ++ = 0 , (2.14)

and to define the transformation low of the gauge superfield strengthW+a under the hidden

supersymmetry

δW+a = εadbcǫAd ∇bc

(
u+Aω − u−A∇++ω

)
+ iǫ−A[W+a, u+Aω − u−A∇++ω], (2.15)

where

∇bc = ∂bc −
1

2
D+

b D
+
c V −− . (2.16)

Note that, while deriving (2.15), we essentially used the ω-hypermultiplet equation of

motion (∇++)2ω = 0 and some its consequences.

3 One-loop effective action in the background field method

The background field method for 4D,N = 2 gauge theories in the harmonic superspace

was worked out in [9]. It was generalized to 6D theories in our recent works [37, 38]).

Following these techniques, we represent the original superfields V ++ and ω as a sum of

the “background” superfields V++,Ω and the “quantum” ones v++, ω ,

V ++ → V++ + fv++, ω → Ω+ fω , (3.1)

and then expand the action in a power series with respect to the quantum fields. The

one-loop contribution to the effective action Γ(1) for the model (2.1) is given by

eiΓ
(1)[V++,Ω] = Det1/2

⌢
�

∫
Dv++DωDbDcDϕ eiS2[v++,ω,b,c,ϕ,V++,Ω] , (3.2)

where

S2 = Sgh +
1

2
tr

∫
dζ(−4) v++

⌢
� v++ − 1

2
tr

∫
dζ(−4) (∇++ω)2

− itr

∫
dζ(−4)

{
∇++ω[v++,Ω] +∇++Ω[v++, ω] +

i

2
[v++,Ω]2

}
, (3.3)

Sgh = tr

∫
dζ(−4) b(∇++)2c+

1

2
tr

∫
dζ(−4) ϕ(∇++)2ϕ . (3.4)

– 5 –
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The ghost action Sgh (3.4) involves the Faddeev-Popov ghosts b and c and also Nielsen-

Kallosh ghost φ. The covariantly-analytic d’Alembertian
⌢
� is defined as

⌢
�= 1

2(D
+)4(∇−−)2,

where the harmonic covariant derivative ∇−− = D−− + iV−− contains the background

superfield V−−. While acting on an analytic superfield, the operator
⌢
� is given by

⌢
�= ηMN∇M∇N +W+a∇−

a + F++∇−− − 1

2
(∇−−F++) , (3.5)

where ηMN = diag(1,−1,−1,−1,−1,−1) is the six-dimensional Minkowski metric,

M,N = 0, . . . , 5, and ∇M = ∂M+iAM is the background- dependent vector supercovariant

derivative (see [42] for details).

In the action (3.2) the background superfields V++ and Ω are analytic but uncon-

strained otherwise. The gauge group of the theory (2.1) is assumed to be SU(N). For the

further consideration, we will also assume that the background fields V++ and Ω align in

a fixed direction in the Cartan subalgebra of su(N)

V++ = V ++(ζ, u)H , Ω = Ω(ζ, u)H , (3.6)

where H ia a fixed generator in the Cartan subalgebra generating some abelian subgroup

Υ(1).3 Our choice of the background corresponds to the spontaneous symmetry breaking

SU(N) → SU(N − 1)×Υ(1). We have to note that the pair of the background superfields

(V ++,Ω) forms an abelian vectorN = (1, 1) multiplet which, in the bosonic sector, contains

a single real gauge vector field AM (x) and four real scalars φ(x) and φ(ij)(x) , i, j = 1, 2,

where φ and φ(ij) are the scalar components of Ω hypermultiplet [41]. The abelian vector

field and four scalars in six-dimensional space-time describe just the bosonic world-volume

degrees of freedom of a single D5-brane [4, 5].

The classical equations of motions (2.8) for the background superfields V ++ and Ω

are free

F++ = 0 , (D++)2Ω = 0 . (3.7)

In what follows we assume that the background superfields solve the classical equation

of motion (3.7). We will also consider the background slowly varying in space-time, i.e.

assume that

∂MW+a = 0 , ∂MΩ = 0 . (3.8)

Finally we are left with an abelian background analytic superfields V ++ and Ω, which

satisfy the classical equation of motion (3.7) and the conditions (3.8). Under these asser-

tions the gauge superfield strength W+a is analytic,4 D+
a W

+b = δbaF
++ = 0. For further

analysis it is convenient to use the N = (0, 1) transformation for gauge superfield strength

W+a (2.15). In the case of the slowly varying abelian on-shell background superfields

3We denote the H component of V++ by the same letter V ++ as the original non-abelian harmonic

connection, with the hope that this will not create a misunderstanding. The same concerns the abelian

superfield strength W+a.
4In general this is not true and F++ 6= 0.

– 6 –
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the hidden N = (0, 1) supersymmetry transformations (2.10) and (2.15) have the very

simple form

δΩ = −i(ǫAa u
−

A)W
+a δW+a = 0. (3.9)

These transformation rules follow from the abelian version of the transformations (2.10),

(2.15) in which one should take into account the conditions (3.8) and (3.7). It is worth to

point out that these conditions on their own are covariant under N = (0, 1) supersymmetry.

In conclusion of this section, let us consider the simplest N = (1, 1) invariants which

can be constructed out of the abelian analytic superfields W+a and Ω under the assump-

tions (3.7) and (3.8). It is evident that the following gauge-invariant action

I = f2
∫

dζ(−4)(W+)4F(fΩ), (3.10)

where (W+)4 = − 1
24εabcdW

+aW+bW+cW+d and F(fΩ) is an arbitrary function of Ω, is

invariant under the transformation (3.9) due to the nilpotency condition (W+)5 ≡ 0. For

our further consideration, of the main interest is the choice

I1 = c

∫
dζ(−4) (W

+)4

Ω2
, (3.11)

which corresponds to F = 1
f2Ω2 in (3.10). The coefficient c in (3.11) cannot be fixed only

on the symmetry grounds and should be calculated in the framework of the quantum field

theory. In the next section we will find it from the calculation of the leading low-energy

contribution to the effective action of the theory (2.1).

4 Leading low-energy contributions to one-loop effective action

We choose the Cartan-Weyl basis for the SU(N) gauge group generators, so that the

quantum superfield v++ has the decomposition

v++ = v++
i Hi + v++

α Eα , i = 1, . . . , N − 1, α = 1, . . . , N(N − 1) , (4.1)

where Eα is the generator corresponding to the root α normalized as tr (EαE−β) = δαβ and

Hi are the Cartan subalgebra generators, [Hi, Eα] = αHiEα. In this case the background

covariant d’Alembertian (3.5) under the conditions (3.7) acts on the quantum superfield

v++ as

⌢
� v++ =

1

2
(D+)4

{
(D−−)2v++ + iαHD−−V −−v++

α Eα

+ iαHV −−D−−v++
α Eα − α2

H(V −−)2v++
α Eα

}
(4.2)

=
⌢
�H v++

α Eα + ∂M∂M v++
i Hi , (4.3)

where we have introduced the operator

⌢
�H := �+ αH W+aD−

a . (4.4)

– 7 –
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The one-loop effective action (3.2) for the background superfields V ++ and Ω subjected

to the conditions (3.7) and (3.8) thus reads

Γ(1) =
i

2
Tr (2,2) ln

( ⌢
�H −α2

HΩ2
)
+

i

2
Tr ln

[
(∇++

H )2 +A(+)
α2
H

⌢
�H −α2

HΩ2
A(−)

]

− i

2
Tr (4,0) ln

⌢
�H −iTr ln(∇++

H )2 +
i

2
Tr ln(∇++

H )2 , (4.5)

where we have defined ∇++
H = D++ + αHV ++ and A(±)(Ω) = Ω∇++

H ± 3
2(D

++Ω).

The first term in the first line of the expression (4.5) is the contribution from the

gauge multiplet, while the second one is the total contribution from the hypermultiplet.

The first term in the second line comes from Det1/2
⌢
� in (3.2), while the second and the

third ones are contributions from the ghost action (3.4). We use the standard definition

for the functional trace over harmonic superspace in (4.5)

Tr (q,4−q)O = tr

∫
dζ

(−4)
1 dζ

(−4)
2 δ

(q,4−q)
A

(1|2)O(q,4−q)(1|2) .

Here δ
(q,4−q)
A

(1|2) is an analytic delta-function [41] and O(q,4−q)(ζ1, u1|ζ2, u2) is the kernel

of an operator acting in the space of analytic superfields with the harmonic U(1) charge q.

As the next step we rewrite the contribution from Det1/2
⌢
� as

i

2
Tr (4,0) ln

⌢
�H=

i

2
Tr (4,0) ln

( ⌢
�H −α2

HΩ2
)
+

i

2
Tr (4,0)

(
1 +

α2
HΩ2

⌢
�H −α2

HΩ2

)
. (4.6)

Hence the one-loop contribution to effective action (4.5) is divided as

Γ(1) = Γ
(1)
lead + Γ

(1)
high , (4.7)

where

Γ
(1)
lead =

i

2
Tr (2,2) ln

( ⌢
�H −α2

HΩ2
)
− i

2
Tr (4,0) ln

( ⌢
�H −α2

HΩ2
)
, (4.8)

and

Γ
(1)
high =

i

2
Tr ln

[
(∇++

H )2 +A(+)
α2
H

⌢
�H −α2

HΩ2
A(−)

]

− i

2
Tr (4,0)

(
1 +

α2
HΩ2

⌢
�H −α2

HΩ2

)
− i

2
Tr ln(∇++

H )2 . (4.9)

Then we consider the contribution from the quantum hypermultiplet in (4.5). For

on-shell superfields the covariant harmonic derivative ∇++
H commutes with

⌢
�H , but it is

not true for the operator
⌢
�H −α2

HΩ2. Moreover, the operators A(±) also contain back-

ground hypermultiplet and as a consequence do not commute with
⌢
�H −α2

HΩ2 even for

the constant on-shell background superfields

i

2
Tr ln

[
(∇++

H )2+A(+)
α2
H

⌢
�H −α2

HΩ2
A(−)

]
=

i

2
Tr ln

[
(∇++

H )2+(∇++
H )2

α2
HΩ2

⌢
�H −α2

HΩ2
+. . .

]
,

(4.10)
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where dots stand for terms involving the harmonic derivative of the hypermultiplet, D++Ω.

Our aim is to demonstrate that the N = (1, 1) invariant action (3.11) can be evaluated

as the leading contribution to the one-loop effective action Γ
(1)
lead (4.8). The action (3.11)

contains only the gauge superfield strength W+a and Ω without terms D++Ω, D−
a Ω and

D−
a W

+b. Hence we will systematically neglect such terms in our computations. In this

case the contributions from ghosts in (4.5) and the second term in (4.6) are canceled by

the corresponding terms in (4.10), and so Γ
(1)
high collects terms with D++Ω and spinorial

derivatives of the background superfields only. Thus in what follows the contribution Γ
(1)
high

will be ignored.

Computation of the expression (4.8) repeats the analogous one in the four-dimensional

case [14]. Both terms in (4.8) contain harmonic singularities in the coincident points limit.

According to the analysis of [14], the well-defined expression for the contribution Γ
(1)
lead to

the one-loop effective action reads5

Γ
(1)
lead = − i

2
Tr

∫
∞

0

d(is)

(is)
eis(

⌢

�H−α2
H
Ω2)Π

(2,2)
T , (4.11)

where Π
(2,2)
T (ζ1, u1; ζ2, u2) is the projector on the space of covariantly analytic transverse

superfields

Π
(2,2)
T (1|2) = δ

(2,2)
A (1|2)−∇++

1 ∇++
2 G(0,0)(1|2) . (4.12)

The Green function G(0,0)(ζ1, u1; ζ2, u2) satisfies the equation

(∇++
1 )2G(0,0)(1|2) = −δ

(4,0)
A (1|2) , (4.13)

and it can be given explicitly [41] as

G(0,0)(ζ1, u1; ζ2, u2) =
(D+

1 )
4 (D+

2 )
4

⌢
�1

δ14(z1 − z2)
(u−1 u

−

2 )

(u+1 u
+
2 )

3
. (4.14)

By explicit calculation one can show that in our case of the on-shell background the pro-

jector (4.12) acquires the simple form

Π
(2,2)
T = −(D+

1 )
4

⌢
�1

{
(∇−

1 )
4(u+1 u

+
2 )

2 − Ω−−
1 (u−1 u

+
2 )(u

+
1 u

+
2 )+

⌢
�1 (u

−
1 u

+
2 )

2
}
δ14(z1 − z2) .

(4.15)

We substitute the expression (4.15) for Π
(2,2)
T in the one-loop contribution Γ

(1)
lead (4.11)

and take the coincident-harmonic points limit u2 → u1. We see that only the third term

in (4.15) survives in this limit. Thus we have

Γ
(1)
lead = − i

2
tr

∫
dζ

(−4)
1

∫
∞

0

d(is)

(is)
eis(

⌢

�H−α2
H
Ω2)(D+

1 )
4δ14(z1 − z2)

∣∣
2=1

. (4.16)

5We have to note that the harmonic derivative commutes with the covariant d’Alembertian on shell.

But it is not the case for the operator
⌢

�H −α2
HΩ2. Indeed, [

⌢

�H −α2
HΩ2,∇++

H
] ∼ D++Ω. However, as

was mentioned above, we omit all such terms since they provide next-to-leading order corrections to the

low-energy approximation.
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The trace over matrix indices in (4.16) is reduced to a sum over non-zero roots αH , taking

H = 1√
N(N−1)

diag(1, . . . , 1, 1 − N). In order to get rid of the Grassmann delta function

by using the identity (D+)4(D−)4δ8(θ1 − θ2)
∣∣
2=1

= 1, we collect the fourth power of

derivative D−
a from the exponent in (4.16). Then we pass to the momentum representation

and calculate the integral over proper-time s. Finally we obtain

Γ
(1)
lead =

N − 1

(4π)3

∫
dζ(−4) (W

+)4

Ω2
. (4.17)

As expected, the leading low-energy contribution (4.17) to the effective action in the

model (2.1) is just the N = (1, 1) invariant I1 (3.11). The coefficient c now takes the

precise value

c =
N − 1

(4π)3
. (4.18)

The expression for c is similar to that in the four-dimensional N = 4 SYM theory (see,

e.g., [19] and references therein). In the bosonic sector the effective action (4.17) has the

structure

Γ
(1)
bos ∼

∫
d6x

F 4

φ2

(
1 +

φ(ij)φ(ij)

φ2
+ . . .

)
, (4.19)

where F 4 = FMNFMNFPQF
PQ− 4FNMFMRF

RSFSN and FMN is the abelian gauge field

strength.

5 Conclusions

In this paper we have studied the quantum aspects of the six-dimensional N = (1, 1)

super-Yang-Mills theory. We formulated the model in 6D, N = (1, 0) harmonic superspace

in terms of N = (1, 0) gauge multiplet and ω-hypermultiplet, all being in the adjoint

representation of gauge group SU(N). By construction, the theory possesses the manifest

N = (1, 0) supersymmetry and an additional non-manifest N = (0, 1) one.

We studied the effective action of 6D, N = (1, 0) SYM theory in the framework

of the background field method. There was considered the special case of the slowly

varying background superfields which break the initial gauge symmetry SU(N) down to

SU(N − 1)×Υ(1) ⊂ SU(N) and are subject to the free classical equations of motion. We

provided a general analysis of possible N = (1, 1) invariants which can be constructed out

of the background gauge superfield strength and hypermultiplet. We argued that one of

these invariants can be treated as the leading low-energy contribution to the one-loop effec-

tive action of N = (1, 1) SYM theory. Our main result is the expression (4.17). It is worth

pointing out that it is given in the superfield form and reveals the manifest N = (1, 0)

supersymmetry in parallel with the hidden N = (0, 1) supersymmetry.

It is instructive to compare our results on the one-loop low-energy effective action in

6D, N = (1, 1) SYM theory with the recent activity on calculating the one-loop on-shell

amplitudes in the same theory [49–53]. The four-point amplitude nicely matches with the

– 10 –
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F 4 component term in the superfield effective action (4.19) and, as a function of the inverse

square of v.e.v. of scalar field, in the leading order is in full agreement with [49]. However,

we emphasize that unlike the amplitudes, the result for the effective action in our paper

was derived in a manifest superfield form. The four-point amplitude in [51–53] does not

allow to directly restore this effective action. The point is that the effective action (4.17)

contains the hypermultiplet superfield whose scalar component serves as a natural infrared

regulator. In the above papers the amplitudes were calculated in the gauge multiplet

sector only, that is not sufficient for deriving the true full effective action. In this respect,

it is worth to mention once again the paper [49], where the four-point amplitude in the

gauge multiplet sector was calculated under the assumption that the gauge symmetry is

spontaneously broken and the gauge field acquires a mass by Higgs mechanism. Such a mass

can be treated as a partial case of the constant scalar component of the hypermultiplet

in our general superfield effective action (4.17). Then the structure of the first term in

the bosonic component effective action (4.19) is completely analogous to the four-point

amplitude of ref. [49].

We have to note that even in the one-loop approximation there might exist more

complicated contributions to the effective action, which can be expected on the basis of a

general analysis. One can consider, e.g., a 6D analog of supersymmetric Heisenberg-Euler

type effective action in N = (1, 1) SYM theory. Also, it should be noticed that we studied

only those contributions to the effective action which contain no harmonic derivatives of

the hypermultiplet superfield. The contributions involving such derivatives were beyond

the scope of our consideration. It would be interesting to analyze such contributions and to

consider a more general class of the background superfields. Namely, it is tempting to find

a way to consider the complete effective action with the whole dependence on the harmonic

derivatives of the background hypermultiplet included. In this way we expect to obtain

the complete N = (1, 1) supersymmetric quantum effective action possessing both explicit

N = (1, 0) and hidden N = (0, 1) supersymmetries. We hope to address these issues in

the forthcoming works.
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